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Abstract
This paper considers the initial-boundary value problem of the one-dimensional full
compressible nematic liquid crystal flow problem. The initial density is allowed to
touch vacuum, and the viscous and heat conductivity coefficients are kept to be
positive constants. Global existence of strong solutions is established for any H2 initial
data in the Lagrangian flow map coordinate, which holds for both vacuum and
non-vacuum case. The key difficulty is caused by the lack of the positive lower bound
of the density. To overcome such difficulty, it is observed that the ratio of

ρ0(y)
ρ(t,y) is

proportional to the time integral of the upper bound of temperature and vector
director field, along the trajectory. Density weighted Sobolev type inequalities are
constructed for both temperature and director field in terms of

ρ0(y)
ρ(t,y) and small

dependence on their dissipation estimates. Besides this, to deal with cross terms
arising due to liquid crystal flow, higher order priori estimates are established by using
effective viscous flux.

Keywords: Liquid crystal equations; Global solutions; Constant heat conductivity;
Vacuum

1 Introduction
Liquid crystal material can be known as an intermediate phase between solid and liquid.
It flows like liquid and exhibits additional microscopic structural properties. For example,
rigid polymers solution, DNA, and many other materials show phase change for different
ranges of temperature. On the base of structural properties, liquid crystals are categorized
as nematic, sematic, and cholesteric phases. Nematic liquid crystal are made up of rod-like
molecules, and their structure induces preferred average directional order. The historic ex-
ample of nematic phase is N-p-methoxybenzlidene-p-butylaniline (MBBA) which appears
in between 20°C and 47°C temperatures. The kinematic behavior of nematic liquid crys-
tals due to the strong coupling between the microscopic and macroscopic interaction field
is very complicated and interesting. The hydrodynamic theory for nematic liquid crystal
is derived by extending the static theory in generalizations of body and surface forces as
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in the initial derivation of macroscopic hydrodynamics. The system that describes the
hydrodynamics of nematic liquid crystal was proposed during the period between 1958
and 1968 by Ericksen [1, 2] and Leslie [3] and reduces to the Oseen–Frank theory [4]
in the static case. It is a macroscopic continuum description of materials evolution un-
der the effects of both the flow velocity field u(x, t) and the average molecular orientation
d(x, t) (the microscopic configuration) of rod-like liquid molecules and their mutual in-
teractions, whereas d(x, t) is a unit vector. Recently, there has been modeling study of a
generalized non-isothermal Ericksen–Leslie system by Hieber and Prüss [5] (incompress-
ible non-isothermal case), [6] (compressible non-isothermal case) with consistency on the
laws of thermodynamic, and De Anna–Liu [7] derived the generalized compressible non-
isothermal Ericksen–Leslie system with full Oseen–Frank energy density. We also refer to
[8] where the author derived more sophisticated thermodynamically consistent models of
nematic liquid crystal flows both in tensorial and vectorial forms by using the conservation
dissipation formalism.

Suppose that ρ(x, t), u(x, t), d(x, t), and θ (x, t) are mass density, fluid velocity vector field,
director vector field (represents preferred average directional order), and temperature,
respectively. Analogous to one constant approximation model [9], the couple system of
thermally driven fluid flow and director field satisfies the following conservation laws:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) + ∇p(ρ, θ ) = divS – div(∇d � ∇d – 1
2 |∇d|2I3),

∂td + u · ∇d = �d + |∇d|2d, |d|2 = 1,

∂t(ρθ ) + div(ρuθ ) + p(ρ, θ ) div u + div q = S : ∇u + |�d + |∇d|2d|2,

(1.1)

whereas the Cauchy stress tensor S is defined as

S = μ′(∇u + ∇uᵀ) + λ′(div u)I,

the viscosity coefficients μ′ and λ′ satisfy

μ′ > 0, 2μ′ + 3λ′ ≥ 0,

and ∇uᵀ is the transpose of the matrix ∇u, I is a 3 × 3 identity matrix. The notation
∇d �∇d is a 3 × 3 matrix with (i, j)th entries, given by ∂id · ∂jd (1 ≤ i, j ≤ 3). The equation
of state for ideal polytropic gas is given by

p(ρ, θ ) = Rρθ ,

R > 0 is the gas constant. The internal energy flux is defined by the Fourier law as follows:

q = κ(θ )∇θκ > 0.

Total energy ET is the sum of internal energy and kinetic energy, given as

ET =
(

ρ

(

e +
1
2
|u|2

)

+
1
2
|∇d|2

)

, (1.2)

whereas e = cvθ .
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When the director field is a constant vector field, system (1.1) reduces to compress-
ible non-isentropic Navier–Stokes equations. First, let us recall some literature works
on the well-posedness theory for the compressible Navier–Stokes equations in a three-
dimensional space. When the initial density is away from vacuum, Nash [10] and Itaya
[11] established the local existence and uniqueness of classical solutions in 1962 and 1977,
respectively. In 1980, Matsumura and Nishida [12] first obtained the global classical so-
lutions for the initial data close to a non-vacuum equilibrium in a Sobolev space. When
vacuum is allowed, in 2006, Cho and Kim [13] proved the existence of unique local strong
solutions in bounded and unbounded domains. In 2018, Huang and Li [14] proved the
global existence of classical solutions in the whole space with smooth initial data which
are of small energy but possibly large oscillations. For more results on the existence of
solutions, see [15–24] and the references therein.

For liquid crystal in higher dimension, in 2012, Huang et al. [9] constructed the local ex-
istence of strong solution with sufficient regular initial data. In the same year, Hu and Wu
[25] proved the existence and uniqueness of the global strong solution in critical Besov
spaces provided that the initial datum is close to constant equilibrium state (1, 0, d̄). The
spherically symmetric solutions to compressible hydrodynamic flow of liquid crystals can
be found in reference [26]. In 2015, Yang [27] obtained global in time strong solution and
justified the low Mach number limit in a bounded domain. For the results of compressible
liquid crystal flows model with Ginzburg–Landau energy, existence, and large-time behav-
ior of global weak or strong solution, we refer to [28–30] and the references therein. For
more details about the development in the analysis of liquid crystal, an interested reader
can see a very systematic review by Lin and Wang [31]. There are fewer results about non-
isothermal nematic liquid crystal equations compared to those on compressible isentropic
nematic liquid crystal. In 2017, Guo et al. [32] established the existence of global-in-time
smooth solutions in a three-dimensional space provided that the initial datum is close to
a steady state. In 2018, the local well-posedness of nematic liquid crystal equations (1.1)
was studied by Fan et al. [33] in a bounded domain � ⊂R

3. In 2019, Francesco and Liu [7]
derived a general Ericksen–Leslie system under the action of thermal effects and proved
the global-in-time well-posedness of the system for small initial data in the framework of
Besov spaces. Recently, Zhong [34] studied the singularity formation of strong solutions
to the two-dimensional nematic liquid crystal flows in a bounded domain and proved that
the strong solution exists globally if the temporal integral of the maximum norm of the
divergence of the velocity is bounded.

All the global well-posedness results obtained for compressible liquid crystal flow in
higher dimensional space variable are restricted to smallness assumptions on initial data,
energy, and so on, the global existence with smooth initial data in dimension n = 3 is an
open problem analogous to Navier–Stokes equations. Although the well-posedness the-
ory for one-dimensional Navier–Stokes is well known, the physical phenomenon of liquid
crystal dynamics creates serious difficulties in rigorous analysis. When the director field is
a constant vector, the system is reduced to one-dimensional Navier–Stokes equations. For
such a particular system of equations, in 1977, Kazhikhov and Shelukhin [35] established
the global existence and uniqueness of strong solutions with positive density and constant
viscosity coefficient, for the corresponding Cauchy problem, see [36]. Later, asymptotic
behavior of the solution was studied by Okada [37] in 1987. Zlotnik and Amosov [38, 39]
constructed the global weak solutions, and later, Chen, Hoff, and Trivisa [40] the initial and
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boundary conditions. In 1998, Jiang [41] studied the equations with density-dependent
viscosity and proved that if the viscosity does not decrease to zero too rapidly, then smooth
solutions exist globally in time. For more related works with density-dependent viscosity,
see [42–46]. In 2000, Luo and Xin [47] obtained the regularity and solutions behavior near
gas and vacuum interfaces. Large time behavior of solutions with large initial data was re-
cently proved in an unbounded domain by Li and Liang [48]. In 2015, Pan and Zhang
[49] proved the existence of global strong solutions when heat conductivity depends on
temperature by the following Chapman–Enskog power law:

q = –κ(θ )∇θ , κ(θ ) = Cθβ ,β > 0. (1.3)

The global well-posedness of solution with β = 0 and vacuum was obtained by Li [50]
in 2019, this result holds both for vacuum and non-vacuum case and has improved the
well-known result of Kazhikhov [35](non-vacuum case). For the Cauchy problem, with
constant coefficients and far field vacuum, Li and Xin [51] obtained the global existence
for entropy bounded solution to non-isentropic Navier–Stokes equations with zero heat
conduction.

The study of hydrodynamics of liquid crystal has attracted the attention of many re-
searchers for the past few years. For isentropic compressible liquid crystal flow one-
dimensional space, Ding et al. [52], in 2011, gave the existence of weak solution (ρ, u, d)
with 0 ≤ ρ0 ∈ Lγ [0, 1] for γ > 1, u0 ∈ L2[0, 1], and d0 ∈ H1[0, 1]. Later, Ding, Wang, and
Wen [53] obtained the existence and uniqueness of global classical solution for Hölder
continuous initial data and initial density away from vacuum. In 2015, Huang and Ding
[54] studied a free boundary problem for the compressible liquid crystal flow model which
connects to vacuum continuously. For non-isothermal compressible liquid crystal flow, in
2019, Tang and Sun [55] proved the global existence of strong solutions allowing vacuum,
provided that the initial data satisfy some compatibility condition and the heat conductiv-
ity satisfies

C–1(1 + θβ
) ≤ κ(θ ) ≤ C

(
1 + θβ

)
, β > 0, (1.4)

which plays an essential role in obtaining the regularity of the temperature. The result
[54] was extended by Mei [56] in 2020, where the author proved global classical solution
to the free boundary value problem in the presence of temperature equation with heat
conductivity of type (1.4). By using the stronger assumption on heat conductivity (1.3),
recently, in 2021, Li, Mahmood, and Shang [57] obtained the global strong solution with
ρ0 ≥ C.

To our best knowledge, global strong solution to one-dimensional non-isothermal com-
pressible nematic liquid crystal equations for arbitrary large initial data is not known for
constant coefficients and vacuum. The global solution obtained for system (1.5) in Mei
[56], Li et al., [57] holds for β > 0 with ρ0 ≥ C. Similarly, the result obtained in [55] with
vacuum in Euler coordinates is restricted to the condition on heat conductivity of type
(1.4). Motivated by Kazhikhov [35] and Li [50], in this paper we aim to study the global
well-posedness of strong solutions to the one-dimensional non-isothermal compressible
nematic liquid crystal flow equations, i.e., system (1.5), with constant viscosity and heat
conductivity in the presence of vacuum.
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1.1 Coordinates transformation and main results
Let ρ(x, t), u(x, t), d(x, t), and θ (x, t) denote the unknown functions of density, velocity,
director vector field(d(x, t) = (d1, d2, d2)(x, t)), and temperature, then the liquid crystal hy-
drodynamics for all x ∈ (0, l) and time t > 0 is governed by the following set of partial
differential equations in Eulerian coordinates:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + (ρu)x = 0,

∂t(ρu) + ((ρu2) + p(ρ, θ ))x – μuxx = – 1
2 (|dx|2)x,

∂td + udx = dxx + |dx|2d, |d|2 = 1,

∂t(ρθ ) + (ρuθ )x + pux – κ(θx)x = μ(ux)2 + |dxx + |∂xd|2d|2,

(1.5)

where μ and κ are viscosity and heat conductivity coefficients and μ = 2μ′ + λ′.
The results of this paper will be proven in the Lagrangian flow map coordinate be-

ing stated in what follows. Let us define the coordinate transformation between the La-
grangian coordinate y and Euler coordinates x as

x = ξ (y, t),

where ξ (y, t) denotes the flow map governed by u, that is,

⎧
⎨

⎩

ξt(y, t) = u(ξ (y, t), t),

ξ (y, 0) = y.

Let the new variables ρ̄ , ū, d̄ p̄, θ̄ denote the density, velocity, director field, pressure, and
temperature, respectively, in the Lagrangian coordinate, that is,

ρ(y, t) := ρ̄
(
ξ (y, t), t

)
, u(y, t) := ū

(
ξ (y, t), t

)
, p(y, t) := p̄

(
ξ (y, t), t

)
,

d(y, t) := d̄
(
ξ (y, t), t

)
, θ (y, t) := θ̄

(
ξ (y, t), t

)
.

By the definition of ξ (y, t), it is not hard to see that

(∂xu, ∂xd, ∂xθ , ∂xp) =
(

∂yū
∂yξ

,
∂yd̄
∂yξ

,
∂yθ̄

∂yξ
,
∂yp
∂yξ

)

,

(
∂2

x u, ∂2
x d, ∂2

x θ
)

=
(

1
∂yξ

∂y

(
∂yū
∂yξ

)

,
1

∂yξ
∂y

(
∂yd̄
∂yξ

)

,
1

∂yξ
∂y

(
∂yθ̄

∂yξ

))

∂tρ + u∂xρ = ∂tρ̄, ∂tu + u∂xu = ∂t ū, ∂td + u∂xd = ∂t d̄, ∂tθ + u∂xθ = ∂t θ̄ ,

and introduce a function g(y, t) = ξy(y, t). Then it follows

gt = uy. (1.6)
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For the sake of simplicity, new variables are denoted by the same physical variables as
before, then system (1.5) can be rewritten in the Lagrangian coordinate as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ρ
uy
g = 0,

ρut + 1
g (p + 1

2g2 |dy|2)y = μ

g ( uy
g )y,

dt = 1
g ( dy

g )y + |dy|2
g2 d, |d|2 = 1,

cvρθt + p uy
g = κ

g ( θy
g )y + μ

u2
y

g2 + | 1
g ( dy

g )y + 1
g2 |dy|2d|2.

(1.7)

Due to (1.6) and (1.7)1, it is straightforward that

(gρ)t = gtρ + gρt = vyρ – g
vy

g
ρ = 0,

from which, by setting ρ|t=0 = ρ0 and noticing that g|t=0 = 1, we have gρ = ρ0. Therefore,
one can replace ρ by ρ = ρ0

g in the above equations, and a new modified system is written
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gt – uy = 0,

ρ0ut + (p + 1
2g2 |dy|2)y = ( μuy

g )y,

dt = 1
g ( dy

g )y + |dy|2
g2 d, |d|2 = 1,

ρ0θt + puy = κ( θy
g )y + μu2

y
g + g| 1

g ( dy
g )y + 1

g2 |dy|2d|2,

(1.8)

with the initial conditions

(g, u, d, θ )(y, t)|t=0 = (1, u0, d0, θ0)(y), y ∈ �, (1.9)

and the boundary conditions

(u, dy, θy)|y=0,l = (0, 0, 0). (1.10)

For 1 ≤ r ≤ ∞ and positive integer k, we use Lr = Lr((0, l)) and W k,r = W k,r((0, l)) to
denote the standard Lebesgue and Sobolev spaces, respectively, and in the case that r = 2,
we use Hk instead of W k,2. H1

0 consists of all functions v ∈ H1 satisfying u(0) = u(l) = 0. We
always use ‖u‖r to denote the Lr norm of u. Throughout this paper, C denotes a general
nonnegative constant which may be different from line to line.

The main result of this paper is stated as follows.

Theorem 1.1 Assume that the initial data (ρ0, u0, dy0, θ0)(y) ∈ H2 × H2 × H2 × H2 satisfy
(ρ0, θ0)(y) ≥ 0 for all y ∈ [0, l], with compatibility conditions

μu′′
0 – R(ρ0θ0)′ –

1
2
(∣
∣d′

0
∣
∣2)′ =

√
ρ0h1

κθ ′′
0 + μ

(
u′

0
)2 – Ru′

0ρ0θ0 + |d0t|2 =
√

ρ0h2,
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for (h1, h2) ∈ L2[0, l]. Then there is a unique global solution (g, u, d, θ ) to system (1.8) subject
to initial-boundary conditions (1.9–1.10) satisfying

g ∈ C
(
[0, T]; H2), gt ∈ L2(0, T ; H2),

u ∈ C
(
0, T ; H2) ∩ L2(0, T ; H3), ut ∈ L2(0, T ; H1),

dy ∈ C
(
0, T ; H2), dyt ∈ L2(0, T ; H1),

0 ≤ θ ∈ C
(
[0, T]; H2) ∩ L2(0, T ; H3), θt ∈ L2(0, T ; H1),

for any T ∈ (0,∞). In particular, it holds that

inf
0≤t≤T

inf
y∈(0,l)

g(y, t) ≥ C

and

max
t∈[0,T]

(

‖g‖2
H2 +

∥
∥
∥
∥

(

u,
dy

g
, θ

)∥
∥
∥
∥

2

H2

)

+
∫ T

0
D(t) dt ≤ C (1.11)

for any T > 0, where C > 0 is a positive constant depending only on R, cv, μ, κ , m1, N1, N2,
N3, and T , and dissipation D(t) is defined as

D(t) = ‖gt‖2
H2 +

∥
∥(u, d, θ )

∥
∥2

H3 +
∥
∥(ut , θt)

∥
∥2

H1 +
∥
∥
∥
∥

dyt√g
,

1√g

(
dy

g

)

yt

∥
∥
∥
∥

2

L2
.

Remark 1 The result of this paper can be seen as a generalization of Kazhikhov–Shelukhin
[35] (constant coefficients, non-vacuum) and Li [50] (constant coefficients and vacuum)
towards liquid crystal dynamics.

Remark 2 The arguments of this paper also work for the free boundary value problem in
which the boundary condition for velocity u is replaced by

(

μ
uy

g
– θ –

1
2

|dy|2
g2

)∣
∣
∣
∣
y=0,l

= 0.

Thus our result improves the results of [56, 57] for κ(θ ) = θβ with β = 0, which does not
include the constant case.

Remark 3 The same result as in Theorem 1.1 still holds if we replace the boundary con-
dition ∂yθ (0, t) = ∂yθ (l, t) = 0 by one of the following three:

θ (0, t) = θ (l, t) = 0,

θ (0, t) = ∂yθ (l, t) = 0,

∂yθ (0, t) = θ (l, t) = 0,

and the proof is exactly the same as the one established in this paper, the only difference
is that the basic energy identity in Lemma 1 will be replaced by an inequality.
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Remark 4 The method used in this paper can be applied to another model, e.g., magneto-
hydrodynamics, by slightly modifying the proof of this paper.

Remark 5 The method can easily be adopted for the non-isothermal compressible liq-
uid crystal model in which Dirichlet free energy (|∇d|2) is replaced by Ginzburg–Landau
energy (|∇d|2 + 1

4ε2 (|d|2 – 1)2) in the one-dimensional case.

The key issue of proving Theorem 1.1 is to establish the appropriate a priori energy esti-
mates for the solution of (1.8) up to any finite time, subject to initial and boundary condi-
tions (1.9)–(1.10). Compared to Navier–Stokes, the presence of highly nonlinear director
field equation makes the analysis more difficult due to production of g| 1

g ( dy
g )y + 1

g2 |dy|2d|2
in the temperature equation, the term |dy|2

g2 d, constraint |d|2 = 1 in the director field equa-
tion, and coupling of the torque balance equation with the momentum balance equation
with the term 1

g2 |dy|2. In addition to the difficulty caused by the lack of the positive lower
bound of the density, it is observed that upper bound density strongly depends on the
L∞-norm of dy

g and the quantity ρ0θ . Strong coupling of cross terms and vacuum causes
serious difficulties in the control of L∞(L2) of √ρ0θ . To overcome such difficulties, density-
weighted embedding inequalities are used both for temperature and the director field.

The desired a priori energy estimates are carried out as, first, we obtain from (1.8) an
identity as follows:

g(y, t) = X(t)–1Y (y, t)–1Z(y, t)–1
(

1 + R
∫ t

0
X(s)Y (y, s)Z(y, s)ρ0(y)θ (y, s) ds

)

for some functions X(t), Y (y, t), and Z(y, t) = exp(–
∫ t

0
1

2g2 |dy|2 ds). The temperature equa-
tion is not used at all in deriving the above identity, and this identity is in the spirit of the
one in [35], but in different Lagrangian coordinates. The basic energy estimate implies
that both X and Y are uniformly away from zero and uniformly bounded up to any finite
time. As a direct corollary of the above identity, one can obtain the uniform positive lower
bound of g and the control of the upper bound of g in terms of

∫ t
0 θ ds and

∫ t
0

1
2g2 |dy|2 ds. By

using the positive lower bound of g , we obtain a density-weighted embedding inequality
which implies that the upper bound of √

ρ0θ and 1√
ρ0

| dy
g |2 can be controlled by that of g ,

up to a small dependence on ‖ ∂yθ√g ‖2, and 1√g ∂y| dy
g |2. This will be used for the L∞(L2) type

estimates on √
ρ0θ .

Second, we carry out the L∞(L2) energy estimate on √
ρ0θ and, at the same time, the

L∞(L2) energy estimate will be evolved naturally, due to the coupling structure between
u, d, and θ in the system. Compared to Navier–Stokes equations, we do not have control
for L∞(L2) energy estimate on √

ρ0θ because of time integral term of the director field in
product with time integral of temperature. It is noted that there is no dissipation estimates
on the director field equation due to energy conservation. As a conclusion, by extracting
dissipation estimates from momentum and torque balance equation in terms of ‖θ‖∞, we
are able to obtain the a priori upper bound of g and the a priori L∞(L2) ∩ L2(H1) type
estimates on (u, dy

g , θ ).

Third, by using the effective viscous flux F := μ
∂yu

g – p – 1
2 | dy

g |2 and working on its

L∞(L2) ∩ L2(H1) type a priori estimate that strongly depends on the term ‖ dyt√g ‖2
L2 of the

director field, we are able to get the a priori L∞(H1) estimate on (g, u); however, due to the
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presence of the term μ

g (∂yu)2 and g|dt|2 and the degeneracy of the leading term ρ0∂tθ in
the θ equation, we are not able to obtain the corresponding L∞(H1) estimate on θ without
appealing to higher order energy estimates than H1.

Lastly, we obtained the a priori L∞(H2) type estimates on (u, θ ), which are achieved
through performing the L∞(L2) type energy estimate on √

ρ0∂tθ , L∞(H1) type estimate
on F , and by using a priori L∞(H3) estimates on the director field. It should be mentioned
that the desired a priori L∞(H2) estimates on θ are obtained without knowing their a priori
L∞(H1) bound in advance.

In fact, all the energy estimates obtained in this paper hold if we replace boundary con-
dition (1.10) with the above one by copying or slightly modifying the proof.

2 Proof of the main results
2.1 A priori L2 estimates
We start with the basic energy identity.

Lemma 1 For time and space variables (t, x) ∈ [0, T] × [0, l], the conservation of mass and
energy is given as

∫ l

0
ρ(y, t) dy =

∫ l

0
ρ(y, 0) dy, (2.1)

∫ l

0

(

cvρ0θ +
1
2
|ρ0u|2 +

1
2g

|dy|2
)

(y, t) dy = E0, (2.2)

where

E0 =
∫ l

0

(

cvρ0θ +
1
2
ρ0|u|2 +

1
2g

|dy|2
)

(y, 0) dy.

Proof Integrating (1.8)1 with respect to space and time and using boundary condition
(1.10), it is easy to see that equality (2.1) holds.

In order to prove (2.2), we multiply (1.8)2 by u. The resulting equation is then integrated
over [0,l]; after integration by parts, we obtain

1
2

d
dt

∫ l

0
ρ0u2 dy +

∫ l

0

u2
y

g
dy =

∫ l

0

(

p +
1

2g2 |dy|2
)

uy dy. (2.3)

On the other hand, taking dot product of equation (1.8)3 with –( 1
g ( dy

g )y + |dy|2d
g2 ), as a result

one can get

–dt ·
(

1
g

(
dy

g

)

y
+

|dy|2
g2 d

)

= –
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

. (2.4)

The left-hand side of (2.4) can be written as

–dt ·
(

1
g

(
dy

g

)

y
+

|dy|2
g2 d

)

= –dt · 1
g

(
dy

g

)

y
– dt · |dy|2

g2 d = –dt · 1
g

(
dy

g

)

y
, (2.5)
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where we have used constraint |d|2 = 1. Plugging (2.5) into (2.4) and then multiplying the
resulting equation by g , we get

–dt ·
(

dy

g

)

y
= –g

∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

. (2.6)

Then, we integrate equality (2.6) over [0,l], and we have

1
2

d
dt

∫ l

0

|dy|2
g

dy +
∫ l

0
g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

dy = –
∫ l

0

1
2g2 |dy|2uy dy. (2.7)

Combining (2.3) and (2.7) with integral form of the temperature equation (1.8)4 implies
equality (2.2). �

Next, we carry out the estimate on the lower bound of g . To this end, we perform some
calculations in the spirit of [35] as preparations. Now, we integrate momentum conserva-
tion equation with respect to time t, and using first equation of (1.8), we can get

ρ0u(y, t) – ρ0u0(y) +
∫ t

0

(

p +
1

2g2 |dy|2
)

y
(y, s) ds =

d
dy

(
ln g(y, t) – ln g0(y)

)
. (2.8)

Integrating (2.8) with respect to y from the point ξ (t) to an arbitrary point y for any fixed
time t, we get

∫ y

ξ (t)

(
ρ0u(y, t) – ρ0u0(y)

)
dy +

∫ t

0

(

p +
1

2g2 |dy|2
)

(y, s) ds

–
∫ t

0

(

p +
1

2g2
0
|dy|2

)
(
ξ (t), s

)
ds = ln g(y, t) – ln g0

(
ξ (t), t

)
. (2.9)

After rewriting, we have

exp

(∫ t

0
p ds

)

= g(y, t)X(t)Y (y, t)Z(y, t), (2.10)

where

X(t) =
1

g(ξ (t), t)
exp

(∫ t

0
p +

1
2g2 |dy|2

(
ξ (t), s

)
ds

)

,

Y (y, t) = exp

(∫ y

ξ (t)
ρ0u0(x) – ρ0u(t, x) dx

)

,

Z(y, t) = exp

(

–
∫ t

0

1
2g2 |dy|2 ds

)

.

Multiplying equation (2.10) by Rρ0θ and integrating the result over [0, t], we have

exp

(∫ t

0
p ds

)

– 1 = Rρ0

∫ t

0
X(s)Y (y, s)Z(y, s)θ ds. (2.11)
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From (2.10) and (2.11) we get

g(y, t) = X(t)–1Y (y, t)–1Z(y, t)–1
(

1 + R
∫ t

0
X(s)Y (y, s)Z(y, s)ρ0(y)θ (y, s) ds

)

. (2.12)

A prior positive lower and upper bound of g is stated in the following proposition.

Proposition 1 Given T ∈ (0,∞), it holds that

g ≥ C,

‖g‖∞(t) ≤ C
∥
∥Z–1∥∥∞

(

1 +
R
μ

∫ t

0
‖ρ0θ‖∞ dτ

)

for any t ∈ [0,∞).

Proof By Lemma 1, it follows from the Hölder inequality that

∣
∣
∣
∣

∫ l

0
ρ0(u – u0) dξ

∣
∣
∣
∣ ≤

(∫

ρ0 dξ

) 1
2
[(∫ l

0
ρ0u2 dξ

) 1
2

+
(∫ l

0
ρ0u2

0 dξ

) 1
2
]

≤ 2
√

2‖ρ0‖1E0.

Therefore, it follows from the definition of Y in Lemma 1 that

exp
{

–C
√‖ρ0‖1E0

} ≤ Y (y, t) ≤ exp
{

C
√‖ρ0‖1E0

}
,

C–1 ≤ Y (y, t) ≤ C.

Similarly,

0 < Z = e
∫ t

0 – |dy|2
g2 < 1. (2.13)

Now we show that X(t) is bounded above and below by the initial data. Assume that

F (y, t) =
∫ t

0

(
uy

g
– p –

1
2g2 |dy|2

)

(y, s) ds +
∫ y

0
ρ0u0(x) dx, (2.14)

then

Fy = ρ0u, Ft =
uy

g
– p –

1
2g2 |dy|2.

With the aid of the continuity equation, we obtain

(gF )t – (uF )y = uy – ρ0θ –
1

2g
|dy|2 – ρ0u2.

Integrating it over [0, l] × [0, t], using non-slip boundary (1.10) condition, we get

∫ l

0
gF dy =

∫ l

0
g0F0 dy –

∫ t

0

∫ l

0

(

ρ0θ +
1

2g
|dy|2 + ρ0u2

)

dy ds.
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By using mass conservation (2.1), we have

∫ l

0
g dy =

∫ l

0
g0 dy.

Using the continuity of g , for t > 0, there exists ξ (t) ∈ [0, l] such that

F
(
ξ (t), t

)
=

1
g0

∫ l

0
gF (y, t) dy.

On the other hand, since uy = gt , then from the definition of F we have

F
(
ξ (t), t

)
= ln g

(
ξ (t), t

)
–

∫ t

0

(

p +
1

2g2 |dy|2
)

(
ξ (t), s

)
ds +

∫ ξ (t)

0
ρ0u0(x) dx. (2.15)

By rewriting in the form

1
g(ξ (t), t)

exp

(∫ t

0

(

ρ0θ +
1

2g2 |dy|2
)

(
ξ (t), s

)
ds

)

= exp

(
1
g0

∫ t

0

∫ l

0

(

ρ0θ +
1

2g
|dy|2 + ρ0u2

)

dy ds +
∫ a(t)

0
ρ0u

(
ξ (t), t

)
dx

)

. (2.16)

Thus it is not hard to see that

C–1 ≤ X(t) ≤ C. (2.17)

Recalling p ≥ 0, we obtain

g = X–1Y –1Z–1e
1
μ

∫ t
0 p dτ ,

≥ C,

the conclusion follows. �

Next we establish the upper bound of g , where we need to prove ‖ρ0θ‖L∞ and for the di-
rector field ‖( |dy|

g )2‖L∞ and ‖ 1√
ρ0

( |dy|
g )2‖2∞ type a priori estimate. The need of the weighted

estimate for temperature and director field is necessary for the upper bound of g . As
a preparation of deriving the a priori upper bound of g and the a priori L∞(0, T ; L2) ∩
L2(0, T ; H1) type estimates on (u, dy, θ ), for simplicity, the density-weighted estimates of θ

and dy are given in the following proposition.

Proposition 2 We have the following two items: (i) It holds that

∥
∥
∥
∥

1
ρ2

0 (y0)

(
dy

g

)2∥∥
∥
∥

2

∞
≤ C + C

∥
∥
∥
∥

1√g
∂y

(
dy

g

)2∥∥
∥
∥

4
3

2
‖g‖ 2

3∞,

∥
∥
∥
∥

( |dy|
g

)2∥∥
∥
∥∞

≤
∥
∥
∥
∥

1√g
∂y

(
dy

g

)2∥∥
∥
∥

2
+ C,

∥
∥ρ2

0θ
∥
∥2

∞ ≤ C + C
∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞,
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‖θ‖∞ ≤ √
l
∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2
+ C,

where C depends on (ρ̄0,ρ ′
0, E0, l, |�0|) and

ρ̄ = ‖ρ0‖∞, �0 :=
{

y ∈ (0, l)
∣
∣
∣ρ0(y) ≥ ρ̄

2

}

.

(ii) As a consequence of (i), we have

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
≤ η

∥
∥
∥
∥

1√g
∂y

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

2
+ Cη

(‖g‖2
∞ + 1

)
,

‖√ρ0θ‖2
∞ ≤ η

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2
+ Cη

(‖g‖2
∞ + 1

)

for any η ∈ (0,∞), where Cη is a positive constant depending only on η and N1(ρ̄0, E0,�0,
ρ ′

0).

Proof Now the proof of Proposition 2 is given as follows: (i) Let

∣
∣
∣
∣
dy

g
(y, t)

∣
∣
∣
∣

2

= R(y, t)

and

�0 :=
{

y ∈ (0, l)
∣
∣
∣ρ0(y) ≥ ρ̄

2

}

.

Noticing that

R(y, t) =
1

�0

∫

�0

Rdz +
1

�0

∫

�0

∫ y

z
∂yRdy dz,

we deduce that

‖R‖∞ ≤ 1
�0

∫

�0

Rdz +
∫ l

0
|∂yR|dz

≤ 2
�0

‖R‖1 +
(∫ l

0

∣
∣
∣
∣
∂yR√g

∣
∣
∣
∣

2

dz
) 1

2
(∫ l

0
g dz

) 1
2

,

thus one can get

‖R‖∞ ≤ √
l
∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

2
+

2E0

�0
.

Density-weighted estimate for the director field:
By the Hölder and Young inequalities, and similarly as above, we deduce

(R
ρ2

0

)2

(y, t) ≤ �–1
0

(
2
ρ̄2

)2

‖R‖2
1 +

4
ρ̄3

∥
∥
∥
∥
R
ρ2

0

∥
∥
∥
∥∞

‖R‖1
∥
∥ρ ′

0
∥
∥∞
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+
2
ρ̄2

∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

2
‖g‖ 1

2∞
∥
∥
∥
∥
R
ρ2

0

∥
∥
∥
∥

2

≤ �–1
0

(
2
ρ̄2

)2

‖R‖2
1 +

4
ρ̄3

∥
∥
∥
∥

R
ρ2

0 (y0)

∥
∥
∥
∥∞

‖R‖1
∥
∥ρ ′

0
∥
∥∞

+
2
ρ̄2

∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

2
‖g‖ 1

2∞
∥
∥
∥
∥
R
ρ2

0

∥
∥
∥
∥

1
2

1

∥
∥
∥
∥
R
ρ2

0

∥
∥
∥
∥

1
2

∞

≤ �–1
0

(
2
ρ̄2

)2

‖R‖2
1 +

4
ρ̄3

∥
∥
∥
∥

R
ρ2

0 (y0)

∥
∥
∥
∥∞

‖R‖1
∥
∥ρ ′

0
∥
∥∞

+
2
ρ̄3

∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

2
‖g‖ 1

2∞‖R‖ 1
2
1

∥
∥
∥
∥
R
ρ2

0

∥
∥
∥
∥

1
2

∞

≤ δ

∥
∥
∥
∥

R
ρ2

0 (y0)

∥
∥
∥
∥

2

∞
+ �–1

0

(
2
ρ̄2

)2

‖R‖2
1 + C(δ)‖R‖2

1
∥
∥ρ ′

0
∥
∥2

∞

+
2
ρ̄4

∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞‖R‖ 2
3
1

for any y ∈ (0, l). Thus, from Lemma 1 and suitably small δ > 0, we have

∥
∥
∥
∥

R
ρ2

0 (y0)

∥
∥
∥
∥

2

∞
≤ C + C

∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞. (2.18)

(ii) Thanks to (i), we have

∥
∥
∥
∥

R
ρ2

0 (y0)

∥
∥
∥
∥

2

∞
≤ C + C

∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞,

‖R‖∞ ≤ √
l
∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

2
+

2E0

�0

for a positive constant C depending only on N1. Therefore, we have

∥
∥
∥
∥

R√
ρ0

∥
∥
∥
∥

2

∞
=

∥
∥
∥
∥

(R
ρ2

0

) 1
4
R 3

4

∥
∥
∥
∥

2

∞
≤

∥
∥
∥
∥

(R
ρ2

0

)∥
∥
∥
∥

1
2

∞
‖R‖ 3

2∞

≤ C
(

1 +
∥
∥
∥
∥
∂yR√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞
) 1

4
(∥

∥
∥
∥
∂yR√g

∥
∥
∥
∥

2
+ 1

) 3
2

.

Density-weighted estimate for temperature:
Assume ‖ρ‖∞ = ρ̄ , let there exist y0 ∈ (0, l) such that

ρ2
0 (y0)θ (y0, t) ≤ 2

l

∫ l

0
ρ2

0θ dξ ≤ 2ρ̄

l
‖ρ0θ‖1.

By the Hölder and Young inequalities, we deduce

(
ρ2

0θ
)2(y, t) ≤ (ρ0θ )2(y0, t) + 2

∫ l

0
ρ2

0θ
∣
∣∂y

(
ρ2

0θ
)∣
∣dξ

≤
(

2ρ̄

l

)2

‖ρ0θ‖2
1 + 2

∫ l

0

(
2ρ2

0θρ0θ
∣
∣ρ ′

0
∣
∣ + ρ2

0θρ2
0 |∂yθ |)dξ
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≤
(

2ρ̄

l

)2

‖ρ0θ‖2
1 + 4

∥
∥ρ2

0θ
∥
∥∞‖ρ0θ‖1

∥
∥ρ ′

0
∥
∥∞

+ 2ρ̄2
∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2
‖g‖ 1

2∞
∥
∥ρ2

0θ
∥
∥

2

≤
(

2ρ̄

l

)2

‖ρ0θ‖2
1 + 4

∥
∥ρ2

0θ
∥
∥∞‖ρ0θ‖1

∥
∥ρ ′

0
∥
∥∞ + +4

∥
∥ρ2

0θ
∥
∥∞‖ρ0θ‖1

∥
∥ρ ′

0
∥
∥∞

+ 2ρ̄2
∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2
‖g‖ 1

2∞
∥
∥ρ2

0θ
∥
∥

1
2
1

∥
∥ρ2

0θ
∥
∥

1
2
∞ + 2ρ̄

5
2

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2
‖g‖ 1

2∞‖ρ0θ‖ 1
2
1
∥
∥ρ2

0θ
∥
∥

1
2
∞

≤ 1
2
∥
∥ρ2

0θ
∥
∥2

∞ +
(

2ρ̄

l

)2

‖ρ0θ‖2
1 + 16‖ρ0θ‖2

1
∥
∥ρ ′

0
∥
∥2

∞

+ 3ρ̄
10
3 ‖ρ0θ‖ 2

3
1

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞

for any y ∈ (0, l), it is not hard to see that

∥
∥ρ2

0θ
∥
∥2

∞ ≤ C + C
∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

4
3

2
‖g‖ 2

3∞.

Noticing that

θ (y, t) =
1

�0

∫

�0

θ dz +
1

�0

∫

�0

∫ y

z
∂yθ dξ dz,

we deduce, by the Hölder inequality, that

‖θ‖∞ ≤ 1
�0

∫

�0

ρ0θ

ρ0
dz +

∫ l

0
|∂yθ |dz

≤ 2
�0ρ̄

‖ρ0θ‖1 +
(∫ l

0

∣
∣
∣
∣
∂yθ√g

∣
∣
∣
∣

2

dz
) 1

2
(∫ l

0
g dz

) 1
2

. �

The other estimates for θ in Proposition 2 can be obtained similar to the director field.
By density-weighted estimate of θ and dy in hand, the desired a priori L∞(0, T ; L2) ∩

L2(0, T ; H1) estimates on (u, dy
g , θ ) are given as in the following lemma.

Lemma 2 Given T ∈ (0,∞). It holds that

d
dt

(

‖√ρ0E‖2
2 +

C1

μ

∥
∥√

ρ0u2∥∥2
2 +

∥
∥
∥
∥

∣
∣
∣
∣

dy

g 3
4

∣
∣
∣
∣

2∥∥
∥
∥

2

2

)

+
∫ t

0

(

‖√ρ0θ‖2
∞ +

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

‖2
∞

)

dτ

+
∫ l

0

[(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

]2

dy + 5C1

∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+ κcv

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2

≤ C
η

[

(e
∫ t

0 ‖ |dy|
g ‖2

L∞ dτ

(

1 +
R
μ

∫ t

0
‖ρ0θ‖∞ dτ

)]2

+
C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy (2.19)

for any t ∈ (0, T).
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Denote E := 1
2 (u2 + 1

ρ0

|dy|2
g ) + cvθ , then one can derive from (1.8)2, (1.8)3, and (1.8)4 that

ρ0∂tE + ∂y

(

u
(

p +
1

2g2 |dy|2
))

– κ∂y

(
∂yθ

g

)

= μ∂y

(
1
g
∂y

(
u2

2

))

+
(

dt · dy

g

)

y
. (2.20)

Multiplying (2.20) by E ′ = 1
2 (u2 + |dy|2

g2 ) + cvθ and integrating the resultant over (0, l), one
gets from integration by parts that

d
dt

∫ l

0

(
ρ0EE ′)dy +

∫ l

0

1
g

(

κ∂yθ + μu∂yu +
(

dt · dy

g

))

∂yE ′ dy

=
∫ l

0
ρ0E

(
E ′)

t dy +
∫ l

0
u
(

p +
1

2g2 |dy|2
)

∂yE ′ dy,

d
dt

∫ l

0

(
ρ0EE ′)dy +

∫ l

0

1
g

(

κ∂yθ + μu∂yu +
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

)

∂yE ′ dy

≤ C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy +

∫ l

0
u
(

p +
1

2g2 |dy|2
)

∂yE ′ dy,

(2.21)

where we have used that E ≤ E ′ and the fact dt · dy
g = 1

g (| dy
g |2)y. By the Young inequality,

we have

∫ l

0

1
g

(

κ∂yθ + μu∂yu +
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

)

∂yE ′ dy

=
∫ l

0

1
g

(

κ∂yθ + μu∂yu +
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

)[

u∂yu +
( |dy|2

g2

)

y
+ cv∂yθ

]

dy

≥ 3κcv

4

∫ l

0

∣
∣
∣
∣
∂yθ√g

∣
∣
∣
∣

2

dy – C
∫ l

0

[∣
∣
∣
∣
u∂yu√g

∣
∣
∣
∣

2

+
∣
∣
∣
∣

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∣
∣
∣
∣

2]

dy

and

∫ l

0
u
(

p +
1

2g2 |dy|2
)

∂yE dy

= R
∫ l

0
u

ρ0

g
θ

(

u∂yu +
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y
+ cv∂yθ

)

dy

+
∫ l

0
u

1
2g2 |dy|2

(

u∂yu +
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y
+ cv∂yθ

)

dy

≤ κcv

4

∫ l

0

∣
∣
∣
∣
∂yθ√g

∣
∣
∣
∣

2

dy + C
∫ l

0

1
g

(

ρ2
0 u2θ2 + (u∂yu)2 +

[(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

]2)

dy,

+
κcv

4

∫ l

0

∣
∣
∣
∣
∂yθ√g

∣
∣
∣
∣

2

dy + C
∫ l

0

1
g

(

u2
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4

+ (u∂yu)2 +
[(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

]2)

dy,
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for a positive constant C depending only on R, cv, μ, and κ . Substituting the above two
inequalities into (2.21) and applying Lemma 1 and Proposition 1, we obtain

d
dt

‖√ρ0E‖2
2 + κcv

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2

≤ δ

(∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2

)

+ C
(∫ l

0

ρ0u2

g
ρ0θ

2 +
1
g

(

u2
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4)

dy
)

+
C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy

≤ δ

(∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2

)

+ C‖√ρ0u‖2
2

(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

+
C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy

≤ δ

(∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2

)

+ C
(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

+
C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy

for a positive constant C depending only on R, cv, μ, and κ , and thus

d
dt

‖√ρ0E‖2
2 + κcv

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2
(2.22)

≤ C1

(∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2

)

+ C
(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

(2.23)

+
C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy (2.24)

for a positive constant C1 depending only on R, cv, μ, and κ .
Multiplying the momentum equation by 4u3 and integrating the resultant over (0, l),

after integration by parts and the Young inequality, one gets that

d
dt

∫ l

0
ρ0u4 dy + 12μ

∫ l

0

∣
∣
∣
∣
u∂yu√g

∣
∣
∣
∣

2

dy

= 12
∫ l

0

(

p +
1

2g2 |dy|2
)

u2∂yu dy

= 12
∫ l

0

(
Rρ0

g
θ +

1
2g2 |dy|2

)

u2∂yu dy

≤ 6μ

∫ l

0

∣
∣
∣
∣
u∂yu√g

∣
∣
∣
∣

2

dy +
6R2

μ

∫ l

0

ρ0u2

g
ρ0θ

2 dy +
6
μ

∫ l

0

1
g

(

u2
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4)

dy,

≤ C1

(∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2

)

+ C‖√ρ0u‖2
2

(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

≤ C1

(∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2

)

+ C
(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

,
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from which, by Proposition 1, the Hölder inequality, and Proposition 1, one obtains

d
dt

∫ l

0
ρ0u4 dy + 6μ

∫ l

0

∣
∣
∣
∣
u∂yu√g

∣
∣
∣
∣

2

dy ≤ C
(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

,

that is,

d
dt

∥
∥√

ρ0u2∥∥2
2 + 6μ

∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
≤ C

(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

. (2.25)

Now we first operate the ∂y on both sides of the director field equation

(dy)t =
(

1
g

(
dy

g

)

y

)

y
+

( |dy|2
g2 d

)

y
.

Taking the dot product of the equation by ( |dy|2
g3 dy), we get

(dy)t ·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g
=

(
1
g

(
dy

g

)

y

)

y
·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g
+

( |dy|2d
g2

)

y
·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g
. (2.26)

Now we compute each term on the left- and right-hand side of equation (2.26) one by one.
The term on the left-hand side after integration by parts can be written as

∫ l

0
(dy)t ·

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g
dy =

1
4

∫ l

0

(

dy ·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g

)

t
dy +

3
4

∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4

gt dy

=
1
4

∫ l

0

( |dy|4
g3

)

t
dy +

3
4

∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4

uy dy

=
1
4

∫ l

0

( |dy|4
g3

)

t
dy –

3
4

∫ l

0

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4)

y
u dy

=
1
4

∫ l

0

( |dy|4
g3

)

t
dy –

3
2

∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y
u dy

=
1
4

∫ l

0

( |dy|4
g3

)

t
dy –

3
2

∫ l

0

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

√
ρ0u dy.

In the above calculation we have used the boundary conditions dy = 0, u = 0. For the terms
on the right-hand side, we calculate them one by one. The first term after integration by
parts and using boundary condition is as follows:

∫ l

0

(
1
g

(
dy

g

)

y

)

y
·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g
dy

= –
∫ l

0

1
g

(
dy

g

)

y
·
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g

)

y
dy

= –
∫ l

0

1
g

(
dy

g

)

y
·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2(dy

g

)

y
dy –

∫ l

0

1
g

(
dy

g

)

y
·
(∣

∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

dy

g
dy

= –
∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2∣∣
∣
∣
dy

g

∣
∣
∣
∣

2

dy –
1
2

∫ l

0

[(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

]2

dy
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≤ –
∫ l

0

1
g

[(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

]2

dy.

Now the last term of (2.26) can be written as

( |dy|2d
g2

)

y
·
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 dy

g
=

|dy|2
g2 ·

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 |dy|2
g

,

where we have used the constraint |d|2 = 1 for the director field. Substituting the computed
term in (2.26), integrating the resultant with respect to space variable, and using Holder’s
inequality result in

d
dt

∥
∥
∥
∥

(
dy

g 3
4

)2∥∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2

≤ C
(∥

∥
∥
∥

dy√g

∥
∥
∥
∥

2

2
+ ‖√ρ0u‖2

2

)∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
. (2.27)

Adding (2.27) and (2.25) with (2.24), one can get

d
dt

(

‖√ρ0E‖2
2 +

C1

μ

∥
∥√

ρ0u2∥∥2
2 +

∥
∥
∥
∥

(
dy

g 3
4

)2∥∥
∥
∥

2

2

)

+
∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2
+ 5C1

∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+ κcv

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2

≤ C
(

‖√ρ0θ‖2
∞ +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

+
C
2

d
dt

∫ l

0
ρ0

(
E ′)2 dy (2.28)

for any t ∈ (0, T).
By Proposition 1 and (ii) of Proposition 2, we have

‖√ρ0θ‖2
∞(t) +

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
(t) (2.29)

≤ η

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2
(t) + η

∥
∥
∥
∥

1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

2

+
C
η

(

e
∫ t

0 ‖( |dy|
g )2‖L∞ dτ

(

1 +
R
μ

∫ t

0
‖ρ0θ‖∞ dτ

))2

.

Collecting the estimates provides the proof of the lemma.
In order to close the estimates of the lemma, we need to control the unbounded operator

e
∫ t

0 ‖( |dy|
g )2‖L∞ dτ and R

μ

∫ t
0 ‖ρ0θ‖∞ dτ . We see that the director field term is in product with

the time integral of L∞ – norm of temperature, so it cannot be controlled by right-hand
side terms, thus we need new estimates to control these terms. In order to control the
right-hand side of the above inequality, dissipation estimates are obtained on the director
field in terms of L∞ – norm of temperature.
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Lemma 3 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

∥
∥
∥
∥

(√
ρ0u,

|dy|√g
,
√

ρ0θ

)∥
∥
∥
∥

2

2
+

∫ T

0

(

‖θ‖2
∞ +

∥
∥
∥
∥

(

∂yθ , ∂yu,
1√g

(
dy

g

)

y

)∥
∥
∥
∥

2

2

)

dt

≤ C
(
(1 + T) +

∥
∥
(√

ρ0u0,
√

ρ0u2
0,

√
ρ0θ0

)∥
∥2

2

)
+

∫ T

0
‖θ‖∞ dτ

for positive constants C depending only on R, cv, μ, κ , m1, N1, and T .

Proof Multiplying (1.8)2 by u and taking the dot product of director field equation (1.8)3

with –( 1
g ( dy

g )y + |dy|2d
g2 ) respectively, the resultant is integrated over (0, l). From the momen-

tum equation it is not hard to see that

1
2

d
dt

‖√ρ0u‖2
2 + μ

∥
∥
∥
∥
∂yu√g

∥
∥
∥
∥

2

2

=
∫ l

0

(

p +
∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

∂yu dy

= R
∫ l

0

(
ρ0

g
θ +

∣
∣
∣
∣

dy

2g

∣
∣
∣
∣

2)

∂yu dy

≤ μ

2

∥
∥
∥
∥
∂yu√g

∥
∥
∥
∥

2

2
+

R
2μ

∫ l

0

ρ2
0

g
θ2 dy

+
1
μ

∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4

dy. (2.30)

Similarly, from the director field equation, we have

1
2

d
dt

∫ 1

0

|dy|2
g

dy +
∫ l

0
g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

dy = –
∫ l

0

1
2g2 |dy|2uy dy. (2.31)

By using the constraint |d|2 = 1, it is not not hard to see that

g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

=
1
g

(
dy

g

)2

y
–

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4

.

Now equation (2.31), can be written as

1
2

d
dt

∫ l

0

|dy|2
g

dy +
∫ l

0

1
g

(
dy

g

)2

y
dy = –

∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

uy dy +
∫ ∣

∣
∣
∣
dy

g

∣
∣
∣
∣

4

≤ μ

2

∥
∥
∥
∥
∂yu√g

∥
∥
∥
∥

2

2
+ C

∫ ∣
∣
∣
∣
dy

g

∣
∣
∣
∣

4

. (2.32)

Combining (2.30) and (2.32) and using Sobolev embedding result in

1
2

d
dt

(

‖√ρ0u‖2
2 +

∥
∥
∥
∥
|dy|√g

∥
∥
∥
∥

2

2

)

+ μ

∥
∥
∥
∥
∂yu√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2
,

≤ μ

2

∥
∥
∥
∥
∂yu√g

∥
∥
∥
∥

2

2
+

R
2μ

∫ l

0

ρ2
0

g
θ2 dy +

1
2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2
+ C. (2.33)
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The constraint |d|2 = 1 is used in the above inequality, thus, by Proposition 1,

1
2

d
dt

(

‖√ρ0u‖2
2 +

∥
∥
∥
∥
|dy|√g

∥
∥
∥
∥

2

2

)

+ μ

∥
∥
∥
∥
∂yu√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2
(2.34)

≤ C
(‖ρ0‖∞

)(‖θ‖∞ + 1
)
. �

Thus we see that, in order to close the above estimates, we need a control on tempera-
ture, which will be given in the following lemma.

Control of term ‖θ‖∞: Now we prove the following key lemma.

Lemma 4 For any t ≥ 0, it holds that

∫ t

0
‖θ‖L∞ dτ ≤ C(1 + t)2,

whereas C depends on ‖ρ0‖∞ and the initial data.

Proof Multiplying the temperature equation by (θ + δ)–1 for some δ ∈ (0, 1), the resultant
equation can be written as

ρ0
(
ln(θ + δ)

)

t +
ρ0θ

(θ + δ)g
uy = κ

(
θy

(θ + δ)g

)

y
+ κ

(
θ2

y

(θ + δ)2g

)

+
(u2

y

g
+ g

∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2) 1
θ + δ

. (2.35)

Integrating the above inequality over time and space variables for (θ + δ) ≥ 1, then using
boundary condition for temperature, we get

∫ l

0
ρ0

(
ln(θ + δ)

)
+

∫ l

0

∫ t

0
κ

(
θ2

y

(θ + δ)2g

)

dy dτ

+
∫ l

0

∫ t

0

(u2
y

g
+ g

∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2) 1
θ + δ

dy dτ

= 2
∫ l

0
ρ0

(
ln(θ + δ)

)
dy –

∫ l

0
ρ0

(
ln(θ0 + δ)

)
dy +

∫ l

0

∫ t

0

ρ0θ

(θ + δ)g
uy dydτ

≤ 2
∫ l

0
ρ0

(
(θ + δ)

)
dy –

∫ l

0
ρ0

(
ln(θ0 + δ)

)
dy +

∫ l

0

∫ t

0

ρ0θ

(θ + δ)g
uy dydτ

≤ 2
∫ l

0
ρ0

(
(θ + δ)

)
dy +

∫ l

0

∫ t

0

ρ2
0θ2

(θ + δ)g
dy dτ +

1
2

∫ l

0

∫ t

0

u2
y

θ + δ)g
dy dτ + C

≤ 1
2

∫ l

0

∫ t

0

u2
y

(θ + δ)g
dy dτ + C

(‖ρ‖∞, m0, E0
)
(1 + t).

Thus we get

∫ l

0
ρ0

(
ln(θ + δ)

)
+

∫ l

0

∫ t

0
κ

(
θ2

y

(θ + δ)2g

)

dy dτ ≤ C(1 + t). (2.36)
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From Proposition 2, inequality (i)4, it holds that

‖θ‖L∞ ≤ C(1 + t)2. (2.37)

This completes Lemma 4. �

Combining all these lemmas, we have the following proposition.

Proposition 3 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

∥
∥
∥
∥

(√
ρ0u2,

√
ρ0θ ,

∣
∣
∣
∣

dy

g 3
4

∣
∣
∣
∣

2)∥
∥
∥
∥

2

2
+

∫ T

0

(

‖√ρ0θ‖2
∞ +

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

‖2
∞

)

dt

+
∫ T

0

∥
∥
∥
∥

(

∂yθ , u∂yu,
1√g

(∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y
,μ

∂yu√g
,

1√g

(
dy

g

)

y

)∥
∥
∥
∥

2

2
dt

≤ C (2.38)

and

sup
0≤t≤T

‖g‖2
∞ +

∫ T

0
‖θ‖2

∞ dt ≤ C (2.39)

for a positive constant C depending only on the initial data R, cv, μ, κ , m1, N1, and T , where
m1 and N1 are the numbers in Proposition 1 and Proposition 2, respectively.

Proof Summing with (2.28), one obtains

d
dt

(

‖√ρ0E‖2
2 +

C1

μ

∥
∥√

ρ0u2∥∥2
2 +

∥
∥
∥
∥

(
dy

g 3
4

)2∥∥
∥
∥

2

2

)

+
∫ t

0
‖√ρ0θ‖2

∞ dτ +
∫ t

0

∥
∥
∥
∥

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
(t) dτ

+ 5C1

∥
∥
∥
∥

u∂yu√g

∥
∥
∥
∥

2

2
+

κcv

2

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2

2
+

∥
∥
∥
∥

1√g

(
dy

g
·
(

dy

g

)

y

)∥
∥
∥
∥

2

2

≤ C
(

1 +
R
μ

∫ t

0
‖ρ0θ‖∞ dτ

)

for any t ∈ (0, T), where C is a positive constant depending only on R, cv, μ, κ , m1, N1,
and T . Applying the Gronwall inequality to the above inequality, one gets

sup
0≤t≤T

∥
∥
∥
∥

(√
ρ0u2,

√
ρ0θ ,

(
dy

g 3
4

)2)∥
∥
∥
∥

2

2
+

∫ T

0

(

‖√ρ0θ‖2
∞ +

1√
ρ0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

‖2
∞

)

dt

+
∫ T

0

∥
∥
∥
∥

(

∂yθ , u∂yu,
1√g

(
dy

g

(
dy

g

)

y

))∥
∥
∥
∥

2

2
dt

≤ C (2.40)
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for a positive constant C depending only on the initial data R, cv, μ, κ , m1, N1, and T . Thus
the desired estimates

sup
0≤t≤T

‖g‖2
∞ +

∫ T

0
‖θ‖2

∞ dt ≤ C

follow from (2.40) by applying Proposition 1 and (i) of Proposition 2. �

2.2 A priori H1 estimates
This section is devoted to the a priori H1 type estimates on (g, u, dy, θ ). Precisely, we will
carry out the a priori L∞(0, T ; H1) ∩ L2(0, T ; H2) estimate on u, a priori L∞(0, T ; H1) ∩
L2(0, T ; H2) estimate on dy, and the L∞(0, T ; H1) estimate on g ; however, due to the pres-
ence of the term μ

g (∂yu)2 and g| 1
g ( dy

g )y + 1
g2 |dy|2d|2 on the right-hand side of the equation

for θ (1.8)4, one cannot get the desired a priori H1 estimate of θ independent of the lower
bound of the density without appealing to the higher than H1 energy estimates. Before
going to prove the H1 bound for velocity, we first give the following estimates of director
field, because the velocity field estimates strongly depend on the director field.

Lemma 5 There exists a positive constant C > 0 such that, for any t ∈ [0, T],

∫ l

0

(
1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

+ g|dt|2
)

dy +
∫ T

0

∫ l

0

|dyt|2
g

dy dt ≤ C, (2.41)

max
y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣ ≤ C. (2.42)

Proof Differentiating (1.8)3 with respect to time, taking the dot product by ( dy
g )y, and in-

tegrating over interval y ∈ [0, l], we obtain

∫ l

0
dtt ·

(
dy

g

)

y
dy =

∫ l

0

1
g

(
dy

g

)

yt
·
(

dy

g

)

y
dy +

∫ l

0

( |dy|2d
g2

)

t
·
(

dy

g

)

y
dy. (2.43)

The term on the left-hand side of (2.43) can be written with the aid of (1.8)1 and constraints
|d|2 = 1 as follows:

∫ l

0
dtt ·

(
dy

g

)

y
dy =

d
dt

∫ l

0
dt ·

(
dy

g

)

y
dy –

∫ l

0
dt ·

(
dy

g

)

yt
dy

=
d
dt

∫ l

0

(
1
g

(
dy

g

)

y
+

|dy|2d
g2

)

·
(

dy

g

)

y
dy

+
∫ l

0
dyt ·

(
dy

g

)

t
dy

=
d
dt

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy –
d
dt

∫ l

0

1
g3 |dy|4 dy +

∫ l

0

1
g
|dyt|2 dy

–
∫ l

0

1
g2 (uydyt · dy) dy. (2.44)
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The first term on the right-hand side of (2.43) can be written as

∫ l

0

1
g

(
dy

g

)

yt
·
(

dy

g

)

y
dy =

1
2

d
dt

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy +
∫ l

0

uy

2g2

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy, (2.45)

where we have used equation (1.8)1. Inserting (2.44) and (2.45) into (2.43), we get

1
2

d
dt

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy +
∫ l

0

|dyt|2
g

dy

=
d
dt

∫ l

0

1
g3 |dy|4 dy +

∫ l

0

1
g2 uy(dyt · dy) dy +

∫ l

0

uy

2g2

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy

+
∫ l

0

( |dy|2d
g2

)

t
·
(

dy

g

)

y
dy

=:
d
dt

∫ l

0

1
g3 |dy|4 dy +

3∑

i=1

Qi. (2.46)

Next the estimate of each term is given as follows: The term Q1 is estimated as

Q1 ≤ δ

∫ l

0

1
g
|dyt|2 dy + C(δ)

∫ l

0

1
g3 u2

y |dy|2 dy

≤ δ

∫ l

0

1
g
|dyt|2 dy + C(δ) max

y∈[0,1]

|dy|2
g2

∫ l

0

1
g

u2
y dy. (2.47)

Now the estimate on the last term Q3 is given as

Q3 =
∫ l

0

( |dy|2d
g2

)

t
·
(

dy

g

)

y
dy

≤
∫ l

0

(

–
2|dy|2 dgt

g3 +
2(dy · dyt)d

g2 +
|dy|2dt

g2

)

·
(

1
g

dy

)

y
dy

≤ C
(∫ l

0

|dy|4
g4 |uy|dy +

∫ l

0

1
g3 |dy|3|dyt|dy

)

+ C
∫ l

0

|dy|2
g2 |√gdt|

∣
∣
∣
∣

1√g

(
dy

g

)

y

∣
∣
∣
∣dy

≤ C
(

max
y∈[0,1]

|dy|2
g2

) 3
2
∥
∥
∥
∥

uy√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

dy√g

∥
∥
∥
∥

L2
+ C max

y∈[0,1]

( |dy|2
g2

)∥
∥
∥
∥

dy√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

L2

+ C max
y∈[0,1]

( |dy|2
g2

)

‖√gdt‖L2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

L2

≤ δ

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2
+ C

(∥
∥
∥
∥

uy√g

∥
∥
∥
∥

2

L2
+ ‖√gdt‖2

L2 + 1
)∥

∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
. (2.48)

By using the Hölder inequality and embedding W 1,1(0, l) ↪→ L∞(0, l), Q2 is estimated as

Q2 ≤
(∫ l

0

∣
∣
∣
∣

uy√g

∣
∣
∣
∣

2

dy
) 1

2
(∫ l

0

∣
∣
∣
∣

1√g

(
dy

g

)

y

∣
∣
∣
∣

2

dy
) 1

2
(

max
y∈[0,1]

∣
∣
∣
∣
1
g

(
dy

g

)

y

∣
∣
∣
∣

2) 1
2
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≤
∥
∥
∥
∥

1√g
uy

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

L2

(

max
y∈[0,1]

∣
∣
∣
∣
1
g

(
dy

g

)

y

∣
∣
∣
∣

2) 1
2

. (2.49)

By using the Sobolev embedding and equations (1.8)3, it follows that

(

max
y∈[0,1]

∣
∣
∣
∣
1
g

(
dy

g

)

y

∣
∣
∣
∣

2) 1
2

(2.50)

≤
∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

L2
+

(∫ l

0

∣
∣
∣
∣
1
g

(
dy

g

)

y
·
(

1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣dy

) 1
2

≤
∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

L2
+

(∫ l

0

∣
∣
∣
∣
1
g

(
dy

g

)

y
·
(

dyt –
(

1
g2 |dy|2d

)

y

)∣
∣
∣
∣dy

) 1
2

≤
∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

L2
+

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

1
2

L2

∥
∥
∥
∥

1√g
dyt

∥
∥
∥
∥

1
2

L2

+
(∫ l

0

∣
∣
∣
∣
1
g

(
dy

g

)

y
·
(

2
dy

g
·
(

dy

g

)

y
d +

1
g2 |dy|2dy

)∣
∣
∣
∣dy

) 1
2

≤
∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

L2
+

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

1
2

L2

∥
∥
∥
∥

1√g
dyt

∥
∥
∥
∥

1
2

L2

+ C
(∫ l

0

∣
∣
∣
∣
dy

g
|dy|2

g2 ·
(

dy

g

)

y

∣
∣
∣
∣dy

) 1
2

≤
∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

L2
+

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

1
2

L2

∥
∥
∥
∥

1√g
dyt

∥
∥
∥
∥

1
2

L2

+ C max
y∈[0,1]

( |dy|2
g2

)∥
∥
∥
∥

dy√g

∥
∥
∥
∥

1
2

L2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

1
2

L2
, (2.51)

whereas in the fourth inequality the following fact is used: 1
g ( dy

g )y · d + |dy|2
g2 = 0. Plugging

(2.50) into (2.49), using Young’s inequality, we get

Q2 ≤
∥
∥
∥
∥

uy√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
+

∥
∥
∥
∥

uy√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

3
2

L2

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

1
2

L2

≤ δ

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2
+ C

(∥
∥
∥
∥

uy√g

∥
∥
∥
∥

2

L2
+ 1

)∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
. (2.52)

Plugging the estimates Q1, Q2, Q3 into (2.46) and choosing δ small enough, it holds

1
2

d
dt

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy +
∫ l

0

|dyt|2
g

dy

=
d
dt

∫ l

0

|dy|4
g3 dy + C

(∥
∥
∥
∥

uy√g

∥
∥
∥
∥

2

L2
+ ‖√gdt‖2

L2 + 1
)∥

∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
. (2.53)
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Integrating (2.53) with respect to time over the interval [0, t], the resultant reads as

1
2

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy +
∫ t

0

∫ l

0

|dyt|2
g

dy ds

≤ C
(

1 +
∫ l

0

|dy|4
g3 dy +

∫ t

0

(∥
∥
∥
∥

uy√g

∥
∥
∥
∥

2

L2
+ ‖√gdt‖2

L2 + 1
)∥

∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
ds

)

≤ C
(

1 + max
y∈[0,1]

( |dy|2
g2

)∥
∥
∥
∥

dy√g

∥
∥
∥
∥

2

L2

)

+ C
∫ t

0

(∥
∥
∥
∥

uy√g

∥
∥
∥
∥

2

L2
+

∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
+ 1

)∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

L2
ds, (2.54)

where we have used the fact that

∫ l

0
g|dt|2 dy ≤ C

(

1 +
∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy
)

. (2.55)

Using the estimates in hand, energy conservation (2.2), and the Gronwall inequality, it
follows

1
2

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

y

∣
∣
∣
∣

2

dy +
∫ t

0

∫ l

0

|dyt|2
g

dy ds ≤ C, (2.56)

which deduces that
∫ l

0 g|dt|2 dy ≤ C. Similarly, by the Sobolev embedding W 1,1([0, l]) ↪→
L∞([0, l]), inequality (2.42) is estimated. The proof of Lemma 5 is completed. �

H1 estimates for velocity:
Define the effective viscous flux F as

F := μ
∂yu
g

– p –
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

= μ
∂yu
g

– R
ρ0

g
θ –

1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

.

Then, one can derive from (1.8) that

∂tF –
μ

g
∂y

(
∂yF
ρ0

)

= –
κR
cvg

∂y

(
∂yθ

g

)

–
(

R
cv

+ 1
)

∂yu
g

F –
dy

g
·
(

dy

g

)

t
–

R
cv

|dt|2 –
R

2cv

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 uy

g

–
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 uy

g

= –
κR
cvg

∂y

(
∂yθ

g

)

–
(

R
cv

+ 1
)

∂yu
g

F –
dy

g
· dyt

g
–

R
cv

|dt|2

–
(

R
2cv

+
1
2

)∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2 uy

g
. (2.57)
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Moreover, by equation (1.8)2, one has ∂yF = ρ0∂tu, from which, recalling the boundary
conditions, we have

∂yF(0, t) = ∂yF(l, t) = 0, t ∈ (0,∞).

We have the a priori L2 estimates on F stated in the following.

Proposition 4 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

‖F‖2
2 +

∫ T

0

∥
∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2

2
dt ≤ C

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N , and T , where

N :=
∥
∥√

ρ0u2
0
∥
∥

2 + ‖√ρ0θ0‖2 +
∥
∥u′

0
∥
∥

2 +
∥
∥d′

0
∥
∥

2,

and m1 and N1 are the numbers in Proposition 1 and Proposition 2, respectively.

Proof Multiplying equation (2.57) by gF , integrating the resultant over (0, l), and recalling
∂yF|y=0,l = 0, one gets from integration by parts that

∫ l

0
∂tFgF dy + μ

∫ l

0

∣
∣
∣
∣
∂yF√
ρ0

∣
∣
∣
∣

2

dy

= κ
R
cv

∫ l

0

∂yθ∂yF
g

dy –
(

R
cv

– 1
)∫ l

0
∂yuF2 dy

–
∫ l

0

dy

g
· dytF dy –

R
cv

∫ l

0
|dt|2gF dy –

(
R

2cv
– 1

)∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

uyF dy.

Using (1.8)1, one has

∫ l

0
∂tFgF dy =

1
2

d
dt

∫ l

0
gF2 dy –

1
2

∫ l

0
∂tgF2 dy

=
1
2

d
dt

∫ l

0
gF2 dy –

1
2

∫ l

0
∂yuF2 dy.

Therefore, it follows from the Hölder, Young, and Gagliardo–Nirenberg inequalities and
Corollary 3 that

1
2

d
dt

∫ l

0
gF2 dy + μ

∫ l

0

∣
∣
∣
∣
∂yF√
ρ0

∣
∣
∣
∣

2

dy

= κ

(
R
cv

– 1
)∫ l

0

∂yθ∂yF
g

dy +
(

3
2

–
R
cv

)∫ l

0
∂yuF2 dy

–
∫ l

0

dy

g
· dytF dy –

R
cv

∫ l

0
|dt|2gF dy +

(

1 –
R

2cv

)∫ l

0

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

uyF dy

=:
5∑

i=1

Ki.
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Now we estimate each term as follows:

5∑

i=1

Ki ≤ κ

∣
∣
∣
∣

R
cv

– 1
∣
∣
∣
∣

√
ρ̄

∥
∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2

∥
∥
∥
∥
∂yθ√g

∥
∥
∥
∥

2
+

(
1
2

–
R
cv

)

‖∂yu‖2‖F‖2‖F‖∞

+ δ

(∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

+
1√g

∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

+ 1
)

+ C(δ)
[∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

+
(

1 –
R

2cv

)

‖uy‖2
2 +

R
cv

‖dt‖2
2

]

‖F‖2
2

≤ C
(∥

∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2
‖∂yθ‖2 + ‖∂yu‖2‖F‖ 3

2
2
(‖F‖2 + ‖∂yF‖2

) 1
2

)

+ δ

(∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

+
1√g

∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

+ 1
)

+ C(δ)
(∥

∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

+
(

1 –
R

2cv

)

‖uy‖2
2 +

R
cv

‖dt‖2
2

)

‖F‖2
2

≤ μ

2

∥
∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2

2
+ C

[(

1 +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

+ ‖dt‖2
2 + ‖∂yu‖2

2

)

‖F‖2
2 + ‖∂yθ‖2

2

+
(∥

∥
∥
∥

dyt√g

∥
∥
∥
∥

2

+
1√g

∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

+ 1
)]

,

that is,

d
dt

‖√gF‖2
2 + μ

∥
∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2

2

≤ C
[(

1 +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

+ ‖dt‖2
2 + ‖∂yu‖2

2

)

‖F‖2
2

+ ‖∂yθ‖2
2 +

(∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

+
1√g

∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

2
+ 1

)]

(2.58)

for any t ∈ (0, T), where C is a positive constant depending only on R, cv, μ, κ , m1. Applying
the Gronwall inequality to (2.58) and using Corollary 3, the conclusion follows. �

Based on Proposition 4 and Corollary 3, we can obtain the desired H1 type estimates on
g , u, 1

g ( dy
g )y, stated as follows.

Proposition 5 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

(

‖∂yg‖2
2 + ‖∂yu‖2

2 +
∥
∥
∥
∥

1
g

(
dy

g

)

y

∥
∥
∥
∥

2

2
+ ‖dt‖2

2

)

+
∫ T

0

(‖√ρ0∂tu‖2
2 +

∥
∥∂2

y u
∥
∥2

2

)
dt +

∫ T

0

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y
+ d

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

y

∥
∥
∥
∥

2

dt

≤ C (2.59)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T , where m1, N1,
and N2 are the numbers in Propositions 1, 2, and 4, respectively.
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Proof

sup
0≤t≤T

(

‖∂yu‖2
2 +

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2
+ ‖dt‖2

2

)

︸ ︷︷ ︸
I1

+
∫ T

0
‖√ρ0∂tu‖2

2 +
∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

2
dt

︸ ︷︷ ︸
I2

≤ C.

The estimates of velocity term in I1 and I2 are straightforward from a priori estimates
in hand and by the definition of F , noticing that ρ0∂tu = ∂yF . Note that, by the Sobolev
embedding inequality, it follows from Proposition 4 that

∫ T

0
‖F‖2

∞ dt ≤ C,
∫ l

0
‖F‖2

H1 dt ≤ C (2.60)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T .
However, the a priori estimates on terms ‖∂yg‖2

2 and
∫ T

0 ‖∂2
y u‖2

2 dt need to be computed.
Rewrite (1.8)1 in terms of F as

∂tg =
1
μ

(

gF + Rρ0θ +
g
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

.

Differentiating the above equations in y, multiplying the resultant by ∂yg , and integrating
over (0, l), it follows from the Hölder and Young inequalities that

1
2

d
dt

‖∂yg‖2
2 =

1
μ

∫ l

0

(
F|∂yg|2 + ∂yFg∂yg + R

(
ρ ′

0θ + ρ0∂yθ
)
∂yg

)
dy

+
1
μ

∫ l

0

[

dy ·
(

dy

g

)

y
∂yg +

1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

|∂yg|2
]

dy =: T .

Now we compute T as

T ≤ 1
μ

(‖F‖∞‖∂yg‖2
2 + ‖g‖∞‖∂yF‖2‖∂yg‖2 + R

(‖θ‖∞
∥
∥ρ ′

0
∥
∥

2 + ρ̄‖∂yθ‖2
)‖∂yg‖2

)

+ C max
y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2
‖∂yg‖2 +

1
2

∥
∥
∥
∥

dy

g

∥
∥
∥
∥

2

∞
‖∂yg‖2

2

≤ C
(

‖F‖2
∞ +

∥
∥
∥
∥

dy

g

∥
∥
∥
∥

2

∞
+ 1

)

‖∂yg‖2
2

+ C
(‖g‖2

∞‖∂yF‖2
2 +

∥
∥ρ ′

0
∥
∥2

2‖θ‖2
∞ + ρ̄2‖∂yθ‖2

2
)

+ C
∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2

for a positive constant C depending only on R and μ. Applying the Gronwall inequality, it
follows from (2.60), Corollary 3, and Proposition 4 that

sup
0≤t≤T

‖∂yg‖2
2 ≤ C (2.61)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T .
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A priori estimates on
∫ T

0 ‖∂2
y u‖2

2 dt:

Noticing that ∂yu = 1
μ

(gF + Rρ0θ + g
2 | dy

g |2), one has

∂2
y u =

1
μ

(

∂ygF + g∂yF + Rρ ′
0θ + Rρ0∂yθ + dy ·

(
dy

g

)

y
+

1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

gy

)

,

thus by the Hölder inequality, (2.60), (2.61), it follows from Corollary 3 and Proposition 4
that

∫ T

0

∥
∥∂2

y u
∥
∥2

2 dt

≤ C
∫ T

0

(‖∂yg‖2
2‖F‖2

∞ + ‖g‖2
∞‖∂yF‖2

2 +
∥
∥ρ ′

0
∥
∥2

2‖θ‖2
∞ + ‖∂yθ‖2

2
)

+ C
[(

max
t∈[0,T]

(

max
y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

)2

+ 1
)∫ T

0

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2
dt +

∫ T

0
‖uy‖2

2 dt
]

≤ C
∫ T

0

(

‖F‖2
∞ + ‖g‖2

∞‖∂yF‖2
2 + ‖θ‖2

∞ + ‖∂yθ‖2
2 +

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

2

2
+ ‖uy‖2

2

)

dt

≤ C

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T , proving the
conclusion. �

We summarize the estimates obtained in this subsection as follows.

Corollary 1 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

∥
∥
∥
∥

(

F , ∂yg, ∂yu,
1√g

(
dy

g

)

y
,
√

gdt

)∥
∥
∥
∥

2

+
∫ T

0

∥
∥
∥
∥

(
∂yF√
ρ0

, ∂2
y u,

√
ρ0∂tu,

dyt√g

)∥
∥
∥
∥

2

2
dt ≤ C

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T , where m1, N1,
and N2 are the numbers in Propositions 1, 2, and 4, respectively.

2.3 A priori H2 estimates
This subsection is devoted to the a prior H2 estimates on (g, u, dy, θ ). As will be shown in
this subsection, one can get the desired a priori L∞(0, T ; H2) estimate of θ without using
the a priori L∞(0, T ; H1) bound of it.

As a preparation, we first give some estimates on ‖∂yθ‖2 and ‖∂tθ‖∞ in terms of
‖√ρ0∂tθ‖2 and ‖∂y∂tθ‖2, and ‖∂tu‖∞, in terms of ‖√ρ0∂tu‖2 and ‖∂y∂tu‖2, which will
be used later in higher order a priori estimates.

Proposition 6 Given T ∈ (0,∞); (i) It holds that

‖∂yθ‖2
2 ≤ C

(
1 + ‖√ρ0∂tθ‖2

)
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for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T , where m1, N1,
and N2 are the numbers in Propositions 1, 2, and 4, respectively.

(ii) It holds that

‖∂tθ‖∞ ≤
√

2
�0ρ̄

‖√ρ0∂tθ‖2 +
√

l
∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2
,

‖∂tu‖∞ ≤
√

2
�0ρ̄

‖√ρ0∂tu‖2 +
√

l
∥
∥
∥
∥
∂y∂tu√g

∥
∥
∥
∥

2
,

where �0 is the number in Proposition 2.

Proof (i) Multiplying (2.86) by θ , integrating the resultant over (0, l), and integrating by
parts, it follows from the Hölder inequality that

κ

∫ l

0

∣
∣
∣
∣
∂yθ√g

∣
∣
∣
∣

2

dy

=
∫ l

0

(

∂yuF +
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

∂yuF + g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

– cvρ0∂tθ

)

θ dy

≤
(

‖∂yu‖2‖F‖2 + ‖∂yu‖2‖F‖2

∥
∥
∥
∥

dy

g

∥
∥
∥
∥

2

∞
+ ‖√gdt‖2

2

)

‖θ‖∞ + cv‖√ρ0∂tθ‖2‖√ρ0θ‖2,

from which, by Corollaries 3–1 and (i) of Proposition 2, we have that

‖∂yθ‖2
2 ≤ C

∫ l

0

∣
∣
∣
∣
∂yθ√g

∣
∣
∣
∣

2

dy ≤ C
(‖θ‖∞ + ‖√ρ0∂tθ‖2

)

≤ C
(‖∂yθ‖2 + 1 + ‖√ρ0∂tθ‖2

) ≤ 1
2
‖∂yθ‖2

2 + C
(
1 + ‖√ρ0∂tθ‖2

)
,

and thus,

‖∂yθ‖2
2 ≤ C

(
1 + ‖√ρ0∂tθ‖2

)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T .
(ii) Recall that �0 := {y ∈ (0, l)|ρ0(y) ≥ ρ̄

2 } and |�0| > 0. Noticing

∂tθ (y, t) =
1

|�0|
∫

�0

∂tθ (z, t) dz +
1

|�0|
∫

�0

∫ y

z
∂y∂tθ (ξ , t) dξ dz,

it follows from the Hölder inequality that

∣
∣∂tθ (y, t)

∣
∣ ≤ 1

|�0|
∣
∣
∣
∣

∫

�0

√
ρ0∂tθ√
ρ0

dz
∣
∣
∣
∣ +

∫ l

0

∣
∣∂y∂tθ (ξ , t)

∣
∣dξ

≤
√

2
|�0|ρ̄ ‖√ρ0∂tθ‖2 +

(∫ l

0

∣
∣
∣
∣
∂y∂tθ√g

∣
∣
∣
∣

2

dξ

) 1
2
(∫ l

0
g dξ

) 1
2

=

√
2

|�0|ρ̄ ‖√ρ0∂tθ‖2 +
√

l
∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2
,
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which implies

‖∂tθ‖∞ ≤
√

2
|�0|ρ̄ ‖√ρ0∂tθ‖2 +

√
l
∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2
.

In the same way as above, the same conclusion holds for ∂tu. �

Proposition 7 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

∥
∥
∥
∥

(√
ρ0∂tθ ,

∂yF√
ρ0

)∥
∥
∥
∥

2

2
+

∫ T

0

∥
∥(∂tF , ∂y∂tθ )

∥
∥2

2 dt ≤ C
(‖h1‖2 + ‖h2‖2

)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T , where

h1 :=
μu′′

0 – R(ρ0θ0)′ + (|d′
0|2)′√

ρ0
, h2 :=

1√
ρ0

[
μ

(
u′

0
)2 + κθ ′′

0 +
(|d0t|2

)′ – Ru′
0ρ0θ0

]
,

and m1, N1, and N2 are the numbers in Propositions 1, 2, and 4, respectively.

Proof Rewrite (1.8)4 as

cvρ0∂tθ – κ∂y

(
∂yθ

g

)

= ∂yuF +
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

∂yu + g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

, (2.62)

or equivalently,

cvρ0∂tθ – κ∂y

(
∂yθ

g

)

=
1
μ

(

gF + Rρ0θ +
1

2g
|dy|2

)

F

+
(

g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

+
1
g2 |dy|2uy

)

, (2.63)

from which, differentiating in t and using (1.8)1, one has

cvρ0∂
2
t θ – κ∂y

(
∂y∂tθ

g
–

∂yu∂yθ

g2

)

=
1
μ

(
∂yuF2 + 2gF∂tF

)
+

Rρ0

μ
(∂tθF + θ∂tF) +

1
2μ

(

∂t

( |dy|2
g

)

F +
|dy|2

g
∂tF

)

+
(

g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

+
1
g2 |dy|2uy

)

t

=
∂yu
μ

F2 +
1
μ

(

2gF + Rρ0θ +
1
2

|dy|2
g

)

∂tF +
(

R
μ

ρ0∂tθ +
1

2μ
∂t

( |dy|2
g

))

F

+
(

g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

+
1
g2 |dy|2uy

)

t
.

Multiplying the above equation by ∂tθ , integrating the resultant over (0, l), one gets from
integration by parts that

cv

2
d
dt

∫ l

0
ρ0|∂tθ |2 dy + κ

∫ l

0

∣
∣
∣
∣
∂y∂tθ√g

∣
∣
∣
∣

2

dy
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= κ

∫ l

0

∂yu∂yθ

g2 ∂y∂tθ dy +
∫ l

0

(
1
μ

Rρ0F(∂tθ ) +
1

2μ
∂t

( |dy|2
g

)

F
)

∂tθ dy

+
1
μ

∫ l

0

[(

2gF + Rρ0θ +
1
2

|dy|2
g

)

∂tF + ∂yuF2
]

∂tθ dy

+
∫ l

0

(

g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

+
1
g2 |dy|2uy

)

t
∂tθ dy. (2.64)

The terms on the right-hand side of (2.64) are estimated as follows. By Corollary 3, it
follows from the Young inequality and (i) of Proposition 6 that

κ

∫ l

0

∂yu∂yθ

g2 ∂y∂tθ dy ≤ κ

4

∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

2
+ C‖∂yu‖2

∞‖∂yθ‖2
2

≤ κ

4

∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

2
+ C

(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

‖∂yθ‖2
2

≤ κ

4

∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

2

+ C
(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)
(
1 + ‖√ρ0∂tθ‖2

)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, and T . By Corollary 3,
Corollary 1, and (ii) of Proposition 6, it follows from the Hölder and Young inequalities
that

1
μ

∫ l

0

[(

2gF + Rρ0θ +
1
2

|dy|2
g

)

∂tF + ∂yuF2
]

∂tθ dy

≤ C
[(

‖g‖∞‖F‖2 + ‖√ρ0θ‖2 +
∥
∥
∥
∥

dy√g

∥
∥
∥
∥

2

2

)

‖∂tF‖2 + ‖∂yu‖2‖F‖2‖F‖∞
]

‖∂tθ‖∞

≤ C
(‖∂tF‖2 + ‖F‖∞

)
(

‖√ρ0∂tθ‖2 +
∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

)

≤ κ

4

∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

2
+ C

(‖√g∂tF‖2
2 + ‖√ρ0∂tθ‖2

2 + ‖F‖2
∞

)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T . Before going
to estimate the next term, we first compute

∫ l

0

(

2g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2

+
1
g2 |dy|2uy

)

t
θt dy

=
∫ l

0

(

2g|dt|2 +
1
g2 |dy|2uy

)

t
θt dy

=
∫ l

0

[

4gdtdtt + 2|dt|2uy +
1
g2 |dy|2uyt +

uy

g

( |dy|2
g

)

t
–

(uy)2

g2
|dy|2

g

]

θt dy

=: U . (2.65)



Mahmood and Sun Advances in Difference Equations        (2021) 2021:517 Page 34 of 46

The right-hand side is estimated as follows:

U ≤ δ
(‖√gdtt‖2 + ‖uyt‖2

2
)

+ C‖√gdt‖2‖θt‖2
∞ + C

∥
∥
∥
∥

dy√g

∥
∥
∥
∥

2

∞
‖θt‖2

∞

+ C‖uy‖2
2‖

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

‖2
∞ +

1
2
‖uy‖2

2‖θt‖2
∞

≤ δ

(

‖√gdtt‖2 +
[

∂t

( |dy|2
g

)]2

+ ‖√g∂tG‖2
2

)

+ C‖uy‖2
2‖

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

‖2
∞

+ C‖√gdt‖2‖θt‖2
∞ +

1
2
‖uy‖2

2‖θt‖2
∞ + C‖∂tθ‖2

∞ + C
∥
∥
∥
∥

dy√g

∥
∥
∥
∥

2

∞
‖θt‖2

∞

≤ δ

(

‖√gdtt‖2 +
∥
∥
∥
∥∂t

( |dy|2
g

)∥
∥
∥
∥

2

2
+ ‖√g∂tG‖2

2

)

+ C‖θt‖2
∞

≤ δ

(

‖√gdtt‖2 + C
(

‖uy‖2
2 +

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

2

)

+ ‖√g∂tG‖2
2

)

+ C‖θt‖2
∞

≤ δ
(‖√gdtt‖2 + ‖√g∂tG‖2

2
)

+ C‖θt‖2
∞. (2.66)

The second integral on the right-hand side of (2.64) is estimated as

∫ l

0

(
1
μ

Rρ0F(∂tθ ) +
1

2μ
∂t

( |dy|2
g

)

F
)

∂tθ dy

≤ δ

[

∂t

( |dy|2
g

)]2

+ C‖∂tθ‖2
∞

≤ δ

(

‖uy‖2
2 +

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

2

)

+ C‖∂tθ‖2
∞, (2.67)

where we have used the Hölder, Young inequalities and mass conservation equation.
Therefore, one obtains from (2.64) that

cv
d
dt

‖√ρ0∂tθ‖2
2 + κ

∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

2
≤ C3

(‖√gdtt‖2 + ‖√g∂tF‖2
2
)

+
[(

1 + ‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)
(‖√ρ0∂tθ‖2

2 + 1
)
]

(2.68)

for a positive constant C3 depending only on R, cv, μ, κ , m1, N1, N2, and T . In or-
der to control the above estimates, there is a need to get dissipation estimates on
(‖√gdtt‖2,‖√g∂tF‖2

2).
Next, we give the higher order derivative estimates of the director vector field d. The

identity 1
g ( dy

g )y · d + |dy|2
g2 = 0, which is obtained from the director field equation with the

help of constraint |d|2 = 1, is frequently used in the proof of the lemma. This fact replaces
the higher derivative with nonlinearity.

Lemma 6 For any 0 < t ≤ T , it holds that

∫ l

0

(
1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2

+
1
g
|dyt|2

)

dy +
∫ T

0

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

yt

∣
∣
∣
∣

2

dy dt ≤ C. (2.69)
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Proof In order to prove higher order derivative estimates on the director field, the deriva-
tive with respect to y variable is taken on both sides of director field equation (1.8)3 and
the resultant is multiplied by 1

g , then it follows

1
g

dyt =
1
g

(
1
g

(
dy

g

)

y

)

y
+

1
g

(
d|dy|2

g2

)

y
. (2.70)

Taking the dot product of (2.70) on both sides with ( 1
g ( dy

g )y)yt and integrating over space
variable, it follows that

1
2

d
dt

∫ l

0

(
1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2)

dy

= –
∫ l

0

1
g2 gt

1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2

dy + 2
∫ l

0

1
g

(
1
g

(
dy

g

)

y

)

y
·
(

1
g

(
dy

g

)

y

)

yt
dy

= –
∫ l

0

1
g2 uy

1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2

dy + 2
∫ l

0

dyt

g
·
(

1
g

(
dy

g

)

y

)

yt
dy

– 2
∫ l

0

1
g

( |dy|2
g2 d

)

y
·
(

1
g

(
dy

g

)

y

)

yt
dy =:

3∑

i=1

Ri, (2.71)

where in the second equality we have used 1
g ( dy

g )y ·d + |dy|2
g2 = 0. This fact replaces the higher

derivative with nonlinearity. The key point is to control the higher derivative with lower
one by using the constraint |d|2 = 1. Now the terms R1, R2, R3 are estimated one by one.

The term R1 is estimated as

R1 ≤ max
y∈[0,1]

(
uy

g

)∫ l

0

1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2

dy

≤ C
∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2
. (2.72)

Before estimating the term R2, we first make use of (1.8)1 and compute the integral. The
simplified form is written as

R2 = 2
∫ l

0

dyt

g
·
(

1
g

(
dy

g

)

y

)

yt
dy

= 2
∫ 1

0

((
dy

g

)

t
·
(

1
g

(
dy

g

)

y

)

yt
–

gtdy

g2 ·
(

1
g

(
dy

g

)

y

)

y

)

dy

= – 2
∫ 1

0

(
dy

g

)

yt
·
(

1
g

(
dy

g

)

y

)

t
dy +

∫ 1

0

2uydy

g2 ·
(

1
g

(
dy

g

)

y

)

y
dy

= – 2
∫ l

0

(
1
g

(
dy

g

)

yt
·
(

dy

g

)

yt
–

uy

g2

(
dy

g

)

y
·
(

dy

g

)

yt

)

dy

+
∫ 1

0

2uydy

g2 ·
(

1
g

(
dy

g

)

y

)

y
dy. (2.73)
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Now we are in a position to estimate the term R2, where we will use the definition of
effective viscous flux:

R2 ≤ – 2
∥
∥
∥
∥

1√g

(
dy

g

)

yt

∥
∥
∥
∥

2

L2
+ 2 max

y∈[0,1]

(
uy

g

)∥
∥
∥
∥

1√g

(
dy

g

)

yt

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥

L2

+ 2 max
y∈[0,1]

(
uy

g

)∥
∥
∥
∥

dy√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

L2

≤ –
∥
∥
∥
∥

1√g

(
dy

g

)

yt

∥
∥
∥
∥

2

L2

+ C
(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

dy

g

∥
∥
∥
∥

4

∞

)∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2
+ C. (2.74)

It is hard to estimate the term R3, so there is the need to simplify the integral so that the
required bounds can be obtained, thus we simplify it as

R3 = – 2
d
dt

∫ l

0

1
g2

( |dy|2
g2 d

)

y
·
(

1
g

(
dy

g

)

y

)

y
dy

– 2
∫ l

0

uy

g2

( |dy|2
g2 d

)

y
·
(

1
g

(
dy

g

)

y

)

y
dy

+ 2
∫ l

0

1
g

( |dy|2
g2 d

)

yt
·
(

1
g

(
dy

g

)

y

)

y
dy

=: – 2
d
dt

∫ l

0

1
g2

( |dy|2
g2 d

)

y
·
(

1
g

(
dy

g

)

y

)

y
dy +

2∑

i=1

R3i. (2.75)

In order to compute the term R3, we estimate terms R31 and R32 one by one. The term R31

is controlled as follows:

R31 = – 2
∫ l

0

uy

g2

(
2dy

g
·
(

dy

g

)

y
d +

|dy|2
g2 dy

)(
1
g

(
dy

g

)

y

)

y
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≤ 2 max
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∣
∣
∣
∣
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g

∣
∣
∣
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∣
∣
∣
∣
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∣
∣
∣
∣

∥
∥
∥
∥

1√g

(
dy

g

)

y

∥
∥
∥
∥
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∥
∥
∥
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(
1
g

(
dy

g
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y
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∥
∥
∥
∥
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∣
∣
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∣
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∣
∣
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∣
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∣

2∥∥
∥
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∥
∥
∥
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∥
∥
∥
∥
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(
1
g

(
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g
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y

)

y

∥
∥
∥
∥
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∥
∥
∥
∥
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∥
∥
∥
∥

4
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∥
∥
∥
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(
1
g

(
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g

)

y

)

y

∥
∥
∥
∥

2

L2
+ C, (2.76)

where Lemma 1, Lemma 5, and the director field equation are used.
The term R32 cannot be estimated directly, so we first need to simply the integral, (1.8)1

and (1.8)3 are used frequently:

R32 = 2
∫ l

0

1
g

(
2dy

g
·
(

dy
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)

y
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t
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d
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(

1
g

(
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y

)

y
dy
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+ 2
∫ l

0

1
g

(
2dy

g
·
(
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Thus, after simplifying and collecting the terms, we have

R32 = 4
∫ l
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R32i. (2.77)

Next, we are in a position to estimate terms
∑5

i=1 R32i one by one. The term R321 is esti-
mated as follows:

R321 = 4
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∥
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≤ C
(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
+

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2

)(

1 +
∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2

)

. (2.78)

The term R322 of (2.3) is controlled as follows:

R322 ≤ C max
y∈[0,1]

(
dy

g

)∥
∥
∥
∥

1√g

(
dy

g

)

yt

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

L2

≤ δ

∥
∥
∥
∥

1√g

(
dy

g

)

yt

∥
∥
∥
∥

2

L2
+ C

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2
, (2.79)

where the Holder and Young inequalities are used along with bounds of the director field
in hand.

The term R324 is estimated as follows:

R324 = 2
∫ l

0

1
g

(
2dy

g
·
(

–
uydy

g2 +
dyt

g

)

dy

)

·
(

1
g

(
dy

g

)

y

)

y
dy

≤ C max
y∈[0,1]

∣
∣
∣
∣
uy

g

∣
∣
∣
∣ max

y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

dy√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

L2
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+ max
y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

dyt√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

L2

≤ C
(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
+

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2

)

×
(

1 +
∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2

)

, (2.80)

where the definition of effective viscous flux and the estimates of director field and velocity
are used. The terms R323 and R325 are estimated together as follows:

R323 + R225 =
∫ 1

0

(
dy

g
·
(

dy

g

)

y
dt +

|dy|2
g2 dyt

)

· 1
g

(
1
g

(
dy

g

)

y

)

y
dy

≤ max
y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣ max

y∈[0,1]

∣
∣
∣
∣
1
g

(
dy

g

)

y

∣
∣
∣
∣‖

√
gdt‖L2

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

L2

+ max
y∈[0,1]

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

dyt√g

∥
∥
∥
∥

L2

∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

L2

≤ C
(

1 +
∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2

)(

1 +
∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2

)

, (2.81)

where the Holder and Young inequalities are used along with bounds of the director field
in hand. Combining all the above estimates with (2.71) and choosing δ small enough, the
resultant is written as follows:

1
2

d
dt

∫ l

0

(
1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2)

dy +
∫ l

0

1
2g

∣
∣
∣
∣

(
dy

g

)

yt

∣
∣
∣
∣

2

dy

≤ –2
d
dt

∫ l

0

1
g2

( |dy|2
g2 d

)

y
·
(

1
g

(
dy

g

)

y

)

y
dy

+ C
(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
+

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2

)

×
(

1 +
∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2

)

. (2.82)

Integrating (2.82) over the time interval [0, t], it is not hard to see that

1
2

∫ l

0

(
1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2)

dy +
∫ t

0

∫ l

0

1
2g

∣
∣
∣
∣

(
dy

g

)

yt

∣
∣
∣
∣

2

dy ds

≤ C
(

‖F‖2
∞ + ‖θ‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
+

∥
∥
∥
∥

dyt√g

∥
∥
∥
∥

2

L2

)

×
(

1 +
∥
∥
∥
∥

1√g

(
1
g

(
dy

g

)

y

)

y

∥
∥
∥
∥

2

L2

)

. (2.83)

By using Gronwall’s inequality and (2.41), we have

∫ l

0

1
g

∣
∣
∣
∣

(
1
g

(
dy

g

)

y

)

y

∣
∣
∣
∣

2

dy +
∫ t

0

∫ l

0

1
g

∣
∣
∣
∣

(
dy

g

)

yt

∣
∣
∣
∣

2

dy ds ≤ C. (2.84)
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Moreover, from (1.8)3 and inequality (2.84), we get

∫ l

0

1
g
|dyt|2 dy ≤ C. (2.85)

Similarly, one can deduce from the director field equation that

∫ T

0

∫ l

0
g|dtt|2 dy dt ≤ C.

Combining (2.84) and (2.85), the proof of Lemma 6 is completed. �

Using temperature, one can rewrite (2.57) as

–
R
cv

κ∂y

(
∂yθ

g

)

= –Rρ0∂tθ +
R
cv

(

∂yuF +
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

∂yu + g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2)

, (2.86)

∂tF –
μ

g
∂y

(
∂yF
ρ0

)

= –(R)
ρ0

g
∂tθ –

1
g
∂yuF –

dy

g
· dyt

g
.

Multiplying the above equation by g∂tF , integrating the resultant over (0, l), and integrat-
ing by parts, it follows from the Hölder and Young inequalities, Corollary 3, and Corollary
1 that

μ

2
d
dt

∫ l

0

∣
∣
∣
∣
∂yF√
ρ0

∣
∣
∣
∣

2

dy +
∫ l

0
g|∂tF|2 dy

= –R
∫ l

0
ρ0∂tθ∂tF dy +

∫ l

0
∂yuF∂tF dy –

∫ l

0
dy · dyt

g
∂tF dy

≤ 1
2
‖√g∂tF‖2

2 + C
(

‖√ρ0∂tθ‖2
2 + ‖∂yv‖2

2‖F‖2
∞ +

∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

∥
∥
∥
∥

dyt

g

∥
∥
∥
∥

2

2

)

≤ 1
2
‖√g∂tF‖2

2 + C
(

‖√ρ0∂tθ‖2
2 + ‖F‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

,

thus

μ
d
dt

∥
∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2

2
+ ‖√g∂tF‖2

2 ≤ C
(

‖√ρ0∂tθ‖2
2 + ‖F‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

(2.87)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T .
Multiplying (2.87) by 2A3 and summing the resultant with Lemma 6 and (2.68), one

obtains

d
dt

(

cv‖√ρ0∂tθ‖2
2 + 2A3μ

∥
∥
∥
∥

∂yF√
ρ0

∥
∥
∥
∥

2

2

)

+ κ

∥
∥
∥
∥
∂y∂tθ√g

∥
∥
∥
∥

2

2
+ A3‖√g∂tF‖2

2

≤ C
(

‖θ‖2
∞ + ‖F‖2

∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)
(‖√ρ0∂tθ‖2

2 + 1
)
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for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T . Applying the
Gronwall inequality to the above inequality, by Corollary 3, and using (2.60), the conclu-
sion of Proposition 7 is completed. �

Proposition 8 Given T ∈ (0,∞). It holds that

sup
0≤t≤T

(∥
∥
(
∂2

y g, ∂2
y u, ∂yθ , ∂2

y θ
)∥
∥2

2 + ‖θ‖∞
)

+
∫ T

0

∥
∥
(
∂3

y u, ∂y∂tu, ∂3
y θ

)∥
∥2

2 ≤ C

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, N3, and T , where

N3 :=
∥
∥ρ ′′

0
∥
∥

2 + ‖h1‖2 + ‖h2‖2,

and m1, N1, and N2 are the numbers in Propositions 1, 2, and 4, respectively.

Proof Combining (i) of Proposition 6 and Proposition 7, we get

sup
0≤t≤T

‖∂yθ‖2
2 ≤ C sup

0≤t≤T

(
1 + ‖√ρ0∂tθ‖2

2
) ≤ C

(
1 + ‖h1‖2

2 + ‖h2‖2
2
)

(2.88)

and thus, by (i) of Proposition 2 and Corollary 3, we have that

sup
0≤t≤T

‖θ‖∞ ≤ C sup
0≤t≤T

(‖∂yθ‖2 + 1
) ≤ C

(
1 + ‖h1‖2 + ‖h2‖2

)
(2.89)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T . Using (2.88)–
(2.89), it follows from the Hölder inequality and Corollaries 1–3 that

‖∂yp‖2 = R
∥
∥
∥
∥
ρ ′

0
g

θ +
ρ0

g
∂yθ –

ρ0

g2 ∂ygθ

∥
∥
∥
∥

2

≤ C
(∥
∥ρ ′

0
∥
∥

2‖θ‖∞ + ‖ρ0‖∞‖∂yθ‖2 + ‖ρ0‖∞‖∂yg‖2‖θ‖∞
)

≤ C
(
1 + ‖h1‖2 + ‖h2‖2

)
(2.90)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T .
Noticing that ∂yu = 1

μ
(gF + Rρ0θ + g

2 | dy
g |2) and using (1.8)1, one has

∂t∂yu =
1
μ

(

∂yuF + g∂tF + Rρ0∂tθ + dy · dyt

g
–

1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

uy

)

,

∂2
y u =

1
μ

(

∂ygF + g∂yF + Rρ ′
0θ + Rρ0∂yθ + dy ·

(
dy

g

)

y
+

1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

gy

)

,

and thus, by the Hölder and Sobolev embedding inequalities and using (2.88)–(2.89), it
follows from Corollaries 3–1 and Proposition 7 that

∫ T

0
‖∂t∂yu‖2

2 dt

≤ C
∫ T

0

(

‖∂yu‖2
2‖F‖2

∞ + ‖g‖2
∞‖∂tF‖2

2 + ‖√ρ0∂tθ‖2
2 + ‖dy‖2

∞

∥
∥
∥
∥

dyt

g

∥
∥
∥
∥

2

2

)
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+ C
∫ T

0

(∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞
‖uy‖2

2

)

dt

≤ C
∫ T

0

(

‖∂yu‖2
2

(

‖F‖2
H1 +

∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

+ ‖g‖2
∞‖∂tF‖2

2 + ‖√ρ0∂tθ‖2
2

)

(2.91)

+ C
∫ T

0

(

‖dy‖2
∞

∥
∥
∥
∥

dyt

g

∥
∥
∥
∥

2

2

)

dt

≤ C
(
1 + ‖h1‖2

2 + ‖h2‖2
2
)

(2.92)

and

sup
0≤t≤T

∥
∥∂2

y u
∥
∥2

2 ≤ C sup
0≤t≤T

(‖∂yg‖2
2‖F‖2

∞ + ‖g‖2
∞‖∂yF‖2

2 +
∥
∥ρ ′

0
∥
∥2

2‖θ‖2
∞ + ‖∂yθ‖2

2
)

≤ C sup
0≤t≤T

[

‖∂yg‖2
2

(

‖F‖2
H1 +

∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥

2

∞

)

+ ‖g‖2
∞‖∂yF‖2

2 + ‖θ‖2
∞

+ ‖∂yθ‖2
2 + C‖dy‖2

∞

∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

2

]

≤ C
(
1 + ‖h1‖2

2 + ‖h2‖2
2
)

(2.93)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T . In the above
inequality the constraint condition |d|2 = 1 is used, respectively.

Using (2.86), we have

∂2
y θ = g∂y

(
∂yθ

g

)

+ ∂yg
∂yθ

g

=
g
κ

(

cvρ0∂tθ – ∂yuF –
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

∂yu – g
∣
∣
∣
∣
1
g

(
dy

g

)

y
+

1
g2 |dy|2d

∣
∣
∣
∣

2)

+ ∂yg
∂yθ

g
,

and thus, by the Hölder, Young, and Gagliardo–Nirenberg inequalities and (2.88), it fol-
lows from Corollaries 3–1 and Proposition 7 that

∥
∥∂2

y θ
∥
∥

2 ≤ C
(

‖√ρ0∂tθ‖2 + ‖∂yu‖2

(

‖F‖∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

+ ‖g‖∞‖dt‖2
2

+ ‖∂yg‖2‖∂yθ‖∞
)

≤ C
(

1 + ‖g0‖2 + ‖h0‖2 + ‖F‖H1 +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

+ ‖∂yθ‖ 1
2
2
∥
∥∂2

y θ
∥
∥

1
2
2

)

≤ 1
2
∥
∥∂2

y θ
∥
∥

2 + C
(
1 + ‖h1‖2 + ‖h2‖2

)
, (2.94)

which gives

sup
0≤t≤T

∥
∥∂2

y θ
∥
∥2

2 ≤ C
(
1 + ‖h1‖2

2 + ‖h2‖2
2
)

(2.95)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, and T .
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By calculations, one deduces

∂2
y p = R∂2

y

(
ρ0

g
θ

)

= R
[

ρ ′′
0
θ

g
+ 2ρ ′

0∂y

(
θ

g

)

+ ρ0∂
2
y

(
θ

g

)]

= R
[

ρ ′′
0
θ

g
+ 2ρ ′

0

(
∂yθ

g
–

∂yg
g2 θ

)

+ ρ0

(
∂2

y θ

g
–

2
g2 ∂yg∂yθ + 2

(∂yg)2

g3 θ –
∂2

y g
g2 θ

)]

.

Therefore, by the Hölder and Sobolev embedding inequalities, using (2.88), (2.89), and
(2.95), it follows from Corollary 3 and Corollary 1 that

∥
∥∂2

y p
∥
∥

2 ≤ C
[∥
∥ρ ′′

0
∥
∥

2‖θ‖∞ + 2
∥
∥ρ ′

0
∥
∥∞

(‖∂yθ‖2 + ‖∂yg‖2‖θ‖∞
)

+ ‖ρ0‖∞
(∥
∥∂2

y θ
∥
∥

2 + 2‖∂yg‖∞‖∂yθ‖2 + 2‖∂yg‖∞‖∂yg‖2‖θ‖∞
)

+ ‖ρ0‖∞
∥
∥∂2

y g
∥
∥

2‖θ‖∞
]

≤ C
(
1 + ‖h1‖2 + ‖h2‖2 +

∥
∥∂2

y g
∥
∥

2

)
(2.96)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, N3, and T .
Using (2.86) and (1.8)1, we deduce

∂3
y θ = ∂2

y

(
∂yθ

g

)

g + 2∂y

(
∂yθ

g

)

∂yg +
∂yθ

g
∂2

y g

=
g
κ

[

cv
(
ρ0∂t∂yθ + ρ ′

0∂tθ
)

– ∂yu∂yF – ∂2
y uF –

1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

∂2
y u – ∂yu

dy

g
·
(

dy

g

)

y

– 2gdt · dty – |dt|2gy

]

+
2
κ

∂yg
(

cvρ0∂tθ – ∂yuF –
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2

∂yu – g|dt|2
)

+
∂yθ

g
∂2

y g.

Therefore, by the Hölder and Sobolev embedding inequalities, using (2.88), (2.90), (2.93),
(2.95), (2.96), Corollary 3, Corollary 1, and (ii) of Propositions 6, 7, it follows

∥
∥∂3

y θ
∥
∥

2 ≤ C
[

‖∂y∂tθ‖2 +
∥
∥ρ ′

0
∥
∥

2‖∂tθ‖∞ + ‖∂yu‖∞
(

‖∂yF‖2 +
∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

)

+
∥
∥∂2

y u
∥
∥

2

(

‖F‖∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

+ ‖dt‖∞‖dty‖2 + ‖dt‖2
2‖gy‖∞

+ ‖∂yg‖∞
(

‖√ρ0∂tθ‖2 + ‖∂yu‖2

(

‖F‖∞ +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

+ ‖dt‖2
2

)

+ ‖∂yθ‖∞
∥
∥∂2

y g
∥
∥

2

]

≤ C
[

‖∂y∂tθ‖2 + ‖√ρ0∂tθ‖2 + ‖∂yu‖H1

(

‖∂yF‖2 +
∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

)



Mahmood and Sun Advances in Difference Equations        (2021) 2021:517 Page 43 of 46

+
∥
∥∂2

y u
∥
∥

2

(

‖F‖H1 +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

+ +‖∂yθ‖H1
∥
∥∂2

y g
∥
∥

2 + ‖dty‖2

+ ‖∂yg‖H1

(

‖√ρ0∂tθ‖2 + ‖∂yu‖2

(

‖F‖H1 +
∥
∥
∥
∥

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2∥∥
∥
∥∞

)

+ ‖dt‖2
2

)]

≤ C
(
1 + ‖h1‖2 + ‖h2‖2 + ‖∂y∂tθ‖2 +

∥
∥∂2

y g
∥
∥

2

)

≤ C
(
1 + ‖h1‖2 + ‖h2‖2

)(
1 + ‖∂y∂tθ‖2 +

∥
∥∂2

y g
∥
∥

2

)
(2.97)

and

∂3
y u = ∂2

y

(
∂yu
g

)

g + 2∂y

(
∂yu
g

)

∂yg +
∂yu
g

∂2
y g

=
g
μ

(

ρ ′
0∂tu + ρ0∂t∂yu + ∂2

y p +
dy

g
·
(

dy

g

)

y

)

+
2
μ

∂yg
(

ρ0∂tu + ∂yp +
1
2

∣
∣
∣
∣
dy

g

∣
∣
∣
∣

2)

+
∂yu
g

∂2
y g,

which is estimated as

∥
∥∂3

y u
∥
∥

2 ≤ C
[(

‖∂tu‖∞ + ‖∂y∂tu‖2 +
∥
∥∂2

y p
∥
∥

2 +
∥
∥
∥
∥

(
dy

g

)

y

∥
∥
∥
∥

2

)

+ ‖∂yg‖∞
(

‖√ρ0∂tu‖2 + ‖∂yp‖2 +
∥
∥
∥
∥
|dy|√g

∥
∥
∥
∥

2

2

)

+ ‖∂yu‖∞
∥
∥∂2

y g
∥
∥

2

]

≤ C
[‖∂y∂tu‖2 + ‖√ρ0∂tu‖2 + 1 + ‖h1‖2 + ‖h2‖2 +

∥
∥∂2

y g
∥
∥

2

+ ‖∂yg‖H1
(
1 + ‖h1‖2 + ‖h2‖2

)
+ ‖∂yu‖H1

∥
∥∂2

y g
∥
∥

2

]

≤ C
(
1 + ‖h1‖2 + ‖h2‖2

)(
1 + ‖∂y∂tu‖2 +

∥
∥∂2

y g
∥
∥

2

)
(2.98)

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, N3, and T .
Combining (2.97) with (2.98) and using (2.91), one obtains

∫ t

0

∥
∥
(
∂3

y u, ∂3
y θ

)∥
∥2

2 dτ ≤ C
(
1 + ‖h1‖2

2 + ‖h2‖2
2
)
∫ t

0

(
1 + ‖∂y∂tu‖2

2 +
∥
∥∂2

y g
∥
∥2

2

)
dτ

≤ C
(
1 + ‖h1‖2

2 + ‖h2‖2
2
)2

(

1 +
∫ t

0

∥
∥∂2

y g
∥
∥2

2 dτ

)

(2.99)

for any t ∈ [0, T], where C is a positive constant depending only on R, cv, μ, κ , m1, N1,
N2, N3, and T . Using (1.8)1, one gets g = 1 +

∫ t
0 ∂yu dτ , and thus it follows from the Hölder

inequality that

∥
∥∂2

y g
∥
∥2

2(t) =
(∥

∥
∥
∥

∫ t

0
∂3

y udτ

∥
∥
∥
∥

2

)2

≤
(∫ t

0

∥
∥∂3

y u
∥
∥

2 dτ

)2

≤ t
∫ t

0

∥
∥∂3

y u
∥
∥2

2 dτ .

Combining this with (2.99) and applying the Gronwall inequality, one obtains

∫ T

0

(∥
∥∂3

y u
∥
∥2

2 +
∥
∥∂3

y θ
∥
∥2

2

)
dt ≤ C,
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and, further, that

sup
0≤t≤C

∥
∥∂2

y g
∥
∥2

2 ≤ C

for a positive constant C depending only on R, cv, μ, κ , m1, N1, N2, N3, and T . �

3 Proof of Theorem 1.1

Proof of Theorem 1.1 For ε ∈ (0, 1), denote

ρ0ε = ρ0 + ε, θ0ε = θ0 + ε.

By a similar procedure as in [50], for each ε ∈ (0, 1), there is a unique global strong so-
lution (gε , uε , dεy

gε
, θε) to system (1.8), with ρ0 replaced by ρ0ε , subject to the initial and

boundary conditions

(gε , vε , dεy, θε)|t=0 = (1, u0, d0εy, θ0ε).

It follows that there are two positive constants, independent of ε ∈ (0, 1), such that

inf
0≤t≤T

inf
y∈(0,l)

gε(y, t) ≥ C (3.1)

and

sup
0≤t≤T

∥
∥
∥
∥

(

gε , uε ,
dεy

gε

, θε

)∥
∥
∥
∥

2

H2

+
∫ T

0

(‖∂tgε‖2
H2 +

∥
∥(uε , dε , θε)

∥
∥2

H3 +
∥
∥(∂tuε , ∂tdε , ∂tθε)

∥
∥2

H1
)

dt ≤ C (3.2)

for any ε ∈ (0, 1).
Thanks to (3.2), by the Banach–Alaoglu theorem, and using Cantor’s diagonal argu-

ments, there is a subsequence, still represented by (gε , uε , dy, θε), such that, for limit ε → 0,
(g, u, dy, θ ) is a global strong solution to system (1.8) satisfying the regularities given in
Theorem 1.1. �

4 Conclusion
The global strong solution is established to the one-dimensional full compressible nematic
liquid crystal flow problem with constant coefficients of viscosity and heat conductivity.
The a priori estimates are constructed in the presence of vacuum by using Lagrangian
flow map coordinates, effective viscous flux, and some density-weighted Sobolev type in-
equalities. Moreover, higher order estimates for the director field are obtained by using
the constraint |d|2 = 1. It is possible to extend our results when coefficients depend on
temperature and density or on both, which is the matter of future work.
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