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Abstract

This paper aims to study the relative equivalence of the solutions of the following
dynamic equationsy� (t) = A(t)y(t) andx� (t) = A(t)x(t) + f(t,x(t)) in the sense that ify(t)
is a given solution of the unperturbed system, we provide su�cient conditions to
prove that there exists a family of solutionsx(t) for the perturbed system such that
� y(t) …x(t)� = o(� y(t)� ), ast � � , and conversely, given a solutionx(t) of the
perturbed system, we give su�cient conditions for the existence of a family of
solutionsy(t) for the unperturbed system, and such that� y(t) …x(t)� = o(� x(t)� ), as
t � � ; and in doing so, we have to extend Rodrigues inequality, the Lyapunov
exponents, and the polynomial exponential trichotomy on time scales.
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1 Introduction
In the study of nature, in particular, in physics, engineering, and economics, among other

“elds, there are phenomena that vary continuously or discretely, where each phenomenon

can be modeled by a di�erential or di�erence equation. However, there exists also the pos-

sibility that these phenomena can vary both continuously and discretely. The theory of

time scales calculus made it possible to create models to study such mixed phenomena,

and it also turns out to be a powerful tool in continuous and discrete analysis from a uni-

“ed point of view (see, for instance, [2, 4, 5, 7, 8] and the reference therein). A time scale,

which is denoted byT, is any closed nonempty subset of the real numbers, for instance,

N, Z, andqZ for q > 0 are times scales, and was introduced by S. Hilger [12, 14] in order

to create the theory of dynamic equations that allows unifying di�erential and di�erence

equations, as well as their extensions, from the same perspective (see [4, 5]). For example,

if f � represents the derivative for a functionf de“ned on T, then it turns out that f � = f �,

the usual derivative, ifT = R, andf � = � f , the usual forward di�erence operator, ifT = Z.

In the last years the qualitative study of the solutions of dynamic equations on time scales

has been attracting the interest and e�ort of many mathematicians; in particular, the study

of stability, existence of dichotomies, existence of bounded solutions, the existence of peri-
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odic and almost periodic solutions, have been treated by several researchers (for instance,
see [3, 9, 11, 17, 18, 20…22, 25…27] and the references therein), however, to the best to our
knowledge, the study of asymptotic equivalence of solutions of dynamic equations on time
scales has not been carried out. In the case of ordinary di�erential equations, functional
di�erential equations, and di�erence equations, we can “nd works in this direction, see,
for instance, [6, 15, 16, 23, 24] and the reference therein.

Motivated by this fact, in this paper we shall investigate the relative asymptotic equiva-
lence of the solutions of the following two dynamic equations on time scales:

y� (t) = A(t)y(t), t � [t0, � )T,y � X, (1)

x� (t) = A(t)x(t) + f
(
t ,x(t)

)
, t � [t0, � )T,x � X, (2)

where (X,� · � ) is a Banach space, the operatorA : T Š� L(X) is rd-continuous, f : T ×
X Š� X is an rd-continuous function which is a small perturbation in some sense with
f (t, 0) = 0 and

∥∥f (t,z) …f (t,w)
∥∥ � h(t)� z…w� , t � [t0, � )T,z,w � X, (3)

for h : [t0, � )T Š� R+ an rd-continuous function.
We will understand this equivalence in the following sense: given a solutiony(t) of

system (1), there exists a family of solutionsx(t) of system (2) such that � y(t) …x(t)� =
o(� y(t)� ), ast � � , and conversely, ifx(t) is a solution of (2), then there exists a family of
solutionsy(t) for the unperturbed system (1) such that� y(t) …x(t)� = o(� x(t)� ), ast � � .

It is important to mention that, if T = R, we get the equations studied in [16], while if T =
N�{ 0} then we have the equations treated in [15]. In both papers, the main tools used were
a concept of polynomial exponential dichotomy and the so-called Rodrigues inequality
(see also [24] and [19]), which is a generalization of Gronwall•s inequality. Concretely, we
will treat the following problems:

The direct problem Let y(t) be a solution of (1), with y(t) 	= 0, for su�ciently large t. Then,
does there exist a solutionx(t) of (2) such that the relative error satis“es

lim
t ��

� y(t) …x(t)�
� y(t)�

= 0?

Converse problem Let x(t) be a solution of (2), with x(t) 	= 0, for su�ciently large t. Then,
does there exist a solutiony(t) of (1) such that the relative error satis“es

lim
t ��

� y(t) …x(t)�
� x(t)�

= 0?

To solve these problems, we will extend the Rodrigues inequality, the de“nition of Lya-
punov exponents, and we introduce the de“nition of polynomial exponential trichotomy
on time scales.

The paper is organized as follows. In the next section, we present some fundamentals
results about time scales. In Sect. 3 we analyze the direct problem, and in Sect. 4 we study
the converse problem. Section 5 is devoted to an example to illustrate our results. We end
this work with a remark.
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2 Preliminaries
A time scaleT is an arbitrary nonempty closed subset ofR. We will assume thatT has
the topology inherited from the standard topology of the real numbers. The time scale
interval [a,b]T is de“ned as [a,b]T = {t � T : a � t � b}, with a,b � T, and open intervals
and neighborhoods are de“ned similarly. The forward jump operator� : T Š� T is de-
“ned by � (t) := inf{s � T : s> t} and the backward jump operator� : T Š� T is de“ned
by � (t) := sup{s� T : s< t}. We put inf 
 = sup T (i.e.,� (t) = t if T has a maximumt) and
sup 
 = inf T (i.e.,� (t) = t if T has a minimumt), where
 denotes the empty set. A point
t � T is said to be right-dense if� (t) = t, right-scattered if � (s) > t, left-dense if� (t) = t,
left-scattered if� (t) < t , isolated if� (t) < t < � (t). The function µ : t Š� [0,� ) de“ned by
µ(t) := � (t) …t is known as graininess function.

We de“ne the setT� by

T� :=

⎧
⎨

⎩
T \ (� (sup T),sup T], if sup T < � ,

T, if sup T = � .

We shall say that a functionf : T Š� X is right dense continuous, or just rd-continuous,
if

(a) f is continuous at every right-dense point t � T ,
(b) lims� t…f (s) exists (finite) for every left-dense point t � T .

The set of rd-continuous functionsf : T Š� X will be denoted byCrd(T,X). A function
f : T × X Š� X is called rd-continuous ifg de“ned by g(t) = f (t,x(t)) is rd-continuous for
any continuous functionx : T Š� X.

A function f : T Š� X is called delta di�erentiable (or simply di�erentiable) att � T�

provided there exists a numberf � (t) with the property that given any� > 0, there is a
neighborhoodU = (t …� ,t + � )T for some� > 0 such that� f (� (t)) …f (s) …f � (t)(� (t) …s)� �
� |� (t) …s| for all s� U, in this case the numberf � (t) will be call the delta derivative off
at t .

If there exists a functionF : T Š� X such thatF� (t) = f (t), t � T� , then F is called an
antiderivative off and the Cauchy integral is de“ned by

∫ t

s
f (� )�� = F(t) …F(s), t,s� T.

From Theorem 1.74 in [4], we have that every rd-continuous function has an antideriva-
tive, and ifF(t) =

∫ t
s f (� )�� , then F� (t) = f (t), t � T� , i.e.,F is an antiderivative off .

A function p : T Š� R is said to be regressive (resp. positively regressive) if 1+µ (t)p(t) 	=
0 (resp. 1 +µ(t)p(t) > 0),t � T and the equation

x� = p(t)x, x(t0) = 1, (4)

has a unique solutionx(t) = ep(t, t0) = exp
∫ t

t0
	 µ (� )(p(� ))�� , where

	 µ (z) :=

⎧
⎨

⎩

1
µ log(1 +µz), if µ > 0,

z, if µ = 0,
(5)

The function ep(t,s) satis“es the following properties (see [4, Theorem 2.36]):
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(1) ep(t,s)eq(t,s) = ep� q(t,s),
(2) ep(t,s)

eq(t,s) = ep� q(t,s),
(3) ep(� (t),s) = (1 +µ(t)p(t))ep(t,s),
(4) ep(t,r)ep(r,s) = ep(t,s),

where (p � q)(t) := p(t) + q(t) + µ (t)p(t)q(t) and (p � q)(t) := p(t)…q(t)
1+µ(t)q(t) .

We will denote byR (resp.R+) the set of all regressive and rd-continuous functions

(resp. positively regressive and rd-continuous).

A mapping A : T Š� L(X) is said to be regressive ifI + µ (t)A(t) is invertible for every

t � T.

Henceforth we will suppose thatsup{T} = � . SinceA is rd-continuous, we have thatA

generates an evolution operator familyT(t,s) = eA(t,s) with t 
 s, and the only solution of

(1) with y(s) = ys is given byy(t) = T(t,s)ys (see [10] and [25]). On the other hand, sincef is

rd-continuous and satis“es condition (3), we have, by Theorem 5.7 in [13], that equation

(2), with x(s) = xs, has a unique solution de“ned onT, which is given by

x(t) = T(t,s)xs +
∫ t

s
T

(
t , � (� )

)
f
(
� ,x(� )

)
�� . (6)

3 The direct problem
In this section, we just treat the direct problem through Theorem3.1, but before we will

present the de“nition of polynomial exponential trichotomy on time scales. It is important

to mention that, in the case of dichotomies on time scales, the initial contributions are by

Pötzsche in [20, 21].

Definition 3.1 We shall say that equation (1) has a polynomial exponential trichotomy

on time scales with respect to
 � Crd(T,R+), bounded byinfT{
 (t)} > 0, if there exist

an integerN 
 1, M > 0, � � Crd(T,R+) bounded byinfT{� (t)} > 0, and complementary

projectionsS(t),P(t),Q(t),U(t) : X Š� X, t � [t0, � )T , such that:

(1) For t 
 s, P(t)T(t,s) = T(t,s)P(s), Q(t)T(t,s) = T(t,s)Q(s), and
S(t)T(t,s) = T(t,s)S(s),

(2) [IX + µ (t)A(t)]|Rang(U(t)) : Rang(U(t)) Š� Rang(U(� (t))) is bijective for all
right-scattered t ,

(3) [IX + µ (t)A(t)]|Rang(Q(t)) : Rang(Q(t)) Š� Rang(Q(� (t))) is bijective for all
right-scattered t ,

(4) For each l , 0 � l � N … 1, the following conditions hold:

∥
∥T(t,s)S(s)

∥
∥ � Me
 � � (t ,s), t 
 s, (7)

∥
∥T(t,s)U(s)

∥
∥ � Me
 � � (t ,s), s
 t, (8)

∥
∥T(t,s)

(
P(s) + Q(s)

)∥∥ � Mt N…1e
 (t,s), t 
 s
 � , (9)
∥∥T(t,s)P(s)

∥∥ � Mt l…1sN…1e
 (t,s), t 
 s
 � , (10)
∥∥T(t,s)Q(s)

∥∥ � Mt lsN…l…1e
 (t,s), s
 t 
 � , (11)

where � > 0. If l = 0 then P(s) = 0. In this case the projections onto the stable, unstable,

and center spaces are contained inL(X).
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Remark1 Conditions (2) and (3) allow for the evolution operatorT(t,s) to be invertible
between the ranges ofU andQ, respectively, for details see Proposition 2.3 in [20].

Definition 3.2 If 
 > 0 and l is a nonnegative integer, we shall say that a functiony :
[t0, � )T Š� X is of order t le
 (t, t0), and denote it byy(t) �= t le
 (t, t0), if

0 < lim inf
t ��

� y(t)�
t le
 (t, t0)

� lim sup
t ��

� y(t)�
t le
 (t, t0)

< � . (12)

The following theorem is our main result in this section

Theorem 3.1 Let y(t) be a solution of(1) with y(t) �= t le
 (t, t0).Suppose that(3) is satis“ed
and that equation(1) has a polynomial exponential trichotomy on time scales with respect
to 
 and the function h(t) satis“es

∫ �

t0

� (s)N…1h(s)� s< � . (13)

Then there exists a solution x(t) of (2) such that

lim
t ��

� x(t) …y(t)�
� y(t)�

= 0.

Proof Let us consider the change of variable

z(t) := e� 
 (t , t0)
(
x(t) …y(t)

)
,

then we obtain the following equation forz:

z� (t) = A
 (t)z(t) + F
(
t ,z(t)

)
, (14)

whereA
 (t) = 1
1+µ(t)
 […
 I + A(t)] and F(t,z) = e� 
 (t,t0)

1+µ(t)
 f (t ,y(t) + e
 (t, t0)z(t)).
A straightforward computation shows that the evolution operatorT
 (t,s) generated by

A
 (t) is given by

T
 (t,s) = e� 
 (t ,s)T(t,s), t 
 s. (15)

Hence, we obtain the following conditions forT
 (t,s):

∥∥T
 (t,s)P(s)
∥∥ =

∥∥e� 
 (t ,s)T(t,s)P(s)
∥∥ � Mt l…1sN…1, t 
 s
 � > 0,

∥∥T
 (t,s)Q(s)
∥∥ =

∥∥e� 
 (t ,s)T(t,s)Q(s)
∥∥ � Mt lsN…l…1, s
 t 
 � .

Now,

lim
t ��

� x(t) …y(t)�
� y(t)�

= lim
t ��

� x(t) …y(t)�
t le
 (t, t0)

= lim
t ��

� e� 
 (t , t0)(x(t) …y(t))�
t l

= lim
t ��

� z(t)�
t l

.

Therefore, the problem is reduced to proving the existence of a solution of (14) such that

lim
t ��

� z(t)�
t l

= 0. (16)
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If we suppose for a moment thatz(t) is a solution of (14) such that (16) holds. Then using

the variation of constant formula for equation (14) (Theorem 5.8 in [4]), we get that

z(t) = T
 (t, � )z(� ) +
∫ t

�
T


(
t , � (s)

)
F
(
s,z(s)

)
� s

= T
 (t, � )
[
P(� ) + Q(� )

]
z(� ) +

∫ t

�
T


(
t , � (s)

)[
P
(
� (s)

)
+ Q

(
� (s)

)]
F
(
s,z(s)

)
� s

= T
 (t, � )P(� )z(� ) + T
 (t, � )Q(� )z(� ) +
∫ t

�
T


(
t , � (s)

)
P
(
� (s)

)
F
(
s,z(s)

)
� s

+
∫ �

�
T


(
t , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s…

∫ �

t
T


(
t , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s.

If we let � Š� � , then we get

z(t) = T
 (t, � )P(� )z(� ) + T
 (t, � )Q(� )z(� ) +
∫ t

�
T


(
t , � (s)

)
P
(
� (s)

)
F
(
s,z(s)

)
� s

= T
 (t, � )
[
Q(� )z(� ) +

∫ �

�
T


(
� , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s

]
+ T(t, � )P(� )z(� )

+
∫ t

�
T


(
� , � (s)

)
P
(
� (s)

)
F
(
s,z(s)

)
� s…

∫ �

t
T


(
t , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s.

Note that

∫ �

�
T


(
� ,s(s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s< � .

In fact, since

∥∥F(t,z)
∥∥ =

∥
∥∥
∥

e� 
 (t , t0)
1 + µ(t)


f
(
t ,y(t) + e
 (t, t0)z(t)

)
∥
∥∥
∥

� e� 
 (t , t0)h(t)
∥∥y(t) + e
 (t, t0)z(t)

∥∥ � e� 
 (t , t0)h(t)
∥∥y(t)

∥∥ + h(t)
∥∥z(s)

∥∥,

we obtain

∥
∥∥∥

∫ �

�
T


(
� , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s

∥
∥∥∥

�
∫ �

�

∥∥T

(
� , � (s)

)
Q

(
� (s)

)∥∥∥∥F
(
s,z(s)

)∥∥� s

�
∫ �

�
M� l � N…l…1(s)

[
e� 
 (s)h(s)

∥
∥y(s)

∥
∥ + h(s)

∥
∥z(s)

∥
∥]

� s

� M� l
[∫ �

�
� N…l…1(s)h(s)sl � s+

∫ �

�
� N…1(s)h(s)

� z(s)�
� l (s)

� s
]

� M� l
[∫ �

�
� N…1(s)h(s)� s+

∫ �

�
� N…1(s)h(s)

� z(s)�
sl

� s
]

< �
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As it will become clear in the next calculation, condition (16) is satis“ed if we require

Q(� )z(� ) +
∫ �

�
T


(
� , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s= 0.

So, we get that

z(t) = T
 (t, � )P(� )z(� ) +
∫ �

�
T


(
t , � (s)

)
P
(
� (s)

)
F
(
s,z(s)

)
� s

…
∫ �

t
T


(
t , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s, (17)

for t 
 � .

Conversely, ifz(t), with t…lz(t) bounded, satis“es the integral equation (17), then z sat-

is“es equation (14). Now, to complete the proof, we shall prove that the integral equation

(17) has a solution in the Banach space

Zl =
{
z � Crd

(
[� , �

)
T,X) : � z� l = sup

t>�
t…1

∥
∥z(t)

∥
∥ < �

}
.

We de“ne the operator
 : Zl Š� Zl by

(
 z)(t) := T
 (t, � )P(� )� +
∫ t

�
T


(
t , � (s)

)
P
(
� (s)

)
F
(
s,z(s)

)
� s

…
∫ �

t
T


(
t , � (s)

)
Q

(
� (s)

)
F
(
s,z(s)

)
� s, t 
 � .

Next, we shall prove that
 mapsZl into Zl . In fact, for z � Zl we have the following

estimate:

∥∥(
 z)(t)
∥∥ �

∥∥T
 (t, � )P(� )
∥∥� � � +

∫ t

�

∥∥T

(
t , � (s)

)
P
(
� (s)

)∥∥� F(s,z(s)

∥
∥∥
∥� s

+
∫ �

t

∥∥T

(
t , � (s)

)
Q

(
� (s)

)∥∥
∥
∥∥
∥F(s,z(s)� � s

� Mt l…1� N…l � � � +
∫ t

�
Mt l…1� N…l (s)

[
e� 
 (s,t0)h(s)

∥
∥y(s)

∥
∥ + h(s)

∥
∥z(s)

∥
∥]

� s

+
∫ �

t
Mt l � N…l…1(s)

[
e� 
 (s,t0)h(s)

∥∥y(s)
∥∥ + h(s)

∥∥z(s)
∥∥]

� s,

and then

t…l
∥
∥(
 z)(t)

∥
∥ �

M� N…l

t
� � � +

M
t

∫ t

�

� N (s)
� l (s)

e� 
 (s,t0)h(s)
∥
∥y(s)

∥
∥� s

+
M
t

∫ t

�

� N (s)
� l (s)

h(s)
∥∥z(s)

∥∥� s+ M
∫ �

t

� N…1(s)
� l (s)

e� 
 (s,t0)h(s)
∥∥y(s)

∥∥� s

+ M
∫ �

t

� N…1(s)
� l (s)

h(s)
∥∥z(s)

∥∥� s
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�
M� N…l

t
� � � +

M� y� 
 ,l

t

∫ t

�
� N (s)h(s)� s+

M� z� l

t

∫ t

�
� N (s)h(s)� s

+ M� y� 
 ,l

∫ �

t
� N…1(s)h(s)� s+ M� z� l

∫ �

t
� N…1(s)h(s)� s,

where � y� 
 ,l := supt 
 � t…le� 
 (t , t0)� y(t)� . Therefore, limt ��
� (
 z)(t)�

t l
= 0, and so
 z � Zl .

Now, we shall prove that the operator
 is a contraction mapping. In fact, letz1,z2 � Zl

and consider

t…1
∥∥(
 z1)(t) … (
 z2)(t)

∥∥ � t…l
[∫ t

�

∥∥T

(
t , � (s)

)
P
(
� (s)

)∥∥∥∥F
(
s,z1(s)

)
…F

(
s,z2(s)

)∥∥� s

+
∫ �

t

∥∥T

(
t , � (s)

)
Q

(
� (s)

)∥∥∥∥F
(
s,z1(s)

)
…F

(
s,z2(s)

)∥∥� s
]

�
M
t

∫ t

�
� N (s)h(s)� …l (s)

∥
∥z1(s) …z2(s)

∥
∥� s

+ M
∫ �

�
� N…1(s)h(s)� …l (s)

∥∥z1(s) …z2(s)
∥∥� s

�
M
t

∫ t

�
� N (s)h(s)� z1 …z2� l � s

+ M
∫ �

t
� N…1h(s)� z1 …z2� l � s

� M
[∫ �

�
� N…1(s)h(s)� s

]
� z1 …z2� l .

We choose� large enough such that
∫ �

� � N…1(s)h(s)� s< 1/M.

Therefore, we get that
 is a contraction mapping fromZl to Zl . By applying the con-

traction mapping principle, it follows that this operator has a unique “xed point which

depends on� � X. The solution x(t) of (2) that solves the Direct Problem, is given by

x(t) := e
 (t, t0)z(t) + y(t), wherez(·) is the “xed point of 
 . The above estimates also imply

that t…l � z(t)� Š� 0, ast Š� � . �

4 The converse problem
In the present section we will study the converse problem, as a special case. First, we will

present the Rodrigues inequality on time scales. We need the following lemma.

Lemma 4.1 Let � and � be nonnegative and rd-continuous functions de“ned on[t0, � )T

with …� � R+ and such that

∫ �

t0

�
(
…� (s)

)
� s=

∫ �

t0

� (s)
1 …µ(s)� (s)

� s< � .

If u(t) 
 0 is a bounded rd-continuous and decreasing function de“ned for t� [t0, � )T and

satis“es

u(t) � � (t) +
∫ �

t
� (s)u(s)� s, t > t0, (18)
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then

u(t) � � (t)exp

{∫ �

t
�

(
…� (s)

)
� s

}
. (19)

Proof Given � > 0, there existsM > 0 such that if� 
 M then

∫ �

t
� (s)u(s)� s<

∫ �

t
� (s)u(s)� s+ � , if � 
 M.

For � > M, suppose “rst that� (t) = c is constant, then

u(t) � (c+ � ) +
∫ �

t
� (s)u(s)� s.

Let us de“ne z(t) = (c + � ) +
∫ �

t � (s)u(s)� s, then z� (t) = …� (t)u(t) 
 …� (t)z(t). Now, a

straightforward computation shows that

[
ze…� (� , ·)

]�
(t) =

[
z� (t) + � (t)z(t)

]
e…�

(
� , � (t)

)

 0,

therefore z(� ) …z(t)e…� (� , t) 
 0, and soz(� ) 
 z(t)e…� (� , t), hencez(t) � z(� )e� (…� )(� , t),

which implies thatz(t) � (c+ � )e� (…� )(� , t), and hence

z(t) � (c+ � )exp

{∫ �

t
	 µ (s)

(
�

(
…� (s)

))
� s

}
.

Letting � Š� � and from arbitrariness of� , we have that

z(t) � cexp

{∫ �

t
	 µ (s)(�

(
…� (s)

)
� s

}
= ce� (…� )(� , t).

Sinceu(t) � z(t), then

u(t) � ce� (…� )(� , t).

Using Lemma 1.1.1 in [1] yields

u(t) � cexp

{∫ �

t
�

(
…� (s)

)
� s

}
. (20)

Now, let u(t) = � (t)w(t). Then

� (t)w(t) � � (t) +
∫ �

t
� (s)� (s)w(s)� s.

Thus,

w(t) � 1 +
∫ �

t
� (s)

� (s)
� (t)

w(s)� s� 1 +
∫ �

t
� (s)w(s)� s,
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which, by considering (20), gives

w(t) � exp

{∫ �

t
�

(
…� (s)

)
� s

}
.

So

u(t) � � (t)exp

{∫ �

t
�

(
…� (s)

)
� s

}
. �

Lemma 4.2 (Rodrigues inequality)Let f and g be nonnegative rd-continuous functions

de“ned for t � [t0, � )T , with …g� R+. Let � (t) > 0be a decreasing rd-continuous function,

for t 
 � and � su�ciently large , in such a way that

� =
∫ �

�
g(s)� s+

∫ �

�
f (s)� s< 1.

Suppose that u is a nonnegative continuous function such that� u is bounded and

u(t) � c+
∫ t

�
f (s)u(s)� s+

1
� (t)

∫ �

t
� (s)g(s)u(s)� s

for t 
 � , where c
 0 is a constant. Then, for t � [0,� )T ,

u(t) �
c

1 …�
exp

{
1

1 …�

∫ �

t
�

(
…g(s)

)
� s

}
.

Proof Let

v(t) = max
s� [� ,t ]T

u(s).

Thenv(t) is an increasing continuous function such thatu(t) � v(t) and� (t)v(t) is bounded

for t � [t0, � )T . For a givent 
 � , there existst1 � [� , t ]T satisfyingv(t) = u(t1). This implies

v(t) � c+
∫ t1

�
f (s)v(s)� s+

1
� (t1)

∫ �

t1

� (s)g(s)v(s)� s.

But

∫ �

t1

� (s)g(s)v(s)� s=
∫ t

t1

� (s)g(s)v(s)� s+
∫ �

t
� (s)g(s)v(s)� s

� � (t1)v(t)
∫ �

�
g(s)� s+

∫ �

t
� (s)g(s)v(s)� s.

Combining the above inequalities, we get

v(t) � c+ v(t)
[∫ �

�
f (s)� s+

∫ �

�
g(s)� s

]
+

1
� (t)

∫ �

t
� (s)g(s)v(s)� s.
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Then,

� (t)v(t) �
1

1 …�

[
c� (t) +

∫ �

t
� (s)g(s)v(s)� s

]
.

By using Lemma4.1, it follows that

� (t)v(t) �
c

1 …�
� (t)exp

{
1

1 …�

∫ �

t
�

(
…g(s)

)
� s

}
.

So

u(t) �
c

1 …�
exp

{
1

1 …�

∫ �

t
�

(
…g(s)

)
� s

}
. �

Definition 4.1 Let y(t) be a solution of (1). We say that� > 0 is a Lyapunov exponent of

y(t) if, given� > 0, then there existT � [t0, � )T andL > 0 such that

Le� …� (t, t0) �
∥∥y(t)

∥∥ � Le� +� (t, t0), t � [T ,� )T. (21)

Remark2 It is easy to see that (21) implies that

lim
t ��

log(� y(t)� )
t …t0

= lim
t ��

1
t …t0

∫ t

t0

lim
s� µ (� )

log(1 + s� )
s

�� = � (� ).

This � (� ) was used in [22] to characterize stability of linear systems on time scales.

Lemma 4.3 Let T(t,s) be the evolution operator generated by A(t).Assume that there exist

complementary projections P(s), Q(s), 
 < � , and K > 0,as in the “rst part of De“nition 3.1,

such that

∥∥T(t,s)P(s)
∥∥ � Ke
 (t,s), t 
 s,

∥
∥T(t,s)Q(s)

∥
∥ � Ke� (t,s), t � s,

and

∫ �

t0

h(s)� s< � .

Then

(a) � T (t,s)Q(s)x� 
 K…1e� (t,s)� Q(s)x� , t 
 s, for all x � X ,
(b) There is no solution x(t) of (2) with Lyapunov exponent � , with 
 < � < � .

Proof a) First of all, we note thatT(s,t)Q(t)T(t,s)Q(s)x(t) = Q(s)x(t), so we have that

∥∥Q(s)x(t)
∥∥ =

∥∥T(s,t)Q(t)T(t,s)Q(s)x(t)
∥∥ �

∥∥T(s,t)Q(t)
∥∥∥∥T(t,s)Q(s)x(t)

∥∥

� Ke� (s,t)
∥∥T(t,s)Q(s)x(t)

∥∥, t 
 s.

Therefore,� T(t,s)Q(s)x� 
 K…1e� (t,s)� Q(s)x� , t 
 s.
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b) Let us suppose the existence of a solutionx(t) of (2) having Lyapunov exponent� with


 < � < � . Then for t 
 � > 0,

x(t) = T(t, � )x(� ) +
∫ t

�
T

(
t , � (s)

)
f
(
s,x(s)

)
� s

= T(t, � )� +
∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

…
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s,

where� = x(� ) +
∫ �

� T (� , � (s))Q(� (s))f (s,x(s))� s.

If � > 0 is such that� + � < � , � …� > 
 , then we have

∥∥x(t)
∥∥ � Le� +� (t, t0) (22)

for t 
 � and for a suitableL 
 0. Moreover,

∥∥T
(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)∥∥ � Ke�
(
t , � (s)

)
h(s)Le� +� (s,t0)

= K
(
1 + µ(s)(� � )

)
e� � (s,t)h(s)Le� +� (s,t0)

� KLe� (t)h(s)e� (� � (� +� ))(s,t0).

Since� � (� + � ) = � …(� +� )
1+µ(s)(� +� ) > 0, thenlims�� e� (� � (� +� ))(s,t0) = 0, therefore the above in-

tegrals are convergent. We also have

e� (� +� )(t , t0)
∫ �

t

∥
∥T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)∥∥� s

� e� (� +� )(t , t0)
∫ �

t

∥
∥T

(
t , � (s)

)
Q

(
� (s)

)∥∥
∥
∥f

(
s,x(s)

)
� s

∥
∥� s

� e� (� +� )(t , t0)
∫ �

t
Ke�

(
t , � (s)

)
h(s)Le� +� (s,t0)� s

� e� � (� +� )(t , t0)
∫ �

t
KLh(s)e� (� � (� +� ))(s,t0)� s

� KL
∫ �

t
h(s)� s.

Therefore, e� (� +� )(t , t0)
∫ �

t T (t, � (s))Q(� (s))f (s,x(s))� s Š� 0, ast Š� � . On the other

hand,

e� (� +� )(t , t0)
∫ t

�

∥∥T
(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)∥∥� s

� e� (� +� )(t , t0)
∫ t

�

∥
∥T

(
t , � (s)

)
P
(
� (s)

)∥∥� f (s,x(s)� � s

� e� (� +� )(t , t0)
∫ t

�
Ke


(
t , � (s)

)
h(s)Le� +� (s,t0)� s
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� e
 � (� +� )(t , t0)
∫ t

�
KLe� (
 � (� +� ))(s,t0)h(s)� s

�
∫ t

�
KLh(s)� s.

Soe� (� +� )(t , t0)
∫ t

� T (t, � (s))P(� (s))f (s,x(s))� sŠ� 0, ast Š� � .

We claim that Q(� )� = 0. In fact, let us suppose thatQ(� )� 	= 0, then,

e� (� +� )(t , t0)
∥∥T(t, � )Q(� )�

∥∥ 
 e� (� +� )(t , t0)K…1e� (t, � )
∥∥Q(� )�

∥∥


 e� � (� +� )(t , t0)K…1e� (t0, � )
∥
∥Q(� )�

∥
∥ Š� � , t Š� � .

On the other hand

Q(t)x(t) = T(t, � )Q(� )� …
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s,

Therefore,

e� (� +� )(t , t0)
∥∥Q(t)x(t)

∥∥


 e� (� +� )(t , t0)
∥
∥T(t, � )Q(� )�

∥
∥ …e� (� +� )(t , t0)

∥∥
∥∥

∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s

∥∥
∥∥

Š� � , t Š� � ,

which is a contradiction to (22). Then, we have

x(t) = T(t, � )P(� )� +
∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

…
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s.

Since

∥∥T(t,s)P(s)
∥∥ � Ke
 (t,s) � Ke� …� (t,s), t 
 s,

∥
∥T(t,s)Q(s)

∥
∥ � Ke� (t,s) � Ke� +� (t,s), t � s,

it follows that

∥∥x(t)
∥∥ �

∥∥T(t, � )P(� )�
∥∥ +

∫ t

�

∥∥T
(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)∥∥� s

+
∫ �

t

∥
∥T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)∥∥� s

� Ke� …� (t, � )� w� +
∫ t

�
Ke� …�

(
t , � (s)

)
h(s)

∥
∥x(s)

∥
∥� s

+
∫ �

t
Ke� +�

(
t , � (s)

)
h(s)

∥∥x(s)
∥∥� s
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� Ke� …� (t, � )� � � +
∫ t

�
Ke� …� (t,s)h(s)

∥∥x(s)
∥∥� s

+
∫ �

t
Ke� +� (t,s)h(s)

∥
∥x(s)

∥
∥� s,

which implies

e� (� …� )(t, t0)
∥∥x(t)

∥∥

� Ke� (� …� )(� , t0)� � � + K
∫ t

�
h(s)e� (� …� )(s,t0)

∥∥x(s)
∥∥� s

+ Ke(� +� )� (� …� )(t, t0)
∫ �

t
e(� …� )� (� +� )(s,t0)h(s)e� (� …� )(s,t0)

∥
∥x(s)

∥
∥� s.

If we let u(t) := e� (� …� )(t, t0)� x(t)� , then we obtain

u(t) � Ke� (� …� )(� , t0)� � � + K
∫ t

�
h(s)u(s)� s

+ Ke(� +� )� (� …� )(t, t0)
∫ �

t
e(� …� )� (� +� )(s,t0)h(s)u(s)� s.

Now, applying the Rodrigues inequality with

g(t) = f (t) = Kh(t), � (t) = e(� …� )� (� +� )(t , t0),

we get that

u(t) �
Ke� (� …� )(� , t0)� � �

1 …�
exp

{
1

1 …�

∫ �

t
�

(
…h(s)

)
� s

}
,

where� =
∫ �

� 2Kh(s)� s< 1.

So,u(t) := e� (� …� )(t, t0)� x(t)� is bounded fort 
 � and this contradicts the hypothesis

that the Lyapunov exponent ofx(t) is � . �

Lemma 4.4 Suppose that T(t,s) is the evolution operator generated by A(t). Assume that

there exist complementary projections P(t), Q(t), 
 < � , K > 0,and a positive integer n, as

in the “rst part of De“nition 3.1, such that

∥
∥T(t,s)P(s)

∥
∥ � Ktne
 (t,s), t 
 s
 � > 0, (23)

∥∥T(t,s)Q(s)
∥∥ � Ksne� (t,s), s
 t, (24)

and

∫ �

t0

� n(s)h(s) < � . (25)

If x(t) is a solution of(2) with Lyapunov exponent
 , then � x(t)�
tne
 (t,t0) is bounded for t
 � .
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Proof If x(t) is a solution for (2) with Lyapunov number
 , then, for� > 0 with 
 < 
 + � < �

and 0 <� < � , there existsL > 0 such that

∥
∥x(t)

∥
∥ � Le
 +� (t) and � T(t,s)Q(s)� � Ksne
 +� (t,s), s
 t.

On the other hand,

x(t) = T(t, � )� +
∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

…
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s

= T(t, � )P(� )� + T(t, � )Q(� )� +
∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

…
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s,

where� = x(� ) +
∫ �

� T (� , � (s))Q(� (s))f (s,x(s))� s.

Proceeding as in the previous lemma, we obtain

∥∥
∥∥

∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s

∥∥
∥∥

�
∫ �

t

∥
∥T

(
t , � (s)

)
Q

(
� (s)

)∥∥
∥
∥f

(
s,x(s)

)∥∥� s

�
∫ �

t
K� n(s)e
 +�

(
t , � (s)

)
h(s)

∥
∥x(s)

∥
∥� s

� Ke
 +� (t, t0)
∫ �

t
e� (
 +� )(s,t0)� n(s)h(s)

∥
∥x(s)

∥
∥� s

� KLe
 +� (t, t0)
∫ �

t
� n(s)h(s)� s< � .

So, the above integrals are convergent. Analogously, we get the following estimate:

∥∥
∥∥

∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

∥∥
∥∥ �

∫ t

�

∥
∥T

(
t , � (s)

)
P
(
� (s)

)∥∥
∥
∥f

(
s,x(s)

)∥∥� s

� Ktne
 (t, t0)
∫ t

�
e� 
 (s,t0)h(s)

∥
∥x(s)

∥
∥� s.

Therefore,

T(t, � )� = x(t) …
∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

+
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s
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and

∥
∥T(t, � )�

∥
∥ �

∥
∥x(t)

∥
∥ +

∫ t

�

∥
∥T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)∥∥� s

+
∫ �

t

∥∥T
(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)∥∥� s,

which implies that

� T(t, � )� �
tne
 +� (t , t0)

�
� x(t)�

tne
 +� (t , t0)
+

1
tne
 +� (t , t0)

∫ t

�

∥∥T
(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)∥∥� s

+
1

tne
 +� (t , t0)
Ke
 +� (t, t0)

∫ �

t
e� (
 +� )(s,t0)� n(s)h(s)

∥
∥x(s)

∥
∥� s

�
� x(t)�

tne
 +� (t , t0)
+ Ke
 � (
 +� )(t , t0)

∫ t

�
e� 
 (s,t0)h(s)

∥
∥x(s)

∥
∥� s

+
K
tn

∫ �

t
e� (
 +� )(s,t0)� n(s)h(s)

∥∥x(s)
∥∥� sŠ� 0, ast Š� � .

Analogously to the previous lemma, we can prove thatQ(� )� = 0. So,P(� )� = � and

x(t) = T(t, � )P(� )� +
∫ t

�
T

(
t , � (s)

)
P
(
� (s)

)
f
(
s,x(s)

)
� s

…
∫ �

t
T

(
t , � (s)

)
Q

(
� (s)

)
f
(
s,x(s)

)
� s.

Therefore,

� x(t)�
tne
 (t, t0)

�
� T (t, � )P(� )� �

tne
 (t, t0)
+

1
tne
 (t, t0)

∫ t

�

∥
∥T

(
t , � (s)

)
P
(
� (s)

)∥∥
∥
∥f

(
s,x(s)

)∥∥� s

+
1

tne
 (t, t0)

∫ �

t

∥∥T
(
t , � (s)

)
Q

(
� (s)

)∥∥∥∥f
(
s,x(s)

)∥∥� s

�
Ktne
 (t, � )
tne
 (t, t0)

� � � +
1

tne
 (t, t0)

∫ t

�
Ktne


(
t , � (s)

)
h(s)

∥∥x(s)
∥∥� s

+
1

tne
 (t, t0)

∫ �

t
Ke
 +�

(
t , � (s)

)
� n(s)h(s)

∥
∥x(s)

∥
∥� s

� Ke� 
 (� , t0)� � � + K
∫ t

�
snh(s)

� x(s)�
sne
 (s,t0)

� s

+
K

tne
 � (
 +� )(t , t0)

∫ �

t
sne
 � (
 +� )(s,t0)� n(s)h(s)

� x(s)�
sne
 � (
 +� )(s,t0)

� s.

Now, if we put

u(t) =
� x(t)�

tne
 (t, t0)
, � (t) = tne
 � (
 +� )(t , t0), f (t) = tnh(t), g(t) = � n(t)h(t),

then, applying Lemma4.2, we obtain that

u(t) �
Ke� 
 (� , t0)� � �

1 …�
exp

{
1

1 …�

∫ �

t
�

(
…g(s)

)
� s

}
,



Duque et al.Advances in Continuous and Discrete Models         (2022) 2022:4 Page 17 of 23

where

� =
∫ �

�
f (s)� s+

∫ �

�
g(s)� s< 1.

Therefore, � x(t)�
tne
 (t,t0) is bounded. �

The following theorem gives answer to the converse problem.

Theorem 4.1 Suppose that T(t,s) is the evolution operator generated by A(t) and assume

that the following statements hold:

(a) For 
 � R and N � N, N > 1 fixed, system (1) has solution y(t) with Lyapunov
exponent 
 and there exists an integer l with 0 � l � N … 1such that y(t) �= t le
 (t, t0).

(b) For each l , 0 � l � N … 1, system (1) has a generalized polynomial exponential
trichotomy on time scales as in Definition 3.1.

(c)
∫ �

t0
� N (s)h(s)� s< � .

Then, if x(t) is a solution of (2) with Lyapunov exponent
 then there exists a solution

y(t) of (1) such that

lim
t ��

� x(t) …y(t)�
� x(t)�

= 0.

Moreover, there existsl, 0 � l � N … 1such that x(t) �= t le
 (t, t0).

Proof From De“nition 3.1we have thatP(t), S(t), Q(t), U(t) are complementary projec-

tions and (P(t) + S(t)) + (Q(t) + U(t)) = I , so, if P(t) = P(t) + S(t) and Q(t) = Q(t) + U(t),

then

∥∥T(t,s)P(s)
∥∥ � Mt l…1sN…le
 (t,s) + Me
 � � (t ,s),

� 2Mt N…1e
 (t,s), t 
 s.
∥∥T(t,s)Q(s)

∥∥ � Mt lsN…l…1e
 (t,s) + Me
 � � (t ,s),

� 2MsN…1e
 (t,s), s
 t,

which implies that the conditions from Lemma4.3are satis“ed and therefore � x(t)�
tN…1e
 (t,t0)

is

bounded.

Let us de“ne

l = min

{
m � { 0, . . . ,N … 1} :

� x(t)�
tme
 (t, t0)

is bounded fort 
 �
}

.

As in Lemma4.3, if we put

y(t) = T(t, � )
[
x(� ) +

∫ �

�
T

(
� , � (s)

)
(Q

(
� (s)

)
+ U

(
� (s)

)
f
(
s,x(s)

)
� s

]
,
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for t 
 � , we obtain thaty(t) is a solution of (1) and

x(t) = y(t) +
∫ t

�
T

(
t , � (s)

)[
P
(
� (s)

)
+ S

(
� (s)

)]
f
(
s,x(s)

)
� s

…
∫ �

t
T

(
t , � (s)

)[
Q

(
� (s)

)
+ U

(
� (s)

)]
f
(
s,x(s)

)
� s. (26)

Therefore,

∥
∥x(t) …y(t)

∥
∥ �

∫ t

�

[∥∥T
(
t , � (s)

)
P
(
� (s)

)∥∥ +
∥
∥T

(
t , � (s)

)
S
(
� (s)

)∥∥]∥∥f
(
s,x(s)

)∥∥� s

+
∫ �

t

[∥∥T
(
t , � (s)

)
Q

(
� (s)

)∥∥ +
∥∥T

(
t , � (s)

)
U

(
� (s)

)∥∥]∥∥f
(
s,x(s)

)∥∥� s

�
∫ t

�

[
Mt l…1� N…l (s)e


(
t , � (s)

)
+ Me
 � �

(
t , � (s)

)]
h(s)

∥∥x(s)
∥∥� s

+
∫ �

t

[
Mt l � N…l…1(s)e


(
t , � (s)

)
+ Me
 � �

(
t , � (s)

)]
h(s)

∥
∥x(s)

∥
∥� s

� t l…1e
 (t, t0)
∫ t

�
M

[
� N (s) +

(
1 + � (s)�

) � l (s)
t l…1

e� � (t ,s)
]
h(s)

� x(s)�
sle
 (s,t0)

� s

+ t le
 (t, t0)
∫ �

t
M

[
� N…1(s) +

� l (s)
t l

e� (t,s)
]
h(s)

� x(s)�
sle
 (s,t0)

� s

� t l…1e
 (t, t0)� x� 
 ,l

∫ t

�
M

[
� N (s) +

(
1 + � (s)�

) � l (s)
t l…1

]
h(s)� s

+ t le
 (t, t0)� x� 
 ,l

∫ �

t
M

[
� N…1(s) +

� l (s)
t l

]
h(s)� s,

where� x� 
 ,l = supt>�
� x(t)�

t l e
 (t,t0)
. So,

� x(t) …y(t)�
t le
 (t, t0)

� M� x� 
 ,l

(
1
t

∫ t

�

[
� N (s)

(
1 + � (s)�

) � l (s)
� l

]
h(s)� s

+
∫ �

t

[
� N…1(s) +

� l (s)
� l

]
h(s)� s

)
.

From assumption (c) we obtain thatlimt ��
� x(t)…y(t)�
t l e
 (t,t0)

= 0. This implies that � y(t)�
t l e
 (t)

is

bounded fort 
 � .

If we suppose “rst thatl = 0, then in this case� x(t)� /e
 (t, t0) is bounded fort 
 � and

P(s) � 0.

From (26) it follows, for t 
 � , that

x(t) = T(t, � )� +
∫ t

�
T

(
t , � (s)

)
S
(
� (s)

)
f
(
s,x(s)

)
� s

…
∫ �

t

[
Q

(
� (s)

)
+ U

(
� (s)

)]
f
(
s,x(s)

)
� s,

where� = x(� ) +
∫ t

� T (� , � (s))[Q(� (s)) + U(� (s))]f (s,x(s))� x.
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We claim that [Q(� ) + U(� )]� 	= 0. In fact, if this it is not true, then we haveS(� )� = �

and so

∥∥T(t, � )�
∥∥ =

∥∥T(t, � )S(� )�
∥∥ � Me
 � � (t , � )� � � , t 
 � .

Therefore

∥∥x(t)
∥∥ �

∥∥T(t, � )�
∥∥ +

∫ t

�

∥∥T
(
t , � (s)

)
S
(
� (s)

)∥∥h(s)
∥∥x(s)

∥∥� s

+
∫ �

�

∥
∥T

(
t , � (s)

)[
Q

(
� (s)

)
+ U

(
� (s)

)]∥∥h(s)
∥
∥x(s)

∥
∥� s

� Me
 � � (t , � )� � � +
∫ t

�
M

(
1 + � (s)�

)
e
 � � (t ,s)h(s)

∥
∥x(s)

∥
∥� s

+
∫ �

t
M� N…1(s)e
 (t,s)h(s)

∥∥x(s)
∥∥� s+

∫ �

t
Me
 � � (t ,s)h(s)

∥∥x(s)
∥∥� s.

Now,

� x(t)�
e
 � � (t , t0)

� Me
 � � (t0, � )� � � +
∫ t

�
M

(
1 + � (s)�

)
e� (
 � � )(s,t0)h(s)

∥∥x(s)
∥∥� s

+
1

e� � (t , t0)

∫ �

t
e� � (s,t0)

(
� N…1(s) + 1

)
Me� (
 � � )(s,t0)h(s)

∥
∥x(s)

∥
∥� s.

By using Lemma4.2, we have that� x(s)� /e
 � � (t , t0) is bounded fort 
 � , therefore there

existsL > 0 such that� x(t)� � Le
 � � (t , t0) � Le
 …� (t, t0), but this contradicts the fact that

x(t) has Lyapunov exponent
 .

Since� y(t)� /e
 (t, t0) is bounded fort 
 � , we obtain

0 < lim inf
t ��

� y(t)�
e
 (t, t0)

� lim sup
t ��

� y(t)�
e
 (t, t0)

< �

and

0 < lim inf
t ��

� x(t)�
e
 (t, t0)

� lim sup
t ��

� x(t)�
e
 (t, t0)

< � .

Hence

lim
t ��

� x(t) …y(t)�
� x(t)�

= lim
t ��

� x(t) …y(t)� /e
 (t, t0)
� x(t)� /e
 (t, t0)

= lim
t ��

� x(t) …y(t)�
e
 (t, t0)

= 0.

Now, if l 
 1, from (26) we obtain

∥∥x(t)
∥∥ �

∥∥y(t)
∥∥ +

∫ t

�

∥∥T
(
t , � (s)

)[
P
(
� (s)

)
+ S

(
� (s)

)]∥∥∥∥f
(
x,x(s)

)∥∥� s

+
∫ �

t

∥
∥T

(
t , � (s)

)[
Q

(
� (s)

)
+ U

(
� (s)

)]∥∥
∥
∥f

(
s,x(s)

)∥∥� s

�
∥
∥y(t)

∥
∥ +

∫ t

�
Me
 e

(
t , � (s)

)[
t l…1� N…l(s) + e� �

(
t , � (s)

)]
h(s)

∥
∥x(s)

∥
∥� s
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+
∫ �

t
Me


(
t , � (s)

)[
t l � N…l…1(s) + e�

(
t , � (s)

)]
h(s)

∥∥x(s)
∥∥� s

�
∥∥y(t)

∥∥ +
∫ t

�
Me
 (t,s)

[
t l…1� N…l (s) +

(
1 + � (s)�

)
e� � (t ,s)

]
h(s)

∥∥x(s)
∥∥� s

+
∫ �

t
e
 (t,s)

[
t l � N…l…1(s) + e� (t,s)

]
h(s)

∥
∥x(s)

∥
∥� s.

We claim that � y(t)�
t l…1e
 (t,t0)

is not bounded. Let us suppose that � y(t)�
t l…1e
 (t,t0)

� L for someL > 0.
Then, we have that

� x(t)�
t l…1e
 (t, t0)

�
� y(t)�

t l…1e
 (t, t0)

+
1

t l…1e
 (t, t0)

∫ t

�
Me
 (t,s)

[
t l…1� N…l(s) +

(
1 + � (s)�

)
e� � (t ,s)

]
h(s)

∥
∥x(s)

∥
∥� s

+
1

t l…1e
 (t, t0)

∫ �

t
Me
 (t,s)

[
t l � N…l…1(s) + e� (t,s)

]
h(s)

∥∥x(s)
∥∥� s

� L +
∫ t

�
M

[
� N…l (s)sl…1+

(
1 + � (s)�

)]
h(s)

� x(s)�
sl…1e
 (s,t0)

� s

+ t
∫ �

t

M
s

[
� N…l…1(s)sl + 1

]
h(s)

� x(s)�
sl…1e
 (s,t0)

� s

� L +
∫ t

�
M(2 + � )� N…1(s)h(s)

� x(s)�
sl…1e
 (s,t0)

� s

+ t
∫ �

t
2

M
s

� N…1(s)h(s)
� x(s)�

sl…1e
 (s,t0)
� s.

From Lemma4.2it follows that � x(t)�
t l…1e
 (t)

is bounded, contradicting the de“nition ofl . So

0 < lim inf
t ��

� y(t)�
t le
 (t, t0)

� lim sup
t ��

� y(t)�
t le
 (t, t0)

< �

and

0 < lim inf
t ��

� x(t)�
t le
 (t, t0)

� lim sup
t ��

� x(t)�
t le
 (t, t0)

< � .

Thus

lim
t ��

� x(t) …y(t)�
� x(t)�

= lim
t ��

� x(t) …y(t)� / t le
 (t, t0)
� x(t)� / t le
 (t, t0)

= lim
t ��

� x(t) …y(t)�
t le
 (t, t0)

= 0.

This concludes the proof. �

5 Examples
Example5.1 Let us consider the dynamic equation

x� (t) = Ax(t) + f
(
t ,x(t)

)
, t � [0,� )T, (27)



Duque et al.Advances in Continuous and Discrete Models         (2022) 2022:4 Page 21 of 23

whereA =
( 1 0

1 1

)
and f : T × R2 Š� R2 satisfying condition (3).

We compare system (27) with the unperturbed system

y� (t) = Ay(t), t � [0,� )T, (28)

The eigenvalues of the matrixA are� 1 = � 2 = 1, therefore 1 +µ(t) 	= 0, soA is regressive
for any time scaleT. Hence, is easy to see that the evolution operator associated to (28) is
given by

T(t,s) = eA(t,s) = e1(t,s)

(
1 0

∫ t
s

��
1+µ(t) 1

)

.

For example,
(1) if T = R, then T(t,s) = et…s

( 1 0
t…s 1

)
,

(2) if T = Z , then T(t,s) = 2t…s
( 1 0

1
2 (t…s) 1

)
,

(3) if T = hZ , then T(t,s) = (1 + h)
t…s
h

( 1 0
1

1+h (t…s) 0

)
,

Now, let us de“ne the projections

P(s) = eA(s, 0)

(
0 0

0 1

)

e…1
A (s, 0) and Q(s) = eA(s, 0)

(
1 0

0 0

)

e…1
A (s, 0),

therefore,

∥∥T(t,s)P(s)
∥∥ � Mse1(t,s), t 
 s
 � ,

∥∥T(t,s)Q(s)
∥∥ � Mte1(t,s), s
 t 
 � ,

with l = 1,N = 2, 
 = 1, andS(s) = U(s) = 0; moreover,� y(t)� �= te1(t, 0). If
∫ �

0 � (s)h(s)� s<
� , then, by Theorem3.1, system (27) has a solutionx(t) such that

lim
t ��

� x(t) …y(t)�
� y(t)�

= 0.

Example5.2 LetT = {2n : n � N0}, whereN0 is the set of nonnegative integers.
Consider the following system:

x� (t) = Ax(t) + f
(
t ,x(t)

)
, t � [1,� )T, (29)

whereA =
( …3 …2

3 4

)
andf (t,x) =

( 0
sin(x(� (t)))

� (t)t

)
. The eigenvalues ofA are� 1 = …2 and� = 3. Since

1 … 2µ(t) = 1 … 2t 	= 0 for all t � T, we get thatA is regressive.
The evolution operator associated to the linear system

y� (t) = Ay(t), t � [1,� )T, (30)

is given by

T(t,s) = eA(t,s) =

(
2e…2(t,s) e3(t,s)

…e…2(t,s) …3e3(t,s)

)

=

(
2
∏

� � [s,t)(1 … 2� )
∏

� � [s,t)(1 + 3� )

…
∏

� � [s,t)(1 … 2� ) …3
∏

� � [s,t)(1 + 3� )

)

.
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If we de“ne the projections

P(s) = eA(s, 1)

(
0 0

0 1

)

e…1
A (s, 1) and Q(s) = eA(s, 1)

(
1 0

0 0

)

e…1
A (s, 1),

then

∥∥T(t,s)P(s)
∥∥ �

8
5

e3(t,s), t 
 s
 � ,

∥∥T(t,s)Q(s)
∥∥ �

8
5

e3(t,s), s
 t 
 � .

We have that l = 0, N = 1, 
 = 3, S(s) = 0, and U(s) = 0. Sincey(t) �= e3(t, 1) and
∫ �

1 h(s)� s=
∫ �

1
� s

� (s)s < � , by Theorem3.1, system (29) has a solutionx(t) such that

lim
t ��

� x(t) …y(t)�
� y(t)�

= 0.

6 Concluding remarks
In this paper we studied the asymptotic relative equivalence between the solutions of two
dynamic equations on time scales, one linear and the other formed by its nonlinear pertur-
bation, unifying and extending the results presented in the references. To accomplish this
goal, we introduced the concept of a polynomial exponential trichotomy on time scales
which is a generalization of the concept of polynomial exponential dichotomy presented
by Leiva and Rodrigues in [16]. It is important to mention that this concept is more gen-
eral than the simple concept of polynomial dichotomy, as it involves several projections
that appear in a natural way when one breaks the Jordan decomposition block in order to
study a relative behavior of solutions of di�erential equations. In a forthcoming paper we
are going to show the existence and roughness of this type of trichotomy.
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