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Abstract
The aim of this paper is to examine the existence of at least two distinct nontrivial
solutions to a Schrödinger-type problem involving the nonlocal fractional
p(·)-Laplacian with concave–convex nonlinearities when, in general, the nonlinear
term does not satisfy the Ambrosetti–Rabinowitz condition. The main tools for
obtaining this result are the mountain pass theorem and a modified version of
Ekeland’s variational principle for an energy functional with the compactness
condition of the Palais–Smale type, namely the Cerami condition. Also we discuss
several existence results of a sequence of infinitely many solutions to our problem. To
achieve these results, we employ the fountain theorem and the dual fountain
theorem as main tools.
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1 Introduction
In the last years the study of problems involving differential equations and variational
problems associated with the p(·)-Laplacian operator has been paid to an increasing deal of
attention because they can be viewed as a model for many physical phenomena which arise
in several investigations related to elastic mechanics, electro-rheological fluid (“smart flu-
ids”), image processing, etc. We refer the reader to [6, 16, 21, 32, 43, 49] and the references
therein.

On the other hand, in the recent years the study of equations with nonstandard growth
and related nonlocal equations has gained an increasing deal of attention due to both
pure mathematical research aspects and real-world applications. This fact is justified by
the occurrence of the aforementioned problems in many different applications such as
conservation laws, ultra-materials and water waves, phase transitions, thin obstacle prob-
lem, optimization, flames propagation, stratified materials, anomalous diffusion, ultra-
relativistic limits of quantum mechanics, crystal dislocation, soft thin films, minimal sur-
faces, semipermeable membranes and flame propagation, multiple scattering, mathemat-
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ical finance, and so on. For a comprehensive introduction to the study of nonlocal prob-
lems, we refer to the work of Di Nezza, Palatucci, and Valdinoci [20], see [13, 25, 34, 36, 50]
and the references therein for more details.

Therefore, a natural question is to understand if some results can be recovered when
we change the local p(·)-Laplacian, defined as – div(|∇u|p(x)–2∇u), into the nonlocal frac-
tional p(·)-Laplacian. In this direction, several researchers have attempted to extend the
study of the classical exponent variable case to include the fractional case (see for instance
[4, 7, 8, 26, 27, 31, 38, 58]). In particular, as far as we are aware, Kaumann et al. [31] defined
a new class of fractional Sobolev spaces with variable exponents that takes a fractional vari-
able exponent operator into consideration. In particular, in [8] the authors discussed sev-
eral fundamental properties related to the aforementioned function space and the related
nonlocal operator and, using a direct variational method, the authors showed an applica-
tion to a class of nonlocal fractional problems with several variable exponents. Precisely,
as applications, they proved the existence of at least one solution for equations driven by
the fractional p(·)-Laplacian. Inspired by these recent works, further fundamental embed-
dings for the fractional Sobolev spaces with variable exponents and their applications—
such as a priori bounds and multiplicity of solutions of problems driven by the fractional
p(·)-Laplacian—have been provided by Ho and Kim [26]. Also they obtained the existence
of many solutions for a class of critical nonlocal problems with variable exponents; see
[27]. We refer the interested reader to [4, 5, 58] for the existence results to Kirchhoff-type
problems driven by a p(·)-fractional operator.

This paper is devoted to the study of the existence of nontrivial solutions for the follow-
ing Schrödinger-type problem involving the nonlocal fractional p(·)-Laplacian:

–LKz + V (x)|z|p(x,x)–2z = λa(x)|z|r(x)–2z + f (x, z) in R
N , (P)

where N ≥ 2, λ > 0 is a parameter, p : RN ×R
N → (1,∞) is a continuous function satisfying

p(x) := p(x, x) for all x ∈ R
N , r : RN → (1,∞) is continuous, V and a are suitable potential

functions in (0,∞), and f : RN × R → R satisfies a Carathéodory condition. Here, LK

stands for the following pointwise-defined nonlocal operator:

LKz(x) = 2
∫
RN

∣∣z(x) – z(y)
∣∣p(x,y)–2(z(x) – z(y)

)
K(x, y) dy for all x ∈R

N ,

where p ∈ C(RN × R
N ) is uniformly continuous such that p is symmetric, i.e., p(x, y) =

p(y, x) for all x, y ∈ R
N ; 0 < s < 1; 1 < inf(x,y)∈RN ×RN p(x, y) ≤ sup(x,y)∈RN ×RN p(x, y) < N

s ; and
K : RN ×R

N → (0, +∞) is a kernel function such that the following conditions are fulfilled:
(K1) mK ∈ L1(RN ×R

N ), where m(x, y) = min{|x – y|p(x,y), 1};
(K2) There exists a constant θ0 > 0 such that K(x, y)|x – y|N+sp(x,y) ≥ θ0 for almost all

(x, y) ∈ R
N ×R

N and x �= y;
(K3) K(x, y) = K(y, x) for all (x, y) ∈R

N ×R
N .

With the choice K(x, y) = |x – y|–N–sp(x,y), the operator LK becomes the fractional p(·)-
Laplacian operator (–�)s

p(·) defined as

(–�)s
p(x)z(x) = P.V.

∫
RN

|z(x) – z(y)|p(x,y)–2(z(x) – z(y))
|x – y|N+sp(x,y) dy, x ∈R

N .
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The first purpose of the present paper is to establish the existence of at least two dis-
tinct nontrivial solutions for Schrödinger-type problems involving the nonlocal fractional
p(·)-Laplacian in case where the nonlinear term is concave–convex. The primary tools
for obtaining this result are the mountain pass theorem (see [3]) and a variant of Eke-
land’s variational principle (see [6]) for an energy functional. We assume that this energy
functional satisfies a Palais–Smale-type compactness condition, namely the Cerami con-
dition. This kind of nonlinearity has been extensively studied since the seminal work of
Ambrosetti, Brezis, and Cerami [2]. For elliptic equations with the concave–convex non-
linearity, we refer the reader also to [12, 14, 15, 19, 28, 53–55] and the references therein.
Precisely, the existence of multiple solutions for an elliptic problem of a nonhomogeneous
fractional p-Kirchhoff-type, involving concave–convex nonlinearities, has been studied in
[55]. By means of variational techniques and Ekeland’s variational principle, the authors in
[28] obtained the existence of two nontrivial nonnegative solutions and infinitely many so-
lutions for the following degenerated p(x)-Laplacian equations involving concave–convex
type nonlinearities with two parameters:

⎧⎨
⎩

– div(w(x)|∇z|p(x)–2∇z) = λa(x)|z|r(x)–2z + μb(x)|z|q(x)–2z in �,

z = 0 on ∂�,

where � ⊂ R
N is a bounded domain with a smooth boundary ∂�, p, q, r ∈ C(�, (1,∞))

with r(x) < p(x) < q(x) for all x ∈ �, w, a, b are measurable functions on � that are positives
a.e. in �, and λ, μ are real parameters. Very recently, Biswas and Tiwari [11] investigated
an elliptic problem involving nonlocal operator with variable exponents and concave–
convex nonlinearity in a bounded domain with Dirichlet boundary condition. Biswas and
Tiwari assumed the condition by Ambrosetti and Rabinowitz [3] (see [1, 24] for elliptic
equations with variable exponents) and then employed the mountain pass theorem and
Ekeland’s variational principle to obtain the multiplicity result.

As we known, the condition of Ambrosetti–Rabinowitz type in [3], that is, there exists
a constant θ > p such that

0 < θF(x, τ ) ≤ f (x, τ )τ ,

for all τ ∈R \ {0} and x ∈R
N , where F(x, τ ) =

∫ τ

0
f (x, t) dt, (1.1)

is essential in securing the boundedness of the Palais–Smale sequence of an energy func-
tional. However, this condition is quite restrictive and removes several nonlinearities. For
this reason, during the last few decades there have been extensive studies which tried to
drop it; see [1, 16, 29, 30, 33, 34, 38–40, 42, 44].

In that sense, our first aim is to discuss the existence of two nontrivial distinct solutions
to problem (P) for the case of a combined effect of concave–convex nonlinearities when
the nonlinear growth f does not satisfy the condition of Ambrosetti–Rabinowitz type.
The main point in the present paper is to discuss the existence of multiple solutions to (P)
under a new and mild assumption for the convex term f that does not satisfy (1.1) and is
different from those studied in [1, 16, 29, 30, 33, 34, 38–40, 42, 44]. In particular, we give
some examples to demonstrate that this condition is not artificial. The main difficulty for
obtaining the multiplicity result under this assumption on the convex term f is to verify
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the Cerami condition of the energy functional associated with (P). It is worth noting that
we overcome it from the coercivity of the potential function V .

For recent developments in the context of concave–convex problems, we mention the
work of Papageorgiou–Scapellato [45] where the authors studied nonlinear Robin prob-
lems driven by the p-Laplacian plus and indefinite potential in which the reaction exhibits
the competing effects of a parametric concave (that is, (p–1)-sublinear) term and of a con-
vex (that is, (p – 1)-superlinear) term. In [45] the authors did not require the Ambrosetti–
Rabinowitz condition and obtained a bifurcation-type theorem that describes the depen-
dence of a set of positive solutions on the parameter λ > 0. In line with the contents of
the paper [45], Papageorgiou and Scapellato [47] considered Robin problems driven by
the (p, q)-Laplacian plus an indefinite potential term and did not require the Ambrosetti–
Rabinowitz condition for the reaction. We mention that in [45] there is no parameter and
the authors, in addition to constant sign solutions, produced nodal solutions. Finally, we
cite a variant of the classical concave–convex problem studied in [46]. Precisely, Papageor-
giou and Scapellato in [46] studied a nonlinear resonant boundary value problem where
there is no parameter, the convex term is replaced by a resonant (that is, (p – 1)-linear)
term, and the concave contribution comes from the boundary condition.

The second main aim of this paper is to obtain several existence results of a sequence of
infinitely many solutions to problem (P). First we are to discuss that multiple large energy
solutions for problem (P) exist (see Theorem 3.12). The second is to establish that problem
(P) possesses a sequence of infinitely many small energy solutions (see Theorem 3.16). The
strategy of the proof for these consequences is based on the applications of variational
tools such as the fountain theorem and the dual fountain theorem, which were initially
built by the papers [9] and [10], respectively. Our study on such multiplicity results for
nonlinear elliptic equations of variational type is particularly inspired by the contributions
in recent works [18, 30, 38, 41, 48, 51] and the references therein. However, in some sense
the proof of our consequence for multiple small energy solutions is different from that
of the previous related works [10, 41, 51, 52]. To the best of our knowledge, while many
authors are interested in the study of elliptic problems in both local and nonlocal cases,
the present paper is the first endeavor to develop the existence results for the concave–
convex-type problems driven by nonlocal fractional p(·)-Laplacian.

This paper’s outline is the following: we firstly present some necessary preliminary
knowledge of function spaces. Next we give the variational framework associated with
problem (P), and then we establish the results about at least two distinct nontrivial so-
lutions to the nonlocal fractional p(·)-Laplacian with concave–convex nonlinearities by
applying the mountain pass theorem and a variant of Ekeland’s variational principle for
an energy functional with the Cerami condition. Finally, under suitable conditions on the
convex term f , we carry out various existence results of infinitely many nontrivial solutions
by employing the variational principle.

2 Preliminaries
In this section we present a natural functional framework associated with problem (P).
We briefly recall some definitions and fundamental properties of the variable exponent
Lebesgue spaces and a Lebesgue–Sobolev space of fractional type W s,q(·),p(·,·)(�) which
will be used throughout the paper. For further details on these spaces, we refer the reader
to [4, 7, 8, 26, 27, 31, 58].
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Set

C+(�) =
{
� ∈ C(�) : min

x∈�

�(x) > 1
}

.

For any � ∈ C+(�), we define

�+ = sup
x∈�

�(x) and �– = inf
x∈�

�(x).

Let M(�) be the vector space of all measurable functions from � into R. We identify two
such functions which differ only on a Lebesgue-null set. Given h ∈ C+(�), the anisotropic
Lebesgue space Lh(·)(�) is defined by

Lh(·)(�) =
{

z ∈ M(�) :
∫

�

|z|h(x) dx < ∞
}

.

We equip this space with the so-called Luxemburg norm defined by

‖z‖Lh(·)(�) = inf

[
ϑ > 0 :

∫
�

∣∣∣∣z(x)
ϑ

∣∣∣∣
h(x)

dx ≤ 1
]

.

In the anisotropic Lebesgue spaces the following Hölder inequality holds.

Lemma 2.1 ([23, 35]) The space Lh(·)(RN ) is a separable, uniformly convex Banach space,
and its conjugate space is Lh′(·)(RN ) where 1/h(x) + 1/h′(x) = 1. For any z ∈ Lh(·)(RN ) and
ω ∈ Lh′(·)(RN ), we have

∣∣∣∣
∫
RN

zω dx
∣∣∣∣ ≤

(
1

h–
+

1
(h′)–

)
‖z‖Lh(·)(RN )‖ω‖Lh′(·)(RN ) ≤ 2‖z‖Lh(·)(RN )‖ω‖Lh′(·)(RN ).

Lemma 2.2 ([23]) Let us consider the modular function

ψ(z) =
∫
RN

|z|h(x) dx for any z ∈ Lh(·)(
R

N)
.

Then we have
(1) ψ(z) > 1 (= 1; < 1) if and only if ‖z‖Lh(·)(RN ) > 1 (= 1; < 1), respectively;
(2) If ‖z‖Lh(·)(RN ) > 1, then ‖z‖h–

Lh(·)(RN ) ≤ ψ(z) ≤ ‖z‖h+
Lh(·)(RN );

(3) If ‖z‖Lh(·)(RN ) < 1, then ‖z‖h+
Lh(·)(RN ) ≤ ψ(z) ≤ ‖z‖h–

Lh(·)(RN ).

Let � be a Lipschitz domain in R
N . Let s ∈ (0, 1) and let p ∈ C(� × �, (1,∞)) be such

that p(x, y) = p(y, x) for all x, y ∈ � and

1 < p– := inf
(x,y)∈�×�

p(x, y) ≤ p+ := sup
(x,y)∈�×�

p(x, y) < +∞.

For q ∈ C+(RN ), define

W s,q(·),p(·,·)(
R

N)
:=

{
z ∈ Lq(·)(

R
N)

:
∫
RN

∫
RN

|z(x) – z(y)|p(x,y)

|x – y|N+sp(x,y) dx dy < +∞
}

,
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and we set

[z]s,p(·,·)
(
R

N)
:= inf

{
λ > 0 :

∫
RN

∫
RN

|z(x) – z(y)|p(x,y)

λp(x,y)|x – y|N+sp(x,y) dx dy < 1
}

.

Then W s,q(·),p(·,·)(RN ) endowed with the norm

‖z‖s,q,p := ‖z‖Lq(·)(RN ) + [z]s,p(·,·)
(
R

N)

is a separable reflexive Banach space (see [7, 8, 31]).

Lemma 2.3 ([26]) Let � be a bounded Lipschitz domain, and let p, q, and s be as above.
Assume furthermore that

sp+ < N and q(x) ≥ p(x) for all x ∈ �.

Then the following embedding holds:

W s,q(·),p(·,·)(�) ↪→↪→ Lr(·)(�)

for any r ∈ C+(�) such that r(x) < p∗
s (x) := Np(x,x)

N–sp(x,x) for all x ∈ �.

For the sake of brevity, we write p(x) in place of p(x, x) for some cases, and hence
p ∈ C+(RN ). In addition, we write W s,p(·,·)(RN ) in place of W s,p(·),p(·,·)(RN ). We recall the
following embeddings (see [26, Theorem 3.5]).

Lemma 2.4 Let s ∈ (0, 1). Let p ∈ C+(RN ×R
N ) be a uniformly continuous and symmetric

function with sp+ < N . Then it holds that
(i) W s,p(·,·)(RN ) ↪→ Lr(·)(RN ) for any uniform continuous function r ∈ C+(RN ) fulfilling

p(x, x) ≤ r(x) for all x ∈R
N and infx∈RN (p∗

s (x) – r(x)) > 0;
(ii) W s,p(·,·)(RN ) ↪→↪→ Lr(·)

loc (RN ) for any r ∈ C+(RN ) with r(x) < p∗
s (x) for all x ∈R

N .

In the following, let 0 < s < 1 and let p ∈ C+(RN × R
N ) be a uniformly continuous and

symmetric function such that sp+ < N . Suppose that K : RN ×R
N → (0,∞) is a function

with conditions (K1)–(K3). Let us denote with W s,p(·,·)
K (RN ) the completion of C∞

0 (RN )
with respect to the norm

‖z‖W s,p(·,·)
K (RN ) := ‖z‖Lp(·)(RN ) + |z|W s,p(·,·)

K (RN ),

where

|z|W s,p(·,·)
K (RN ) := inf

{
λ > 0 :

∫
RN

∫
RN

1
λp(x,y)

∣∣z(x) – z(y)
∣∣p(x,y)K(x, y) dx dy < 1

}
.

According to the basic idea in [23], we obtain the following result.

Lemma 2.5 Denote

χ (z) =
∫
RN

|z|p(x) dx +
∫
RN

∫
RN

∣∣z(x) – z(y)
∣∣p(x,y)K(x, y) dx dy for any z ∈ W s,p(·,·)

K
(
R

N)
.
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Then we have
(1) χ (z) > 1 (= 1; < 1) if and only if ‖z‖W s,p(·,·)

K (RN ) > 1 (= 1; < 1), respectively;

(2) If ‖z‖W s,p(·,·)
K (RN ) > 1, then ‖z‖p–

W s,p(·,·)
K (RN )

≤ χ (z) ≤ ‖z‖p+

W s,p(·,·)
K (RN )

;

(3) If ‖z‖W s,p(·,·)
K (RN ) < 1, then ‖z‖p+

W s,p(·,·)
K (RN )

≤ χ (z) ≤ ‖z‖p–

W s,p(·,·)
K (RN )

.

Throughout this paper, we denote X := W s,p(·,·)
K (RN ), and let X ∗ be a dual space of X .

Furthermore, 〈·, ·〉 denotes the pairing of X and its dual X ∗.

3 Main results
In this section, we show the multiplicity result of a weak solution to problem (P) by em-
ploying the variational principle.

Definition 3.1 We say that z ∈X is a weak solution of problem (P) if

∫
RN

∫
RN

∣∣z(x) – z(y)
∣∣p(x,y)–2(z(x) – z(y)

)(
ϕ(x) – ϕ(y)

)
K(x, y) dx dy

+
∫
RN

V (x)|z|p(x)–2zϕ dx

= λ

∫
RN

a(x)|z|r(x)–2zϕ dx +
∫
RN

f (x, z)ϕ dx

for all ϕ ∈X .

Let us define the functional A : X → R by

A(z) =
∫
RN

∫
RN

1
p(x, y)

∣∣z(x) – z(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|z|p(x) dx.

Then from [8, 31] it follows that A ∈ C1(X ,R), and its Fréchet derivative is given by

〈
A′(z),ϕ

〉
=

∫
RN

∫
RN

∣∣z(x) – z(y)
∣∣p(x,y)–2(z(x) – z(y)

)(
ϕ(x) – ϕ(y)

)
K(x, y) dx dy

+
∫
RN

V (x)|z|p(x)–2zϕ dx.

Let F(x, τ ) =
∫ τ

0 f (x, s) ds. Let us assume that
(H) p, q, r ∈ C+(RN ) and 1 < r– ≤ r+ < p– ≤ p+ < q– ≤ q+ < p∗

s (x) for all x ∈R
N .

(V) V ∈ L1
loc(RN ), ess infx∈RN V (x) > 0, and lim|x|→∞ V (x) = +∞.

(A) 0 ≤ a ∈ L
p(·)

p(·)–r(·) (RN ) ∩ L∞(RN ) with |{x ∈R
N : a(x) �= 0}| > 0, where |A| denotes the

Lebesgue measure of a subset A of RN .
(F1) f : RN ×R →R satisfies the Carathéodory condition.
(F2) There exists 0 ≤ b ∈ L1(RN ) ∩ L∞(RN ) such that

∣∣f (x, τ )
∣∣ ≤ b(x)|τ |q(x)–1 for almost all (x, τ ) ∈R

N ×R,

where q ∈ C+(RN ) and q(x) < p∗
s (x) for all x ∈R

N .
(F3) lim|τ |→∞ F(x,τ )

|τ |p+ = ∞ uniformly for almost all x ∈R
N .
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(F4) There are μ > p+, M > 0, and a function � ≥ 0 with � ∈ L
p(·)

p(·)–p– (B1) on
B1 := {x ∈R

N : p(x) > p–} and �(x) ≡ �̃ (constant function) on
B2 := {x ∈R

N : p(x) = p–} such that |{x ∈R
N : �(x) > 0}| �= 0 and

τ f (x, τ ) – μF(x, τ ) ≥ –�(x)|τ |p–
– ζ (x)

for all (x, τ ) ∈ R
N ×R with |τ | ≥ M and for some ζ ∈ L1(RN ) ∩ L∞(RN ) with

ζ (x) ≥ 0.
(F5) F(x, τ ) = o(|τ |p(x)) as τ → 0 uniformly for all x ∈R

N .
As mentioned in the introduction, assumption (F4) for the convex term f is different

from that used in the works [1, 16, 29, 30, 33, 34, 38–40, 42, 44]. Hence we give some
simple examples of functions that satisfy condition (F4).

Example 3.2 If p(x) = 2 for all x ∈R
N and

f (x, τ ) = ρ(x)|τ |(4τ 3 – 2τ cos τ – 4 sin τ
)
,

where ρ(x) ∈ L1(RN ) ∩ L∞(RN ) and 0 < infx∈RN ρ(x) ≤ supx∈RN ρ(x) < ∞, then

F(x, τ ) = ρ(x)
(

4
5
|τ |5 – 2τ |τ | sin τ

)
.

We set �̃ := infx∈RN ρ(x) and ζ (x) := 2(μ – 2)ρ(x) with 2 < μ < 15
4 for all x ∈R

N . Then

f (x, τ )τ – μF(x, τ ) = ρ(x)
(

4|τ |5 – 2|τ |3 cos τ – 4τ |τ | sin τ –
4
5
μ|τ |5 + 2μτ |τ | sin τ

)

= ρ(x)
(

4|τ |5 –
4
5
μ|τ |5 – 2|τ |3 cos τ + (2μ – 4)τ |τ | sin τ

)

≥ ρ(x)
(

4|τ |3 –
4
5
μ|τ |3 – 2|τ | cos τ – (2μ – 4)

)
τ 2

≥ ρ(x)
(

|τ |3 +
(

3 –
4
5
μ

)
|τ |3 – 2|τ | – (2μ – 4)

)

≥ ρ(x)|τ |2 – (2μ – 4)ρ(x)

≥ –�̃|τ |2 – ζ (x)

for |τ | ≥ r, where r > 1 is chosen such that (3 – 4
5μ)r3 – 2r ≥ 0. Hence (F4) is fulfilled.

Example 3.3 If p(x) = p > 1 for all x ∈R
N and

f (x, τ ) = ρ(x)
(

|τ |p–2τ +
2
p

sin τ

)
,

where ρ comes from the previous example, then

F(x, τ ) = ρ(x)
(

1
p
|τ |p –

2
p

cos τ +
2
p

)
.
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We set �̃ := (μ – 1) supx∈RN ρ(x) and ζ (x) := 4μ

p ρ(x) with p < μ for all x ∈R
N . Then

f (x, τ )τ – μF(x, τ ) = ρ(x)
[
|τ |p +

2
p
τ sin τ –

μ

p
|τ |p +

2μ

p
cos τ –

2μ

p

]

≥ ρ(x)
[(

1 –
μ

p

)
|τ |p –

2
p
|τ | –

4μ

p

]

= ρ(x)
[

(1 – μ)|τ |p +
μ(p – 1)

p
|τ |p –

2
p
|τ |

]
–

4μ

p
ρ(x)

≥ ρ(x)(1 – μ)|τ |p –
4μ

p
ρ(x)

≥ –�̃|τ |p – ζ (x)

for all |τ | ≥ r, where r > 1 is chosen such that μ(p – 1)rp – 2r ≥ 0. Hence (F4) is fulfilled.

Example 3.4 If p ∈ C+(RN ) and

f (x, τ ) = ρ(x)|τ |p(x)–1τ
[(

p(x) + 3
)
τ 2 – 2

(
p(x) + 2

)|τ | +
(
p(x) + 1

)]
,

where ρ(x) ∈ L1(RN ) ∩ L∞(RN ), then

F(x, τ ) = ρ(x)
(|τ |p(x)+3 – 2|τ |p(x)+2 + |τ |p(x)+1).

We set �(x) := ρ(x) =: ζ (x) and p– + 1 < μ < p(x) + 2 for all x ∈R
N . Then

f (x, τ )τ – μF(x, τ )

= ρ(x)
[(

p(x) + 3 – μ
)|τ |p(x)+3 – 2

(
p(x) + 2 – μ

)|τ |p(x)+2 +
(
p(x) + 1 – μ

)|τ |p(x)+1]

≥ ρ(x)
[(

p(x) + 3 – μ
)|τ |2 – 2

(
p(x) + 2 – μ

)|τ | +
(
p– + 1 – μ

)]|τ |p(x)+1

= ρ(x)
[|τ |2 +

(
p(x) + 2 – μ

)(|τ |2 – 2|τ |) +
(
p– + 1 – μ

)]|τ |p(x)+1

≥ ρ(x)
[|τ |2 –

(
μ – p– – 1

)]|τ |p–

≥ –�(x)|τ |p–
– ζ (x)

for |τ | ≥ r, where r > 1 +
√

(μ – p– – 1) is chosen such that r2 – 2r ≥ 0. Hence (F4) is ful-
filled.

Let us define the functional �λ : X →R by

�λ(z) = λ

∫
RN

a(x)
r(x)

|z|r(x) dx +
∫
RN

F(x, z) dx.

It is easy to check that �λ ∈ C1(X ,R) and its Fréchet derivative is

〈
� ′

λ(z),ϕ
〉

= λ

∫
RN

a(x)|z|r(x)–2zϕ dx +
∫
RN

f (x, z)ϕ dx
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for any z,ϕ ∈X . Next we define the functional Iλ : X →R by

Iλ(z) = A(z) – �λ(z).

Then the functional Iλ ∈ C1(X ,R) and its Fréchet derivative is

〈
I ′

λ(z),ϕ
〉

=
∫
RN

∫
RN

∣∣z(x) – z(y)
∣∣p(x,y)–2(z(x) – z(y)

)(
ϕ(x) – ϕ(y)

)
K(x, y) dx dy

+
∫
RN

V (x)|z|p(x)–2zϕ dx – λ

∫
RN

a(x)|z|r(x)–2zϕ dx –
∫
RN

f (x, z)ϕ dx

for any z,ϕ ∈X .
Under assumption (V), we can give the compact embedding.

Lemma 3.5 If the potential function V satisfies assumption (V), then
(1) the embedding from X ↪→ Lp(·)(RN ) is continuous and compact;
(2) for any measurable function � : RN →R with p(x) < �(x) for all x ∈R

N , there is a
compact embedding X ↪→ L�(·)(RN ) if infx∈RN (p∗

s (x) – �(x)) > 0.

Proof In order to prove this lemma, we can adapt the proof of Lemma 2.6 in [1]. For the
case that the potential function V is coercive, we obtain a similar result involving variable
exponents of fractional type using Lemma 2.4. So, we omit the details of the proof. �

Next we give the following useful lemmas which are essential in obtaining the existence
of at least two distinct nontrivial solutions to problem (P).

Definition 3.6 Let E be a real Banach space with dual space E∗, I ∈ C1(E,RN ). We say
that I satisfies the Cerami condition ((C)-condition, for short) in E if any (C)-sequence
{zn} ⊂ E, i.e., {I(zn)} is bounded and ‖I ′(zn)‖E∗ (1 + ‖zn‖E) → 0 as n → ∞, has a con-
vergent subsequence in E. We say that I satisfies the Cerami condition at level c ((C)c-
condition, for short) in E if any (C)c-sequence {zn} ⊂ E, i.e., I(zn) → c as n → ∞ and
‖I ′(zn)‖E∗ (1 + ‖zn‖E) → 0 as n → ∞, has a convergent subsequence in E.

Lemma 3.7 Assume that (H), (V), (A), and (F1)–(F4) hold. Then the functional Iλ satisfies
the (C)-condition for any λ > 0.

Proof Let {zn} be a (C)-sequence in X for Iλ, that is,

sup
n∈N

∣∣Iλ(zn)
∣∣ ≤M0 and

〈
I ′

λ(zn), zn
〉

= o(1), (3.1)

where o(1) → 0 as n → ∞, and M0 is a positive constant. From Lemma 4.2 in [8] and
Lemma 3.3 in [33], it follows that A′ and � ′

λ are of type (S+). Since X is a reflexive Ba-
nach space, it is enough to ensure that the sequence {zn} is bounded in X . We argue by
contradiction. Assume that the sequence {zn} is unbounded in X . So then we may sup-
pose that ‖zn‖X > 1 and ‖zn‖X → ∞ as n → ∞. Let us denote the sequence {wn} with
wn = zn/‖zn‖X . Then, clearly, we have {wn} ⊂ X and ‖wn‖X = 1. Hence, up to a subse-
quence, still denoted by {wn}, we infer wn ⇀ ω in X as n → ∞ and by Lemma 3.5

wn(x) → ω(x) a.e. in R
N and wn → ω in L�(·)(

R
N)

as n → ∞ (3.2)
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for p(x) ≤ �(x) with infx∈RN (p∗
s (x) – �(x)) > 0. Notice that V (x) → +∞ as |x| → ∞, then

∫
RN

V (x)
(

1
p(x)

–
1
μ

)
|zn|p(x) dx – C1

∫
|zn|≤M

(|zn|p(x) + b(x)|zn|q(x))dx

≥ 1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx – M1,

where C1 and M1 are positive constants. In fact we know that

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx – C1

∫
|zn|≤M

|zn|p(x) + b(x)|zn|q(x) dx

≥ 1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx +
1
2

(
1

p+ –
1
μ

)∫
|zn|≤1

V (x)|zn|p(x) dx

– C1

∫
|zn|≤1

|zn|p(x) + b(x)|zn|q(x) dx – C1

∫
1<|zn|≤M

|zn|p(x) + b(x)|zn|q(x) dx

≥ 1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx +
1
2

(
1

p+ –
1
μ

)∫
|zn|≤1

V (x)|zn|p(x) dx

– C1
(
1 + ‖b‖L∞(RN )

)∫
|zn|≤1

|zn|p(x) dx – C̃1,

where C1 and C̃1 are positive constants. Let us set � := {x ∈ R
N : |zn(x)| > 1}. Since |�| is

finite (| · | is the Lebesgue measure in R
N ), � = �̃ ∪ N where �̃ is a bounded set and N

is of measure zero. Without loss of generality, suppose that there exists Br(0) ⊆ R
N such

that � ⊂ Br(0) where Br(0) is the open ball centered at 0 with radius r in the Euclidean
space R

N . Since V (x) → +∞ as |x| → ∞, there is r0 > 0 such that |x| ≥ r0 > r implies
V (x) ≥ 2C1(1 + ‖σ‖L∞(RN ))

μp+

μ–p+ . Consequently, we get

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx – C1

∫
|zn|≤M

|zn|p(x) + b(x)|zn|q(x) dx

≥ 1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx +
1
2

(
1

p+ –
1
μ

)∫
�c∩Bc

r0

V (x)|zn|p(x) dx

+
1
2

(
1

p+ –
1
μ

)∫
�c∩Br0

V (x)|zn|p(x) dx – C1
(
1 + ‖b‖L∞(RN )

)∫
�c∩Bc

r0

|zn|p(x) dx

– C1
(
1 + ‖b‖L∞(RN )

)∫
�c∩Br0

|zn|p(x) dx – C̃1

≥ 1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx +
1
2

(
1

p+ –
1
μ

)∫
�c∩Bc

r0

V (x)|zn|p(x) dx

– C1
(
1 + ‖b‖L∞(RN )

)∫
�c∩Bc

r0

|zn|p(x) dx – M1

≥ 1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx – M1,
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where M1 is a positive constant, as claimed. This fact, together with (F2) and (F4), leads
to

M0 + o(1)

≥ Iλ(zn) –
1
μ

〈
I ′

λ(zn), zn
〉

=
∫
RN

∫
RN

1
p(x, y)

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|zn|p(x) dx

– λ

∫
RN

a(x)
r(x)

|zn|r(x) dx –
∫
RN

F(x, zn) dx

–
1
μ

∫
RN

∫
RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy –

1
μ

∫
RN

V (x)|zn|p(x) dx

+
λ

μ

∫
RN

a(x)|zn|r(x) dx +
1
μ

∫
RN

f (x, zn)zn dx

≥
(

1
p+ –

1
μ

)∫
RN ×RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy

+
(

1
p+ –

1
μ

)∫
RN

V (x)|zn|p(x) dx – λ

(
1
r–

–
1
μ

)∫
RN

a(x)|zn|r(x) dx

–
∫
RN

F(x, zn) dx +
1
μ

∫
RN

f (x, zn)zn dx

≥
(

1
p+ –

1
μ

)∫
RN ×RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy

+
(

1
p+ –

1
μ

)∫
RN

V (x)|zn|p(x) dx – λ

(
1
r–

–
1
μ

)∫
RN

a(x)|zn|r(x) dx

+
∫

|zn|>M

(
1
μ

f (x, zn)zn – F(x, zn)
)

dx – C1

∫
|zn|≤M

(|zn|p(x) + b(x)|zn|q(x))dx

≥
(

1
p+ –

1
μ

)∫
RN ×RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy

+
1
2

(
1

p+ –
1
μ

)∫
RN

V (x)|zn|p(x) dx – λ

(
1
r–

–
1
μ

)∫
RN

a(x)|zn|r(x) dx

–
1
μ

∫
RN

(
�(x)|zn|p–

+ ζ (x)
)

dx – M1

≥ 1
2

(
1

p+ –
1
μ

)(∫
RN ×RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)|zn|p(x) dx
)

– λ

(
1
r–

–
1
μ

)∫
RN

a(x)|zn|r(x) dx –
1
μ

∫
RN

�(x)|zn|p–
dx –

1
μ

‖ζ‖L1(RN ) – M1

≥ 1
2

(
1

p+ –
1
μ

)
‖zn‖p–

X –
(

λ

r–
–

λ

μ

)∫
RN

a(x)|zn|r(x) dx

–
1
μ

(∫
B1

�(x)|zn|p–
dx +

∫
B2

�(x)|zn|p–
dx

)
–

1
μ

‖ζ‖L1(RN ) – M1

≥ 1
2

(
1

p+ –
1
μ

)
‖zn‖p–

X –
(

λ

r–
–

λ

μ

)∫
RN

a(x)|zn|r(x) dx

–
1
μ

(
2‖�‖

L
p(·)

p(·)–p– (B1)
‖zn‖p–

Lp(·)(B1) + �̃

∫
B2

|zn|p–
dx

)
–

1
μ

‖ζ‖L1(RN ) – M1
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≥ 1
2

(
1

p+ –
1
μ

)
‖zn‖p–

X –
(

λ

r–
–

λ

μ

)∫
RN

a(x)|zn|r(x) dx

–
1
μ

(
2‖�‖

L
p(·)

p(·)–p– (B1)
‖zn‖p–

Lp(·)(RN ) + �̃‖zn‖p–

Lp(·)(B2)

)
–

1
μ

‖ζ‖L1(RN ) – M1

≥ 1
2

(
1

p+ –
1
μ

)
‖zn‖p–

X –
(

λ

r–
–

λ

μ

)∫
RN

a(x)|zn|r(x) dx

–
1
μ

(
2‖�‖

L
p(·)

p(·)–p– (B1)
+ �̃

)‖zn‖p–

Lp(·)(RN ) –
1
μ

‖ζ‖L1(RN ) – M1

≥ 1
2

(
1

p+ –
1
μ

)
‖zn‖p–

X –
(

λ

r–
–

λ

μ

)
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖zn‖r+
Lp(·)(RN ),‖zn‖r–

Lp(·)(RN )

}

–
1
μ

(
2‖�‖

L
p(·)

p(·)–p– (B1)
+ �̃

)‖zn‖p–

Lp(·)(RN ) –
1
μ

‖ζ‖L1(RN ) – M1

for sufficiently large n because
∫
B2

|zn|p– dx ≤ ∫
RN |zn|p(x) dx. This fact implies

1
2

≤
p+(2‖�‖

L
p(·)

p(·)–p– (B1)
+ �̃)

μ – p+ lim sup
n→∞

‖wn‖p–

Lp(·)(RN )

=
p+(2‖�‖

L
p(·)

p(·)–p– (B1)
+ �̃)

μ – p+ ‖ω‖p–

Lp(·)(RN ). (3.3)

Hence, from (3.3), it follows that ω �= 0. However, to obtain the boundedness of {zn}, we
should prove that ω(x) = 0 for almost all x ∈ R

N . Set �1 = {x ∈ R
N : ω(x) �= 0}. By virtue of

relation (3.1), one has

Iλ(zn) =
∫
RN ×RN

1
p(x, y)

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|zn|p(x) dx

– λ

∫
RN

a(x)
r(x)

|zn|r(x) dx –
∫
RN

F(x, zn) dx

≥ 1
p+ ‖zn‖p–

X –
λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖zn‖r+
Lp(·)(RN ),‖zn‖r–

Lp(·)(RN )

}

–
∫
RN

F(x, zn) dx. (3.4)

Since Iλ(zn) ≤M0 for all n ∈N and ‖zn‖X → ∞ as n → ∞, we assert that

∫
RN

F(x, zn) dx ≥ 1
p+ ‖zn‖p–

X –
λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖zn‖r+
Lp(·)(RN ),‖zn‖r–

Lp(·)(RN )

}
– M0

→ ∞ (3.5)

as n → ∞. In addition,

Iλ(zn) =
∫
RN ×RN

1
p(x, y)

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|zn|p(x) dx

– λ

∫
RN

a(x)
r(x)

|zn|r(x) dx –
∫
RN

F(x, zn) dx
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≤ 1
p–

∫
RN ×RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy

+
1

p–

∫
RN

V (x)|zn|p(x) dx –
∫
RN

F(x, zn) dx.

Then

1
p–

∫
RN ×RN

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy +

1
p–

∫
RN

V (x)|zn|p(x) dx

≥
∫
RN

F(x, zn) dx + Iλ(zn). (3.6)

In accordance with assumption (F3), there is a positive constant τ0 > 1 such that F(x, τ ) >
|τ |p+ for all x ∈ R

N and |τ | > τ0. From assumptions (F1) and (F2), it follows that there is
M2 > 0 such that |F(x, τ )| ≤M2 for all (x, τ ) ∈ R

N × [–τ0, τ0]. Therefore, we can choose a
real number M3 such that F(x, τ ) ≥M3 for all (x, τ ) ∈R

N ×R, and thus

F(x, zn) – M3
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

≥ 0,

for all x ∈ R
N and for all n ∈ N. By convergence (3.2), we know that |zn(x)| =

|wn(x)|‖zn‖X → ∞ as n → ∞ for all x ∈ �1. Furthermore, from assumption (F3) it follows
that for all x ∈ �1 we have

lim
n→∞

F(x, zn)
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

≥ lim
n→∞

F(x, zn)
1

p– ‖zn‖p+

X
= lim

n→∞
p–F(x, zn)
|zn(x)|p+

∣∣wn(x)
∣∣p+

= ∞. (3.7)

Hence we infer that |�1| = 0. Indeed, if |�1| �= 0, then, from relations (3.5)–(3.7) and in-
voking the Fatou lemma, it follows that

1 = lim inf
n→∞

∫
RN F(x, zn) dx∫

RN F(x, zn) dx + Iλ(zn)

≥ lim inf
n→∞

∫
RN

F(x, zn)
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx

≥ lim inf
n→∞

∫
�1

F(x, zn)
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx

– lim sup
n→∞

∫
�1

M3
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx

= lim inf
n→∞

∫
�1

F(x, zn) – M3
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx

≥
∫

�1

lim inf
n→∞

F(x, zn) – M3
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx

=
∫

�1

lim inf
n→∞

F(x, zn(x))
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx
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–
∫

�1

lim sup
n→∞

M3
1

p–
∫
RN ×RN |zn(x) – zn(y)|p(x,y)K(x, y) dx dy + 1

p–
∫
RN V (x)|zn|p(x) dx

dx

= ∞.

This is impossible. Thus we know |�1| = 0, and so ω(x) = 0 for almost all x ∈ R
N , as

claimed. Therefore we conclude that {zn} is bounded in X . The proof is complete. �

Lemma 3.8 Assume conditions (H), (V), (A), (F1)–(F3) and (F5). Furthermore, suppose
that

(F6) F(x, τ ) ≥ 0 for all (x, τ ) ∈R
N ×R

+

holds. Then
(1) There is a positive constant λ∗ such that for any λ ∈ (0,λ∗) we can choose some

constants R > 0 and 0 < r < 1 that Iλ(z) ≥ R > 0 for all z ∈X with ‖z‖X = r.
(2) There exists z ∈ C∞

c (RN ), z > 0, such that Iλ(tz) → –∞ as t → +∞.
(3) There exists w ∈ C∞

c (RN ), w > 0, such that Iλ(tw) < 0 for all t → 0+.

Proof Statement (1) is proved in [11, 37]. Thus, we first show statement (2). By assump-
tions (F2)–(F3) and (F5), for any M > 0, there exist some constants C2 > 0 and C3(M) > 0
such that

F(x, τ ) ≥M|τ |p+ – C2|τ |p(x) – C3(M)b(x) (3.8)

for all (x, τ ) ∈ R
N × R where b comes from (F2). Let us take z ∈ C∞

c (RN ). Then relation
(3.8) implies that

Iλ(tz) =
∫
RN

∫
RN

1
p(x, y)

∣∣tz(x) – tz(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|tz|p(x) dx

– λ

∫
RN

a(x)
r(x)

|tz|r(x) dx –
∫
RN

F(x, tz) dx

≤ tp+
(∫

RN ×RN

1
p(x, y)

∣∣z(x) – z(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|z|p(x) dx

– M
∫
RN

|z|p+
dx + C2

∫
RN

|z|p(x) dx
)

+ C3

for t > 1 large enough and for a constant C3. If M is sufficiently large, then we assert that
Iλ(tz) → –∞ as t → ∞. Therefore the functional Iλ is unbounded from below.

Next, we have to show (3). Let us choose w ∈ C∞
c (RN ) such that w > 0. For t > 0 small

enough, from (A) and (F5), it follows that

Iλ(tw) =
∫
RN ×RN

1
p(x, y)

∣∣tw(x) – tw(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|tw|p(x) dx

– λ

∫
RN

a(x)
r(x)

|tw|r(x) dx –
∫
RN

F(x, tw) dx

≤ tp–
(∫

RN ×RN

1
p(x, y)

∣∣w(x) – w(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|w|p(x) dx
)

–
λtr+

r+

∫
RN

a(x)|w|r(x) dx.

Since r+ < p–, it follows that Iλ(tw) < 0 as t → 0+. The proof is completed. �
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The following lemma is the variational principle of Ekeland type in [6, 37], initially de-
veloped by C.-K. Zhong [56].

Lemma 3.9 ([6, 37]) Let E be a Banach space and x0 be a fixed point of E. Suppose that
g : E → R ∪ {+∞} is a lower semicontinuous function, not identically +∞, bounded from
below. Then, for every ε > 0 and y ∈ E such that

g(y) < inf
E

g + ε

and every λ > 0, there exists some point z ∈ E such that

g(z) ≤ g(y), ‖z – x0‖E ≤ (
1 + ‖y‖E

)(
eλ – 1

)
,

and

g(x) ≥ g(z) –
ε

λ(1 + ‖z‖E)
‖x – z‖E for all x ∈ E.

With the help of Lemmas 3.7, 3.8, and 3.9, we are in a position to derive our first main
result.

Theorem 3.10 Assume that (H), (V), (A), and (F1)–(F6) hold. Then there exists λ∗ > 0 such
that, for any λ ∈ (0,λ∗), problem (P) admits at least two distinct nontrivial weak solutions.

Proof By means of Lemmas 3.7 and 3.8, there is a positive real number λ∗ such that Iλ

ensures the mountain pass geometry and the (C)-condition for any λ ∈ (0,λ∗). Thanks to
the mountain pass theorem in [17], we deduce that Iλ has a critical point z0 ∈ X with
Iλ(z0) = c > 0 = Iλ(0). Thus problem (P) possesses a nontrivial weak solution z0.

Next we show the existence of the second weak solution of (P). Owing to Lemma 3.8,
for fixed λ ∈ (0,λ∗), there are positive constants R and r ∈ (0, 1) such that Iλ(z) ≥ R > 0
for all u ∈ X with ‖z‖X = r. Let us denote c := infz∈Br Iλ(z) where Br := {z ∈ X : ‖z‖X < r}
with a boundary ∂Br . Then, by Lemma 3.8(3), we know –∞ < c < 0. If we put 0 < ε <
infz∈∂Br Iλ(z) – c, from Lemma 3.9 it follows that we can look for zε ∈ Br such that

⎧⎨
⎩
Iλ(zε) < c + ε,

Iλ(zε) ≤ Iλ(z) + ε
1+‖zε‖X ‖z – zε‖X for all z ∈ Br with z �= zε .

(3.9)

This fact together with the estimate Iλ(zε) < c + ε < infz∈∂Br Iλ(z) gives that zε ∈ Br . Hence
it follows that zε is a local minimum of Ĩλ(z) := Iλ(z) + ε

1+‖zε‖X ‖z – zε‖X . Now, by taking
z = zε + tω for ω ∈ B1 and t > 0 small enough, we deduce from (3.9) that

0 ≤ Ĩλ(zε + tω) – Ĩλ(zε)
t

=
Iλ(zε + tω) – Iλ(zε)

t
+

ε

1 + ‖zε‖X ‖ω‖X .

Therefore, letting t → 0+, we get

〈
I ′

λ(zε),ω
〉
+

ε

1 + ‖zε‖X ‖ω‖X ≥ 0.
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Changing ω into –ω in the argument above, one has

–
〈
I ′

λ(zε),ω
〉
+

ε

1 + ‖zε‖X ‖ω‖X ≥ 0.

Thus, we have

(
1 + ‖zε‖X

)∣∣〈I ′
λ(zε),ω

〉∣∣ ≤ ε‖ω‖X

for any ω ∈ B1. Hence we know

(
1 + ‖zε‖X

)∥∥I ′
λ(zε)

∥∥
X ∗ ≤ ε. (3.10)

Using (3.9) and (3.10), we can choose a sequence {zn} ⊂ Br such that

⎧⎨
⎩
Iλ(zn) → c as n → ∞,

(1 + ‖zε‖X )‖I ′
λ(zε)‖X ∗ → 0 as n → ∞.

(3.11)

Thus, {zn} is a bounded (C)-sequence in the reflexive Banach space X . By virtue of the fact
that I ′

λ is of type (S+) as mentioned in the proof of Lemma 3.7, {zn} has a subsequence {znk }
such that znk → z1 in X as k → ∞. This fact together with (3.11) leads to Iλ(z1) = c < 0
and I ′

λ(z1) = 0. Hence there is a nontrivial solution z1 which is different from z0. Therefore
we conclude that problem (P) possesses at least two distinct nontrivial weak solutions. �

Next, by applying the fountain theorem and the dual fountain theorem as essential tools
which are originally provided by the papers [9] and [10], we establish two existence results
of a sequence of infinitely many solutions for problem (P). Let E be a real reflexive and
separable Banach space, then it is known (see [22, 57]) that there exist {en} ⊆ W and {f ∗

n } ⊆
E∗ such that

E = span{en : n = 1, 2, . . .}, E∗ = span
{

f ∗
n : n = 1, 2, . . .

}
,

and

〈
f ∗
i , ej

〉
=

⎧⎨
⎩

1 if i = j,

0 if i �= j.

Let us denote En = span{en}, Yk =
⊕k

n=1 En, and Zk =
⊕∞

n=k En.

Lemma 3.11 (Fountain theorem [9, 30, 52]) Let E be a Banach space, the functional I ∈
C1(E,R) satisfies the (C)c-condition for any c > 0 and I is even. If for each sufficiently large
k ∈N there exist ρk > δk > 0 such that the following properties hold:

(1) bk := inf{I(z) : z ∈ Zk ,‖z‖E = δk} → ∞ as k → ∞;
(2) ak := max{I(z) : z ∈ Yk ,‖z‖E = ρk} ≤ 0,

then I possesses an unbounded sequence of critical values, i.e., there is a sequence {zn} ⊂ X
such that I ′(zn) = 0 and I(zn) → +∞ as n → +∞.
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With the aid of Lemma 3.11, we are in a position to derive the existence of multiple large
energy solutions.

Theorem 3.12 Assume that (H), (V), (A), and (F1)–(F4) hold. If f (x, –t) = –f (x, t) holds
for all (x, t) ∈ R

N × R, then for any λ > 0 problem (P) possesses a sequence of nontrivial
weak solutions {zn} in X such that Iλ(zn) → ∞ as n → ∞.

Proof Clearly, Iλ is an even functional that ensures the (C)c-condition. It is enough to
prove that there are ρk > δk > 0 such that

(1) bk := inf{Iλ(z) : z ∈ Zk ,‖z‖X = δk} → ∞ as k → ∞;
(2) ak := max{Iλ(z) : z ∈ Yk ,‖z‖X = ρk} ≤ 0,

for sufficiently large k. Denote

αk := sup
z∈Zk ,‖z‖X =1

‖z‖Lq(·)(RN ).

Then we assert αk → 0 as k → ∞. Indeed, suppose to the contrary that we can choose
ε0 > 0, k0 ≥ 0, and the sequence {zk} in Zk such that

‖zk‖X = 1, ‖z‖Lq(·)(RN ) ≥ ε0

for all k ≥ k0. From the boundedness of the sequence {zk} in X , we look for z ∈ X such
that zk ⇀ z in X as n → ∞ and

〈
f ∗
j , z

〉
= lim

k→∞
〈
f ∗
j , zk

〉
= 0

for j = 1, 2, . . . . Hence we get z = 0. However, we obtain

ε0 ≤ lim
k→∞

‖zk‖Lq(·)(RN ) = ‖z‖Lq(·)(RN ) = 0,

that is a contradiction.
For any z ∈ Zk , suppose that ‖z‖X > 1. From (F2), Lemma 2.1, and (3.4), it follows that

Iλ(z) =
∫
RN

∫
RN

1
p(x, y)

∣∣z(x) – z(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|z|p(x) dx

– λ

∫
RN

a(x)
r(x)

|z|r(x) dx –
∫
RN

F(x, z) dx

≥ 1
p+ ‖z‖p–

X –
λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖z‖r+
Lp(·)(RN ),‖z‖r–

Lp(·)(RN )

}

–
∫
RN

|b(x)|
q(x)

|z|q(x) dx

≥ 1
p+ ‖z‖p–

X –
λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖z‖r+
Lp(·)(RN ),‖z‖r–

Lp(·)(RN )

}

–
‖b‖L∞(RN )

q–

∫
RN

|z|q(x) dx

≥ 1
p+ ‖z‖p–

X –
λ

r–
C4‖z‖r+

X –
1

q–
α

q–
k C5‖z‖q+

X ,
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where C4 and C5 are positive constants. Now, let us choose δk = (q+C5α
q–
k /q–)1/(p––q+).

Since p– < q+ and αk → 0 as k → ∞, we assert δk → ∞ as k → ∞. Hence, if z ∈ Zk and
‖z‖X = δk , then we arrive at

Iλ(z) ≥
(

1
p+ –

1
q+

)
δ

p–

k –
λ

r–
C4δ

r+
k → ∞ as k → ∞,

which implies condition (1).
Now we prove condition (2) arguing by contradiction. Then, let us assume that condition

(2) is not satisfied for some k. Then we can find a sequence {zn} in Yk such that

‖zn‖X → ∞ as n → ∞ and Iλ(zn) ≥ 0. (3.12)

Let wn = zn/‖zn‖X . Then, clearly, we have ‖wn‖X = 1. Since dim Yk < ∞, there is an element
w in Yk \ {0} such that, up to a subsequence still denoted by {wn},

‖wn – w‖X → 0 and wn(x) → w(x)

for almost all x ∈ R
N as n → ∞. We claim that w(x) = 0 for almost all x ∈ R

N . If w(x) �= 0,
then |zn(x)| → ∞ for all x ∈ R

N as n → ∞. Hence, by means of assumption (F3) it follows
that

lim
n→∞

F(x, zn(x))
‖zn‖p+

X
= lim

n→∞
F(x, zn(x))
|zn(x)|p+

∣∣wn(x)
∣∣p+

= ∞ (3.13)

for all x ∈ �2 := {x ∈ R
N : w(x) �= 0}. Proceeding as in the proof of Lemma 3.7, it can be

shown that there is M2 ∈R such that F(x, t) ≥M2 for all (x, t) ∈ R
N ×R, and so

F(x, zn) – M2

‖zn‖p+

X
≥ 0

for all x ∈R
N and n ∈N. Using (3.13) and the Fatou lemma, one has

lim inf
n→∞

∫
RN

F(x, zn)
‖zn‖p+

X
dx ≥ lim inf

n→∞

∫
�2

F(x, zn)
‖zn‖p+

X
dx – lim sup

n→∞

∫
�2

M2

‖zn‖p+

X
dx

= lim inf
n→∞

∫
�2

F(x, zn) – M2

‖zn‖p+

X
dx

≥
∫

�2

lim inf
n→∞

F(x, zn) – M2

‖zn‖p+

X
dx

=
∫

�2

lim inf
n→∞

F(x, zn)
‖zn‖p+

X
dx –

∫
�2

lim sup
n→∞

M2

‖zn‖p+

X
dx.

Thus we infer

∫
RN

F(x, zn(x))
‖zn‖p+

X
dx → ∞ as n → ∞.
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We may assume that ‖zn‖X > 1. Therefore, we have

Iλ(zn) =
∫
RN

∫
RN

1
p(x, y)

∣∣zn(x) – zn(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|zn|p(x) dx

– λ

∫
RN

a(x)
r(x)

|zn|r(x) dx –
∫
RN

F(x, zn) dx

≤ 1
p– ‖zn‖p+

X –
∫

�2

F(x, zn) dx

≤ ‖zn‖p+

X

(
1

p– –
∫

�2

F(x, zn(x))
‖zn‖p+

X
dx

)
→ –∞ as n → ∞,

which is a contradiction to (3.12). This completes the proof. �

Definition 3.13 Let E be a real separable and reflexive Banach space. We say that I satis-
fies the (C)∗c -condition (with respect to Yn) if any sequence {zn}n∈N ⊂ E for which zn ∈ Yn,
for any n ∈ N,

I(zn) → c and
∥∥(I|Yn )′(zn)

∥∥
E∗

(
1 + ‖zn‖E

) → 0 as n → ∞,

has a subsequence converging to a critical point of I .

Lemma 3.14 (Dual fountain theorem [10, 30]) Assume that E is a Banach space, I ∈
C1(E,R) is an even functional. If there is k0 > 0 so that, for each k ≥ k0, there exist ρk > δk > 0
such that the following properties hold:

(H1) inf{I(ω) : ω ∈ Zk ,‖ω‖E = ρk} ≥ 0;
(H2) bk := max{I(ω) : ω ∈ Yk ,‖ω‖E = δk} < 0;
(H3) dk := inf{I(ω) : ω ∈ Zk ,‖ω‖E ≤ ρk} → 0 as k → ∞;
(H4) I satisfies the (C)∗c -condition for every c ∈ [dk0 , 0),

then I has a sequence of negative critical values cn < 0 satisfying cn → 0 as n → ∞.

Lemma 3.15 Suppose that (H), (V), (A), and (F1)–(F5) hold. Then the functional Iλ sat-
isfies the (C)∗c -condition for any λ > 0.

Proof Since X is a reflexive Banach space, and A′ and � ′
λ are of type (S+), the proof is

almost identical to that of Lemma 3.12 in [30]. �

With the help of Lemmas 3.14 and 3.15 we are ready to establish our final consequence.

Theorem 3.16 Assume that (H), (V), (A), and (F1)–(F5) hold. Then problem (P) admits
a sequence of nontrivial weak solutions {ωn} in X such that Iλ(ωn) → 0 as n → ∞ for any
λ > 0.

Proof By means of (F4) and Lemma 3.15, we infer that the functional Iλ is even and en-
sures the (C)∗c -condition for all c ∈ R. Now we will prove that properties (H1), (H2), and
(H3) of the dual fountain theorem hold.

(H1): In accordance with (F1), we have

∣∣F(x, τ )
∣∣ ≤ b(x)

q(x)
|τ |q(x), (x, τ ) ∈R

N ×R.
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For convenience, we denote

θ1,k = sup
‖ω‖X =1,ω∈Zk

‖ω‖Lp(·)(RN ), θ2,k = sup
‖ω‖X =1,ω∈Zk

‖ω‖Lq(·)(RN ).

Then it is easy to verify that θ1,k → 0 and θ2,k → 0 as k → ∞ (see [30]). Set ϑk =
max{θ1,k , θ2,k}. Then it follows that

Iλ(ω) =
∫
RN

∫
RN

1
p(x, y)

∣∣ω(x) – ω(y)
∣∣p(x,y)K(x, y) dx dy +

∫
RN

V (x)
p(x)

|ω|p(x) dx

– λ

∫
RN

a(x)
r(x)

|ω|r(x) dx –
∫
RN

F(x,ω) dx

≥ 1
p+ ‖ω‖p–

X –
λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖ω‖r+
Lp(·)(RN ),‖ω‖r–

Lp(·)(RN )

}

–
‖b‖L∞(RN )

q–
max

{‖ω‖q–
Lq(·)(RN ),‖ω‖q+

Lq(·)(RN )

}

≥ 1
p+ ‖ω‖p–

X –
λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
ϑ

r–
1,k‖ω‖r+

X –
‖b‖L∞(RN )

q–
ϑ

q–
2,k‖ω‖q+

X

≥ 1
p+ ‖ω‖p–

X –
(

2λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
+

‖b‖L∞(RN )

q–

)
ϑ

r–
k ‖ω‖q+

X

for k large enough and ‖ω‖X ≥ 1. Choose

ρk =
[(

4λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
+

2‖b‖L∞(RN )

q–

)
p+ϑ

r–
k

] 1
p––2q+

.

Let ω ∈ Zk with ‖ω‖X = ρk > 1 for sufficiently large k. Then there is k0 ∈N such that

Iλ(ω) ≥ 1
p+ ‖ω‖p–

X –
(

2λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
+

‖b‖L∞(RN )

q–

)
ϑ

r–
k ‖ω‖2q+

X

≥ 1
2p+ ρ

p–

k ≥ 0

for all k ∈N with k ≥ k0, being

lim
k→∞

1
2p+ ρ

p–

k = ∞.

Therefore,

inf
{
Iλ(ω) : ω ∈ Zk ,‖ω‖X = ρk

} ≥ 0.

(H2): Observe that ‖ · ‖Lp(·)(RN ), ‖ · ‖Lp+ (RN ) and ‖ · ‖X are equivalent on Yk . Then we can
choose some constants ς1,k > 0 and ς2,k > 0 such that

‖ω‖Lp(·)(RN ) ≤ ς1,k‖ω‖X and ‖ω‖X ≤ ς2,k‖ω‖Lp+ (RN ) (3.14)
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for any ω ∈ Yk . From (F2)–(F3) and (F5), for any M > 0, there are some constants C6 > 0
and C7(M) > 0 such that

F(x, τ ) ≥Mς
p+

2,k|τ |p+
– C6|τ |p(x) – C7(M)b(x) (3.15)

for almost all (x, τ ) ∈ R
N × R where b comes from (H2). Then, from (3.14) and (3.15), it

follows that

Iλ(ω) ≤
∫
RN

∫
RN

1
p(x, y)

∣∣ω(x) – ω(y)
∣∣p(x,y)K(x, y) dx dy

+
∫
RN

V (x)
p(x)

|ω|p(x) dx –
∫
RN

F(x,ω) dx

≤ 1
p– ‖ω‖p+

X – Mς
p+

2,k

∫
RN

|ω|p+
dx + C6

∫
RN

|ω|p(x) + C7(M)
∫
RN

b(x) dx

≤ 1
p– ‖ω‖p+

X – M‖ω‖p+

X + C6
(
ς

p+

1,k + ς
p–

1,k
)‖ω‖p+

X + C8

for any ω ∈ Yk with ‖ω‖X ≥ 1 and positive constant C8. Let f (t) = 1
p– tp+ –Mtp+ + C6(ςp+

1,k +
ς

p–

1,k)tp+ + C8. If M is large enough, then limt→∞ f (t) = –∞, and so there is t0 ∈ (1,∞) such
that f (t) < 0 for all t ∈ [t0,∞). Hence Iλ(ω) < 0 for all ω ∈ Yk with ‖ω‖X = t0. Choosing
δk = t0 for all k ∈N, one has

bk := max
{
Jλ(ω) : ω ∈ Yk ,‖ω‖X = δk

}
< 0.

If necessary, we can change k0 to a large value, so that ρk > δk > 0 for all k ≥ k0.
(H3): Because Yk ∩ Zk �= ∅ and 0 < δk < ρk , we have dk ≤ bk < 0 for all k ≥ k0. For any

ω ∈ Zk with ‖ω‖X = 1 and 0 < t < ρk , one has

Iλ(tω) ≥ 1
p+ ‖tω‖p–

X –
2λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
max

{‖tω‖r–
Lp(·)(RN ),‖tω‖r+

Lp(·)(RN )

}

–
‖b‖L∞(RN )

q–
max

{‖tω‖q–
Lq(·)(RN ),‖tω‖q+

Lq(·)(RN )

}

≥ –
2λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
ρ

r+
k ϑ

r–
k –

‖b‖L∞(RN )

q–
ρ

q+
k ϑ

q–
k

for large enough k. Hence, from the definition of ρk , it follows that

dk ≥ –
2λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
ρ

r+
k ϑ

r–
k –

‖b‖L∞(RN )

q–
ρ

q+
k ϑ

q–
k

= –
2λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )

[
p+

(
4λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
+

2‖b‖L∞(RN )

q–

)] r+
p––2q+

ϑ
r–r++(p––2q+)r–

p––2q+
k

–
‖b‖L∞(RN )

q–

[
p+

(
4λ

r–
‖a‖

L
p(·)

p(·)–r(·) (RN )
+

2‖b‖L∞(RN )

q–

)] q+
p––2q+

ϑ
r–q++(p––2q+)q–

p––2q+
k .

Since p– < q+, r+ + p– < 2q+, r–q+ + q–p– < 2q–q+, and ϑk → 0 as k → ∞, we arrive at
limk→∞ dk = 0.
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Then, all the properties of Lemma 3.14 are satisfied. Consequently we conclude that
problem (P) admits a sequence of nontrivial weak solutions {ωn} inX such that Iλ(ωn) → 0
as n → ∞ for any λ > 0. �

Remark 3.17 In order to obtain a result similar to Theorem 3.16, the authors in [10, 41, 51,
52] have applied the dual fountain theorem when ρk—defined in Lemma 3.14—converges
to 0 as k → ∞. For this reason, the proof of Theorem 3.16 is different from that of the
papers [10, 41, 51, 52] because we get this result when ρk → ∞ as k → ∞.
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21. Diening, L., Harjulehto, P., Hästö, P., Ru̇žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes

in Mathematics, vol. 2017. Springer, Berlin (2011)
22. Fabian, M., Habala, P., Hajék, P., Montesinos, V., Zizler, V.: Banach Space Theory: The Basis for Linear and Nonlinear

Analysis. Springer, New York (2011)
23. Fan, X., Zhao, D.: On the spaces Lp(x) (�) andWm,p(x) (�). J. Math. Anal. Appl. 263, 424–446 (2001)
24. Fan, X.L., Zhang, Q.H.: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)
25. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028

(2008)
26. Ho, K., Kim, Y.-H.: A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional

p(·)-Laplacian. Nonlinear Anal. 188, 179–201 (2019)
27. Ho, K., Kim, Y.-H.: The concentration-compactness principles forWs,p(·,·) (RN) and application. Adv. Nonlinear Anal. 10,

816–848 (2021)
28. Ho, K., Sim, I.: Existence and multiplicity of solutions for degenerate p(x)-Laplace equations involving

concave–convex type nonlinearities with two parameters. Taiwan. J. Math. 19, 1469–1493 (2015)
29. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landsman–Lazer type

problem set on R
N . Proc. R. Soc. Edinb. A 129, 787–809 (1999)

30. Juárez Hurtado, E., Miyagaki, O.H., Rodrigues, R.S.: Existence and multiplicity of solutions for a class of elliptic
equations without Ambrosetti–Rabinowitz type conditions. J. Dyn. Differ. Equ. 30, 405–432 (2018)

31. Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians.
Electron. J. Qual. Theory Differ. Equ. 2017, 76 (2017)

32. Kim, I.H., Kim, Y.-H.: Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic
equations with variable exponents. Manuscr. Math. 147, 169–191 (2015)

33. Kim, I.H., Kim, Y.-H., Park, K.: Existence and multiplicity of solutions for Schrödinger–Kirchhoff type problems involving
the fractional p(·)-Laplacian in R

N . Bound. Value Probl. 2020, 121 (2020)
34. Kim, J.-M., Kim, Y.-H., Lee, J.: Existence of weak solutions to a class of Schrödinger type equations involving the

fractional p-Laplacian in R
N . J. Korean Math. Soc. 56, 1441–1461 (2019)
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