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Zhenjiang, 212013, PR. China compressible nematic liquid crystal flow problem. The initial density is allowed to
touch vacuum, and the viscous and heat conductivity coefficients are kept to be
positive constants. Global existence of strong solutions is established for any H? initial
data in the Lagrangian flow map coordinate, which holds for both vacuum and
non-vacuum case. The key difficulty is caused by the lack of the positive lower bound
of the density. To overcome such difficulty, it is observed that the ratio of 5?—&)) is

proportional to the time integral of the upper bound of temperature and vector
director field, along the trajectory. Density weighted Sobolev type inequalities are
constructed for both temperature and director field in terms of % and small
dependence on their dissipation estimates. Besides this, to deal with cross terms
arising due to liquid crystal flow, higher order priori estimates are established by using

effective viscous flux.
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1 Introduction

Liquid crystal material can be known as an intermediate phase between solid and liquid.
It flows like liquid and exhibits additional microscopic structural properties. For example,
rigid polymers solution, DNA, and many other materials show phase change for different
ranges of temperature. On the base of structural properties, liquid crystals are categorized
as nematic, sematic, and cholesteric phases. Nematic liquid crystal are made up of rod-like
molecules, and their structure induces preferred average directional order. The historic ex-
ample of nematic phase is N-p-methoxybenzlidene-p-butylaniline (MBBA) which appears
in between 20°C and 47°C temperatures. The kinematic behavior of nematic liquid crys-
tals due to the strong coupling between the microscopic and macroscopic interaction field
is very complicated and interesting. The hydrodynamic theory for nematic liquid crystal
is derived by extending the static theory in generalizations of body and surface forces as
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in the initial derivation of macroscopic hydrodynamics. The system that describes the
hydrodynamics of nematic liquid crystal was proposed during the period between 1958
and 1968 by Ericksen [1, 2] and Leslie [3] and reduces to the Oseen—Frank theory [4]
in the static case. It is a macroscopic continuum description of materials evolution un-
der the effects of both the flow velocity field u(x, ) and the average molecular orientation
d(x,t) (the microscopic configuration) of rod-like liquid molecules and their mutual in-
teractions, whereas d(x,t) is a unit vector. Recently, there has been modeling study of a
generalized non-isothermal Ericksen—Leslie system by Hieber and Priiss [5] (incompress-
ible non-isothermal case), [6] (compressible non-isothermal case) with consistency on the
laws of thermodynamic, and De Anna-Liu [7] derived the generalized compressible non-
isothermal Ericksen—Leslie system with full Oseen—Frank energy density. We also refer to
[8] where the author derived more sophisticated thermodynamically consistent models of
nematic liquid crystal flows both in tensorial and vectorial forms by using the conservation
dissipation formalism.

Suppose that p(x, t), u(x, t), d(x, £), and 6 (x, t) are mass density, fluid velocity vector field,
director vector field (represents preferred average directional order), and temperature,
respectively. Analogous to one constant approximation model [9], the couple system of
thermally driven fluid flow and director field satisfies the following conservation laws:

0:0 +div(pu) =0,

0:(pu) + div(pu @ u) + Vp(p,0) =divS — div(Vd © Vd - %|Vd|2]I3),
d,d+u-Vd=Ad+|Vd|*d, |d)? =1,

0:(p0) + div(poub) + p(p,0)divu +divg =S: Vu + |Ad + |Vd|*d|?,

(1.1)

whereas the Cauchy stress tensor S is defined as

S= u’(Vu + VuT) + A/(div ),
the viscosity coefficients ;' and A’ satisfy

uw' >0, 2u +3) >0,
and VuT is the transpose of the matrix Vu, [ is a 3 x 3 identity matrix. The notation
Vd © Vdisa3 x 3 matrix with (i, j)th entries, given by 9;d - 9;d (1 < i,j < 3). The equation
of state for ideal polytropic gas is given by

p(p,0) =Rpb,
R > 0 is the gas constant. The internal energy flux is defined by the Fourier law as follows:

q=k(0)VOk >0.

Total energy & is the sum of internal energy and kinetic energy, given as

1 1
Er= <p<e+ E|u|2) + 5|Vd|2), (1.2)

whereas e = ¢,0.



Mahmood and Sun Advances in Difference Equations (2021) 2021:517 Page 3 of 46

When the director field is a constant vector field, system (1.1) reduces to compress-
ible non-isentropic Navier—Stokes equations. First, let us recall some literature works
on the well-posedness theory for the compressible Navier—Stokes equations in a three-
dimensional space. When the initial density is away from vacuum, Nash [10] and Itaya
[11] established the local existence and uniqueness of classical solutions in 1962 and 1977,
respectively. In 1980, Matsumura and Nishida [12] first obtained the global classical so-
lutions for the initial data close to a non-vacuum equilibrium in a Sobolev space. When
vacuum is allowed, in 2006, Cho and Kim [13] proved the existence of unique local strong
solutions in bounded and unbounded domains. In 2018, Huang and Li [14] proved the
global existence of classical solutions in the whole space with smooth initial data which
are of small energy but possibly large oscillations. For more results on the existence of
solutions, see [15—-24] and the references therein.

For liquid crystal in higher dimension, in 2012, Huang et al. [9] constructed the local ex-
istence of strong solution with sufficient regular initial data. In the same year, Hu and Wu
[25] proved the existence and uniqueness of the global strong solution in critical Besov
spaces provided that the initial datum is close to constant equilibrium state (1,0,d). The
spherically symmetric solutions to compressible hydrodynamic flow of liquid crystals can
be found in reference [26]. In 2015, Yang [27] obtained global in time strong solution and
justified the low Mach number limit in a bounded domain. For the results of compressible
liquid crystal flows model with Ginzburg—Landau energy, existence, and large-time behav-
ior of global weak or strong solution, we refer to [28—30] and the references therein. For
more details about the development in the analysis of liquid crystal, an interested reader
can see a very systematic review by Lin and Wang [31]. There are fewer results about non-
isothermal nematic liquid crystal equations compared to those on compressible isentropic
nematic liquid crystal. In 2017, Guo et al. [32] established the existence of global-in-time
smooth solutions in a three-dimensional space provided that the initial datum is close to
a steady state. In 2018, the local well-posedness of nematic liquid crystal equations (1.1)
was studied by Fan et al. [33] in a bounded domain  C R3. In 2019, Francesco and Liu [7]
derived a general Ericksen—Leslie system under the action of thermal effects and proved
the global-in-time well-posedness of the system for small initial data in the framework of
Besov spaces. Recently, Zhong [34] studied the singularity formation of strong solutions
to the two-dimensional nematic liquid crystal flows in a bounded domain and proved that
the strong solution exists globally if the temporal integral of the maximum norm of the
divergence of the velocity is bounded.

All the global well-posedness results obtained for compressible liquid crystal flow in
higher dimensional space variable are restricted to smallness assumptions on initial data,
energy, and so on, the global existence with smooth initial data in dimension # = 3 is an
open problem analogous to Navier—Stokes equations. Although the well-posedness the-
ory for one-dimensional Navier—Stokes is well known, the physical phenomenon of liquid
crystal dynamics creates serious difficulties in rigorous analysis. When the director field is
a constant vector, the system is reduced to one-dimensional Navier—Stokes equations. For
such a particular system of equations, in 1977, Kazhikhov and Shelukhin [35] established
the global existence and uniqueness of strong solutions with positive density and constant
viscosity coefficient, for the corresponding Cauchy problem, see [36]. Later, asymptotic
behavior of the solution was studied by Okada [37] in 1987. Zlotnik and Amosov [38, 39]
constructed the global weak solutions, and later, Chen, Hoff, and Trivisa [40] the initial and
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boundary conditions. In 1998, Jiang [41] studied the equations with density-dependent
viscosity and proved that if the viscosity does not decrease to zero too rapidly, then smooth
solutions exist globally in time. For more related works with density-dependent viscosity,
see [42—46]. In 2000, Luo and Xin [47] obtained the regularity and solutions behavior near
gas and vacuum interfaces. Large time behavior of solutions with large initial data was re-
cently proved in an unbounded domain by Li and Liang [48]. In 2015, Pan and Zhang
[49] proved the existence of global strong solutions when heat conductivity depends on
temperature by the following Chapman—Enskog power law:

q=—-k(0)VO, K(0)=CoP p>o0. (1.3)

The global well-posedness of solution with 8 = 0 and vacuum was obtained by Li [50]
in 2019, this result holds both for vacuum and non-vacuum case and has improved the
well-known result of Kazhikhov [35](non-vacuum case). For the Cauchy problem, with
constant coefficients and far field vacuum, Li and Xin [51] obtained the global existence
for entropy bounded solution to non-isentropic Navier—Stokes equations with zero heat
conduction.

The study of hydrodynamics of liquid crystal has attracted the attention of many re-
searchers for the past few years. For isentropic compressible liquid crystal flow one-
dimensional space, Ding et al. [52], in 2011, gave the existence of weak solution (p, 4, d)
with 0 < pg € L7[0,1] for y > 1, uy € L*[0,1], and dy € H'[0,1]. Later, Ding, Wang, and
Wen [53] obtained the existence and uniqueness of global classical solution for Holder
continuous initial data and initial density away from vacuum. In 2015, Huang and Ding
[54] studied a free boundary problem for the compressible liquid crystal flow model which
connects to vacuum continuously. For non-isothermal compressible liquid crystal flow, in
2019, Tang and Sun [55] proved the global existence of strong solutions allowing vacuum,
provided that the initial data satisfy some compatibility condition and the heat conductiv-
ity satisfies

Cl'(1+6%)<k(0)<C(1+6F), B>0, (1.4)

which plays an essential role in obtaining the regularity of the temperature. The result
[54] was extended by Mei [56] in 2020, where the author proved global classical solution
to the free boundary value problem in the presence of temperature equation with heat
conductivity of type (1.4). By using the stronger assumption on heat conductivity (1.3),
recently, in 2021, Li, Mahmood, and Shang [57] obtained the global strong solution with
po>C.

To our best knowledge, global strong solution to one-dimensional non-isothermal com-
pressible nematic liquid crystal equations for arbitrary large initial data is not known for
constant coefficients and vacuum. The global solution obtained for system (1.5) in Mei
[56], Li et al., [57] holds for 8 > 0 with py > C. Similarly, the result obtained in [55] with
vacuum in Euler coordinates is restricted to the condition on heat conductivity of type
(1.4). Motivated by Kazhikhov [35] and Li [50], in this paper we aim to study the global
well-posedness of strong solutions to the one-dimensional non-isothermal compressible
nematic liquid crystal flow equations, i.e., system (1.5), with constant viscosity and heat

conductivity in the presence of vacuum.
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1.1 Coordinates transformation and main results

Let p(x,t), u(x,t), d(x,¢t), and 0(x,t) denote the unknown functions of density, velocity,
director vector field(d(x, t) = (4}, d?,d?)(x, t)), and temperature, then the liquid crystal hy-
drodynamics for all x € (0,/) and time ¢ > 0 is governed by the following set of partial

differential equations in Eulerian coordinates:

ap + (pu)x =0,

(pu) + (ou?) + p(p,0))x — ity = — 5 (|dx|*)ss

8,d + ud, = d + |dy|?d, |d)? =1,

3,(00) + (pub) + pity — K (Or)x = 11(1)* + | + |05l |*d|?,

(1.5)

where p and « are viscosity and heat conductivity coefficients and p =2u’ + A'.
The results of this paper will be proven in the Lagrangian flow map coordinate be-
ing stated in what follows. Let us define the coordinate transformation between the La-

grangian coordinate ¥ and Euler coordinates x as

x=§01),

where &(y,£) denotes the flow map governed by u, that is,

gt(y’ t) = u(‘g(y’ t)r t):
£(0,0)=y.

Let the new variables p, iz, d p, @ denote the density, velocity, director field, pressure, and

temperature, respectively, in the Lagrangian coordinate, that is,

p:0):=p(EW 1)),  ult):=a(EW,t).t),  pO,1):=p(EG0)1),
dy,t):=dEW0),t), 00,0 :=0((0),¢).

By the definition of £(y, ¢), it is not hard to see that

o1 d,d 9,0 3
(31, 0xd, 9,0, dyp) = (y—”, g Ay Lp),
0,6 8,E" 0,E 0k

tmitain - (3035 ) e (5 ) a0 (3)
R o T\ oyE ) e "\ 0E ) 0,k 7\ 08

0:0 + Udyp = 3¢, 0:U + Udlt = 0;14, 0:d + ud.d = 0,d, 0:0 + ud,0 = 0;0,
and introduce a function g(y, t) = &,(y, t). Then it follows

& = Uy, (1.6)



Mahmood and Sun Advances in Difference Equations (2021) 2021:517 Page 6 of 46

For the sake of simplicity, new variables are denoted by the same physical variables as

before, then system (1.5) can be rewritten in the Lagrangian coordinate as follows:

petpy =0,
1 1 2\ _ MYy
P”r+§(P+ 2?' dy| )y—g(?)y;

(1.7)
di= 1), + o, |d|2 -

oot +p2 = (), - 1+ 11(), + L 1dy PP
Due to (1.6) and (1.7);, it is straightforward that
Vy
(80): = 8ip + 8Pt = Vyp —ggp =0,

from which, by setting p|;-0 = po and noticing that g|;-o = 1, we have gp = py. Therefore,

one can replace p by p = %0 in the above equations, and a new modified system is written

as follows:
& — Uy = 0,
pots + 0+ 3y )y = (54 s
d d :
di=1(%),+ 9 a, 1P =1,
pofe+ pity = (), + M 1 gL (%), 1 L 1d PP,
with the initial conditions
(g: M,d,e)()’: t)'tZO = (Luo»do:@o)()/): J’E Q: (19)
and the boundary conditions
(u; dy; 9}/) |y=0,[ = (O; 0! 0)' (1'10)

For 1 < r < oo and positive integer k, we use L = L"((0,1)) and W*" = W*7((0,1)) to
denote the standard Lebesgue and Sobolev spaces, respectively, and in the case that r = 2,
we use H¥ instead of W*2. H} consists of all functions v € H! satisfying #(0) = u(l) = 0. We
always use | ||, to denote the L" norm of u. Throughout this paper, C denotes a general
nonnegative constant which may be different from line to line.

The main result of this paper is stated as follows.

Theorem 1.1 Assume that the initial data (po, uo, dyo, 00)(y) € H* x H? x H?* x H? satisfy
(00,60)(y) = 0 for all y € [0, 1], with compatibility conditions

1 /
ity = Rpofo) = 2 (|do ") = /oy

2
k05 + ()™ — Rugpobo + |doc|* = </poha,
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for (h1,hy) € L*[0,1]. Then there is a unique global solution (g, u,d, 6) to system (1.8) subject
to initial-boundary conditions (1.9-1.10) satisfying

geC([0, T H?), g €L*(0,T;H?),

ueC(0, T;H?) NL*(0, T;H?), u, € L*(0, T; H'),

dy € C(0,T;H*), dy €L*(0,T;H"),
0<0eC(0,T;H*)NL*0,T;H?), 6,€L*(0,T;H'),

forany T € (0,00). In particular, it holds that

inf inf ,t)>C
OstsTye(o,l)g(y )_

and

2 T
>+/ D)dt < C (1.11)
H? 0

d
(«5)
g

forany T >0, where C > 0 is a positive constant depending only on R, c,, 11, «, my, N1, Na,
N3, and T, and dissipation D(t) is defined as

2
max (Ilglle +

te[0,T]

2
D) = llgel2p + |t d,6) |75 + || (e 6] 1 +

12

dy 1 <dy>
N/3 ’ Je\g yt
Remark1 The result of this paper can be seen as a generalization of Kazhikhov—Shelukhin

[35] (constant coefficients, non-vacuum) and Li [50] (constant coefficients and vacuum)
towards liquid crystal dynamics.

Remark 2 The arguments of this paper also work for the free boundary value problem in
which the boundary condition for velocity u is replaced by

u 1|d,|?
()
g 2 g

Thus our result improves the results of [56, 57] for «(6) = ## with g = 0, which does not
include the constant case.

=0.
y=0,1

Remark 3 The same result as in Theorem 1.1 still holds if we replace the boundary con-
dition 9,6(0, t) = 9,6(/, £) = 0 by one of the following three:

6(0,¢) =6(l,£) =0,

0(0,t) =9,0(/,t) =0,

8,0(0,2) =0(1,2) =0,

and the proof is exactly the same as the one established in this paper, the only difference
is that the basic energy identity in Lemma 1 will be replaced by an inequality.
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Remark 4 The method used in this paper can be applied to another model, e.g., magneto-
hydrodynamics, by slightly modifying the proof of this paper.

Remark 5 The method can easily be adopted for the non-isothermal compressible liq-
uid crystal model in which Dirichlet free energy (|Vd|?) is replaced by Ginzburg-Landau
energy (|Vd|? + 4%2(|d|2 —1)?) in the one-dimensional case.

The key issue of proving Theorem 1.1 is to establish the appropriate a priori energy esti-
mates for the solution of (1.8) up to any finite time, subject to initial and boundary condi-
tions (1.9)—(1.10). Compared to Navier—Stokes, the presence of highly nonlinear director
field equation makes the analysis more difficult due to production of g| é(%y)y + giz ARS

in the temperature equation, the term %Fd, constraint |d|? = 1 in the director field equa-
tion, and coupling of the torque balance equation with the momentum balance equation
with the term giz |dy|?. In addition to the difficulty caused by the lack of the positive lower
bound of the density, it is observed that upper bound density strongly depends on the
L*-norm of % and the quantity pf. Strong coupling of cross terms and vacuum causes
serious difficulties in the control of L*(L?) of +/Pof. To overcome such difficulties, density-
weighted embedding inequalities are used both for temperature and the director field.

The desired a priori energy estimates are carried out as, first, we obtain from (1.8) an
identity as follows:

40h0) = X0 Y (0,07 20y, )" (1 R f XY 092015 po3)00,5) ds)
0

for some functions X(¢), Y(y,t), and Z(y, t) = exp(~ fot Zg% |dy|? ds). The temperature equa-
tion is not used at all in deriving the above identity, and this identity is in the spirit of the
one in [35], but in different Lagrangian coordinates. The basic energy estimate implies
that both X and Y are uniformly away from zero and uniformly bounded up to any finite
time. As a direct corollary of the above identity, one can obtain the uniform positive lower
bound of g and the control of the upper bound of g in terms of fot 0 ds and fot zg% |d,|? ds. By
using the positive lower bound of g, we obtain a density-weighted embedding inequality
which implies that the upper bound of ,/pe6 and ﬁ | Z—y |2 can be controlled by that of g,

up to a small dependence on || % l2, and ﬁaﬂ i,—y 2. This will be used for the L>(L?) type
estimates on ,/006.

Second, we carry out the L(L?) energy estimate on ,/pof and, at the same time, the
L*°(L?) energy estimate will be evolved naturally, due to the coupling structure between
u, d, and 6 in the system. Compared to Navier—Stokes equations, we do not have control
for L>°(L?) energy estimate on ,/pof because of time integral term of the director field in
product with time integral of temperature. It is noted that there is no dissipation estimates
on the director field equation due to energy conservation. As a conclusion, by extracting
dissipation estimates from momentum and torque balance equation in terms of ||0|| », we
are able to obtain the a priori upper bound of g and the a priori L>(L?) N L%(H!) type
estimates on (i, %, 0).

dyu

Third, by using the effective viscous flux F := Mg —P- %|%|2 and working on its

L>®(L?) N L2(H') type a priori estimate that strongly depends on the term || d—jé 17, of the
director field, we are able to get the a priori L>(H!) estimate on (g, u); however, due to the
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presence of the term %(Zyu)z and g|d;|? and the degeneracy of the leading term p,3;0 in
the 6 equation, we are not able to obtain the corresponding L>°(H') estimate on 6 without
appealing to higher order energy estimates than H'.

Lastly, we obtained the a priori L>°(H?) type estimates on (,6), which are achieved
through performing the L>(L?) type energy estimate on ,/pgd;0, L°(H') type estimate
on F, and by using a priori L>(H?) estimates on the director field. It should be mentioned
that the desired a priori L*°(H?) estimates on  are obtained without knowing their a priori
L®(H') bound in advance.

In fact, all the energy estimates obtained in this paper hold if we replace boundary con-

dition (1.10) with the above one by copying or slightly modifying the proof.

2 Proof of the main results
2.1 A priori L2 estimates
We start with the basic energy identity.

Lemma 1 For time and space variables (t,x) € [0, T] x [0, 1], the conservation of mass and

energy is given as

l l
[ trar= [ os0ran 2.1)
0 0
: 1 2 1 2
f ¢yp0f + = |poul” + —Id,|1” | (y,t) dy = Eo, (2.2)
0 2 2g
where

! 1 1
Ey= /0 (Cv/O09 + 5,00|M|2 + £|dy|2>(y,0)dy.

Proof Integrating (1.8); with respect to space and time and using boundary condition
(1.10), it is easy to see that equality (2.1) holds.
In order to prove (2.2), we multiply (1.8), by u. The resulting equation is then integrated

over [0,1]; after integration by parts, we obtain

1d ! 1
VT pou dy+/ —dy /(p+ E|dy|2>uydy. (2.3)

On the other hand, taking dot product of equation (1.8); with —( (dy )y + ldy i

), as a result

one can get

1/d d,|? 1/d 1 2
w(i8) 5 -8) o
g\g/, ¢ g\g/, ¢

The left-hand side of (2.4) can be written as

1/d d,|? 1/d dy|* 1/d
(M) B0 (%) ca a0 H(B) e
g\g/, & g\g/y g g\g/,
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where we have used constraint |d|? = 1. Plugging (2.5) into (2.4) and then multiplying the

resulting equation by g, we get

d 1/d 1 >
-4-(2) :—g‘—(—y> v Liapd]. 6)
&/y gE\g/y, &
Then, we integrate equality (2.6) over [0,]], and we have
1d (!4, l1/d 1 2 1
——/ e dy+/g—<—y> + = dyd dy:—/ —1d,*uy dy. (2.7)
2dt )y g o 1&8\g/, & 0 2¢

Combining (2.3) and (2.7) with integral form of the temperature equation (1.8), implies
equality (2.2). O

Next, we carry out the estimate on the lower bound of g. To this end, we perform some
calculations in the spirit of [35] as preparations. Now, we integrate momentum conserva-

tion equation with respect to time ¢, and using first equation of (1.8), we can get

t d
pou(y, t) — pouo(y) + /(; <p + %kjyﬁ) (y,8)ds = d—y(lng(y, t) — lngo(y)). (2.8)
y

Integrating (2.8) with respect to y from the point & (¢) to an arbitrary point y for any fixed

time £, we get

y t
/ (po(y, £) = potto(y)) dy + / <P + i|dy|2> (»,s)ds
H0) 0 4
- / (p + %Idﬂz) (£(2),s) ds =Ing(y,t) —Ingo (§(2), 2). (2.9)
0 £0

After rewriting, we have

exp </0tpds) =g, )XY (y,)Z(y, 1), (2.10)

where

_ 1 ¢ L ,
XO= e ex"( /0 P+ 5aldl E0:) ds),

y
Y(y,t) = exp < fé poto(x) — pou(t, x) dx),

®

t
1 2
Z(y,t)—exp(—/(; ng|dy| ds>.

Multiplying equation (2.10) by Rpof and integrating the result over [0, £], we have

exp(/(fpds) —1=Rp, /OtX(s)Y(y,s)Z(y,s)Q ds. (2.11)
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From (2.10) and (2.11) we get

t
g t) =X 'Y, t) Z(y,1)! <1 +R / X(5)Y (y,8)Z(y,5)00(»)0(y,s) ds). (2.12)
0
A prior positive lower and upper bound of g is stated in the following proposition.
Proposition 1 Given T € (0,00), it holds that
g=¢G,
R t
ety = €1z (14 [ imole)
K Jo
forany t € [0,00).

Proof By Lemma 1, it follows from the Holder inequality that

(o) ([ ) ([ )]

=< 2/2|lpoll1Eo.

!
/0 polit = o) d

Therefore, it follows from the definition of ¥ in Lemma 1 that

exp{~Cy/llpolliEo} < Y(3,8) <exp{Cy/llpoll1Eo},

Cl<y@yt<C.

Similarly,

¢ ldyl?

0<Z=¢" & <1. (2.13)

Now we show that X(¢) is bounded above and below by the initial data. Assume that

tlu 1 y
Fo=| (2_p. iap ,d/ dx, 2.14
0= [(%-p- 55102 )09 ds [ puoto) s .19
then
u 1
]:y:,OOM, -7:t=Ey— —ng|dy|2~

With the aid of the continuity equation, we obtain
Lo 2
@F)e — (uF)y =uy,— pof) — @IdyI — Pold”.

Integrating it over [0,/] x [0,¢], using non-slip boundary (1.10) condition, we get

i i t pl 1
/ gFdy= / goFody - / / (ﬂ09 + —ld,* + pou2> dyds.
0 0 0o Jo 2g
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By using mass conservation (2.1), we have

! l
/gdy=/gody'
0 0

Using the continuity of g, for ¢ > 0, there exists £(¢) € [0, /] such that

l
f(g(t)’t):i/o gF(y,t)dy.

On the other hand, since u, = g;, then from the definition of 7 we have

t 1 HO)
]-'(&(t),t) :lng(é‘(t), t) —/0 <p+ ?Idy|2) (S(t),s) ds+/(; oo (x) dx. (2.15)

By rewriting in the form

g<s<1t>, nor (/0 (”09 * %gzldylz) (£®).5) ds)

1 t l 1 a(t)
= exp(—/ / (,oOG +—|d,|* + pou2> dyds + / pou(£(2),t) dx). (2.16)
go Jo Jo 2g 0

Thus it is not hard to see that

Ccl<x@<c. (2.17)
Recalling p > 0, we obtain
g= Xy iz len fotpdf,
>C,
the conclusion follows. O

Next we establish the upper bound of g, where we need to prove || po6 || . and for the di-
rector field ||(|iig—y‘)2 |lzo and || \/% (ll‘ig—yl)2 |2, type a priori estimate. The need of the weighted
estimate for temperature and director field is necessary for the upper bound of g. As
a preparation of deriving the a priori upper bound of g and the a priori L>°(0, T;L2) N
L*(0, T; H') type estimates on (u, d,,0), for simplicity, the density-weighted estimates of 6
and d, are given in the following proposition.

Proposition 2 We have the following two items: (i) It holds that
i (9 L= el (%)
—_— = + —_— —_—
P00\ g/ |l VB '\¢
2 2
C =% (%)
g/ e Iv8 \g

ool <c+c| 22

HY
V2

4
gl
2

+C,
2

4
el
2
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10]lco <
g 2

where C depends on (po, p}, Eo, 1, 10]) and

Ml o0 llsos Qo := {J’G(OJ)’PO(Y)Z E}

(ii) As a consequence of (i), we have
2

e

2

cn(ngnio +1),

1
| =12
C,(llgl% +1)

Vb l12, <7
&2
for any n € (0,00), where C, is a positive constant depending only on v and N1(po, Eo, 0,

P0)-
Proof Now the proof of Proposition 2 is given as follows: (i) Let

=R,1)

and

l\JIT)l
—

2 {ye 0,0 p0) 2

Noticing that
1 1 q
R@y,t)=— | Rdz+ —/ / 0,Rdydz,
Q0 Q0 Jo, Jz

we deduce that
IRl <o Rdz+/ 10, R|dz
2

R ([er)

IIRlll (

thus one can get
2E

+—.
2 o

IRl <

Density-weighted estimate for the director field
By the Holder and Young inequalities, and similarly as above, we deduce

IR o,

R\? 2
(75) o= () e 5 5
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2|R|, 1R
5l BV P Po 2
2\? 4
§QI<T)HRV+T-——— IRl || og
0 ,02 1 ,03 pg(yo) - || 0”00
2 |8R) s R
=== lels| =] |—=
P> N/ * pg 1 pg o
2\2 4
591(_—> IR+ = 2| ymife
0 pz 1 ,03 pg(yo) - “ 0||oo
1
R 1 1 2
y 2 2
+ === lgll&IRIf|—
24 V3 IS > ' P25 Il o
2 2\?2 2
<s| R +sz‘1<_—) IRIZ + CO)IRIZ|
|| (%) = il
4
HRIF 2 2
=== IglI&IRI;
,04 \/g 2 > !

(2.18)

for any y € (0,/). Thus, from Lemma 1 and suitably small § > 0, we have
2
R

0
’ 3 (¥0) N3

(ii) Thanks to (i), we have
R

|
NG

for a positive constant C depending only on A/. Therefore, we have

g llco-

<C+C
2

oo

2

2

N/3
2E,
+ R

2 Qo

4
Il

<C+C
2

R
02 (vo)
IR0 <1

[e¢]

R |2 R\ 5> R\|2 3
1=l 1G) == (R)] st
«/%oo pO o0 IOO 00

R
NG

4
R ?

=, ||g||§o)i<

3
2
+ 1) .
2
Density-weighted estimate for temperature:
Assume ||p||oo = p, let there exist yo € (0,7) such that

§C(1+

2 [t 25
P00000,0) < 5 / Py de <Pl poflh
0

By the Holder and Young inequalities, we deduce

!
(636)° 04 = (00000 +2 | 0], (050

25\2 ! /
< (7) 1poB 117 +2 / (2036000 04| + P300313,01) dE
0
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2% 2
< (Tp> 100015 + 4] 030 Neod 1 126 ]

22| 22) gk o2
IO \/E ) g oo IOO 2

<

25\ 2
(%) vowo + al o immd .. + +41 2ol houdi ]

1 1 9 1
‘ g2 lpbllf | o302
2

8,0 ‘
NG

1 2 1 5 1 _5
ik ol ool 25"
2

2,0 ‘
NG

1 25\2
<5 loge 12+ <7p) 008 12 + 1611000 12 ] £ >,

+2p2

22

NG

gl
2

_10 2
+3073 [|pof I

for any y € (0,/), it is not hard to see that

4
llglls-
2

ool <c+c|®

el
NG
Noticing that

1 1 y
9(y,t)=Q_O/Q 9dz+Q—0/;2 / 3,0 dt dz,
0 0 vZ

we deduce, by the Holder inequality, that

1 000 !
161l 5—/ —dz+/ |0,0|dz
== Qo Ja, po o

2 EVIENIT A
<= llpodl +(f y dz) (f dz) .
Qop o 0 og 0

NG
The other estimates for 6 in Proposition 2 can be obtained similar to the director field.
By density-weighted estimate of 6 and d, in hand, the desired a priori L>(0, T;L?) N

L%*(0, T; H') estimates on (u, %,«9) are given as in the following lemma.

Lemma 2 Given T € (0,00). It holds that

d C s Il d, 12|
— 52 - 2 “y
i (1vmene vt |||
t 1 d 2
+ [ (1Vpobll% + — | = ||2)dr
rtd, 1\ 17 ayu |? 3.0 |1
+/|:(—y )] dy +5C; irlad +Ke, || 2=
0 g y \/g 2 \/g 2

C Idy| R (! 2 cd (!
< Sl (1, R f looblldr )| + 2 / po(€) dy (2.19)
77 I'L 0 Zdt 0

foranyte(0,T).
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Denote & := %( 24 plo L ) + ¢,0, then one can derive from (1.8),, (1.8)3, and (1.8), that

1 3,6
e (el o)) o ()
1 2 d
- M@(—@(%)) + (dt~ —y> . (2.20)
g g/,

Multiplying (2.20) by £ = 1 (u* + ‘dyl

gets from integration by parts that

d/l( &) d /ll 3,0 + pud (d dy) &' d
—+ . —
dr Po Y+ P koyo + puoyu t P e ay
1 1 1
:/ pOS(S/)tdy+/ u(p+ F|dy|2>8y5/dy,
0 0 4
! 1 dy |’
i/ (pOEE’)dy+/ <K39+/LM8 u+(‘ ))8 &' dy
1 0 0o & g y

C ! 1 )
=i e [[u(pr gpiar)os o

where we have used that £ < £’ and the fact d; - % = —(| b2 |2 )y- By the Young inequality,
we have

[ s 2) o
—| x0y0 + pudyu + | |— ly
0o & g g g y !
' dy |* \d,|?
:/ —| k0,0 + pud,u + udyu+ | —— | +¢,0,0 |dy
o0& g y g y
! 2
25 V&l o-e L1515, o
4 Jo 0

g

) + ¢,0 and integrating the resultant over (0,/), one

(2.21)

QL

u8u

and

! 1
—\d,|* )9, d
/ou<p+2g2|y|)y i’
! d 2
=R/ M@O(uayu+<‘—y > +cV8y0)dy
0 4 g y
| d,|?
+/ u—2|dy|2(u8yu+(’—y ) +cV8y9)dy
0 2g g y
L (19,0 2 I
< ﬁ/ = dy+C/ —(p§u202+(u8yu)2+ |:(
4 Jo 4

NG
’ ae | d,|*
M’ dy + /—(uz—
4 Jo 0o & g

N

+ (uayu)Z + [
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for a positive constant C depending only on R, ¢,, i, and «. Substituting the above two
inequalities into (2.21) and applying Lemma 1 and Proposition 1, we obtain

2

d 8,6
Ellﬂgllg +KCy ﬁ

2

<o (2,1
el e (el o) e
<o e (=D)L

dyz

g

2\ cd ',
>+§E/Opo(5) dy

[ee]

+Cll«/?oullz(ll«/%Gll2

S (E R () )
+C<||me|| = %2 ;) gjtfpo(g/)zdy

for a positive constant C depending only on R, ¢,, i, and «, and thus

d ) 3,0 |
E||¢,o_05||2+xcv 7, (2.22)
2
el L4 )l 4T
d
. & ,00 (&) dy (2.24)

Zdt

for a positive constant C; depending only on R, ¢,, i, and «.
Multiplying the momentum equation by 4u> and integrating the resultant over (0, /),

after integration by parts and the Young inequality, one gets that
2
udyu

d l . l
— | pou”d +12,u/
dt/o o ol V&
: 1 S APP)
:12/ <p+ Fldﬂ )u oyudy
R 1
=12f (ﬂe —2|dy|2>u28yudy
o\ &

3, 2 6 1 d,*
§6M/ uo,u 6R / ,Oou dey+—f —(u2 ay )dy,
0 nJo £ g
udyu 1 d, |?|I?
§C1< — >+C||«/_Pou||2<||«/_po9|| = )

g Pol 8 o0
ua u 1 d, |?|?
§C1< oy >+C(||«/_,009||2 b )
\/g 2 Pol| & )
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from which, by Proposition 1, the Holder inequality, and Proposition 1, one obtains

2 2

d/ luayu ) d, 2

pud+6u/ dy < C(IVAbI1% + 20)

dt 0 i’ \/E ) 0 Po| & oo

that is,
d 22 2 dy 217
— 6 0 =2 ) 2.25
- I/pou? [, + 61 (WO | 7=l L (2.25)

Now we first operate the d, on both sides of the director field equation

1/d |d,|?
e ((2)), (59,
@) <g<g J, e )

2
Taking the dot product of the equation by (%dy), we get

d,|*d 1/d d,*d d,|*d d,|*d
) - | —y=(—<—y>> 2 —M(—' y|2 >-—y el (2.26)
gl g \g\¢g/,/J, 1gl ¢ g J, gl g

Now we compute each term on the left- and right-hand side of equation (2.26) one by one.
The term on the left-hand side after integration by parts can be written as

1! d, 3 (Yd,|*
/Wf i —zfo("y ¢ ) SRR
4 4
(|d|> _uydy
4 4
i (%), 0- (y)w
y
2 dyZ)
=2 d
()03 151 (%]) me

dy

=z/0('i) "/m (3

In the above calculation we have used the boundary conditions d,, = 0, u = 0. For the terms

) Vpoudy.

on the right-hand side, we calculate them one by one. The first term after integration by
parts and using boundary condition is as follows:

) 475
4 g
() .(@2@) Y
0 &\ & y g g y
L) ) o L2 (2 e
0 &\ & y g g y 0 g y g y

LRl
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dy

£

SEENE

Now the last term of (2.26) can be written as

(%)
g/,

dy
g

dy _ldyf*
g &

dy
g

2
\dy|?
-

4

Page 19 of 46

where we have used the constraint |d|? = 1 for the director field. Substituting the computed

term in (2.26), integrating the resultant with respect to space variable, and using Holder’s

inequality result in

2

AENREED
—_— —_ + —_— —_
datl\gi/ ll, lvg\lgl/,l,
d 2 d 22
<c(|=X[ +I pu”z)l__y .
(H\/§2 \/—0 2 \/%g o0

Adding (2.27) and (2.25) with (2.24), one can get

(1)

d C
E(nmen%in pol? |5 +

2 2 2

1 (dy 2) udyu 3,0
+iIl—={|— +5C | ——=| +«c||—
veNlgl/,l, V& 2 Vel
a,*1*\ cd [ )
<C 0% + | —| =2 ——f £)'d
< (IIN/po ll5 + A w>+2dt i po(E') dy

forany ¢ € (0, 7).

By Proposition 1 and (ii) of Proposition 2, we have

212

e

£

(®)
N -
3,0 || 1 2
< GLolz(2])
\/g 2 \/g y
Idy| t 2
+ E(efé(%)zuﬁ’“h(l+ 5/ ||Po(9||oodt)) .
n ® Jo

Collecting the estimates provides the proof of the lemma.

/P00 112, (£) +

2
2

dy
g

(2.27)

(2.28)

(2.29)

In order to close the estimates of the lemma, we need to control the unbounded operator

4]

TN 00 dr R [t . . .
e g and m fo 1008 |lco dT. We see that the director field term is in product with

the time integral of L* — norm of temperature, so it cannot be controlled by right-hand

side terms, thus we need new estimates to control these terms. In order to control the

right-hand side of the above inequality, dissipation estimates are obtained on the director

field in terms of L* — norm of temperature.
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Lemma 3 Given T € (0,00). It holds that

? r 2 1 dy
+/ 1e12, + [ 8,6, d,u, — (2
2 0 \/g g y

< C((L+T) + | (V7oior oss o/060)|1) + fo 10 dr

|d,|
V&'

sup
0<t<T

()

2
)
2

for positive constants C depending only on R, c,, u, i, my, N1, and T

Proof Multlplymg (1 8); by u and taking the dot product of director field equation (1.8);
dy|*d
with —(1(%), + 23

) respectively, the resultant is integrated over (0, /). From the momen-
tum equatlon it 1s not hard to see that

2

||«/170M||2+M
/ l( ;
0 g
! d
:R/ (@9+
g

814 /'0002
2 2M

dy |*

g

51T

2

_2
1 !
Ky
K Jo
Similarly, from the director field equation, we have
dy[? 11/4d 1 2
[0 [45)

2dt g\g/, &
By using the constraint |d|? = 1, it is not not hard to see that
1/d 1 > 1(d,\’
1) e 12
g\Ng/, & &g/

Now equation (2.31), can be written as

sl o [3E) 0]

y

dy.

(2.30)

!
1 2
dy:—/o ngwlyl uy dy. (2.31)

d,|*

g

4

d 2
= uydy+/
g

oyu

4

dy

4

4

<K
~ 2

dy

2
C — 2.32
g f : (2.32)

Combining (2.30) and (2.32) and using Sobolev embedding result in
dqul®> |1 [/d
)ﬂ* 1% (3)
2 V&Il VeE\g
2

R 2
ksl E (),
2 2o 2llve

ld,|
g

2

1d
Ed—<||\/:0_0u||2

oyu

g

IA

Lad
2

+C. (2.33)
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The constraint |d|? = 1 is used in the above inequality, thus, by Proposition 1,

2

u 2 1 dy
(v [ ) 2] | (%), e
< C(llpolloe) (18110 + 1). =

Thus we see that, in order to close the above estimates, we need a control on tempera-
ture, which will be given in the following lemma.

Control of term ||0||»: Now we prove the following key lemma.

Lemma 4 Foranyt > 0, it holds that

t
f 10l dr < C(1+ ),
0

whereas C depends on || pollco and the initial data.

Proof Multiplying the temperature equation by (9 + §)~! for some § € (0, 1), the resultant

equation can be written as

(9 +8 PO (2 %
o(In® + ))”<9+a)g”y‘K<<e+a)g>y”<<e+s>2g)

w  |1(d 1
+<—y +g—<—y) +—d,*d
g “le\g/, ¢

Integrating the above inequality over time and space variables for (0 + §) > 1, then using

2
1
)ors (2:39)

boundary condition for temperature, we get

l I pt 9}/2
In(® +6)) + K daydt
|t 0+ | (<9+a)2g) d
I pt 2
1/d 1
L)
0 0 g g g y g
! ! [ t poe
=2 In(® +6))dy — In(6y +8)) d ————u,dyd
/Opo(n( +8)) dy /0,00(11(0+)) y+/0/0(9+5)guyyt
l ! [ t /)09
2 6+38))dy— In(6y + 8)) d ——u,dyd
< /0/00(( +8)) dy /Opo(n(o+)) y+/0/0(9+5)guyyf

l 1 t p0202 1 l t l/l§
52/,0 (9+8)d+// ddr+—// dydt + C
0 o )y o Jo (0+8)g Y 2Jo Jo 0+8)g Y

1 ! t M§
< — —— dyd C ,mo, Eo) (1 +¢).
_2/0/0 s @+ Cll ol mo EQ) 141

N 1
—~ dyd
>9+ayt

Thus we get

[mtsons [ [ (5

) dydr < C(1+1). (2.36)
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From Proposition 2, inequality (), it holds that
16l < C(1+1)%. (2.37)
This completes Lemma 4. 0

Combining all these lemmas, we have the following proposition.

Proposition 3 Given T € (0,00). It holds that

2 dy 2 2 r 2 1 d}’ ? 2
su Pout”, p9,—) +/ <|| Pl + —=|—=1 |l )dt
OstST < 0 ﬁ g% 2 0 ﬁ © \/% g OO
T 1 /|d,]? du 1 [/d 2
[ oo 5 020) 2252 o
0 veNlgl /), Ve ve\eg/, /)l
<C (2.38)
and
T
swuﬂ;+/um@msc (2.39)
0<t<T 0

for a positive constant C depending only on the initial data R, c,, ., «, m1, N1, and T, where

my and N1 are the numbers in Proposition 1 and Proposition 2, respectively.

Proof Summing with (2.28), one obtains

3
g4

d, |?

£

)

() dr

d C
EQw%ﬂﬁ+iM¢%ﬁE+

2
[}

t t
+/u¢%wém+/
0 0

N

2 2

el (4)
Vel 2 11VEl lve\eg & /y/ 2

R t
SCO+—/HmNmﬁ>
M Jo

for any ¢ € (0, T), where C is a positive constant depending only on R, c,, i, &, my, N7,
and 7. Applying the Gronwall inequality to the above inequality, one gets

d 2
(e ()
gt 2

[ oo 5 (2(5))

<C (2.40)

2

dy

T 1 2
+/ @¢%Mé+——~g|&>m
0

VDo

sup
0<t<T

2

dt
2
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for a positive constant C depending only on the initial data R, ¢,, i, i, m1, N7, and T. Thus
the desired estimates

T
sup ||g||§o+/ 1613, dt < C
0

0<t<T

follow from (2.40) by applying Proposition 1 and (i) of Proposition 2. d

2.2 Apriori H' estimates

This section is devoted to the a priori H' type estimates on (g, 4, d,,0). Precisely, we will
carry out the a priori L>(0, T; H') N L%(0, T; H?) estimate on u, a priori L>(0, T; H') N
L*(0, T; H*) estimate on dy, and the L>(0, T; H') estimate on g; however, due to the pres-
ence of the term %(Byu)2 and g|é(‘2—y)y + g—lz |dy|*d|? on the right-hand side of the equation
for 6 (1.8)4, one cannot get the desired a priori H! estimate of # independent of the lower
bound of the density without appealing to the higher than H' energy estimates. Before
going to prove the H'! bound for velocity, we first give the following estimates of director
field, because the velocity field estimates strongly depend on the director field.

Lemma 5 There exists a positive constant C > 0 such that, for any t € [0, T],

l 11/d 2 T rlg 12
/(-‘(l) +g|dt|2)dy+/ /ﬂdydtgc, (2.41)
0 \g&I\&/y o Jo &
dy
max |—| < C. (2.42)
yelo1]| g

Proof Differentiating (1.8); with respect to time, taking the dot product by (%)y, and in-

tegrating over interval y € [0, [], we obtain

! d '1/d d Lr\d,|*d d
Jrae () o= [a(2), (2) o [(5), (5) o e
0 g y o0 &\ & yt g y 0 g t 4 y

The term on the left-hand side of (2.43) can be written with the aid of (1.8); and constraints
|d|? = 1 as follows:

! d ! d ! d
/dtt'<_y) dy=i/dt'(—y) dy—/ dt'<—y> dy
0 g y i 0 g y 0 g yt

!
1
- /0 ot ). (2.44)
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The first term on the right-hand side of (2.43) can be written as

1 2 l
L3(9), () omsa [l o [2:(5)
0&\&/y \ &/, Zdtggy 0o 2¢°I1\¢g/,

where we have used equation (1.8);. Inserting (2.44) and (2.45) into (2.43), we get

1d / |alyt|2
2dt g

2
dy, (2.45)

d [! 1 D, | (dy\ 2
== |d |4dy+/ wy(dy; - dy)dy+/ X (—y) dy
dt 2 0 28*I\ g/,
Lr\d,|*d d
+/(”2 ) (%)
0 g t g y
d/ 114, |4dy+ZQ (2.46)
T dt " ’

Next the estimate of each term is given as follows: The term Q; is estimated as
‘1, "1,
Q< 8/ —|dy|" dy + C(S)/ —3”y|dy| dy
<8/ ~|dy|* dy + C(8) max —=— | y|2 / luzdy. (2.47)
- g el g2 Jo g7

Now the estimate on the last term Qs is given as
1 2
|d,|*d d
Q3= /( y2 ) <_y> dy
0 g t g y
0 g g g & /y
! 4 1
|dy| 1
=C / —a Il +/ 1, Pldy| d
(o g 4 b &7 ye| Ay

) 2
\d,| 1 (d,
c/—|gd|—— d
0 2ff¢§gy

\dy 2\ ? | | d d, 1\ | dy dy
<C max— — + C max — l—= —
yel0,1] g Jg 2 \/g 12 y€l0,1] g Jg 12 Jg 12
d,|? 1 /d
+ C max (%)nx/gxdtnﬂ —(l)
yel0O 1]\ g N/AN M
dy ( 2 1 /d)\ |
<s|= == +ved? +1) —(—y) . (2.48)
12 Vel ve\g& /2

By using the Hélder inequality and embedding W1(0,1) — L>(0,1), Q, is estimated as

2 N1 fdy) P! 1/d,\ [P\?
o) (L1500 ) (e (5)])
o IVE\NE/y relo1llg\ g/,

Y

in(/olu—

NG
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N
1 1 dy 1 dy 2
<|—=u, —\ = max |— | — . (2.49)
V& Tl vE\g /)l \seonjg\ g/,

By using the Sobolev embedding and equations (1.8)s, it follows that

(%)) 250
[ ()] (L), ((2)) )
[ (%) ], ([1(2), (o (Frara) ) o)
) L= ®) Ll
HARCS (%) ‘“—"”d> 5)
)] 1)
([l (9) )
[(4) ], o[ 5(2) L e
e (40|41 (@)y ; 25

2
whereas in the fourth inequality the following fact is used: é(%)y -d+ % = 0. Plugging
(2.50) into (2.49), using Young’s inequality, we get

0<% L(@) K i(ﬂ) g EAR
TIVElellVENg /e vElelvaNg /el vEle
2 2 2
gs‘ﬂ +c< My +1)Hi(‘iy> . (2.52)
Vel Vel VE\g

Plugging the estimates Q;, Q2, Qs into (2.46) and choosing § small enough, it holds

SECIRIES
AL

2

d
d||%, 1)“i(—y) 2.53
+||«/§ ll72 + NavIAR (2.53)
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Integrating (2.53) with respect to time over the interval [0, ¢], the resultant reads as

1l /dy [P ol Iyl
() [ [ [ e
2Jo gINg/, oJo &
11714 t 2
|dy| u 1 /d
(e [ oo [l a1 5(5)
0 g 0 \/EL2 '\/g g y

(e mn (I %].)
<Cll+max|— )|—
yelo1]\ g2 VeIl 2

IA

2
ds)
L2

2

¢ 2 2
1/d 1 /d
+ C/ ( el + ”—(—y) + 1) H—(—y> ds, (2.54)
o \lvgle leg\g/,le ve\g /,lp
where we have used the fact that
) ) 1 d 2
f gld;|*dy < C(l +/ —'(—y> dy). (2.55)
0 o &INg /y

Using the estimates in hand, energy conservation (2.2), and the Gronwall inequality, it

follows

L),

which deduces that folgldt|2dy < C. Similarly, by the Sobolev embedding W1([0,/]) <
L>([0,1]), inequality (2.42) is estimated. The proof of Lemma 5 is completed. O

’ !yl
dy + / / —L_dyds<C, (2.56)
oJo &

H! estimates for velocity:

Define the effective viscous flux F as

oyu 1 2
Fi=p2—p-—
g 2

dy

4

:/L——R—Q——
g g 2

Then, one can derive from (1.8) that

Lo
Ry () (B )y (4) iy R[4
(474 g Cy g g 8/ O 20 g1 &
1|d, 2uy
2lgl g
R 0,0 R a d, d R
:_K_ay(L)_(_+1)y_up__y._y’__|dt|2
(474 g Cy g g 8§ &
R 1\|4,
- —+—) Ot (2.57)
2¢c, 2/)|g| g
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Moreover, by equation (1.8),, one has 9,F = pyd;u, from which, recalling the boundary
conditions, we have

3,F(0,£) = 0,F(,t) =0, £ € (0,00).

We have the a priori L? estimates on F stated in the following.

Proposition 4 Given T € (0,00). It holds that

2

T\ 8,F
su ||F||2+/ Ll dt<cC
OstST ’ 0 Il4/Poll2

for a positive constant C depending only on R, c,, i, k, m1, N1, N, and T, where

N = | Voot |, + Iv/oobollz + g, + [y

2’
and my and N, are the numbers in Proposition 1 and Proposition 2, respectively.

Proof Multiplying equation (2.57) by gF, integrating the resultant over (0, /), and recalling
0yF|y-0, = 0, one gets from integration by parts that

I I
/ Bthde+u/ —8yF
0 0 | 4/P0
R ('3,00,F R !
=K— udy—(——l)/ dyuF* dy
Cy Jo g Cy 0
'

) ! 1
d, R , R d
| &g ray-2 rdy—[— -1
/0 g ' dy cV/o i g dy <2c >/0 g

2

2
uyF dy.

v

Using (1.8)1, one has

flaFFd—ld led 1/13 F2d
Otg y—zdtog ly Zotg ly

1d (! 1 (!
=—— dey——/aqudy.
24t J, & 2, @

Therefore, it follows from the Hoélder, Young, and Gagliardo—Nirenberg inequalities and

Corollary 3 that
1d (! | ,F 7
1d gp2dy+M/ HF
2dt Jo 0 |</Po

R 13,00, F 3 R
S{E [ (D
Cy 0 g 2 Cy

I
/ dyuF* dy

0

ld R l R !
—/ —y~dthdy——/ |dt|2ngy+<1— )/
o & ¢ Jo 2¢y ) Jo

5

2

d
4 u,F dy

g
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Now we estimate each term as follows:

ZK <k

1 R
——1 — — = )lI8,ull2 | Fll2 | F
"FH\/% +<2 Cv)n ) 1tll2 || Fll2 11 Fll oo

2

(-3l -0

Vel vElINe /,

R R
" (1 - Z) gy 13 + C—Vlldtlli]“F“%

SC(

(%%

Ve

C5)<

2

[e¢]

1
||8 Oll2 + 19y u||2||F||2 (IF 02 + 12 F||2)2)

R R
" <1 - Z) gy |3 + c—vllddl%) IE1l3

2

dy
1+ +dll3 + 119 ullz)llFll2 + 19,013
H\/pm [( gl )R TR
d 1] /d,\ |?
Vel velil\eg/,
that is,
d a,F |
— Il /gE I3 + Hy—
dt\/g 2t ,—poz

2
el

< C[(l +
d
+ ||ay9||§+(‘ }

4

+ e ll3 + ||ayu||§) IE3

2 2
+ L H (ﬂ) + 1):| (2.58)
\/g g yli2

foranyt € (0, T), where C is a positive constant depending only on R, ¢,, i, k, m;. Applying

the Gronwall inequality to (2.58) and using Corollary 3, the conclusion follows. O

Based on Proposition 4 and Corollary 3, we can obtain the desired H! type estimates on
g u, i}(i—y)y, stated as follows.

Proposition 5 Given T € (0,00). It holds that

sup (||ag||2+||au||2+ 1(@) 2+||alt||2)
OmteT & 112 yHll2 e\e /)l 2
T W1 /1/d d, |2\ |2
+ Il /Podeuel|? + || 822> dt+/ —(—(—y> +d| =2 ) dt
| vmsas e fazayans )2 (G () +4lg] ),
<C (2.59)

for a positive constant C depending only on R, c,, u, i, my, N1, Na, and T, where my, N1,
and N, are the numbers in Propositions 1, 2, and 4, respectively.
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Proof
2

dt <C.

dy
2

N

2

T
+w¢ﬁ)+/ Il /Podeuel3 +
2 0

I

7%

I

2
sup <||8yu||2 +
0<t<T

The estimates of velocity term in I; and I, are straightforward from a priori estimates

in hand and by the definition of F, noticing that pod;u = 9,F. Note that, by the Sobolev
embedding inequality, it follows from Proposition 4 that

(2.60)

T l
/|m&m§a fnm;msc
0 0

for a positive constant C depending only on R, ¢,, u, «, my, N1, N, and T.
However, the a priori estimates on terms || Byg||§ and fOT | 8y2u||% dt need to be computed.

Rewrite (1.8); in terms of F as

1 gdy2
0ig=—(gF +Rpof +=|—=| ).
“ M(g+p0+2g

Differentiating the above equations in y, multiplying the resultant by d,g, and integrating

over (0, /), it follows from the Holder and Young inequalities that

1d 1 [t
Mﬂﬁ=;/Xﬂ%ﬁ+%&%wﬂ@w+m%®%@@
0

2dt
1! d 1|d
+—/|:dy~(—y) Gyg+—‘—y

" Jo g y 2 g

2
|ayg|2j| dy=:T.

Now we compute 7T as

(IFlloo 18,2113 + liglloc 13y F 121 8g 12 + R(11lloo | 05 [, + £118,0112) 11,112

Tfl
1%
d,|| (d 14, |?
+C max |~ (—y> ||3yg||2+—‘_y ||8yg||%
rei01| g [\ g /,l, 2] 8 lloo
2 d)’ 2 2
<ClIFIG +||=]| +1)I9¢gll
[o¢]
2

1 /d
+ CIgI2 N0,F 112 + ’ﬂwﬁ+‘ﬂaw2+cw_<l>
(goo Yy 2 ||'00||2 0o T P10y 2) \/g P s

for a positive constant C depending only on R and p. Applying the Gronwall inequality, it

follows from (2.60), Corollary 3, and Proposition 4 that
(2.61)

sup [[3,¢gll3 <C

0<t<T

for a positive constant C depending only on R, ¢,, u, , m1, N1, N2, and T.
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A priori estimates on fOT 187 w3 dt:

Noticing that dyu = %(gF +Rpob + ‘%|%|2), one has

92 1(81—" ,F + Rp0 + Rpyd,0 + d (dy> 1dy2>
U=— + +R0py0 + Rppd, 0 +dy- | — ) +=<|— ,
'y " W&gL + &0y 0 'y y g/, 2| g &y

thus by the Holder inequality, (2.60), (2.61), it follows from Corollary 3 and Proposition 4
that

T 2
/ ”8;”“2dt
0

T
12
<C / (19,8311, + g2 19, F 115 + [ o6 [, 10113, + 118,6113)
0

+ C| [ max [ max +1 — | =
£€[0,7] \y€[0,1] o 1v/8\ g y

T
< C/ (IIFIIZo + g NBFNS + 1615 + 18,6015 +
0

2

T
dt+/ ||uy||§dt]
2 0

zOl)

dy

4

+ ||uy||%) dt

2

<C

for a positive constant C depending only on R, ¢,, , k, myi, N1, N3, and T, proving the
conclusion. O

We summarize the estimates obtained in this subsection as follows.

Corollary 1 Given T € (0,00). It holds that

1 /d
F,0,g,0yu, — —y>, gd)
( = JE(g yft
T
+/
0

for a positive constant C depending only on R, ¢,, u, i, my, N1, Na, and T, where my, N1,
and N, are the numbers in Propositions 1, 2, and 4, respectively.

2

sup
0<t<T

2
dt<C
2

8J/P 2 dﬂ)
—)a u, pau1_
(m y NI e

2.3 A priori H? estimates
This subsection is devoted to the a prior H* estimates on (g, u,d,,6). As will be shown in
this subsection, one can get the desired a priori L>(0, T; H?) estimate of § without using
the a priori L*(0, T; H') bound of it.

As a preparation, we first give some estimates on [|3,0]/> and [|3;6]« in terms of
l/P00:0 2 and [|3,9,0]l2, and |02, in terms of ||,/podsu|l2 and ||0,0;ull2, which will
be used later in higher order a priori estimates.

Proposition 6 Given T € (0,00); (i) It holds that

18,0115 < C(1 + /2036 1l2)
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for a positive constant C depending only on R, c,, u, i, my, N1, Na, and T, where my, N1,
and N, are the numbers in Propositions 1, 2, and 4, respectively.
(ii) It holds that

[ 2
[10:0 |00 < m”«/ £00;
19 ulloo < 2 I
Ulloo = | ==
t Qo Lo

where 2 is the number in Proposition 2.

3,06

2

ayatu

Proof (i) Multiplying (2.86) by 6, integrating the resultant over (0,/), and integrating by
parts, it follows from the Holder inequality that
3,0 |

!
“
018
! 1|d,
= oyuF + —|—
0 2l g

d)’
<\ N3yull2llFllz + l3yull2 | Fll2 | —

dy

2
- cvpoatG)H dy

2
1/d 1
8qu+g'—(—y) + —ldy|*d
g\g/, &

2
+ ”«/EdtH%) 101100 + cvll/P00:0 lI21l /000 Il2,
oo

from which, by Corollaries 3—1 and (i) of Proposition 2, we have that

9,0
o615 <C
NG

1
< C(I3,01l2 + 1 + 1/Pod:B12) < Ellaﬂlli + C(1+ 1/Podib ),

2
dy < C([101loc + /P00 1l2)

and thus,

18,0115 < C(1 + /2036 1l2)

for a positive constant C depending only on R, ¢,, u, «, my, N1, Na, and T.
(ii) Recall that €2 := {y € (0,0)|po(y) > 2} and |Qo| > 0. Noticing

Bte(y,t)zﬁ/ﬂ z,t)dz+—/9 / 0,0,0(,t) dé dz,
0 0 Yz

it follows from the Holder inequality that

0,0 !
0,60, < —— % ‘+/0 10,3,0(5,1)| d
0,000 Nt/ (' L \?
w/ml_w—oz ||2+< . ds) (/Ogds)
33;

=/ % |_II\/_3z

2
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which implies

2 9,0,0
18:01l00 < ./ ~=—=1Iv/P0d jpeasas
B TN A 2
In the same way as above, the same conclusion holds for 9,u. O

Proposition 7 Given T € (0,00). It holds that

sup
0<t<T

(v T)

for a positive constant C depending only on R, c,, i, k&, m1, N1, Na, and T, where

/nwfammmm<cwMM+Mﬁg

/’LM” —R(,O 0 )/ + (|d/ |2)/ 1 / " 4 ’
hy = —2 j/% o o= \/ﬁ[“(uo)2 + Kby + (|d0t|2) _RMOPOGO]’

and m1, N1, and N, are the numbers in Propositions 1, 2, and 4, respectively.

Proof Rewrite (1.8), as

3,0 1|d,|? 1/d 1 2
choatG—K8y<L>=8qu+—‘—y 8yu+g‘—<—y) +—2|dy|2d , (2.62)
g 2| g g\g/, &
or equivalently,
9,0 1 1
000,80 — ik, | 2= ) = = (gF + Rood + —|d,|* | F
Cy P00 Ky(g> M(g+po +2g|y|)
1(/d 1 S|
+(g‘—<—y) +—2|dy|2d +—2|dy|2uy>, (2.63)
g\Ng/, & g

from which, differentiating in ¢ and using (1.8);, one has

3,00 8,ud,0
¢yP0d20 —Kay(& _ y”_zy>
g g

|dy|* |dy |
(8 uF? + ZgFatF) + —(8t9F +00,F)+ —| 9; F+ 0;F
T w 2 g g
1(d 1 1
+ (g‘—(—y> + = ldyd| + —2|dy|2uy)
gNg/, & g t
8 U 1 |dy[* R |dy 2
—F°+ 2gF + Rpob + ——— ) 0;F + p08t9 + —Bt F
1% M g g

1 dy> 1oL 1,
+lgl-l =) +s14,)1%d| + =14y, ) .
(‘g<gyg2y @),

Multiplying the above equation by 9,0, integrating the resultant over (0, /), one gets from
integration by parts that

18,8,0

Cy

d
W ,00|8t9| dy+/</0
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! ) 2

0yud,0 1 1 |dy|
= 0,00 d. —RpoF(0;0) + —0 Fo,0d
K/o ¢ y+/o(up°(t)+2ut<g e

1! 1|d,? )
+ — 2gF + Rpob + = —— |0, F + d,uF~ (9,0 dy
®Jo 2 g

! 1(dy> 1
+ —(2) +=1d,1’d
fo<g)g ¢/, &

The terms on the right-hand side of (2.64) are estimated as follows. By Corollary 3, it

2
1
+ 2 |dy|2uy) 3:0 dy. (2.64)
t

follows from the Young inequality and (i) of Proposition 6 that

1 2
d,10,0 0,06
o [ P 000 < L1201 crauiiong
o & «/g 2
i | 8,8,0 |2 %12
<5120 (v o+ | 2] Yisens
4' \/g 2 o0
K || 3,80 ||”
E_
4] vg ll,

22

d
+ C(IIFllio +101%, + ||| =

)(1 +11V/00d0112)

o]

for a positive constant C depending only on R, c,, u, ¥, m1, N1, and T. By Corollary 3,
Corollary 1, and (ii) of Proposition 6, it follows from the Holder and Young inequalities
that

I 11d,? )
— 2gF + Rpob + — 0F + 0yuF~ 0,6 dy
H Jo 2 g

dy ||*

NG
< C(I19:F|l2 + ”F”oo)(”mateh +

< C[(l|g||oo||F||2 +llv/Pofll2 +

>||3tF||2 + ||8yu||2||F||2”F”oo]”3t9||oo
2
3,36

)

+ C(II/gaF 113 + 1/Pod: 0113 + | FII%)
2

K
< —
4

3,36
NG

for a positive constant C depending only on R, ¢,, i, k, m1, N1, N3, and T. Before going

to estimate the next term, we first compute

Lo 11/d 1
INCHOREE
o\ "lg\g/, ¢
! 2 1 2
= 2|d|+—|d|u)8d
/O<g ' ¢ tt Y
! 1 uy (dy|? (,)* |dy|*
:/ |:4gdtdtt+2|dt|2uy+—2|dy|2uyt+—y< £ > - 3’2 E4 }thy
0 g &N & /¢ & g
=U. (2.65)

S|
+ —2|dy|2uy> 0, dy
4 ¢
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The right-hand side is estimated as follows:

d 2
U < 5(Il/gduel? + luyel13) + Cll/gde 110,112, + CH =1 1611
Vel
d,|? 1
+Clluy I3l Ey ||§o+5||uy||§||9t||io
2 |dy|2 2 2 2 dy 2 2
<8( Il/gdull* + | 8, . +1/20:Gll; +C||uy||2||g 1%

1 d, |*
+C||«/§dt”2”9t“go+5””}/”%”@”&;+C||at9”go+C‘7% 16:112,
o0
) a2\ |I? 2 2
<8\ l/gdull” + || 3 . +1v/83:Gll5 | + ClIOellZ,
2
2 2 d}’t 2 2 2
<8\ I/egdull” + C{ luylly + | == |+ I/€3Gl5 ) + Cllé:ll5,
Vel
< 8(Ilv/2dull* + 11/23,GlI3) + Cl16: 1%, (2.66)
The second integral on the right-hand side of (2.64) is estimated as
L 1 d,|?
/ (—RpoF(8t9)+—8t<| )| )F)Btedy
0 \ M 2u g
d,>\1?
sa[at(' A )} + ClaoI2,
g
2 d)’t 2 2
<8( lluyll3 + 7 +Clla:012, (2.67)
2

where we have used the Holder, Young inequalities and mass conservation equation.
Therefore, one obtains from (2.64) that

2

d 0y 0.0
CVEH«/,Ooat@H% ri| 2| = Co(llvEdul + I1VEHFI3)
2
d 212
+ [<1+||F||Zo+||9||§o+ Ey )(||«/Po3t9||§+1)] (2.68)
o0

for a positive constant C3 depending only on R, ¢,, i, k&, mi, N, N, and T. In or-
der to control the above estimates, there is a need to get dissipation estimates on
(I /Zdut 1% 1 /ZBEN3)-

Next, we give the higher order derivative estimates of the director vector field d. The
identity 1(2),-d + %
help of constraint |d|? = 1, is frequently used in the proof of the lemma. This fact replaces

= 0, which is obtained from the director field equation with the

the higher derivative with nonlinearity.
Lemma 6 Forany0<t<T,itholds that

I d 2 T pl d
JGEIGED) | g [ [5)
o \gI\g\¥g y/y g 0 0 & g yt

2
dydt <C. (2.69)
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Proof In order to prove higher order derivative estimates on the director field, the deriva-
tive with respect to y variable is taken on both sides of director field equation (1.8); and

the resultant is multiplied by é, then it follows

1 1/1/d 1/d|d,|?
e 6(2),);
g g\g\g/,/, &\ g y

Taking the dot product of (2.70) on both sides with (é(%y)y)yt and integrating over space
variable, it follows that
Jo

;g/;<;\<—<%>”
2#()
w0(2)]

L ) e

2
where in the second equality we have used é(%)y . ML; = 0. This fact replaces the higher

derivative with nonlinearity. The key point is to control the higher derivative with lower

one by using the constraint |d|? = 1. Now the terms Ry, R,, R3 are estimated one by one.

The term R; is estimated as

()] 2G))

R; < max - -1 —=

yel0 1]\ & o §I\&\&/,/y
| zG(2))
~lve\e\e/,/,

Before estimating the term R,, we first make use of (1.8); and compute the integral. The

2
dy

(2.72)

12

simplified form is written as

e[ £(2))
1
(), 6) 4 ()
[(8), G 2 ()
!
S[(8),(2),-52) ()
L)
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Now we are in a position to estimate the term R,, where we will use the definition of

(255 L5 (%),
Sl wG(7))

2

effective viscous flux:

(%)
Ry < =2 —| —
\/g g yt
+ 2 max (uy)
yelo1]\ g
%(5)
«/g g yt

+ C(nFnio +1161% +

2 2

12

12
2

+C. (2.74)
12

el IEG)),

It is hard to estimate the term Rj3, so there is the need to simplify the integral so that the
required bounds can be obtained, thus we simplify it as

e [2(5) ()0
S[3459, ((2) 0
A5, ()
[ (5) (5) o

In order to compute the term Rs3, we estimate terms Rs; and Rs; one by one. The term Rs;

is controlled as follows:

e 3 () 4)((2)

| ol 1(y) ().
<2max|—| max |— || —=| — — | -{—=
yelo1]| g |ye01]| g || /& 2lvg\g\ g
d,|* 1(/d
+2 max |—2| max |2 (—( y))
yelo1]| g |yelol]] & g

=< C(IIFIIf>O + 10115 + (2.76)

I3

¢) H ) (1 ().
w/ I v/8\&

where Lemma 1, Lemma 5, and the director field equation are used.

The term R3; cannot be estimated directly, so we first need to simply the integral, (1.8);
and (1.8)3 are used frequently:

'1/2d, (d d,|? 1/d
R32:2/ —<—y.<_y> d+| y2| dy) (—(_y>> dy
0 &\ & g /y g t \&\&/y/y
l d d 2d. d d
= [ C(3), () (9),2) (7))
Og g t g y g g yt g g y/y
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"'1(2d4, (d 1(/d
G (0)) (R e
' /og<g & /y E\E&/y yy
Y1/02d, [d |d,|? 1/d
[ (8)0-500) (4(2)) 0
+_/0g<g gty+g2y ggyyy
Thus, after simplifying and collecting the terms, we have
d
et (9),(9)) (7)) o
(0,0 GE))
<g g g Y
e (04 (G5
<g g g y
Co e 2)0) G20
g g g
() G9)
—\—=dy) | == dy=:) Rsy. .
+2/og<g2y ggyyy;?’2 @77

Next, we are in a position to estimate terms Zis:l R3y; one by one. The term Rsy; is esti-
mated as follows:

1

+4/—
0o &
%
+4 | -
0o &
¥
+2 | -
o &

yt
y

w54 (0 ()
0 & g g g g
d,|* 1 1 [(1(d
sc<||F||§o+||e||io+ ~ ) ( ) —(—(—y))
g ye[Ol] JVE yll2 g\Ng/,/ylp
1/d d
AL
selo1l{g\ g/, V&Il y
d 212 1 1 2
e 4] [ ) [5G4 ) e
g «/g g g y/y 12
The term R3,, of (2.3) is controlled as follows:
()0, L1 G(E)
R35, < C max — | - =
yelo1] yt L2 \/g g g y/y 12
1 (/d 1 (1/d 2
5 (8) Lo G (2)) L 07
\/g g yt L2 \/E g g vy 12

where the Holder and Young inequalities are used along with bounds of the director field
in hand.

The term R3»4 is estimated as follows:
'1/2d d, d 1/d
s [ ()0 ((2))
08\ & g g g&\g/y
o 1%ELIEG) )L
N g/y

< C max —
yel0,1] g f

max
y€[0,1]

el
4
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2

dy [*| dye 1 (1(@))
+ max |—| ||——= —\| ==
el g | VeIl ve\g\ g /,/ )l
d 212 d 2
sc(||F||§o+||e||io+ -2 ‘—” )
g 00 \/g 2
1 /1/d 2
(%G (%)) 20
\/g g g y/y 12

where the definition of effective viscous flux and the estimates of director field and velocity
are used. The terms R3p3 and Rs)5 are estimated together as follows:

Lrd, (d |d,)? 1/1/d
masi [[(3(2) 540 16(2)) 2
0 g g y g g g g y/y
d 1/d 1 (1/d
— —(—y) Ivgd:I.2 —(—(—y>>
g\g/, ve\g\g/,/,
bl G (5))
yelo 1l g ve\e\g/,/

g
(o[ 501G E)) L) sy

N
where the Holder and Young inequalities are used along with bounds of the director field

< max
y€[0,1]

max
y€l0,1]

12
2

dy
+ max | —

2

NG

in hand. Combining all the above estimates with (2.71) and choosing § small enough, the
resultant is written as follows:

1d (l/1|/1(d 2 L1/d
vl GlGE)) Do (%)
2dt Jo \gl\g\¢g/,/, 0o 22I\&/y
d ("1 /|d,? 1/d
(49, ((2) o
dt Jo &\ g y \&\¢&/,/,

d,? d, |
+C<||F||§o+||9||§o+ -2 = )
g \/E 12

[5G

12
Integrating (2.82) over the time interval [0, ], it is not hard to see that

LG o131,

d,|? dy; |I?
sc(||F||§o+ne||io+ -2 = )
\/E 12

¢
2
), (2.83)

(R GG L

By using Gronwall’s inequality and (2.41), we have

FAGE) o [LEE),

2
dy

2

oo

2
dyds

[e.¢] ‘

2
dyds < C. (2.84)
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Moreover, from (1.8)3 and inequality (2.84), we get
'
f = |dy|*dy < C. (2.85)
08
Similarly, one can deduce from the director field equation that

T pl
/ / gldu|*dydt < C.
o Jo

Combining (2.84) and (2.85), the proof of Lemma 6 is completed. O

Using temperature, one can rewrite (2.57) as

R <ay9>
——kdy| =
¢y g

R 1|d,|? 1/d 1 2
:—Rp03t9+—(8qu+—‘—y 8yu+g‘—(—y> + = ldy\*d ) (2.86)
Cy 2| g g\g/, &
d,F 1 d, d
8.F — ﬁay<y—> - —®R280 - ~aur- 2.2,
g "\ po g g g g

Multiplying the above equation by gd,F, integrating the resultant over (0, /), and integrat-
ing by parts, it follows from the Holder and Young inequalities, Corollary 3, and Corollary

1 that
Md/lasz /1 )
—— [ |[=]| dy+ | gla.Fd
2at )y | Jpel @ | gloFdy

! 1 ) d
=-R / 000,00,F dy + / 3, uF3,F dy — / dy- ?ytathy
0 0 0

2

1 d dy, |?
s—||¢§atF||§+C<||fpoate||§+||ayv||§||P||§o+ = 2 )

2 g o) g 2

1 d,|?
5Ematz-"n%+C<||~Fpoate||§+||F||io+ =2 )

o0
thus
d| &F | dy|?
p—| 2= +I aPWsC(u«/_p 3013 +IIFI% + || = (2.87)

i) Ua |, IVEE L o gl

for a positive constant C depending only on R, ¢,, i, «, m1, N1, N3, and T.
Multiplying (2.87) by 245 and summing the resultant with Lemma 6 and (2.68), one

obtains
2 (Gl /Aol + 245 2L 2 %00 1° , 4 IVEdFI5
—1l e + — +K +
dt Pocellz st 00 |2 V& 2 Sveai
dy |?

< c(nenio +IF2, +

)(nmaten% 1)

[ee]
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for a positive constant C depending only on R, ¢,, i, k, mjy, N1, Ny, and T. Applying the
Gronwall inequality to the above inequality, by Corollary 3, and using (2.60), the conclu-
sion of Proposition 7 is completed. d

Proposition 8 Given T € (0,00). It holds that

T
sup (| (62g,82u,8,6,026) | + 161l +f | (83w, 8,0,u,030)|; < C
0

0<t<T

for a positive constant C depending only on R, c,, ., i, m1, N1, Na, N3, and T, where

N = ||p(/)/ + [1hll2 + 122,

I
and m1, N1, and N, are the numbers in Propositions 1, 2, and 4, respectively.

Proof Combining (i) of Proposition 6 and Proposition 7, we get

sup_ 19,0113 < C supT(l +1W/P0d:0113) < C(L+ [lll3 + I 72113) (2.88)
0<t<

0<t=<

and thus, by (i) of Proposition 2 and Corollary 3, we have that

sup [|0lloc < C sup (19,0112 +1) < C(1+ l1Aall2 + 1722 (2.89)

0<t<T 0<t<T

for a positive constant C depending only on R, ¢,, i, k, my, N1, Ns, and T. Using (2.88)—
(2.89), it follows from the Holder inequality and Corollaries 1-3 that

0o, PO 00
l3,pl> = R —9+—ae——ag9H
> ¢ ¢ 2770

< C([|06] 10110 + 100lls 13,0112 + 100 1o 13511211611 0)
< C(1+ Illl2 + llk2ll2) (2.90)

for a positive constant C depending only on R, ¢,, u, «, my, N1, Na, and T.
Noticing that dyu = %(gF +Rpob + ‘%|%|2) and using (1.8);, one has

0, Oyu = l (aqu + g0, F + Rpod:0 +d,, - @ - 1 @ 2uy>,
u g 2|¢
Vu= l<8ygF+g8yF+Rp(/)0 +Rpody0 +dy - <ﬂ> + Lo 2gy>,
W g/, 2l¢g

and thus, by the Holder and Sobolev embedding inequalities and using (2.88)—(2.89), it
follows from Corollaries 3—1 and Proposition 7 that

T
/ 119,0yul| dt
0

dy

)

T
= Cf (IlayullgllFllf>o + IS NBF I + 11v/2od:O 13 + lldy 1%,
0
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22

e[ (]

dy
g

||uy||%> dt

o]

T 212
<C f (||3yu||%<||F||f{1+ = )+||g||io||atF||§+wmﬁni) (2.91)
0 0
T d 2
+c/ <||aly||§o ril >dt
0 2
<C(L+[1hl3 + I1ml3) (2.92)

and

sup [[02ul; < C sup (I3,I3IFI% + I I9,FI15 + [ of I21612, + 18,612)
<t<

0<t<T

22

<C sup [naygn%<||ﬂ|?,1 + |2

0<t<T
< gy) 2]
y

< C(1+ 1 ll3 + 213) (2.93)

) + g N8 F 15 + 16113

o]

+ 19,0113 + Clidy 112,

for a positive constant C depending only on R, c,, u, «, m1, N1, N, and T. In the above
inequality the constraint condition |d|? = 1 is used, respectively.
Using (2.86), we have

3,0 9,0
076 :gay<L>+ay A
g g
1|d,|* 1/d 1 2
=g(cv,003t9—8qu——‘—y 8yu—g‘—<—y) + —1dy)%d )
K 2| g g\¢g/), ¢

+0,8—,

and thus, by the Holder, Young, and Gagliardo—Nirenberg inequalities and (2.88), it fol-
lows from Corollaries 3—1 and Proposition 7 that

2

d
||8§9||2sC(ll\/p_oatenﬁ||ayu||z(||F||oo+ o )+I|g||oo||dt||§
+ ||ayg||z||aye||m)
dy 2 oo ol
< C(1+ lgollz + Iollz + 1N + ||| | + 18,013 ||ay9||22>
1
< 18700, + C(1+ il + I]), (2.94)
which gives
2
sup [|876], < C(1+ Iawll3 + 1/22113) (2.95)

0<t<T

for a positive constant C depending only on R, ¢,, u, , m1, N1, N2, and T.
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By calculations, one deduces
Lo
32p = Rd? (-9)
y "\ g
//9 l 6 2 6
- w2 () o)

0 0 O
= R[p”— +20; (L - LG)
‘g \g g

020 9 80 02
+;Oo(y— 2 agn0 208 y—f@)].
g ¢ £ ¢

Therefore, by the Holder and Sobolev embedding inequalities, using (2.88), (2.89), and
(2.95), it follows from Corollary 3 and Corollary 1 that
182p], < €[]l 25 1,181 + 2] 25| ., (18,6112 + 1By 12116100
+ [1oolloo (]| 856 |, + 211081100 1,612 + 2113, lloo 1 25€ 12110110

+lloolloo]| 972, 161100]

< C(1+ lmllz + 1hallz + | 97¢],) (2.96)

for a positive constant C depending only on R, ¢,, i, &, m1, N1, N, N3, and T
Using (2.86) and (1.8);, we deduce

3,0 3,0 3,0
339:82(L)g+2a <L)a g+ 2-d%g
y y g Y g s g Yy

1
- [cv(poataye + Py — dyudyF ~ 0}uF —
K

—2gd; - dyy — Idt|2gy:|

2

2 1|d 3,0
+ ;Byg(cv,ooaté’ — dyuF - i‘j dyu —g|dt|2) + ?B;g.

Therefore, by the Holder and Sobolev embedding inequalities, using (2.88), (2.90), (2.93),
(2.95), (2.96), Corollary 3, Corollary 1, and (ii) of Propositions 6, 7, it follows

)

) + lldelloollddey 12 + e 15118yl

oo) + ||dt||%)
(2)))

|83, < c[uayaten2 + [ ool 19:0 110 + ||ayu||oo(||ayF||z +

dy |?

+ ||8y2u||2<||F||oo +

o0

dy|?

+ ||8yg||oo<”«/%at9”2 + ||8yu||z(||F||oo +
+ 118,000 | angz}

=< C|:||ayat9”2 + 1v/PodeO 12 + 119yl 1 <|I3yF||2 +
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d 2
+ | aju||2(||F||H1 i puca

) + 418,00 |37¢ ], + ldsy 12

) + ||d,||%)}
[o¢]
< C(1+ Il + lWhallz +118,3:012 + [ ;¢ )

< C(L+ iz + Ihall2) (1 + 18,8,0112 + | 92%¢ ) (2.97)

o]

2
=z

+110,gll <||\/,003z9||2 + |I3ythI2<IIFIIH1 +

and

oyu oyU OyU
3u = 82<y—>g+28 (y—>8g+ 2 8%g
y y g Y g s g y

d. d
- 0o Btu+p08t8yu+8y2p+ 2. <—y> )
2 g g/y
2 Lldy |\  dyu .,
; 0,8 ,ooatu+8yp+ ¢ + — ¢ Byg,

which is estimated as

[87ul, < C [(”%Hw +l10,0,ll> + |02, +

(¢)1)

14, ||? )
vl +13yullos 372,

< C[119,0;ull2 + |/ Podtella + 1+ [ ll2 + iall2 + || 02,

+ 10l (1 + W llz + all2) + ll8yullpn [0 ]

+ ”ayg”oo(”\/poatMHZ +9ypll2 +

< C(1+ [lhllz + Vhall2) (1 + 119,0:ull2 + | 35¢] ) (2.98)

for a positive constant C depending only on R, ¢,, u, «, my, N1, Na, N3, and T.
Combining (2.97) with (2.98) and using (2.91), one obtains

t t
/ | (83u,836) | dr < C(1+ 13 + ||h2||§)/ (1 + 18,803 + |82 3) dr
0 0
t
< C(1+ )3+ ||hz||%)2(1 + f | Bngidf) (2.99)
0

for any ¢ € [0, T], where C is a positive constant depending only on R, c,, i, «, my, N,
N3, N3, and T. Using (1.8);, one gets g = 1 + fot dyudr, and thus it follows from the Hélder

inequality that
2 t 2 t 9
) = ([ 1ulac) <e [ 1a3uian
0 0

(| o

Combining this with (2.99) and applying the Gronwall inequality, one obtains

T
[ gzl s 1ol ar <,
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and, further, that
sup [[7g |, <C

0<t<C
for a positive constant C depending only on R, ¢,, i, «, my, N1, Na, N3, and T. O
3 Proof of Theorem 1.1
Proof of Theorem 1.1 For € € (0,1), denote

Poe = Po + €, Boc = 6o + €.

By a similar procedure as in [50], for each € € (0, 1), there is a unique global strong so-

lution (g, u., %,95) to system (1.8), with po replaced by pq, subject to the initial and
boundary conditions

(ger Ve, dsyr 96)|t:0 = (L Uo, dOeyr 005)'
It follows that there are two positive constants, independent of € € (0, 1), such that

inf inf g.(y,£)>C (3.1)

0<t<T ye(0,])

and

2

a
<ge; Ue, ﬂ: 95)
&e

sup
0<t<T H?
T
+ / (19812 + || tterdes 60) | + | (ether Bedde, 3:60)| 1) dt < C (3.2)
0

for any € € (0,1).

Thanks to (3.2), by the Banach—Alaoglu theorem, and using Cantor’s diagonal argu-
ments, there is a subsequence, still represented by (g, i, d,, 0. ), such that, for limit € — 0,
(g,u,d,,0) is a global strong solution to system (1.8) satisfying the regularities given in
Theorem 1.1. O

4 Conclusion

The global strong solution is established to the one-dimensional full compressible nematic
liquid crystal flow problem with constant coefficients of viscosity and heat conductivity.
The a priori estimates are constructed in the presence of vacuum by using Lagrangian
flow map coordinates, effective viscous flux, and some density-weighted Sobolev type in-
equalities. Moreover, higher order estimates for the director field are obtained by using
the constraint |d|? = 1. It is possible to extend our results when coefficients depend on
temperature and density or on both, which is the matter of future work.

Funding
This work was supported by the National Natural Science Foundation of China under grant No. 71774070 and China
Postdoctoral station for the grant No.5363000839 of Jiangsu University.



Mahmood and Sun Advances in Difference Equations (2021) 2021:517

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 June 2021 Accepted: 27 October 2021 Published online: 14 December 2021

References

1.
2.
3.

13.
14.

15.
16.

19.
20.

21

22.

23.

24.

25.

26.

27.

28.

Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23-34 (1961). https://doi.org/10.1122/1.548883
Ericksen, J.L.: Continuum theory of liquid crystals of nematic type. Mol. Cryst. Lig. Cryst. 7(1), 153-164 (1969)

Leslie, FM.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265-283 (1968).
https://doi.org/10.1007/BF00251810

Oseen, CW.: The theory of liquid crystals. Trans. Faraday Soc. 29, 883-899 (1933).
https://doi.org/10.1039/TF9332900883

. Hieber, M., Priiss, J..: Dynamics of the Ericksen-Leslie equations with general Leslie stress I: the incompressible

isotropic case. Math. Ann. 369(3-4), 977-996 (2017). https://doi.org/10.1007/500208-016-1453-7

. Hieber, M., PrUss, J.. Dynamics of the Ericksen—Leslie equations with general Leslie stress IIl: The compressible isotropic

case. Arch. Ration. Mech. Anal. 233(3), 1441-1468 (2019). https://doi.org/10.1007/500205-019-01382-9

. De Anna, F, Liu, C.: Non-isothermal general Ericksen—Leslie system: derivation, analysis and thermodynamic

consistency. Arch. Ration. Mech. Anal. 231(2), 637-717 (2019). https://doi.org/10.1007/500205-018-1287-4

. Peng, L, Hu, Y, Hong, L.: Conservation-dissipation formalism for soft matter physics: Il. Application to non-isothermal

nematic liquid crystals. Eur. Phys. J. E 42(6), 74 (2019)

. Huang, T, Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252(3),

2222-2265 (2012). https://doi.org/10.1016/j,jde.2011.07.036
Nash, J.: Le probleme de Cauchy pour les équations différentielles d'un fluide général. Bull. Soc. Math. Fr. 90, 487-497
(1962)

. Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of

compressible viscous fluid. In: Kodai Mathematical Seminar Reports, vol. 23, pp. 60-120 (1971) Department of
Mathematics, Tokyo Institute of Technology

Matsumura, A, Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive
gases. J. Math. Kyoto Univ. 20(1), 67104 (1980). https://doi.org/10.1215/kjm/1250522322

Cho, Y, Kim, H.: Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228(2), 377-411 (2006)
Huang, X, Li, J: Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system
with vacuum and large oscillations. Arch. Ration. Mech. Anal. 227(3), 995-1059 (2018)

Feireisl, E.: Dynamics of Viscous Compressible Fluids, vol. 26. Oxford University Press, London (2004)

Hoff, D.: Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous
initial data. J. Differ. Equ. 120(1), 215-254 (1995)

. Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with

polytropic equations of state and discontinuous initial data. Arch. Ration. Mech. Anal. 132(1), 1-14 (1995)

. Li, J, Xin, Z.: Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate

viscosities (2015). 1504.06826

Lions, P-L.: Mathematical topics in fluid mechanics: volume 2: compressible models

Jonnalagadda, J.M.: Existence results for solutions of nabla fractional boundary value problems with general
boundary conditions. Adv. Theory Nonlinear Anal. Appl. 4(1), 29-42 (2020)

Adiguzel, RS., Aksoy, U, Karapinar, E., Erhan, .M.: On the solutions of fractional differential equations via Geraghty
type hybrid contractions. Appl. Comput. Math. 20(2), 313-333 (2021)

Sevinik-Adiguzel, R, Aksoy, U, Karapinar, E., Erhan, .M.: On the solution of a boundary value problem associated with
a fractional differential equation. Math. Methods Appl. Sci. (2020)

Sevinik Adiguizel, R, Aksoy, U,, Karapinar, E., Erhan, .M.: Uniqueness of solution for higher-order nonlinear fractional
differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fis. Nat,, Ser.
A Mat. 115(3), 1-16 (2021)

Adiguzel, RS, Aksoy, U, Karapinar, E., Erhan, AM.: On the solution of a boundary value problem associated with a
fractional differential equation. Math. Methods Appl. Sci., 1-12 (2020)

Hu, X, Wu, H.: Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45(5),
2678-2699 (2013). https://doi.org/10.1137/120898814

Huang, J,, Ding, S.: Spherically symmetric solutions to compressible hydrodynamic flow of liquid crystals in N
dimensions. Chin. Ann. Math,, Ser. B 33(3), 453-478 (2012). https://doi.org/10.1007/s11401-012-0706-3

Yang, X.: Uniform well-posedness and low Mach number limit to the compressible nematic liquid crystal flows in a
bounded domain. Nonlinear Anal. 120, 118-126 (2015). https://doi.org/10.1016/j.na.2015.03.010

Gao, J, Tao, Q, Yao, Z-a: Long-time behavior of solution for the compressible nematic liquid crystal flows in R, J.
Differ. Equ. 261(4), 2334-2383 (2016). https://doi.org/10.1016/}.jde.2016.04.033

Page 45 of 46


https://doi.org/10.1122/1.548883
https://doi.org/10.1007/BF00251810
https://doi.org/10.1039/TF9332900883
https://doi.org/10.1007/s00208-016-1453-7
https://doi.org/10.1007/s00205-019-01382-9
https://doi.org/10.1007/s00205-018-1287-4
https://doi.org/10.1016/j.jde.2011.07.036
https://doi.org/10.1215/kjm/1250522322
http://arxiv.org/abs/1504.06826
https://doi.org/10.1137/120898814
https://doi.org/10.1007/s11401-012-0706-3
https://doi.org/10.1016/j.na.2015.03.010
https://doi.org/10.1016/j.jde.2016.04.033

Mahmood and Sun Advances in Difference Equations (2021) 2021:517 Page 46 of 46

29.

30.

31

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Lin, J, Lai, B, Wang, C.: Global finite energy weak solutions to the compressible nematic liquid crystal flow in
dimension three. SIAM J. Math. Anal. 47(4), 2952-2983 (2015). https://doi.org/10.1137/15M1007665

Wang, D, Yu, C.: Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch.
Ration. Mech. Anal. 204(3), 881-915 (2012). https://doi.org/10.1007/500205-011-0488-x

Lin, F, Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R.
Soc. A, Math. Phys. Eng. Sci. 372(2029), 20130361 (2014)

Guo, B, Xi, X,, Xie, B.: Global well-posedness and decay of smooth solutions to the non-isothermal model for
compressible nematic liquid crystals. J. Differ. Equ. 262(3), 1413-1460 (2017). https://doi.org/10.1016/}jde.2016.10.015
Fan, J., Li, F, Nakamura, G.: Local well-posedness for a compressible non-isothermal model for nematic liquid crystals.
J. Math. Phys. 59(3), 031503 (2018). https://doi.org/10.1063/1.5027189

Zhong, X.: Singularity formation to the two-dimensional compressible non-isothermal nematic liquid crystal flows in
a bounded domain. J. Differ. Equ. 267(6), 3797-3826 (2019). https://doi.org/10.1016/},jde.2019.04.025

Kazhikhov, AV, Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for
one-dimensional equations of a viscous gas. Prikl. Mat. Meh. 41, 282-291 (1977)

Kazhikhov, A.: Cauchy problem for viscous gas equations. Sib. Math. J. 23(1), 44-49 (1982)

Okada, M.: Free boundary value problems for the equation of one-dimensional motion of viscous gas. Jpn. J. Appl.
Math. 6(1), 161-177 (1989)

Zlotnik, A.A., Amosov, AA.: On stability of generalized solutions to the equations of one-dimensional motion of a
viscous heat conducting gas. Sib. Math. J. 38(4), 663-684 (1997)

Zlotnik, A.A., Amosov, A.A:: Stability of generalized solutions to equations of one-dimensional motion of viscous
heat-conducting gases. Math. Notes 63(6), 736-746 (1998)

Chen, G-Q, Hoff, D, Trivisa, K.: Global solutions of the compressible Navier-Stokes equations with larger
discontinuous initial data: the compressible Navier-Stokes equations. Commun. Partial Differ. Equ. 25(11-12),
2233-2257 (2000)

Jiang, S.: Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with
density-dependent viscosity. Math. Nachr. 190(1), 169-183 (1998)

Guo, Z, Jiang, S., Xie, F: Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations
with degenerate viscosity coefficient and discontinuities initial density. Asymptot. Anal. 60, 101-123 (2008)

Jiang, S., Xin, Z, Zhang, P: Global weak solutions to 1d compressible isentropic Navier-Stokes equations with
density-dependent viscosity. Methods Appl. Anal. 12(3), 239-252 (2005)

Qin, X, Yao, Z-A., Zhao, H.: One dimensional compressible Navier-Stokes equations with density-dependent viscosity
and free boundaries. Commun. Pure Appl. Anal. 7(2), 373-381 (2008)

Mahmood, T, Shang, Z.: Blow-up criterion for incompressible nematic type liquid crystal equations in
three-dimensional space. AIMS Math. 5(2), 746-765 (2020)

Lazreg, J.E, Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo—-Fabrizio fractional differential equations in
b-metric spaces. Open Math. 19(1), 363-372 (2021)

Luo, T, Xin, Z, Yang, T Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM J. Math. Anal.
31(6), 1175-1191 (2000)

Li, J,, Liang, Z: Some uniform estimates and large-time behavior of solutions to one-dimensional compressible
Navier-Stokes system in unbounded domains with large data. Arch. Ration. Mech. Anal. 220(3), 1195-1208 (2016)
Pan, R, Zhang, W.: Compressible Navier-Stokes equations with temperature dependent heat conductivity. Commun.
Math. Sci. 13(2), 401-425 (2015)

Li, J: Global well-posedness of the one-dimensional compressible Navier-Stokes equations with constant heat
conductivity and nonnegative density. SIAM J. Math. Anal. 51(5), 3666-3693 (2019)

Li, J, Xin, Z.: Entropy bounded solutions to the one-dimensional compressible Navier-Stokes equations with zero
heat conduction and far field vacuum. Adv. Math. 361, 106923 (2020)

Ding, S, Wang, C, Wen, H.: Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one.
Discrete Contin. Dyn. Syst., Ser. B 15(2), 357-371 (2011). https://doi.org/10.3934/dcdsb.2011.15.357

Ding, S., Lin, J, Wang, C, Wen, H.: Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete Contin. Dyn. Syst.
32(2), 539-563 (2012). https://doi.org/10.3934/dcds.2012.32.539

Huang, J,, Ding, S.: Compressible hydrodynamic flow of nematic liquid crystals with vacuum. J. Differ. Equ. 258(5),
1653-1684 (2015). https://doi.org/10.1016/}jde.2014.11.008

Tang, T, Sun, J.: Global well-posedness for a 1-D compressible non-isothermal model for nematic liquid crystals. Acta
Appl. Math. (2019). https://doi.org/10.1007/510440-019-00285-x

Mei, Y.: Global classical solutions to the one dimensional free boundary problem for compressible non-isothermal
liquid crystal flow with large data. J. Differ. Equ. 269(10), 8055-8106 (2020)

Li, Y, Mahmood, T, Shang, Z.: Global strong solutions to the one-dimensional full compressible liquid crystal
equations with temperature-dependent heat conductivity. J. Math. Anal. Appl. 494(2), 124596 (2021)


https://doi.org/10.1137/15M1007665
https://doi.org/10.1007/s00205-011-0488-x
https://doi.org/10.1016/j.jde.2016.10.015
https://doi.org/10.1063/1.5027189
https://doi.org/10.1016/j.jde.2019.04.025
https://doi.org/10.3934/dcdsb.2011.15.357
https://doi.org/10.3934/dcds.2012.32.539
https://doi.org/10.1016/j.jde.2014.11.008
https://doi.org/10.1007/s10440-019-00285-x

	Global solution to the compressible non-isothermal nematic liquid crystal equations with constant heat conductivity and vacuum
	Abstract
	Keywords

	Introduction
	Coordinates transformation and main results

	Proof of the main results
	A priori L2 estimates
	A priori H1 estimates
	A priori H2 estimates

	Proof of Theorem 1.1
	Conclusion
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


