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Abstract
The objective of this article is to study a three-step iteration process in the framework
of Banach spaces and to obtain convergence results for Suzuki generalized
nonexpansive mappings. We also provide numerical examples that support our main
results and illustrate the convergence behavior of the proposed process. Further, we
present a data-dependence result that is also supported by a nontrivial numerical
example. Finally, we discuss the solution of a nonlinear fractional differential equation
by utilizing our results.
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1 Introduction
Fixed-point theory has been gaining much attention among researchers as it provides use-
ful tools to solve many nonlinear problems that have applications in different fields, like
engineering, economics, chemistry, game theory, etc. Iteration processes play a crucial
role in finding fixed points of a nonlinear mapping. Due to its simplicity and significance,
the class of nonexpansive mappings is one of the most utilized class of nonlinear mappings.
Let K be a nonempty closed convex subset of a Banach space E. A mapping S : K → K is
said to be nonexpansive if ‖Sg – Sf ‖ ≤ ‖g – f ‖ for all g, f ∈ K . S is called quasinonexpan-
sive if F(S) �= ∅ and ‖Sg – q‖ ≤ ‖g – q‖ for all g ∈ K , q ∈ F(S), where F(S) is the set of
fixed points of S, i.e., F(S) = {g ∈ S : Sg = g}. It is well known that every nonexpansive map-
ping with a fixed point is a quasinonexpansive mapping. One can observe that the famous
Banach Contraction Principle is no longer true for nonexpansive mappings, i.e., a nonex-
pansive mapping need not admit a fixed point on a complete metric space. Also, Picard
iteration need not be convergent for a nonexpansive map in a complete metric space. This
led to the beginning of a new era of fixed-point theory for nonexpansive mappings by using
geometric properties. In 1965, Browder [1], Göhde [2] and Kirk [3] gave three basic exis-
tence results in respect of nonexpansive mappings. With a view to locating fixed points of
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nonexpansive mappings, Mann [4], Ishikawa [5] and Halpern [6] introduced three basic
iteration processes. In the same area we direct the reader to the recent works [7, 8].

Following this, several authors constructed numerous iteration processes to approxi-
mate the fixed points of different classes of nonlinear mappings, mainly Noor iteration [9],
Agarwal et al. iteration [10], SP iteration [11], Normal-S iteration [12], Abbas and Nazir
iteration [13], Thakur et al. iterations [14, 15], Karakaya et al. iteration [16] and many oth-
ers.

In 2008, Suzuki [17] introduced a new class of mappings that is larger than the class
of nonexpansive mappings and called the defining condition Condition (C), which is also
referred to as generalized nonexpansive mappings. A mapping S : K → K defined on a
nonempty subset K of a Banach space E is said to satisfy the Condition (C) if

1
2
‖g – Sg‖ ≤ ‖g – f ‖ ⇒ ‖Sg – Sf ‖ ≤ ‖g – f ‖

for all g and f ∈ K .
Suzuki obtained few results regarding the existence of fixed points for such mappings.

In 2011, Phuengrattana [18] used Ishikawa iteration to obtain some convergence results
for mappings satisfying Condition (C) in uniformly convex Banach spaces. In the last few
years, many authors have studied this particular class of mappings in various domains and
have obtained many convergence results (e.g., [14, 19–25]).

Motivated and inspired by such research, we introduce a new iteration process for ap-
proximating fixed points of Suzuki generalized nonexpansive mapping as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1 ∈ K ,

en = S((1 – αn)gn + αnSgn),

fn = Sen,

gn+1 = Sfn, n ∈N,

(1.1)

where {αn} is a sequence in (0, 1).
The aim of this paper is to prove some convergence results involving process (1.1) for

Suzuki generalized nonexpansive mapping. Further, we provide a numerical example to
show that our iteration (1.1) converges faster than a number of existing iteration processes,
such as Thakur New, Vatan, M and M∗ iterations, etc. Further, we prove a data-dependence
result along with an example to validate the analytical proof. In the last section, we use our
results to find a solution to a nonlinear fractional differential equation.

2 Preliminaries
To make our paper self-contained, we collect some basic definitions and required results.

Definition 2.1 A Banach space E is said to be uniformly convex if for each ε ∈ (0, 2] there
is a δ > 0 such that for g, f ∈ E with ‖g‖ ≤ 1, ‖f ‖ ≤ 1 and ‖g – f ‖ > ε, we have

∥
∥
∥
∥

g + f
2

∥
∥
∥
∥ < 1 – δ.
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Definition 2.2 A Banach space E is said to satisfy Opial’s condition if for any sequence
{gn} in E that converges weakly to g ∈ E, i.e., gn ⇀ g implies that

lim sup
n→∞

‖gn – g‖ < lim sup
n→∞

‖gn – f ‖

for all f ∈ E with f �= g .

Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp spaces
(1 < p < ∞). On the other hand, Lp[0, 2π ] with 1 < p �= 2 fail to satisfy Opial’s condition.

A mapping S : K → E is demiclosed at f ∈ E if for each sequence {gn} in K and each
g ∈ E, gn ⇀ g and Sgn → f imply that g ∈ K and Sg = f .

Let K be a nonempty closed convex subset of a Banach E, and let {gn} be a bounded
sequence in E. For g ∈ E, we denote:

r
(
g, {gn}

)
= lim sup

n→∞
‖g – gn‖.

The asymptotic radius of {gn} relative to K is given by

r
(
K , {gn}

)
= inf

{
r
(
g, {gn}

)
: g ∈ K

}

and the asymptotic center A(K , {gn}) of {gn} is defined as:

A
(
K , {gn}

)
=

{
g ∈ K : r

(
g, {gn}

)
= r

(
K , {gn}

)}
.

Also, in a uniformly convex Banach space A(K , {gn}) consists of exactly one point.
The following lemma due to Schu [26] will be very useful in our subsequent discussion.

Lemma 2.1 Let E be a uniformly convex Banach space and {tn} be any sequence such that
0 < p ≤ tn ≤ q < 1 for some p, r ∈ R and for all n ≥ 1. Let {gn} and {fn} be any two se-
quences of E such that lim supn→∞ ‖gn‖ ≤ r, lim supn→∞ ‖fn‖ ≤ r and lim supn→∞ ‖tngn +
(1 – tn)fn‖ = r for some r ≥ 0. Then, limn→∞ ‖gn – fn‖ = 0.

Now, we list a few lemmas involving Suzuki generalized nonexpansive mapping.

Lemma 2.2 ([17]) Let K be a nonempty subset of a Banach space E and S : K → K be any
mapping. Then:

(i) If S is nonexpansive, then S is a Suzuki generalized nonexpansive mapping.
(ii) If S is a Suzuki generalized nonexpanisve mapping such that F(S) �= ∅, then S is a

quasinonexpansive mapping.
(iii) If S is a Suzuki generalized nonexpansive mapping, then

‖g – Sf ‖ ≤ 3‖g – Sg‖ + ‖g – f ‖ for all g and f ∈ K .

Lemma 2.3 ([27]) Let S be a Suzuki generalized nonexpansive mapping defined on a subset
K of a Banach space E with the Opial property. If a sequence {gn} converges weakly to e and
limn→∞ ‖Sgn – gn‖ = 0, then I – S is demiclosed at zero.



Uddin et al. Advances in Continuous and Discrete Models         (2022) 2022:16 Page 4 of 20

Lemma 2.4 ([17]) If S is a Suzuki generalized nonexpansive mapping defined on a compact
convex subset K of a uniformly convex Banach space E, then S has a fixed point.

In 1972, Zamfirescu [28] introduced Zamfirescu mappings that serve as an important
generalization for the Banach contraction principle [29]. Later, in 2004, Berinde [30] gave
a more general class of mappings known as quasicontractive mappings. Following this,
Imoru and Olantiwo [31] gave the following definition:

Definition 2.3 A mapping S : K → K is known as a contractive-like mapping if there
exists a strictly increasing and continuous function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 and
a constant δ ∈ [0, 1) such that for all g, f ∈ K , we have

‖Sg – Sf ‖ ≤ δ‖g – f ‖ + ϕ
(‖g – Sg‖).

Clearly, the class of contractive-like mappings is wider than the class of quasicontractive
mappings. For more comparisons see [32].

Next, we recall the following definition and lemma that will be useful in proving our
data-dependence result.

Definition 2.4 Let S, S̃ : K → K be two operators, then S̃ is said to be an approximate
operator of S if ‖Sg – S̃g‖ ≤ ε for all g ∈ K and ε > 0 is a fixed number.

Lemma 2.5 ([33]) If {an} is a nonnegative real sequence and there exists an m ∈ N such
that for all n ≥ m we have the following condition:

an+1 ≤ (1 – un)an + unvn

such that un ∈ (0, 1) for all n ∈N,
∑∞

n=0 un = ∞ and vn ≥ 0 for all n ∈N, then the following
inequality holds:

0 ≤ lim sup
n→∞

an ≤ lim sup
n→∞

vn.

3 Convergence results
First, we prove a few lemmas that will be useful in obtaining convergence results.

Lemma 3.1 Let S be a Suzuki generalized nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E with F(S) �= ∅. Let {gn} be the sequence defined
by the iteration process (1.1). Then, limn→∞ ‖gn – q‖ exists for all q ∈ F(S).

Proof Let q ∈ F(S) and e ∈ K . Since S is a Suzuki generalized nonexpansive mapping,
1
2‖q – Sq‖ = 0 ≤ ‖q – e‖ implies that ‖Sq – Se‖ ≤ ‖q – e‖.
Consider,

‖en – q‖ =
∥
∥S

(
(1 – αn)gn + αnSgn

)
– q

∥
∥

≤ ∥
∥(1 – αn)gn + αnSgn – q

∥
∥

≤ (1 – αn)‖gn – q‖ + αn‖gn – q‖
= ‖gn – q‖

(3.1)
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and

‖fn – q‖ = ‖Sen – q‖
≤ ‖en – q‖
≤ ‖gn – q‖.

(3.2)

Using (3.1) and (3.2), we obtain

‖gn+1 – q‖ = ‖Sfn – q‖
≤ ‖fn – q‖
≤ ‖gn – q‖.

(3.3)

Thus, {‖gn – q‖} is a bounded and decreasing sequence of reals and hence limn→∞ ‖gn – q‖
exists. �

Lemma 3.2 Let S be a Suzuki generalized nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E. Let {gn} be the sequence defined by the iteration
process (1.1). Then, F(S) �= ∅ if and only if {gn} is bounded and limn→∞ ‖Sgn – gn‖ = 0.

Proof Suppose F(S) �= ∅ and let q ∈ F(S). Then, by Lemma 3.1, limn→∞ ‖gn – q‖ exists and
{gn} is bounded. Let

lim
n→∞‖gn – q‖ = r. (3.4)

From (3.1) and (3.4), we have

lim sup
n→∞

‖en – q‖ ≤ r. (3.5)

Also, from (3.2) and (3.4), we obtain

lim sup
n→∞

‖fn – q‖ ≤ r. (3.6)

Further,

lim
n→∞‖gn+1 – q‖ = r = lim

n→∞‖Sfn – q‖,

which gives

lim
n→∞‖Sfn – q‖ = r.

Using Condition (C), we have

‖Sfn – q‖ ≤ ‖fn – q‖,
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which yields

r ≤ lim inf
n→∞ ‖fn – q‖. (3.7)

From (3.6) and (3.7), we obtain

lim
n→∞‖fn – q‖ = r. (3.8)

Now,

lim
n→∞‖gn – q‖ = r = lim

n→∞‖fn – q‖ = lim
n→∞‖Sen – q‖. (3.9)

Since S is a Suzuki generalized nonexpansive mapping, we have

‖Sen – q‖ ≤ ‖en – q‖,

which gives

r ≤ lim inf
n→∞ ‖en – q‖. (3.10)

Using (3.5) and (3.10), we obtain

lim
n→∞‖en – q‖ = r. (3.11)

Consider,

‖en – q‖ =
∥
∥S

(
(1 – αn)gn + αnSgn

)
– q

∥
∥

≤ ∥
∥(1 – αn)gn + αnSgn – q

∥
∥

≤ ‖gn – q‖.

From (3.4) and (3.11), we obtain

lim
n→∞

∥
∥(1 – αn)gn + αnSgn – q

∥
∥ = r. (3.12)

On using Lemma 2.1 together with (3.4) and (3.12), we obtain

lim
n→∞‖gn – Sgn‖ = 0.

Conversely, suppose that {gn} is bounded and limn→∞ ‖gn – Sgn‖ = 0. Let q ∈ A(K , {gn}),
we have

r
(
Sq, {gn}

)
= lim sup

n→∞
‖gn – Sq‖

≤ lim sup
n→∞

(
3‖Sgn – gn‖ + ‖gn – q‖)

= lim sup
n→∞

‖gn – q‖

= r
(
q, {gn}

)
.
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This implies that Sq ∈ A(K , {gn}). Since E is uniformly convex, A(K , {gn}) is singleton,
therefore we obtain Sq = q. �

Theorem 3.1 Let S be a Suzuki generalized nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E that satisfies Opial’s condition with F(S) �= ∅.
If {gn} is the sequence defined by the iteration process (1.1), then {gn} converges weakly to a
fixed point of S.

Proof Let q ∈ F(S). Then, from Lemma 3.1 limn→∞ ‖gn – q‖ exists. In order to show the
weak convergence of the iteration process (1.1) to a fixed point of S, we will prove that
{gn} has a unique weak subsequential limit in F(S). For this, let {gnj} and {gnk } be two sub-
sequences of {gn} that converge weakly to u and v, respectively. By Lemma 3.2, we have
limn→∞ ‖Sgn –gn‖ = 0 and using the Lemma 2.3, we have I –S is demiclosed at zero. Hence,
u, v ∈ F(S).

Next, we show the uniqueness. Since u, v ∈ F(S), limn→∞ ‖gn – u‖ and limn→∞ ‖gn – v‖
exists. Let u �= v. Then, by Opial’s condition, we obtain

lim
n→∞‖gn – u‖ = lim

j→∞‖gnj – u‖

< lim
j→∞‖gnj – v‖

= lim
n→∞‖gn – v‖

= lim
k→∞

‖gnk – v‖

< lim
k→∞

‖gnk – u‖

= lim
n→∞‖gn – u‖,

which is a contradiction, hence u = v. Thus, {gn} converges weakly to a fixed point of S. �

Next, we establish some strong convergence results for iteration process (1.1).

Theorem 3.2 Let S be a Suzuki generalized nonexpansive mapping defined on a nonempty
compact convex subset K of a uniformly convex Banach space E. If {gn} is the iterative
sequence defined by the iteration process (1.1), then {gn} converges strongly to a fixed point
of S.

Proof Using Lemma 2.4, we obtain F(S) �= ∅. Hence, by Lemma 3.2, we have limn→∞ ‖Sgn –
gn‖ = 0. Since K is compact, there exists a subsequence {gnk } of {gn} such that {gnk } con-
verges strongly to q for some q ∈ K . From Lemma 2.2(iii), we have

‖gnk – Sq‖ ≤ 3‖Sgnk – gnk ‖ + ‖gnk – q‖

for all n ≥ 1. Letting k → ∞, we obtain that {gnk } converges to Sq. This implies that Sq = q,
i.e., q ∈ F(S). Further, limn→∞ ‖gn – q‖ exists by Lemma 3.1. Hence, q is the strong limit of
the sequence {gn}.
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A mapping S : K → K is said to satisfy the Condition (A) ([34]) if there exists a nonde-
creasing function p : [0,∞) → [0,∞) with p(0) = 0 and p(r) > 0 for all r ∈ (0,∞) such that
‖g – Sg‖ ≥ p(d(g, F(S))) for all g ∈ K , where d(g, F(S)) = inf{‖g – q‖ : q ∈ F(S)}. �

Theorem 3.3 Let S be a Suzuki generalized nonexpansive mapping defined on a nonempty
closed convex subset K of a uniformly convex Banach space E such that F(S) �= ∅ and let {gn}
be the sequence defined by (1.1). If S satisfies Condition (A), then {gn} converges strongly to
a fixed point of S.

Proof By Lemma 3.1, limn→∞ ‖gn – q‖ exists and ‖gn+1 – q‖ ≤ ‖gn – q‖ for all q ∈ F(S).
We obtain

inf
q∈F(S)

‖gn+1 – q‖ ≤ inf
q∈F(S)

‖gn – q‖,

which yields

d
(
gn+1, F(S)

) ≤ d
(
gn, F(S)

)
.

This shows that the sequence {d(gn, F(S))} is decreasing and bounded below, hence
limn→∞ d(gn, F(S)) exists.

Let limn→∞ ‖gn – q‖ = r for some r ≥ 0. If r = 0, then the result follows. Assume r > 0.
Also, by Lemma 3.2 we have limn→∞ ‖gn – Sgn‖ = 0.

It follows from Condition (A) that

lim
n→∞ p

(
d
(
gn, F(S)

)) ≤ lim
n→∞‖gn – Sgn‖ = 0,

hence limn→∞ p(d(gn, F(S))) = 0.
Since p is a nondecreasing function satisfying p(0) = 0 and p(r) > 0 for all r ∈ (0,∞),

limn→∞ d(gn, F(S)) = 0. Hence, we have a subsequence {gnk } of {gn} and a sequence {yk} ⊂
F(S) such that

‖gnk – yk‖ <
1
2k

for all k ∈N. Using (3.4), we obtain

‖gnk+1 – yk‖ < ‖gnk – yk‖ <
1
2k .

Therefore,

‖yk+1 – yk‖ ≤ ‖yk+1 – gk+1‖ + ‖gk+1 – yk‖

≤ 1
2k+1 +

1
2k

<
1

2k–1 → 0 as n → ∞.

This implies that {yk} is a Cauchy sequence in F(S). Since F(S) is closed, {yk} converges
to a point q ∈ F(S). Then, {gnk } converges strongly to q. Since limn→∞ ‖gn – q‖ exists, we
obtain gn → q ∈ F(S). This completes the proof. �
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Now, we will construct an example of a Suzuki generalized nonexpansive mapping that
is not a nonexpansive mapping. Then, using that example, we will show that our itera-
tion scheme (1.1) has a higher speed of convergence than a number of existing iteration
schemes.

Example 1 Define a mapping S : [0, 1] → [0, 1] by

Sg =

⎧
⎨

⎩

1 – g, g ∈ [0, 1
14 ),

g+13
14 , g ∈ [ 1

14 , 1].

First, we show that S is not a nonexpansive mapping. For this, take g = 7
100 and f = 1

14 .
Then,

‖Sg – Sf ‖ =
∥
∥
∥
∥(1 – g) –

(
f + 13

14

)∥
∥
∥
∥ =

72
19,600

and

‖g – f ‖ = |g – f | =
2

1400
.

Clearly, ‖Sg – Sf ‖ > ‖g – f ‖, which proves that S is not a nonexpansive mapping.
Now, we show that S satisfies Condition (C). For this, consider the following cases:
Case-I: Let g ∈ [0, 1

14 ), then 1
2‖g – Sg‖ = 1

2 |2g – 1| = 1
2 (1 – 2g). For 1

2‖g – Sg‖ ≤ ‖g – f ‖, we
must have 1

2 (1 – 2g) ≤ ‖g – f ‖, i.e., 1
2 (1 – 2g) ≤ |g – f |. Here, note that the case f < g is not

possible. Hence, we are left with only one case when f > g , which gives 1
2 (1 – 2g) ≤ f – g ,

which yields f ≥ 1
2 . Hence, f ∈ [ 1

2 , 1]. Now, we have g ∈ [0, 1
14 ) and f ∈ [ 1

2 , 1]. Hence,

‖Sg – Sf ‖ =
∥
∥
∥
∥(1 – g) –

f + 13
14

∥
∥
∥
∥ =

∣
∣
∣
∣
14g + f – 1

14

∣
∣
∣
∣ <

1
14

and

‖g – f ‖ = |g – f | >
6

14
.

Hence,

1
2
‖g – Sg‖ ≤ ‖g – f ‖ ⇒ ‖Sg – Sf ‖ ≤ ‖g – f ‖.

Case-II: Let g ∈ [ 1
14 , 1], then 1

2‖g – Sg‖ = 1
2 |g – g+13

14 | = 13–13g
28 . For 1

2‖g – Sg‖ ≤ ‖g – f ‖, we
must have 13–13g

28 ≤ ‖g – f ‖, i.e., 13–13g
28 ≤ |g – f |. Here, we have two possibilities.

A: When g < f , we obtain 13–13g
28 ≤ f –g , i.e., f ≥ 13+15g

28 . Hence, f ∈ [ 197
392 , 1] ⊂ [ 1

14 , 1], which
gives ‖Sg – Sf ‖ = 1

14‖g – f ‖ ≤ ‖g – f ‖. Hence,

1
2
‖g – Sg‖ ≤ ‖g – f ‖ ⇒ ‖Sg – Sf ‖ ≤ ‖g – f ‖.
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Table 1 Values of different iterations

Step Thakur New Iteration Vatan Iteration M Iteration M∗ Iteration New Iteration

1 0.99211 0.99211 0.99211 0.99211 0.99211
10 0.0007541573 0.004154273 0.004575554 0.004605605 0.0003280728
20 0.001579318 0.003773194 0.004352545 0.004393863 0.0003119497
30 0.00238407 0.003501723 0.004186742 0.004235587 0.0002999722
40 0.003169161 0.003285412 0.004049977 0.004104486 0.0002900983
50 0.003935304 0.003103946 0.003931731 0.003990741 0.0002815657

Figure 1 Graph corresponding to Table 1

B: When g > f , then 13–13g
28 ≤ g – f , i.e., f ≤ 41g–13

28 , which gives f ∈ [0, 1]. Also, 28f +13
41 ≤ g ,

which yields g ∈ [ 13
41 , 1]. Here, for g ∈ [ 13

41 , 1] and f ∈ [ 1
14 , 1] Case IIA can be used. Hence,

we only need to verify when g ∈ [ 13
41 , 1] and f ∈ [0, 1

14 ). For this,

‖Sg – Sf ‖ =
∣
∣
∣
∣
g + 13

14
– (1 – f )

∣
∣
∣
∣ =

1
14

|14f + g – 1| ≤ 1
14

and

‖g – f ‖ = |g – f | >
141
574

.

Hence, ‖Sg – Sf ‖ ≤ ‖g – f ‖. Thus, mapping S satisfies the Condition (C) for all the possible
cases.

Now, using the above example, we will show that the iteration algorithm (1.1) converges
faster than Thakur New, Vatan, M and M∗ iterations. Let αn = τn =

√
n

n+100 for all n ∈ N

and g1 = 0.00789, then we obtain Table 1 and Fig. 1 showing the errors.
It is evident from Table 1 and Fig. 1 that our iteration process (1.1) converges at a higher

speed than the above-mentioned schemes.

4 Data dependence
In this section, we prove a data-dependence result for the iteration scheme (1.1) and we
verify our theoretical result with the help of a numerical example.
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Theorem 4.1 Let S be a contractive-like mapping defined on a nonempty closed convex
subset K of a Banach space E with F(S) �= ∅. If {gn} is a sequence defined by (1.1), then {gn}
converges to the fixed point of S.

Proof From (1.1), for any q ∈ F(S), by using the fact that (1 – (1 – δ)αn) < 1 for all n ∈N we
have

‖en – q‖ =
∥
∥S

(
(1 – αn)gn + αnSgn

)
– q

∥
∥

≤ δ
∥
∥(1 – αn)gn + αnSgn – q

∥
∥

≤ δ
(
(1 – αn)‖gn – q‖ + αnδ‖gn – q‖)

= δ
(
1 – (1 – δ)αn

)‖gn – q‖
≤ δ‖gn – q‖

and

‖fn – q‖ = ‖Sen – q‖
≤ δ‖en – q‖
≤ δ2‖gn – q‖.

Hence,

‖gn+1 – q‖ = ‖Sfn – q‖
≤ δ‖fn – q‖
≤ δ3‖gn – q‖
...

≤ δ3n‖g1 – q‖.

Since, 0 ≤ δ < 1, we obtain

lim
n→∞ δ3n = 0.

Hence,

lim
n→∞‖gn+1 – q‖ = 0. �

Theorem 4.2 Let S be a contractive-like mapping defined on a nonempty closed convex
subset K of a Banach space E with F(S) �= ∅ and let S̃ be an approximate operator of S. Let
{gn} be a sequence defined by (1.1) for S, we define a sequence {g̃n} involving S̃ as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g̃1 ∈ K ,

ẽn = S̃((1 – αn)g̃n + αnS̃g̃n),

f̃n = S̃ẽn,

˜gn+1 = S̃f̃n, n ∈N,

(4.1)
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where {αn} is a sequence in (0, 1) such that 1
2 ≤ αn for all n ∈N and

∑∞
n=0 αn = ∞. If q and

q̃ are fixed points of S and S̃, respectively, such that {g̃n} → q̃ as n → ∞, then we have

‖q – q̃‖ ≤ 8ε

1 – δ
.

Proof From (1.1) and (4.1), we have

‖en – ẽn‖ =
∥
∥S

(
(1 – αn)gn + αnSgn

)
– S̃

(
(1 – αn)g̃n + αnS̃g̃n

)∥
∥

≤ ∥
∥S

(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)g̃n + αnS̃g̃n

)∥
∥

+
∥
∥S

(
(1 – αn)g̃n + αnS̃g̃n

)
– S̃

(
(1 – αn)g̃n + αnS̃g̃n

)∥
∥

≤ δ
(∥
∥
(
(1 – αn)gn + αnSgn

)
–

(
(1 – αn)g̃n + αnS̃g̃n

)∥
∥
)

+ ϕ
(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

+ ε

≤ δ
(
(1 – αn)‖gn – g̃n‖ + αn‖Sgn – S̃g̃n‖

)

+ ϕ
(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

+ ε

≤ δ(1 – αn)‖gn – g̃n‖ + αnδ‖Sgn – Sg̃n‖ + αnδ‖Sg̃n – S̃g̃n‖
+ ϕ

(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

+ ε

≤ δ
(
1 – αn(1 – δ)

)‖gn – g̃n‖ + αnδϕ
(‖gn – Sgn‖

)
+ (1 + δαn)ε

+ ϕ
(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

(4.2)

and

‖fn – f̃n‖ = ‖Sen – S̃ẽn‖
≤ ‖Sen – Sẽn‖ + ‖Sẽn – S̃ẽn‖
≤ δ‖en – ẽn‖ + ϕ

(‖en – Sen‖
)

+ ε.

(4.3)

Now, (4.2) and (4.3) give

‖gn+1 – ˜gn+1‖
= ‖Sfn – S̃f̃n‖
≤ δ‖fn – f̃n‖ + ϕ

(‖fn – Sfn‖
)

+ ε

≤ δ
(
δ‖en – ẽn‖ + ϕ

(‖en – Sen‖
)

+ ε
)

+ ϕ
(‖fn – Sfn‖

)
+ ε

= δ2‖en – ẽn‖ + δϕ
(‖en – Sen‖

)
+ ϕ

(‖fn – Sfn‖
)

+ (1 + δ)ε

≤ δ2(δ
(
1 – αn(1 – δ)

)‖gn – g̃n‖ + αnδϕ
(‖gn – Sgn‖

)
(4.4)

+ (1 + δαn)ε + ϕ
(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
))

+ δϕ
(‖en – Sen‖

)
+ ϕ

(‖fn – Sfn‖
)

+ (1 + δ)ε

= δ3(1 – αn(1 – δ)
)‖gn – g̃n‖

+ δ2ϕ
(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)
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+ αnδ
3ϕ

(‖gn – Sgn‖
)

+ δϕ
(‖en – Sen‖

)
+ ϕ

(‖fn – Sfn‖
)

+
(
1 + δ + δ2 + δ3αn

)
ε.

Since S is a contractive-like operator with q ∈ F(S), from Theorem 4.1 it follows that
limn→∞ ‖gn – q‖ = 0. Hence,

0 ≤ ‖gn – Sgn‖
≤ ‖gn – q‖ + ‖Sq – Sgn‖
≤ (1 + δ)‖gn – q‖ → 0 as n → ∞.

(4.5)

Also,

0 ≤ ‖en – Sen‖
≤ ‖en – q‖ + ‖Sq – Sen‖
≤ (1 + δ)‖en – q‖
= (1 + δ)

∥
∥S

(
(1 – αn)gn + Sgn

)
– q

∥
∥

≤ (1 + δ)δ‖gn – q‖ → 0 as n → ∞

(4.6)

and

0 ≤ ‖fn – Sfn‖
≤ (1 + δ)‖fn – q‖
= (1 + δ)‖Sen – q‖
≤ (1 + δ)δ2‖gn – q‖ → 0 as n → ∞.

(4.7)

As ϕ is a continuous function (4.5), (4.6) and (4.7) yield

lim
n→∞ϕ

(‖gn – Sgn‖
)

= lim
n→∞ϕ

(‖en – Sen‖
)

= lim
n→∞ϕ

(‖fn – Sfn‖
)

= 0. (4.8)

On using (4.5) and (4.8), we obtain

0 ≤ ∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥

≤ (1 – αn)
∥
∥gn – S

(
(1 – αn)gn + αnSgn

)∥
∥ + αn

2δ‖gn – Sgn‖ + αnϕ
(‖gn – Sgn‖

)

≤ (1 – αn)‖gn – q‖ +
∥
∥Sq – S

(
(1 – αn)gn + αnSgn

)∥
∥

+ αn
2δ‖gn – Sgn‖ + αnϕ

(‖gn – Sgn‖
)

≤ (1 – αn)‖gn – q‖ + δ
∥
∥q –

(
(1 – αn)gn + αnSgn

)∥
∥ + αn

2δ‖gn – Sgn‖
+ αnϕ

(‖gn – Sgn‖
)

≤ (1 – αn)
(
1 + δ – αnδ + δ2αn

)‖gn – q‖ + αn
2δ‖gn – Sgn‖ + αnϕ

(‖gn – Sgn‖
)

→ 0 as n → ∞.

Again, using the fact that ϕ is a continuous function, we have

lim
n→∞ϕ

(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

= 0. (4.9)



Uddin et al. Advances in Continuous and Discrete Models         (2022) 2022:16 Page 14 of 20

Now, using the fact that δ ∈ (0, 1) and αn ∈ (0, 1) with αn ≥ 1
2 , (4.4) transforms into

‖gn+1 – ˜gn+1‖
≤ (

1 – αn(1 – δ)
)‖gn – g̃n‖ + ϕ

(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

+ αnϕ
(‖gn – Sgn‖

)
+ ϕ

(‖en – Sen‖
)

+ ϕ
(‖fn – Sfn‖

)
+

(
1 + δ + δ2 + δ3αn

)
ε (4.10)

≤ (
1 – αn(1 – δ)

)‖gn – g̃n‖ + 2αnϕ
(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + αnSgn

)∥
∥
)

+ αnϕ
(‖gn – Sgn‖

)
+ 2αnϕ

(‖en – Sen‖
)

+ 2αnϕ
(‖fn – Sfn‖

)
+ 8αnε.

Let an = ‖gn – g̃n‖, un = αn(1 – δ) ∈ (0, 1) and

vn =
(
2ϕ

(∥
∥
(
(1 – αn)gn + αnSgn

)
– S

(
(1 – αn)gn + Sgn

)∥
∥
)

+ ϕ
(‖gn – Sgn‖

)

+ 2ϕ
(‖en – Sen‖

)
+ 2ϕ

(‖fn – Sfn‖
)

+ 8ε
)

/(1 – δ).

On using (4.8) and (4.9) along with Lemma 2.5, we obtain

0 ≤ lim sup
n→∞

‖gn – g̃n‖ ≤ lim sup
n→∞

vn =
8ε

1 – δ

that along with Theorem 4.1 yields

‖q – q̃‖ ≤ 8ε

1 – δ
.

Now, we present an example to validate Theorem 4.2 numerically. �

Example 2 Let E = R and K = [0, 6]. Let S : K → K be a mapping defined as

S(g) =

⎧
⎨

⎩

g
4 , g ∈ [0, 3),
g
8 , g ∈ [3, 6].

Proof Clearly g = 0 is the fixed point of S. First, we prove that S is a contractive-like map-
ping but not a contraction. Since S is not continuous at g = 3 ∈ [0, 6], S is not a contrac-
tion. We show that S is a contractive-like mapping. For this, define ϕ : [0,∞) → [0,∞) as
ϕ(g) = g

6 . Then, ϕ is a strictly increasing and continuous function. Also, ϕ(0) = 0.
We need to show that

‖Sg – Sf ‖ ≤ δ‖g – f ‖ + ϕ
(‖g – Sg‖) (A)

for all g, f ∈ [0, 6] and δ is a constant in [0, 1).
Before going ahead, let us note the following. When g ∈ [0, 3),

‖g – Sg‖ =
∥
∥
∥
∥g –

g
4

∥
∥
∥
∥ =

3g
4
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and

ϕ

(
3g
4

)

=
3g
24

=
g
8

. (4.11)

Similarly, when g ∈ [3, 6], then

‖g – Sg‖ =
∥
∥
∥
∥g –

g
8

∥
∥
∥
∥ =

7g
8

and

ϕ

(
7g
8

)

=
7g
48

. (4.12)

Now consider the following cases:
Case A: Let g, f ∈ [0, 3). Using (4.11) we obtain

‖Sg – Sf ‖ =
∥
∥
∥
∥

g
4

–
f
4

∥
∥
∥
∥

≤ 1
4
‖g – f ‖

≤ 1
4
‖g – f ‖ +

g
8

=
1
4
‖g – f ‖ + ϕ

(
3g
4

)

=
1
4
‖g – f ‖ + ϕ

(‖g – Sg‖).

Hence, (A) is satisfied with δ = 1
4 .

Case B: Let g ∈ [0, 3) and f ∈ [3, 6]. Using (4.11), we obtain

‖Sg – Sf ‖ =
∥
∥
∥
∥

g
4

–
f
8

∥
∥
∥
∥

=
∥
∥
∥
∥

g
8

+
g
8

–
f
8

∥
∥
∥
∥

≤ 1
8
‖g – f ‖ +

∥
∥
∥
∥

g
8

∥
∥
∥
∥

≤ 1
4
‖g – f ‖ + ϕ

(
3g
4

)

=
1
4
‖g – f ‖ + ϕ

(‖g – Sg‖).

Hence, (A) is satisfied with δ = 1
4 .

Case C: Let g ∈ [3, 6] and f ∈ [0, 3). Using (4.12), we obtain

‖Sg – Sf ‖ =
∥
∥
∥
∥

g
8

–
f
4

∥
∥
∥
∥

=
∥
∥
∥
∥

g
4

–
g
8

–
f
4

∥
∥
∥
∥
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Table 2 Iteration values involving S and S̃

Step Mapping S Mapping S̃ Difference

1 5 5 0
2 0.0234375 0 0.02357 0.0001325
3 0.0001373291 0.00027065755 0.00013332845
4 7.6634543× 10–7 0.00013409965 0.00013333331
5 4.1161132× 10–9 0.00013333745 0.00013333333
6 2.1438089× 10–11 0.00013333335 0.00013333333
7 1.088653× 10–13 0.00013333333 0.00013333333
8 5.4123372× 10–16 0.00013333333 0.00013333333

≤ 1
4
‖g – f ‖ +

∥
∥
∥
∥

g
8

∥
∥
∥
∥

≤ 1
4
‖g – f ‖ +

∥
∥
∥
∥

7g
48

∥
∥
∥
∥

=
1
4
‖g – f ‖ + ϕ

(‖g – Sg‖).

Hence, (A) is satisfied with δ = 1
4 .

Case D: Let g, f ∈ [3, 6]. Using (4.12), we obtain

‖Sg – Sf ‖ =
∥
∥
∥
∥

g
8

–
f
8

∥
∥
∥
∥

≤ 1
8
‖g – f ‖ +

∥
∥
∥
∥

7g
48

∥
∥
∥
∥

≤ 1
4
‖g – f ‖ +

∥
∥
∥
∥

7g
48

∥
∥
∥
∥

=
1
4
‖g – f ‖ + ϕ

(‖g – Sg‖).

Hence, (A) is satisfied with δ = 1
4 .

Consequently, (A) is satisfied for δ = 1
4 and ϕ(g) = g

6 in all the possible cases. Thus, S is a
contractive-like mapping.

Next, we define another operator S̃ : K → K as

S̃(g) =

⎧
⎨

⎩

g
4 + 1

10,000 , g ∈ [0, 3),
g
8 + 1

10,000 , g ∈ [3, 6],

for all g ∈ K . Then, it is easy to see that S̃ is an approximate operator for S with ε = 0.0001 as
‖Sg – S̃g‖ ≤ 0.0001 for all g ∈ K . Also, q = 0 is the fixed point of S and q̃ = 0.00013333333 is
the fixed point of g̃ . We obtain Table 2 of iteration values with an initial approximation of 5
and αn = n+3

n+4 for all n ∈N. Also, we have ‖q– q̃‖ = ‖0–0.00013333333‖ = 0.00013333333 ≤
0.0010666667 = 8ε

1–δ
. Hence, we can say that in a situation when it is difficult to calculate

the fixed point of a mapping S we can choose a mapping S̃ closer to S and the distance
between the two fixed points will reduce too. �

5 Application
Fractional differential equations have applications in many fields of engineering and sci-
ence including diffusive transport, electrical networks, fluid flow, probability and elec-
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tromagnetic theory. Numerous fixed-point results are available for finding solutions to
differential/integral equations involving fractional operators (see [35–43]). This section is
devoted to the study of a solution of a nonlinear fractional differential equation with the
help of iteration process (1.1).

Here, we consider the following fractional differential equation:

⎧
⎨

⎩

Dλg(u) + f (u, g(u)) = 0 (0 ≤ u ≤ 1, 1 < λ < 2),

g(0) = g(1) = 0,
(5.1)

where Dλ is the Caputo fractional derivative of order λ and f : [0, 1] ×R →R is a contin-
uous function.

Let E = C[0, 1] be a Banach space of a continuous function endowed with the maximum
norm and the Green’s function associated to (5.1) is defined as:

G(u, v) =

⎧
⎨

⎩

1

(λ) (u(1 – v)λ–1 – (u – v)λ–1), 0 ≤ v ≤ u ≤ 1,
u(1–v)λ–1


(λ) , 0 ≤ u ≤ v ≤ 1.

Assume that

∣
∣f (u, a) – f (u, b)

∣
∣ ≤ |a – b|, (5.2)

for all u ∈ [0, 1] and a, b ∈R.

Theorem 5.1 Let E = C[0, 1] and the operator S : E → E be defined as

S
(
g(u)

)
=

∫ 1

0
G(u, v)f

(
v, g(v)

)
dv,

for all u ∈ [0, 1] and g ∈ E. If the condition (5.2) is satisfied then the iteration process (1.1)
converges to the solution of (5.1).

Proof It is easy to see that g ∈ E is a solution of (5.1) if and only if g is a solution of the
following integral equation

g(u) =
∫ 1

0
G(u, v)f

(
v, g(v)

)
dv.

Let g, h ∈ E and u ∈ [0, 1]. Then,

∣
∣S

(
g(u)

)
– S

(
h(u)

)∣
∣ ≤

∫ 1

0
G(u, v)

∣
∣f

(
v, g(v)

)
– f

(
v, h(v)

)∣
∣dv

≤
∫ 1

0
G(u, v)

∣
∣g(v) – h(v)

∣
∣dv

≤ ‖g – h‖
(∫ 1

0
G(u, v) dv

)

≤ ‖g – h‖,
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which yields

‖Sg – Sh‖ ≤ ‖g – h‖,

for all g, h ∈ E and for all u ∈ [0, 1]. With the help of Lemma 2.2(i) and Theorem 3.2, we
can say that process (1.1) converges to the solution of (5.1). �

6 Conclusion
A new iteration process (1.1) is obtained for approximating fixed points of Suzuki gener-
alized nonexpansive mappings. It is proved that it has a higher rate of convergence than
the M∗-iteration process for contractive-like mappings. Strong and weak convergence to
the fixed point of Suzuki generalized nonexpansive mappings in the setting of uniformly
convex Banach spaces are proved. The results have been supported by a newly introduced
Example 1. We then presented a data-dependence result that is again followed by a nu-
merical example. We ended by providing an application to nonlinear fractional differential
equations in the framework of Caputo with a power-law singular kernel. The Riemann–
Liouville integral operators used in obtaining the solution representation have semigroup
properties that may make them more appropriate when we apply iterative techniques.
Also, there are no restrictions on the right-hand side of the considered initial-value prob-
lem, as in the case of fractional operators with nonsingular kernels [44–46]. Our new it-
eration process can be used by engineers, computer scientists, physicists as well as math-
ematicians to solve different problems more efficiently and effectively.
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