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Abstract
This paper aims to study the relative equivalence of the solutions of the following
dynamic equations y�(t) = A(t)y(t) and x�(t) = A(t)x(t) + f (t, x(t)) in the sense that if y(t)
is a given solution of the unperturbed system, we provide sufficient conditions to
prove that there exists a family of solutions x(t) for the perturbed system such that
‖y(t) – x(t)‖ = o(‖y(t)‖), as t → ∞, and conversely, given a solution x(t) of the
perturbed system, we give sufficient conditions for the existence of a family of
solutions y(t) for the unperturbed system, and such that ‖y(t) – x(t)‖ = o(‖x(t)‖), as
t → ∞; and in doing so, we have to extend Rodrigues inequality, the Lyapunov
exponents, and the polynomial exponential trichotomy on time scales.
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1 Introduction
In the study of nature, in particular, in physics, engineering, and economics, among other
fields, there are phenomena that vary continuously or discretely, where each phenomenon
can be modeled by a differential or difference equation. However, there exists also the pos-
sibility that these phenomena can vary both continuously and discretely. The theory of
time scales calculus made it possible to create models to study such mixed phenomena,
and it also turns out to be a powerful tool in continuous and discrete analysis from a uni-
fied point of view (see, for instance, [2, 4, 5, 7, 8] and the reference therein). A time scale,
which is denoted by T, is any closed nonempty subset of the real numbers, for instance,
N, Z, and qZ for q > 0 are times scales, and was introduced by S. Hilger [12, 14] in order
to create the theory of dynamic equations that allows unifying differential and difference
equations, as well as their extensions, from the same perspective (see [4, 5]). For example,
if f � represents the derivative for a function f defined on T, then it turns out that f � = f ′,
the usual derivative, if T = R, and f � = �f , the usual forward difference operator, if T = Z.
In the last years the qualitative study of the solutions of dynamic equations on time scales
has been attracting the interest and effort of many mathematicians; in particular, the study
of stability, existence of dichotomies, existence of bounded solutions, the existence of peri-
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odic and almost periodic solutions, have been treated by several researchers (for instance,
see [3, 9, 11, 17, 18, 20–22, 25–27] and the references therein), however, to the best to our
knowledge, the study of asymptotic equivalence of solutions of dynamic equations on time
scales has not been carried out. In the case of ordinary differential equations, functional
differential equations, and difference equations, we can find works in this direction, see,
for instance, [6, 15, 16, 23, 24] and the reference therein.

Motivated by this fact, in this paper we shall investigate the relative asymptotic equiva-
lence of the solutions of the following two dynamic equations on time scales:

y�(t) = A(t)y(t), t ∈ [t0,∞)T, y ∈X, (1)

x�(t) = A(t)x(t) + f
(
t, x(t)

)
, t ∈ [t0,∞)T, x ∈X, (2)

where (X,‖ · ‖) is a Banach space, the operator A : T −→ L(X) is rd-continuous, f : T ×
X −→ X is an rd-continuous function which is a small perturbation in some sense with
f (t, 0) = 0 and

∥∥f (t, z) – f (t, w)
∥∥ ≤ h(t)‖z – w‖, t ∈ [t0,∞)T, z, w ∈X, (3)

for h : [t0,∞)T −→R
+ an rd-continuous function.

We will understand this equivalence in the following sense: given a solution y(t) of
system (1), there exists a family of solutions x(t) of system (2) such that ‖y(t) – x(t)‖ =
o(‖y(t)‖), as t → ∞, and conversely, if x(t) is a solution of (2), then there exists a family of
solutions y(t) for the unperturbed system (1) such that ‖y(t) – x(t)‖ = o(‖x(t)‖), as t → ∞.

It is important to mention that, if T = R, we get the equations studied in [16], while if T =
N∪{0} then we have the equations treated in [15]. In both papers, the main tools used were
a concept of polynomial exponential dichotomy and the so-called Rodrigues inequality
(see also [24] and [19]), which is a generalization of Gronwall’s inequality. Concretely, we
will treat the following problems:

The direct problem Let y(t) be a solution of (1), with y(t) 	= 0, for sufficiently large t. Then,
does there exist a solution x(t) of (2) such that the relative error satisfies

lim
t→∞

‖y(t) – x(t)‖
‖y(t)‖ = 0?

Converse problem Let x(t) be a solution of (2), with x(t) 	= 0, for sufficiently large t. Then,
does there exist a solution y(t) of (1) such that the relative error satisfies

lim
t→∞

‖y(t) – x(t)‖
‖x(t)‖ = 0?

To solve these problems, we will extend the Rodrigues inequality, the definition of Lya-
punov exponents, and we introduce the definition of polynomial exponential trichotomy
on time scales.

The paper is organized as follows. In the next section, we present some fundamentals
results about time scales. In Sect. 3 we analyze the direct problem, and in Sect. 4 we study
the converse problem. Section 5 is devoted to an example to illustrate our results. We end
this work with a remark.
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2 Preliminaries
A time scale T is an arbitrary nonempty closed subset of R. We will assume that T has
the topology inherited from the standard topology of the real numbers. The time scale
interval [a, b]T is defined as [a, b]T = {t ∈ T : a ≤ t ≤ b}, with a, b ∈ T, and open intervals
and neighborhoods are defined similarly. The forward jump operator σ : T −→ T is de-
fined by σ (t) := inf{s ∈ T : s > t} and the backward jump operator ρ : T −→ T is defined
by ρ(t) := sup{s ∈ T : s < t}. We put inf∅ = supT (i.e., σ (t) = t if T has a maximum t) and
sup∅ = infT (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set. A point
t ∈ T is said to be right-dense if σ (t) = t, right-scattered if σ (s) > t, left-dense if ρ(t) = t,
left-scattered if ρ(t) < t, isolated if ρ(t) < t < σ (t). The function μ : t −→ [0,∞) defined by
μ(t) := σ (t) – t is known as graininess function.

We define the set Tκ by

T
κ :=

⎧
⎨

⎩
T \ (ρ(supT), supT], if supT < ∞,

T, if supT = ∞.

We shall say that a function f : T−→ X is right dense continuous, or just rd-continuous,
if

(a) f is continuous at every right-dense point t ∈ T,
(b) lims→t– f (s) exists (finite) for every left-dense point t ∈ T.

The set of rd-continuous functions f : T −→ X will be denoted by Crd(T,X). A function
f : T×X −→ X is called rd-continuous if g defined by g(t) = f (t, x(t)) is rd-continuous for
any continuous function x : T −→X.

A function f : T −→ X is called delta differentiable (or simply differentiable) at t ∈ T
κ

provided there exists a number f �(t) with the property that given any ε > 0, there is a
neighborhood U = (t – δ, t + δ)T for some δ > 0 such that ‖f (σ (t)) – f (s) – f �(t)(σ (t) – s)‖ ≤
ε|σ (t) – s| for all s ∈ U , in this case the number f �(t) will be call the delta derivative of f
at t.

If there exists a function F : T −→ X such that F�(t) = f (t), t ∈ T
κ , then F is called an

antiderivative of f and the Cauchy integral is defined by

∫ t

s
f (τ )�τ = F(t) – F(s), t, s ∈ T.

From Theorem 1.74 in [4], we have that every rd-continuous function has an antideriva-
tive, and if F(t) =

∫ t
s f (τ )�τ , then F�(t) = f (t), t ∈ T

κ , i.e., F is an antiderivative of f .
A function p : T−→ R is said to be regressive (resp. positively regressive) if 1 +μ(t)p(t) 	=

0 (resp. 1 + μ(t)p(t) > 0), t ∈ T and the equation

x� = p(t)x, x(t0) = 1, (4)

has a unique solution x(t) = ep(t, t0) = exp
∫ t

t0
ξμ(τ )(p(τ ))�τ , where

ξμ(z) :=

⎧
⎨

⎩

1
μ

log(1 + μz), if μ > 0,

z, if μ = 0,
(5)

The function ep(t, s) satisfies the following properties (see [4, Theorem 2.36]):
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(1) ep(t, s)eq(t, s) = ep⊕q(t, s),
(2) ep(t,s)

eq(t,s) = ep�q(t, s),
(3) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s),
(4) ep(t, r)ep(r, s) = ep(t, s),

where (p ⊕ q)(t) := p(t) + q(t) + μ(t)p(t)q(t) and (p � q)(t) := p(t)–q(t)
1+μ(t)q(t) .

We will denote by R (resp. R+) the set of all regressive and rd-continuous functions
(resp. positively regressive and rd-continuous).

A mapping A : T −→ L(X) is said to be regressive if I + μ(t)A(t) is invertible for every
t ∈ T.

Henceforth we will suppose that sup{T} = ∞. Since A is rd-continuous, we have that A
generates an evolution operator family T(t, s) = eA(t, s) with t ≥ s, and the only solution of
(1) with y(s) = ys is given by y(t) = T(t, s)ys (see [10] and [25]). On the other hand, since f is
rd-continuous and satisfies condition (3), we have, by Theorem 5.7 in [13], that equation
(2), with x(s) = xs, has a unique solution defined on T, which is given by

x(t) = T(t, s)xs +
∫ t

s
T

(
t,σ (τ )

)
f
(
τ , x(τ )

)
�τ . (6)

3 The direct problem
In this section, we just treat the direct problem through Theorem 3.1, but before we will
present the definition of polynomial exponential trichotomy on time scales. It is important
to mention that, in the case of dichotomies on time scales, the initial contributions are by
Pötzsche in [20, 21].

Definition 3.1 We shall say that equation (1) has a polynomial exponential trichotomy
on time scales with respect to α ∈ Crd(T,R+), bounded by infT{α(t)} > 0, if there exist
an integer N ≥ 1, M > 0, ε ∈ Crd(T,R+) bounded by infT{ε(t)} > 0, and complementary
projections S(t), P(t), Q(t), U(t) : X −→X, t ∈ [t0,∞)T, such that:

(1) For t ≥ s, P(t)T(t, s) = T(t, s)P(s), Q(t)T(t, s) = T(t, s)Q(s), and
S(t)T(t, s) = T(t, s)S(s),

(2) [IX + μ(t)A(t)]|Rang(U(t)) : Rang(U(t)) −→ Rang(U(σ (t))) is bijective for all
right-scattered t,

(3) [IX + μ(t)A(t)]|Rang(Q(t)) : Rang(Q(t)) −→ Rang(Q(σ (t))) is bijective for all
right-scattered t,

(4) For each l, 0 ≤ l ≤ N – 1, the following conditions hold:

∥
∥T(t, s)S(s)

∥
∥ ≤ Meα�ε(t, s), t ≥ s, (7)

∥
∥T(t, s)U(s)

∥
∥ ≤ Meα⊕ε(t, s), s ≥ t, (8)

∥
∥T(t, s)

(
P(s) + Q(s)

)∥∥ ≤ MtN–1eα(t, s), t ≥ s ≥ β , (9)
∥∥T(t, s)P(s)

∥∥ ≤ Mtl–1sN–1eα(t, s), t ≥ s ≥ β , (10)
∥∥T(t, s)Q(s)

∥∥ ≤ MtlsN–l–1eα(t, s), s ≥ t ≥ β , (11)

where β > 0. If l = 0 then P(s) = 0. In this case the projections onto the stable, unstable,
and center spaces are contained in L(X).
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Remark 1 Conditions (2) and (3) allow for the evolution operator T(t, s) to be invertible
between the ranges of U and Q, respectively, for details see Proposition 2.3 in [20].

Definition 3.2 If α > 0 and l is a nonnegative integer, we shall say that a function y :
[t0,∞)T −→ X is of order tleα(t, t0), and denote it by y(t) ∼= tleα(t, t0), if

0 < lim inf
t→∞

‖y(t)‖
tleα(t, t0)

≤ lim sup
t→∞

‖y(t)‖
tleα(t, t0)

< ∞. (12)

The following theorem is our main result in this section

Theorem 3.1 Let y(t) be a solution of (1) with y(t) ∼= tleα(t, t0). Suppose that (3) is satisfied
and that equation (1) has a polynomial exponential trichotomy on time scales with respect
to α and the function h(t) satisfies

∫ ∞

t0

σ (s)N–1h(s)�s < ∞. (13)

Then there exists a solution x(t) of (2) such that

lim
t→∞

‖x(t) – y(t)‖
‖y(t)‖ = 0.

Proof Let us consider the change of variable

z(t) := e�α(t, t0)
(
x(t) – y(t)

)
,

then we obtain the following equation for z:

z�(t) = Aα(t)z(t) + F
(
t, z(t)

)
, (14)

where Aα(t) = 1
1+μ(t)α [–αI + A(t)] and F(t, z) = e�α (t,t0)

1+μ(t)α f (t, y(t) + eα(t, t0)z(t)).
A straightforward computation shows that the evolution operator Tα(t, s) generated by

Aα(t) is given by

Tα(t, s) = e�α(t, s)T(t, s), t ≥ s. (15)

Hence, we obtain the following conditions for Tα(t, s):

∥∥Tα(t, s)P(s)
∥∥ =

∥∥e�α(t, s)T(t, s)P(s)
∥∥ ≤ Mtl–1sN–1, t ≥ s ≥ β > 0,

∥∥Tα(t, s)Q(s)
∥∥ =

∥∥e�α(t, s)T(t, s)Q(s)
∥∥ ≤ MtlsN–l–1, s ≥ t ≥ β .

Now,

lim
t→∞

‖x(t) – y(t)‖
‖y(t)‖ = lim

t→∞
‖x(t) – y(t)‖

tleα(t, t0)
= lim

t→∞
‖e�α(t, t0)(x(t) – y(t))‖

tl = lim
t→∞

‖z(t)‖
tl .

Therefore, the problem is reduced to proving the existence of a solution of (14) such that

lim
t→∞

‖z(t)‖
tl = 0. (16)
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If we suppose for a moment that z(t) is a solution of (14) such that (16) holds. Then using
the variation of constant formula for equation (14) (Theorem 5.8 in [4]), we get that

z(t) = Tα(t,η)z(η) +
∫ t

η

Tα

(
t,σ (s)

)
F
(
s, z(s)

)
�s

= Tα(t,η)
[
P(η) + Q(η)

]
z(η) +

∫ t

η

Tα

(
t,σ (s)

)[
P
(
σ (s)

)
+ Q

(
σ (s)

)]
F
(
s, z(s)

)
�s

= Tα(t,η)P(η)z(η) + Tα(t,η)Q(η)z(η) +
∫ t

η

Tα

(
t,σ (s)

)
P
(
σ (s)

)
F
(
s, z(s)

)
�s

+
∫ τ

η

Tα

(
t,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s –

∫ τ

t
Tα

(
t,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s.

If we let τ −→ ∞, then we get

z(t) = Tα(t,β)P(β)z(β) + Tα(t,β)Q(β)z(β) +
∫ t

β

Tα

(
t,σ (s)

)
P
(
σ (s)

)
F
(
s, z(s)

)
�s

= Tα(t,η)
[

Q(η)z(η) +
∫ ∞

η

Tα

(
η,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s

]
+ T(t,η)P(η)z(η)

+
∫ t

η

Tα

(
η,σ (s)

)
P
(
σ (s)

)
F
(
s, z(s)

)
�s –

∫ ∞

t
Tα

(
t,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s.

Note that

∫ ∞

η

Tα

(
η, s(s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s < ∞.

In fact, since

∥∥F(t, z)
∥∥ =

∥
∥∥
∥

e�α(t, t0)
1 + μ(t)α

f
(
t, y(t) + eα(t, t0)z(t)

)
∥
∥∥
∥

≤ e�α(t, t0)h(t)
∥∥y(t) + eα(t, t0)z(t)

∥∥ ≤ e�α(t, t0)h(t)
∥∥y(t)

∥∥ + h(t)
∥∥z(s)

∥∥,

we obtain

∥
∥∥∥

∫ ∞

η

Tα

(
η,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s

∥
∥∥∥

≤
∫ ∞

η

∥∥Tα

(
η,σ (s)

)
Q

(
σ (s)

)∥∥∥∥F
(
s, z(s)

)∥∥�s

≤
∫ ∞

η

Mηlσ N–l–1(s)
[
e�α(s)h(s)

∥
∥y(s)

∥
∥ + h(s)

∥
∥z(s)

∥
∥]

�s

≤ Mηl
[∫ ∞

η

σ N–l–1(s)h(s)sl�s +
∫ ∞

η

σ N–1(s)h(s)
‖z(s)‖
σ l(s)

�s
]

≤ Mηl
[∫ ∞

η

σ N–1(s)h(s)�s +
∫ ∞

η

σ N–1(s)h(s)
‖z(s)‖

sl �s
]

< ∞
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As it will become clear in the next calculation, condition (16) is satisfied if we require

Q(η)z(η) +
∫ ∞

η

Tα

(
η,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s = 0.

So, we get that

z(t) = Tα(t,η)P(η)z(η) +
∫ ∞

η

Tα

(
t,σ (s)

)
P
(
σ (s)

)
F
(
s, z(s)

)
�s

–
∫ ∞

t
Tα

(
t,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s, (17)

for t ≥ η.
Conversely, if z(t), with t–lz(t) bounded, satisfies the integral equation (17), then z sat-

isfies equation (14). Now, to complete the proof, we shall prove that the integral equation
(17) has a solution in the Banach space

Zl =
{

z ∈ Crd
(
[η,∞)

T
,X) : ‖z‖l = sup

t>η

t–1∥∥z(t)
∥
∥ < ∞

}
.

We define the operator  : Zl −→ Zl by

(z)(t) := Tα(t,η)P(η)ω +
∫ t

η

Tα

(
t,σ (s)

)
P
(
σ (s)

)
F
(
s, z(s)

)
�s

–
∫ ∞

t
Tα

(
t,σ (s)

)
Q

(
σ (s)

)
F
(
s, z(s)

)
�s, t ≥ η.

Next, we shall prove that  maps Zl into Zl . In fact, for z ∈ Zl we have the following
estimate:

∥∥(z)(t)
∥∥ ≤ ∥∥Tα(t,η)P(η)

∥∥‖ω‖ +
∫ t

η

∥∥Tα

(
t,σ (s)

)
P
(
σ (s)

)∥∥‖F(s, z(s)
∥
∥∥
∥�s

+
∫ ∞

t

∥∥Tα

(
t,σ (s)

)
Q

(
σ (s)

)∥∥
∥
∥∥
∥F(s, z(s)‖�s

≤ Mtl–1ηN–l‖ω‖ +
∫ t

η

Mtl–1σ N–l(s)
[
e�α(s, t0)h(s)

∥
∥y(s)

∥
∥ + h(s)

∥
∥z(s)

∥
∥]

�s

+
∫ ∞

t
Mtlσ N–l–1(s)

[
e�α(s, t0)h(s)

∥∥y(s)
∥∥ + h(s)

∥∥z(s)
∥∥]

�s,

and then

t–l∥∥(z)(t)
∥
∥ ≤ MηN–l

t
‖ω‖ +

M
t

∫ t

η

σ N (s)
σ l(s)

e�α(s, t0)h(s)
∥
∥y(s)

∥
∥�s

+
M
t

∫ t

η

σ N (s)
σ l(s)

h(s)
∥∥z(s)

∥∥�s + M
∫ ∞

t

σ N–1(s)
σ l(s)

e�α(s, t0)h(s)
∥∥y(s)

∥∥�s

+ M
∫ ∞

t

σ N–1(s)
σ l(s)

h(s)
∥∥z(s)

∥∥�s
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≤ MηN–l

t
‖ω‖ +

M‖y‖α,l

t

∫ t

η

σ N (s)h(s)�s +
M‖z‖l

t

∫ t

η

σ N (s)h(s)�s

+ M‖y‖α,l

∫ ∞

t
σ N–1(s)h(s)�s + M‖z‖l

∫ ∞

t
σ N–1(s)h(s)�s,

where ‖y‖α,l := supt≥η t–le�α(t, t0)‖y(t)‖. Therefore, limt→∞ ‖(z)(t)‖
tl = 0, and so z ∈ Zl .

Now, we shall prove that the operator  is a contraction mapping. In fact, let z1, z2 ∈ Zl

and consider

t–1∥∥(z1)(t) – (z2)(t)
∥∥ ≤ t–l

[∫ t

η

∥∥Tα

(
t,σ (s)

)
P
(
σ (s)

)∥∥∥∥F
(
s, z1(s)

)
– F

(
s, z2(s)

)∥∥�s

+
∫ ∞

t

∥∥Tα

(
t,σ (s)

)
Q

(
σ (s)

)∥∥∥∥F
(
s, z1(s)

)
– F

(
s, z2(s)

)∥∥�s
]

≤ M
t

∫ t

η

σ N (s)h(s)σ –l(s)
∥
∥z1(s) – z2(s)

∥
∥�s

+ M
∫ ∞

η

σ N–1(s)h(s)σ –l(s)
∥∥z1(s) – z2(s)

∥∥�s

≤ M
t

∫ t

η

σ N (s)h(s)‖z1 – z2‖l�s

+ M
∫ ∞

t
σ N–1h(s)‖z1 – z2‖l�s

≤ M
[∫ ∞

η

σ N–1(s)h(s)�s
]
‖z1 – z2‖l.

We choose η large enough such that
∫ ∞
η

σ N–1(s)h(s)�s < 1/M.
Therefore, we get that  is a contraction mapping from Zl to Zl . By applying the con-

traction mapping principle, it follows that this operator has a unique fixed point which
depends on ω ∈ X. The solution x(t) of (2) that solves the Direct Problem, is given by
x(t) := eα(t, t0)z(t) + y(t), where z(·) is the fixed point of . The above estimates also imply
that t–l‖z(t)‖ −→ 0, as t −→ ∞. �

4 The converse problem
In the present section we will study the converse problem, as a special case. First, we will
present the Rodrigues inequality on time scales. We need the following lemma.

Lemma 4.1 Let β and ϕ be nonnegative and rd-continuous functions defined on [t0,∞)T
with –ϕ ∈R+ and such that

∫ ∞

t0

�(
–ϕ(s)

)
�s =

∫ ∞

t0

ϕ(s)
1 – μ(s)ϕ(s)

�s < ∞.

If u(t) ≥ 0 is a bounded rd-continuous and decreasing function defined for t ∈ [t0,∞)T and
satisfies

u(t) ≤ β(t) +
∫ ∞

t
ϕ(s)u(s)�s, t > t0, (18)
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then

u(t) ≤ β(t) exp

{∫ ∞

t
�(

–ϕ(s)
)
�s

}
. (19)

Proof Given ε > 0, there exists M > 0 such that if τ ≥ M then

∫ ∞

t
ϕ(s)u(s)�s <

∫ τ

t
ϕ(s)u(s)�s + ε, if τ ≥ M.

For τ > M, suppose first that β(t) = c is constant, then

u(t) ≤ (c + ε) +
∫ τ

t
ϕ(s)u(s)�s.

Let us define z(t) = (c + ε) +
∫ τ

t ϕ(s)u(s)�s, then z�(t) = –ϕ(t)u(t) ≥ –ϕ(t)z(t). Now, a
straightforward computation shows that

[
ze–ϕ(τ , ·)]�(t) =

[
z�(t) + ϕ(t)z(t)

]
e–ϕ

(
τ ,σ (t)

) ≥ 0,

therefore z(τ ) – z(t)e–ϕ(τ , t) ≥ 0, and so z(τ ) ≥ z(t)e–ϕ(τ , t), hence z(t) ≤ z(τ )e�(–ϕ)(τ , t),
which implies that z(t) ≤ (c + ε)e�(–ϕ)(τ , t), and hence

z(t) ≤ (c + ε) exp

{∫ τ

t
ξμ(s)

(�(
–ϕ(s)

))
�s

}
.

Letting τ −→ ∞ and from arbitrariness of ε, we have that

z(t) ≤ c exp

{∫ ∞

t
ξμ(s)(�

(
–ϕ(s)

)
�s

}
= ce�(–ϕ)(∞, t).

Since u(t) ≤ z(t), then

u(t) ≤ ce�(–ϕ)(∞, t).

Using Lemma 1.1.1 in [1] yields

u(t) ≤ c exp

{∫ ∞

t
�(

–ϕ(s)
)
�s

}
. (20)

Now, let u(t) = β(t)w(t). Then

β(t)w(t) ≤ β(t) +
∫ ∞

t
ϕ(s)β(s)w(s)�s.

Thus,

w(t) ≤ 1 +
∫ ∞

t
ϕ(s)

β(s)
β(t)

w(s)�s ≤ 1 +
∫ ∞

t
ϕ(s)w(s)�s,
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which, by considering (20), gives

w(t) ≤ exp

{∫ ∞

t
�(

–ϕ(s)
)
�s

}
.

So

u(t) ≤ β(t) exp

{∫ ∞

t
�(

–ϕ(s)
)
�s

}
. �

Lemma 4.2 (Rodrigues inequality) Let f and g be nonnegative rd-continuous functions
defined for t ∈ [t0,∞)T, with –g ∈R+. Let γ (t) > 0 be a decreasing rd-continuous function,
for t ≥ η and η sufficiently large, in such a way that

β =
∫ ∞

η

g(s)�s +
∫ ∞

η

f (s)�s < 1.

Suppose that u is a nonnegative continuous function such that γ u is bounded and

u(t) ≤ c +
∫ t

η

f (s)u(s)�s +
1

γ (t)

∫ ∞

t
γ (s)g(s)u(s)�s

for t ≥ η, where c ≥ 0 is a constant. Then, for t ∈ [0,∞)T,

u(t) ≤ c
1 – β

exp

{
1

1 – β

∫ ∞

t
�(

–g(s)
)
�s

}
.

Proof Let

v(t) = max
s∈[η,t]T

u(s).

Then v(t) is an increasing continuous function such that u(t) ≤ v(t) and γ (t)v(t) is bounded
for t ∈ [t0,∞)T. For a given t ≥ η, there exists t1 ∈ [η, t]T satisfying v(t) = u(t1). This implies

v(t) ≤ c +
∫ t1

η

f (s)v(s)�s +
1

γ (t1)

∫ ∞

t1

γ (s)g(s)v(s)�s.

But

∫ ∞

t1

γ (s)g(s)v(s)�s =
∫ t

t1

γ (s)g(s)v(s)�s +
∫ ∞

t
γ (s)g(s)v(s)�s

≤ γ (t1)v(t)
∫ ∞

η

g(s)�s +
∫ ∞

t
γ (s)g(s)v(s)�s.

Combining the above inequalities, we get

v(t) ≤c + v(t)
[∫ ∞

η

f (s)�s +
∫ ∞

η

g(s)�s
]

+
1

γ (t)

∫ ∞

t
γ (s)g(s)v(s)�s.
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Then,

γ (t)v(t) ≤ 1
1 – β

[
cγ (t) +

∫ ∞

t
γ (s)g(s)v(s)�s

]
.

By using Lemma 4.1, it follows that

γ (t)v(t) ≤ c
1 – β

γ (t) exp

{
1

1 – β

∫ ∞

t
�(

–g(s)
)
�s

}
.

So

u(t) ≤ c
1 – β

exp

{
1

1 – β

∫ ∞

t
�(

–g(s)
)
�s

}
. �

Definition 4.1 Let y(t) be a solution of (1). We say that λ > 0 is a Lyapunov exponent of
y(t) if, given ε > 0, then there exist T ∈ [t0,∞)T and L > 0 such that

Leλ–ε(t, t0) ≤ ∥∥y(t)
∥∥ ≤ Leλ+ε(t, t0), t ∈ [T ,∞)T. (21)

Remark 2 It is easy to see that (21) implies that

lim
t→∞

log(‖y(t)‖)
t – t0

= lim
t→∞

1
t – t0

∫ t

t0

lim
s↘μ(τ )

log(1 + sλ)
s

�τ = γ (λ).

This γ (λ) was used in [22] to characterize stability of linear systems on time scales.

Lemma 4.3 Let T(t, s) be the evolution operator generated by A(t). Assume that there exist
complementary projections P(s), Q(s), α < β , and K > 0, as in the first part of Definition 3.1,
such that

∥∥T(t, s)P(s)
∥∥ ≤ Keα(t, s), t ≥ s,

∥
∥T(t, s)Q(s)

∥
∥ ≤ Keβ (t, s), t ≤ s,

and
∫ ∞

t0

h(s)�s < ∞.

Then
(a) ‖T(t, s)Q(s)x‖ ≥ K–1eβ (t, s)‖Q(s)x‖, t ≥ s, for all x ∈X,
(b) There is no solution x(t) of (2) with Lyapunov exponent λ, with α < λ < β .

Proof a) First of all, we note that T(s, t)Q(t)T(t, s)Q(s)x(t) = Q(s)x(t), so we have that

∥∥Q(s)x(t)
∥∥ =

∥∥T(s, t)Q(t)T(t, s)Q(s)x(t)
∥∥ ≤ ∥∥T(s, t)Q(t)

∥∥∥∥T(t, s)Q(s)x(t)
∥∥

≤ Keβ (s, t)
∥∥T(t, s)Q(s)x(t)

∥∥, t ≥ s.

Therefore, ‖T(t, s)Q(s)x‖ ≥ K–1eβ (t, s)‖Q(s)x‖, t ≥ s.
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b) Let us suppose the existence of a solution x(t) of (2) having Lyapunov exponent λ with
α < λ < β . Then for t ≥ η > 0,

x(t) = T(t,η)x(η) +
∫ t

η

T
(
t,σ (s)

)
f
(
s, x(s)

)
�s

= T(t,η)ω +
∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

–
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s,

where ω = x(η) +
∫ ∞
η

T(η,σ (s))Q(σ (s))f (s, x(s))�s.
If δ > 0 is such that λ + δ < β , λ – δ > α, then we have

∥∥x(t)
∥∥ ≤ Leλ+δ(t, t0) (22)

for t ≥ η and for a suitable L ≥ 0. Moreover,

∥∥T
(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)∥∥ ≤ Keβ

(
t,σ (s)

)
h(s)Leλ+δ(s, t0)

= K
(
1 + μ(s)(�β)

)
e�β (s, t)h(s)Leλ+δ(s, t0)

≤ KLeβ (t)h(s)e�(β�(λ+δ))(s, t0).

Since β � (λ + δ) = β–(λ+δ)
1+μ(s)(λ+δ) > 0, then lims→∞ e�(β�(λ+δ))(s, t0) = 0, therefore the above in-

tegrals are convergent. We also have

e�(λ+δ)(t, t0)
∫ ∞

t

∥
∥T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)∥∥�s

≤ e�(λ+δ)(t, t0)
∫ ∞

t

∥
∥T

(
t,σ (s)

)
Q

(
σ (s)

)∥∥
∥
∥f

(
s, x(s)

)
�s

∥
∥�s

≤ e�(λ+δ)(t, t0)
∫ ∞

t
Keβ

(
t,σ (s)

)
h(s)Leλ+δ(s, t0)�s

≤ eβ�(λ+δ)(t, t0)
∫ ∞

t
KLh(s)e�(β�(λ+δ))(s, t0)�s

≤ KL
∫ ∞

t
h(s)�s.

Therefore, e�(λ+δ)(t, t0)
∫ ∞

t T(t,σ (s))Q(σ (s))f (s, x(s))�s −→ 0, as t −→ ∞. On the other
hand,

e�(λ+δ)(t, t0)
∫ t

η

∥∥T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)∥∥�s

≤ e�(λ+δ)(t, t0)
∫ t

η

∥
∥T

(
t,σ (s)

)
P
(
σ (s)

)∥∥‖f (s, x(s)‖�s

≤ e�(λ+δ)(t, t0)
∫ t

η

Keα

(
t,σ (s)

)
h(s)Leλ+δ(s, t0)�s
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≤ eα�(λ+δ)(t, t0)
∫ t

η

KLe�(α�(λ+δ))(s, t0)h(s)�s

≤
∫ t

η

KLh(s)�s.

So e�(λ+δ)(t, t0)
∫ t
η

T(t,σ (s))P(σ (s))f (s, x(s))�s −→ 0, as t −→ ∞.
We claim that Q(η)ω = 0. In fact, let us suppose that Q(η)ω 	= 0, then,

e�(λ+δ)(t, t0)
∥∥T(t,η)Q(η)ω

∥∥ ≥ e�(λ+δ)(t, t0)K–1eβ (t,η)
∥∥Q(η)ω

∥∥

≥ eβ�(λ+δ)(t, t0)K–1eβ (t0,η)
∥
∥Q(η)ω

∥
∥ −→ ∞, t −→ ∞.

On the other hand

Q(t)x(t) = T(t,η)Q(η)ω –
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s,

Therefore,

e�(λ+δ)(t, t0)
∥∥Q(t)x(t)

∥∥

≥ e�(λ+δ)(t, t0)
∥
∥T(t,η)Q(η)ω

∥
∥ – e�(λ+δ)(t, t0)

∥∥
∥∥

∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s

∥∥
∥∥

−→ ∞, t −→ ∞,

which is a contradiction to (22). Then, we have

x(t) = T(t,η)P(η)ω +
∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

–
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s.

Since

∥∥T(t, s)P(s)
∥∥ ≤ Keα(t, s) ≤ Keλ–δ(t, s), t ≥ s,

∥
∥T(t, s)Q(s)

∥
∥ ≤ Keβ (t, s) ≤ Keλ+δ(t, s), t ≤ s,

it follows that

∥∥x(t)
∥∥ ≤ ∥∥T(t,η)P(η)ω

∥∥ +
∫ t

η

∥∥T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)∥∥�s

+
∫ ∞

t

∥
∥T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)∥∥�s

≤ Keλ–δ(t,η)‖w‖ +
∫ t

η

Keλ–δ

(
t,σ (s)

)
h(s)

∥
∥x(s)

∥
∥�s

+
∫ ∞

t
Keλ+δ

(
t,σ (s)

)
h(s)

∥∥x(s)
∥∥�s
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≤ Keλ–δ(t,η)‖ω‖ +
∫ t

η

Keλ–δ(t, s)h(s)
∥∥x(s)

∥∥�s

+
∫ ∞

t
Keλ+δ(t, s)h(s)

∥
∥x(s)

∥
∥�s,

which implies

e�(λ–δ)(t, t0)
∥∥x(t)

∥∥

≤ Ke�(λ–δ)(η, t0)‖ω‖ + K
∫ t

η

h(s)e�(λ–δ)(s, t0)
∥∥x(s)

∥∥�s

+ Ke(λ+δ)�(λ–δ)(t, t0)
∫ ∞

t
e(λ–δ)�(λ+δ)(s, t0)h(s)e�(λ–δ)(s, t0)

∥
∥x(s)

∥
∥�s.

If we let u(t) := e�(λ–δ)(t, t0)‖x(t)‖, then we obtain

u(t) ≤ Ke�(λ–δ)(η, t0)‖ω‖ + K
∫ t

η

h(s)u(s)�s

+ Ke(λ+δ)�(λ–δ)(t, t0)
∫ ∞

t
e(λ–δ)�(λ+δ)(s, t0)h(s)u(s)�s.

Now, applying the Rodrigues inequality with

g(t) = f (t) = Kh(t), γ (t) = e(λ–δ)�(λ+δ)(t, t0),

we get that

u(t) ≤ Ke�(λ–δ)(η, t0)‖ω‖
1 – β

exp

{
1

1 – β

∫ ∞

t
�(

–h(s)
)
�s

}
,

where β =
∫ ∞
η

2Kh(s)�s < 1.
So, u(t) := e�(λ–δ)(t, t0)‖x(t)‖ is bounded for t ≥ η and this contradicts the hypothesis

that the Lyapunov exponent of x(t) is λ. �

Lemma 4.4 Suppose that T(t, s) is the evolution operator generated by A(t). Assume that
there exist complementary projections P(t), Q(t), α < β , K > 0, and a positive integer n, as
in the first part of Definition 3.1, such that

∥
∥T(t, s)P(s)

∥
∥ ≤ Ktneα(t, s), t ≥ s ≥ η > 0, (23)

∥∥T(t, s)Q(s)
∥∥ ≤ Ksneβ (t, s), s ≥ t, (24)

and

∫ ∞

t0

σ n(s)h(s) < ∞. (25)

If x(t) is a solution of (2) with Lyapunov exponent α, then ‖x(t)‖
tneα (t,t0) is bounded for t ≥ η.
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Proof If x(t) is a solution for (2) with Lyapunov number α, then, for ε > 0 with α < α +ε < β

and 0 < δ < ε, there exists L > 0 such that

∥
∥x(t)

∥
∥ ≤ Leα+δ(t) and ‖T(t, s)Q(s)‖ ≤ Ksneα+δ(t, s), s ≥ t.

On the other hand,

x(t) = T(t,η)ω +
∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

–
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s

= T(t,η)P(η)ω + T(t,η)Q(η)ω +
∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

–
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s,

where ω = x(η) +
∫ ∞
η

T(η,σ (s))Q(σ (s))f (s, x(s))�s.
Proceeding as in the previous lemma, we obtain

∥∥
∥∥

∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s

∥∥
∥∥

≤
∫ ∞

t

∥
∥T

(
t,σ (s)

)
Q

(
σ (s)

)∥∥
∥
∥f

(
s, x(s)

)∥∥�s

≤
∫ ∞

t
Kσ n(s)eα+δ

(
t,σ (s)

)
h(s)

∥
∥x(s)

∥
∥�s

≤ Keα+δ(t, t0)
∫ ∞

t
e�(α+δ)(s, t0)σ n(s)h(s)

∥
∥x(s)

∥
∥�s

≤ KLeα+δ(t, t0)
∫ ∞

t
σ n(s)h(s)�s < ∞.

So, the above integrals are convergent. Analogously, we get the following estimate:

∥∥
∥∥

∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

∥∥
∥∥ ≤

∫ t

η

∥
∥T

(
t,σ (s)

)
P
(
σ (s)

)∥∥
∥
∥f

(
s, x(s)

)∥∥�s

≤ Ktneα(t, t0)
∫ t

η

e�α(s, t0)h(s)
∥
∥x(s)

∥
∥�s.

Therefore,

T(t,η)ω = x(t) –
∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

+
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s
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and

∥
∥T(t,η)ω

∥
∥ ≤ ∥

∥x(t)
∥
∥ +

∫ t

η

∥
∥T

(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)∥∥�s

+
∫ ∞

t

∥∥T
(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)∥∥�s,

which implies that

‖T(t,η)ω‖
tneα+δ(t, t0)

≤ ‖x(t)‖
tneα+δ(t, t0)

+
1

tneα+δ(t, t0)

∫ t

η

∥∥T
(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)∥∥�s

+
1

tneα+δ(t, t0)
Keα+δ(t, t0)

∫ ∞

t
e�(α+δ)(s, t0)σ n(s)h(s)

∥
∥x(s)

∥
∥�s

≤ ‖x(t)‖
tneα+δ(t, t0)

+ Keα�(α+δ)(t, t0)
∫ t

η

e�α(s, t0)h(s)
∥
∥x(s)

∥
∥�s

+
K
tn

∫ ∞

t
e�(α+δ)(s, t0)σ n(s)h(s)

∥∥x(s)
∥∥�s −→ 0, as t −→ ∞.

Analogously to the previous lemma, we can prove that Q(η)ω = 0. So, P(η)ω = ω and

x(t) = T(t,η)P(η)ω +
∫ t

η

T
(
t,σ (s)

)
P
(
σ (s)

)
f
(
s, x(s)

)
�s

–
∫ ∞

t
T

(
t,σ (s)

)
Q

(
σ (s)

)
f
(
s, x(s)

)
�s.

Therefore,

‖x(t)‖
tneα(t, t0)

≤ ‖T(t,η)P(η)ω‖
tneα(t, t0)

+
1

tneα(t, t0)

∫ t

η

∥
∥T

(
t,σ (s)

)
P
(
σ (s)

)∥∥
∥
∥f

(
s, x(s)

)∥∥�s

+
1

tneα(t, t0)

∫ ∞

t

∥∥T
(
t,σ (s)

)
Q

(
σ (s)

)∥∥∥∥f
(
s, x(s)

)∥∥�s

≤ Ktneα(t,η)
tneα(t, t0)

‖ω‖ +
1

tneα(t, t0)

∫ t

η

Ktneα

(
t,σ (s)

)
h(s)

∥∥x(s)
∥∥�s

+
1

tneα(t, t0)

∫ ∞

t
Keα+δ

(
t,σ (s)

)
σ n(s)h(s)

∥
∥x(s)

∥
∥�s

≤ Ke�α(η, t0)‖ω‖ + K
∫ t

η

snh(s)
‖x(s)‖

sneα(s, t0)
�s

+
K

tneα�(α+δ)(t, t0)

∫ ∞

t
sneα�(α+δ)(s, t0)σ n(s)h(s)

‖x(s)‖
sneα�(α+δ)(s, t0)

�s.

Now, if we put

u(t) =
‖x(t)‖

tneα(t, t0)
, γ (t) = tneα�(α+δ)(t, t0), f (t) = tnh(t), g(t) = σ n(t)h(t),

then, applying Lemma 4.2, we obtain that

u(t) ≤ Ke�α(η, t0)‖ω‖
1 – β

exp

{
1

1 – β

∫ ∞

t
�(

–g(s)
)
�s

}
,
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where

β =
∫ ∞

η

f (s)�s +
∫ ∞

η

g(s)�s < 1.

Therefore, ‖x(t)‖
tneα (t,t0) is bounded. �

The following theorem gives answer to the converse problem.

Theorem 4.1 Suppose that T(t, s) is the evolution operator generated by A(t) and assume
that the following statements hold:

(a) For α ∈R and N ∈N, N > 1 fixed, system (1) has solution y(t) with Lyapunov
exponent α and there exists an integer l with 0 ≤ l ≤ N – 1 such that y(t) ∼= tleα(t, t0).

(b) For each l, 0 ≤ l ≤ N – 1, system (1) has a generalized polynomial exponential
trichotomy on time scales as in Definition 3.1.

(c)
∫ ∞

t0
σ N (s)h(s)�s < ∞.

Then, if x(t) is a solution of (2) with Lyapunov exponent α then there exists a solution
y(t) of (1) such that

lim
t→∞

‖x(t) – y(t)‖
‖x(t)‖ = 0.

Moreover, there exists l, 0 ≤ l ≤ N – 1 such that x(t) ∼= tleα(t, t0).

Proof From Definition 3.1 we have that P(t), S(t), Q(t), U(t) are complementary projec-
tions and (P(t) + S(t)) + (Q(t) + U(t)) = I , so, if P(t) = P(t) + S(t) and Q(t) = Q(t) + U(t),
then

∥∥T(t, s)P(s)
∥∥ ≤ Mtl–1sN–leα(t, s) + Meα�ε(t, s),

≤ 2MtN–1eα(t, s), t ≥ s.
∥∥T(t, s)Q(s)

∥∥ ≤ MtlsN–l–1eα(t, s) + Meα⊕ε(t, s),

≤ 2MsN–1eα(t, s), s ≥ t,

which implies that the conditions from Lemma 4.3 are satisfied and therefore ‖x(t)‖
tN–1eα (t,t0) is

bounded.
Let us define

l = min

{
m ∈ {0, . . . , N – 1} :

‖x(t)‖
tmeα(t, t0)

is bounded for t ≥ η

}
.

As in Lemma 4.3, if we put

y(t) = T(t,η)
[

x(η) +
∫ ∞

η

T
(
η,σ (s)

)
(Q

(
σ (s)

)
+ U

(
σ (s)

)
f
(
s, x(s)

)
�s

]
,
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for t ≥ η, we obtain that y(t) is a solution of (1) and

x(t) = y(t) +
∫ t

η

T
(
t,σ (s)

)[
P
(
σ (s)

)
+ S

(
σ (s)

)]
f
(
s, x(s)

)
�s

–
∫ ∞

t
T

(
t,σ (s)

)[
Q

(
σ (s)

)
+ U

(
σ (s)

)]
f
(
s, x(s)

)
�s. (26)

Therefore,

∥
∥x(t) – y(t)

∥
∥ ≤

∫ t

η

[∥∥T
(
t,σ (s)

)
P
(
σ (s)

)∥∥ +
∥
∥T

(
t,σ (s)

)
S
(
σ (s)

)∥∥]∥∥f
(
s, x(s)

)∥∥�s

+
∫ ∞

t

[∥∥T
(
t,σ (s)

)
Q

(
σ (s)

)∥∥ +
∥∥T

(
t,σ (s)

)
U

(
σ (s)

)∥∥]∥∥f
(
s, x(s)

)∥∥�s

≤
∫ t

η

[
Mtl–1σ N–l(s)eα

(
t,σ (s)

)
+ Meα�ε

(
t,σ (s)

)]
h(s)

∥∥x(s)
∥∥�s

+
∫ ∞

t

[
Mtlσ N–l–1(s)eα

(
t,σ (s)

)
+ Meα⊕ε

(
t,σ (s)

)]
h(s)

∥
∥x(s)

∥
∥�s

≤ tl–1eα(t, t0)
∫ t

η

M
[
σ N (s) +

(
1 + σ (s)ε

)σ l(s)
tl–1 e�ε(t, s)

]
h(s)

‖x(s)‖
sleα(s, t0)

�s

+ tleα(t, t0)
∫ ∞

t
M

[
σ N–1(s) +

σ l(s)
tl eε(t, s)

]
h(s)

‖x(s)‖
sleα(s, t0)

�s

≤ tl–1eα(t, t0)‖x‖α,l

∫ t

η

M
[
σ N (s) +

(
1 + σ (s)ε

)σ l(s)
tl–1

]
h(s)�s

+ tleα(t, t0)‖x‖α,l

∫ ∞

t
M

[
σ N–1(s) +

σ l(s)
tl

]
h(s)�s,

where ‖x‖α,l = supt>η
‖x(t)‖

tleα (t,t0) . So,

‖x(t) – y(t)‖
tleα(t, t0)

≤ M‖x‖α,l

(
1
t

∫ t

η

[
σ N (s)

(
1 + σ (s)ε

)σ l(s)
ηl

]
h(s)�s

+
∫ ∞

t

[
σ N–1(s) +

σ l(s)
ηl

]
h(s)�s

)
.

From assumption (c) we obtain that limt→∞ ‖x(t)–y(t)‖
tleα (t,t0) = 0. This implies that ‖y(t)‖

tleα (t) is
bounded for t ≥ η.

If we suppose first that l = 0, then in this case ‖x(t)‖/eα(t, t0) is bounded for t ≥ η and
P(s) ≡ 0.

From (26) it follows, for t ≥ η, that

x(t) = T(t,η)ω +
∫ t

η

T
(
t,σ (s)

)
S
(
σ (s)

)
f
(
s, x(s)

)
�s

–
∫ ∞

t

[
Q

(
σ (s)

)
+ U

(
σ (s)

)]
f
(
s, x(s)

)
�s,

where ω = x(η) +
∫ t
η

T(η,σ (s))[Q(σ (s)) + U(σ (s))]f (s, x(s))�x.
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We claim that [Q(η) + U(η)]ω 	= 0. In fact, if this it is not true, then we have S(η)ω = ω

and so

∥∥T(t,η)ω
∥∥ =

∥∥T(t,η)S(η)ω
∥∥ ≤ Meα�ε(t,η)‖ω‖, t ≥ η.

Therefore

∥∥x(t)
∥∥ ≤ ∥∥T(t,η)ω

∥∥ +
∫ t

η

∥∥T
(
t,σ (s)

)
S
(
σ (s)

)∥∥h(s)
∥∥x(s)

∥∥�s

+
∫ ∞

η

∥
∥T

(
t,σ (s)

)[
Q

(
σ (s)

)
+ U

(
σ (s)

)]∥∥h(s)
∥
∥x(s)

∥
∥�s

≤ Meα�ε(t,η)‖ω‖ +
∫ t

η

M
(
1 + σ (s)ε

)
eα�ε(t, s)h(s)

∥
∥x(s)

∥
∥�s

+
∫ ∞

t
Mσ N–1(s)eα(t, s)h(s)

∥∥x(s)
∥∥�s +

∫ ∞

t
Meα⊕ε(t, s)h(s)

∥∥x(s)
∥∥�s.

Now,

‖x(t)‖
eα�ε(t, t0)

≤ Meα�ε(t0,η)‖ω‖ +
∫ t

η

M
(
1 + σ (s)ε

)
e�(α�ε)(s, t0)h(s)

∥∥x(s)
∥∥�s

+
1

e�ε(t, t0)

∫ ∞

t
e�ε(s, t0)

(
σ N–1(s) + 1

)
Me�(α�ε)(s, t0)h(s)

∥
∥x(s)

∥
∥�s.

By using Lemma 4.2, we have that ‖x(s)‖/eα�ε(t, t0) is bounded for t ≥ η, therefore there
exists L > 0 such that ‖x(t)‖ ≤ Leα�ε(t, t0) ≤ Leα–ε(t, t0), but this contradicts the fact that
x(t) has Lyapunov exponent α.

Since ‖y(t)‖/eα(t, t0) is bounded for t ≥ η, we obtain

0 < lim inf
t→∞

‖y(t)‖
eα(t, t0)

≤ lim sup
t→∞

‖y(t)‖
eα(t, t0)

< ∞

and

0 < lim inf
t→∞

‖x(t)‖
eα(t, t0)

≤ lim sup
t→∞

‖x(t)‖
eα(t, t0)

< ∞.

Hence

lim
t→∞

‖x(t) – y(t)‖
‖x(t)‖ = lim

t→∞
‖x(t) – y(t)‖/eα(t, t0)

‖x(t)‖/eα(t, t0)
= lim

t→∞
‖x(t) – y(t)‖

eα(t, t0)
= 0.

Now, if l ≥ 1, from (26) we obtain

∥∥x(t)
∥∥ ≤ ∥∥y(t)

∥∥ +
∫ t

η

∥∥T
(
t,σ (s)

)[
P
(
σ (s)

)
+ S

(
σ (s)

)]∥∥∥∥f
(
x, x(s)

)∥∥�s

+
∫ ∞

t

∥
∥T

(
t,σ (s)

)[
Q

(
σ (s)

)
+ U

(
σ (s)

)]∥∥
∥
∥f

(
s, x(s)

)∥∥�s

≤ ∥
∥y(t)

∥
∥ +

∫ t

η

Meαe
(
t,σ (s)

)[
tl–1σ N–l(s) + e�ε

(
t,σ (s)

)]
h(s)

∥
∥x(s)

∥
∥�s
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+
∫ ∞

t
Meα

(
t,σ (s)

)[
tlσ N–l–1(s) + eε

(
t,σ (s)

)]
h(s)

∥∥x(s)
∥∥�s

≤ ∥∥y(t)
∥∥ +

∫ t

η

Meα(t, s)
[
tl–1σ N–l(s) +

(
1 + σ (s)ε

)
e�ε(t, s)

]
h(s)

∥∥x(s)
∥∥�s

+
∫ ∞

t
eα(t, s)

[
tlσ N–l–1(s) + eε(t, s)

]
h(s)

∥
∥x(s)

∥
∥�s.

We claim that ‖y(t)‖
tl–1eα (t,t0) is not bounded. Let us suppose that ‖y(t)‖

tl–1eα (t,t0) ≤ L for some L > 0.
Then, we have that

‖x(t)‖
tl–1eα(t, t0)

≤ ‖y(t)‖
tl–1eα(t, t0)

+
1

tl–1eα(t, t0)

∫ t

η

Meα(t, s)
[
tl–1σ N–l(s) +

(
1 + σ (s)ε

)
e�ε(t, s)

]
h(s)

∥
∥x(s)

∥
∥�s

+
1

tl–1eα(t, t0)

∫ ∞

t
Meα(t, s)

[
tlσ N–l–1(s) + eε(t, s)

]
h(s)

∥∥x(s)
∥∥�s

≤ L +
∫ t

η

M
[
σ N–l(s)sl–1 +

(
1 + σ (s)ε

)]
h(s)

‖x(s)‖
sl–1eα(s, t0)

�s

+ t
∫ ∞

t

M
s

[
σ N–l–1(s)sl + 1

]
h(s)

‖x(s)‖
sl–1eα(s, t0)

�s

≤ L +
∫ t

η

M(2 + ε)σ N–1(s)h(s)
‖x(s)‖

sl–1eα(s, t0)
�s

+ t
∫ ∞

t
2

M
s

σ N–1(s)h(s)
‖x(s)‖

sl–1eα(s, t0)
�s.

From Lemma 4.2 it follows that ‖x(t)‖
tl–1eα (t) is bounded, contradicting the definition of l. So

0 < lim inf
t→∞

‖y(t)‖
tleα(t, t0)

≤ lim sup
t→∞

‖y(t)‖
tleα(t, t0)

< ∞

and

0 < lim inf
t→∞

‖x(t)‖
tleα(t, t0)

≤ lim sup
t→∞

‖x(t)‖
tleα(t, t0)

< ∞.

Thus

lim
t→∞

‖x(t) – y(t)‖
‖x(t)‖ = lim

t→∞
‖x(t) – y(t)‖/tleα(t, t0)

‖x(t)‖/tleα(t, t0)
= lim

t→∞
‖x(t) – y(t)‖

tleα(t, t0)
= 0.

This concludes the proof. �

5 Examples
Example 5.1 Let us consider the dynamic equation

x�(t) = Ax(t) + f
(
t, x(t)

)
, t ∈ [0,∞)T, (27)
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where A =
( 1 0

1 1

)
and f : T×R

2 −→R
2 satisfying condition (3).

We compare system (27) with the unperturbed system

y�(t) = Ay(t), t ∈ [0,∞)T, (28)

The eigenvalues of the matrix A are λ1 = λ2 = 1, therefore 1 + μ(t) 	= 0, so A is regressive
for any time scale T. Hence, is easy to see that the evolution operator associated to (28) is
given by

T(t, s) = eA(t, s) = e1(t, s)

(
1 0

∫ t
s

�τ
1+μ(t) 1

)

.

For example,
(1) if T = R, then T(t, s) = et–s( 1 0

t–s 1

)
,

(2) if T = Z, then T(t, s) = 2t–s( 1 0
1
2 (t–s) 1

)
,

(3) if T = hZ, then T(t, s) = (1 + h)
t–s
h

( 1 0
1

1+h (t–s) 0
)
,

Now, let us define the projections

P(s) = eA(s, 0)

(
0 0
0 1

)

e–1
A (s, 0) and Q(s) = eA(s, 0)

(
1 0
0 0

)

e–1
A (s, 0),

therefore,

∥∥T(t, s)P(s)
∥∥ ≤ Mse1(t, s), t ≥ s ≥ β ,

∥∥T(t, s)Q(s)
∥∥ ≤ Mte1(t, s), s ≥ t ≥ β ,

with l = 1, N = 2, α = 1, and S(s) = U(s) = 0; moreover, ‖y(t)‖ ∼= te1(t, 0). If
∫ ∞

0 σ (s)h(s)�s <
∞, then, by Theorem 3.1, system (27) has a solution x(t) such that

lim
t→∞

‖x(t) – y(t)‖
‖y(t)‖ = 0.

Example 5.2 Let T = {2n : n ∈N
0}, where N

0 is the set of nonnegative integers.
Consider the following system:

x�(t) = Ax(t) + f
(
t, x(t)

)
, t ∈ [1,∞)T, (29)

where A =
( –3 –2

3 4

)
and f (t, x) =

( 0
sin(x(σ (t)))

σ (t)t

)
. The eigenvalues of A are λ1 = –2 and λ = 3. Since

1 – 2μ(t) = 1 – 2t 	= 0 for all t ∈ T, we get that A is regressive.
The evolution operator associated to the linear system

y�(t) = Ay(t), t ∈ [1,∞)T, (30)

is given by

T(t, s) = eA(t, s) =

(
2e–2(t, s) e3(t, s)
–e–2(t, s) –3e3(t, s)

)

=

(
2
∏

τ∈[s,t)(1 – 2τ )
∏

τ∈[s,t)(1 + 3τ )
–

∏
τ∈[s,t)(1 – 2τ ) –3

∏
τ∈[s,t)(1 + 3τ )

)

.
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If we define the projections

P(s) = eA(s, 1)

(
0 0
0 1

)

e–1
A (s, 1) and Q(s) = eA(s, 1)

(
1 0
0 0

)

e–1
A (s, 1),

then

∥∥T(t, s)P(s)
∥∥ ≤ 8

5
e3(t, s), t ≥ s ≥ β ,

∥∥T(t, s)Q(s)
∥∥ ≤ 8

5
e3(t, s), s ≥ t ≥ β .

We have that l = 0, N = 1, α = 3, S(s) = 0, and U(s) = 0. Since y(t) ∼= e3(t, 1) and
∫ ∞

1 h(s)�s =
∫ ∞

1
�s

σ (s)s < ∞, by Theorem 3.1, system (29) has a solution x(t) such that

lim
t→∞

‖x(t) – y(t)‖
‖y(t)‖ = 0.

6 Concluding remarks
In this paper we studied the asymptotic relative equivalence between the solutions of two
dynamic equations on time scales, one linear and the other formed by its nonlinear pertur-
bation, unifying and extending the results presented in the references. To accomplish this
goal, we introduced the concept of a polynomial exponential trichotomy on time scales
which is a generalization of the concept of polynomial exponential dichotomy presented
by Leiva and Rodrigues in [16]. It is important to mention that this concept is more gen-
eral than the simple concept of polynomial dichotomy, as it involves several projections
that appear in a natural way when one breaks the Jordan decomposition block in order to
study a relative behavior of solutions of differential equations. In a forthcoming paper we
are going to show the existence and roughness of this type of trichotomy.
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