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Abstract
This article demonstrates the behaviour of solutions to a kind of nonlinear third order
neutral stochastic differential equations. Setting x′(t) = y(t), y′(t) = z(t) the third order
differential equation is ablated to a system of first order differential equations
together with its equivalent quadratic function to derive a suitable downright
Lyapunov functional. This functional is utilised to obtain criteria which guarantee
stochastic stability of the trivial solution and stochastic boundedness of the nontrivial
solutions of the discussed equations. Furthermore, special cases are provided to verify
the effectiveness and reliability of our hypotheses. The results of this paper
complement the existing decisions on system of nonlinear neutral stochastic
differential equations with delay and extend many results on third order neutral and
stochastic differential equations with and without delay in the literature.
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1 Introduction
To analyse or describe numbers of urbane dynamical systems in sciences, social sciences,
engineering and health sciences, neutral and stochastic differential equations, with or
without delay or randomness, cannot be disregarded or unnoticed. In general, applica-
tions of functional differential equations are found in viscoelasticity, pre-predator and
control problems, aeroautoelasticity, Brownian particles found in a limitless environment
(or medium), motion of a rigid body under control, stretching of a polymer filament, dy-
namics of oscillator in a vacuum tube, energy source and their interaction in physics,
motion of auto-generators with delay, general theory of relativity [10, 13, 14, 22–24, 26].
These amazing practical utilisations of functional differential equations in solving real-
life phenomena have recently geared up or accelerated research in these directions, see
for example the survey books of Arnold [10], Burton [13, 14], Driver [19], Hale [22–24],
Kolmanovskii and Myshkis [26], Yoshizawa [50], to mention but a few, where theories and
applications of functional differential equations are discussed.
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Furthermore, a considerable number of strategies such as the direct method of Lya-
punov, the continuous-time Markov chains, linear matrix inequality, fixed point approach,
the technique of stochastic analysis, theory of semigroup, Euler–Maruyama, Rosenblatt
process and so on, have been developed by authors to study criteria for stability, bound-
edness, existence and uniqueness, periodicity, exponential stability for system of neutral
stochastic functional differential equations. We can mention the papers of Annamalai1 et
al. [9], Chen et al. [17, 18], El Hassan [20], Fernándeza [21], Huang and Mao [25], Lien et
al. [27], Liu and Raffoul [28], Liu [29], Liu et al. [30], Luo et al. [31], Mahmoud [33], Mao
et al. [34], Mao [35–39] and the cited references therein.

In addition, outstanding papers on properties of solutions of nonlinear second and third
order neutral and stochastic differential equations, using various techniques, have been
discussed by researchers, see for example the works of Abou-El-Ela et al. [1–3], Ademola
[4], Ademola et al. [5–7], Adesina et al. [8], Bohner et al. [11], Bouakkaz et al. [12], Cahlon
and Schmidt [15], Chen et al. [16], Mahmoud and Tunç [32], Oudjedi et al. [42], Panigrahi
and Basu [43], Philos and Purnaras [44], Tripathy et al. [47], Yeniçerioğlu and Demir [49]
and the references cited therein.

Abou-El-Ela et al. [1], by employing Lyapunov direct method, addressed the problem of
stochastic asymptotic stability and the uniform stochastic boundedness of nonzero solu-
tions for the third order differential equation

w′′′(t) + a1w′′(t) + b1w′(t) + c1w(t) + σ1w(t)ρ ′(t) = e1
(
t, x(t), w′(t), w′′(t)

)
,

where a1, b1, c1 and σ1 are positive constants ρ(t) ∈ R is the standard Brownian motion
defined on the probability space. Ademola [4], using the second method of Lyapunov, dis-
cussed the problem of stability, boundedness, existence and uniqueness of solution of the
third order nonlinear stochastic differential equation with delay, namely

w′′′(t) + a2w′′(t) + b2w′(t) + h
(
w(t – τ )

)
+ σ2w(t)ρ ′(t) = e2

(
t, w(t), w′(t), w′′(t)

)
,

where a2 > 0, b2 > 0, σ2 > 0 are constants, h, e2 are nonlinear continuous functions de-
pending on the displayed arguments, h(0) = 0, τ > 0 is a constant delay and ρ(t) ∈ R is
defined above.

By introducing more nonlinear functions into the existing equations, Mahmoud and
Tunç [32] constructed a suitable Lyapunov functional and applied it to give criteria for the
asymptotic stability of the zero solution to nonlinear third order stochastic differential
equations with variable and constant delays defined as

w′′′(t) + a3w′′(t) + φ
(
w′(t – r(t)

))
+ ψ

(
w

(
t – r(t)

))
+ σ3w(t – h)ρ ′(t) = 0,

where a3 > 0, σ3 > 0, h > 0 are constants, r(t) is a continuously differentiable function with
0 ≤ r(t) ≤ γ1, γ1 > 0 is a constant, φ, ψ are continuously differentiable functions defined
on R such that φ(0) = 0 = ψ(0), and ρ(t) ∈ R

m is defined above.
Many papers have been published on the stability and boundedness of solutions of

neutral differential equations, Oudjedi et al. [42] established conditions for integrability,
boundedness and convergence of solutions to the third order neutral delay differential
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equations

[
w(t) + βw(t – τ )

]′′′ + φ(t)w′′(t) + ϕ(t)w′(t) + χ (t)f
(
w(t – r)

)
= e3(t),

where β and τ are constants with 0 ≤ β ≤ 1 and τ ≥ 0, e3(t) and f (w) continuous func-
tions depending only on the arguments shown and f ′(w) exists and is continuous for all w.
By replacing the linear differentiable function w′(t) with a nonlinear delay differentiable
function, Ademola et al. [5] itemized criteria for uniform asymptotic stability and bound-
edness of solutions to the nonlinear third order neutral functional differential equation
with delay defined as

[
w(t) + φw(t – τ )

]′′′ + ϕ(t)w′′(t) + χ (t)g
(
w′(t – τ )

)
+ ψ(t)h

(
w(t – τ )

)
= e4(t),

where τ > 0 is a constant delay, φ is a constant satisfying 0 ≤ φ ≤ 1, the functions ϕ(t), χ (t),
ψ(t), g(y), h(w) are continuous in their respective arguments on R

+, R+, R+, R, R respec-
tively. Besides, it is supposed that the derivatives g ′(y) and h′(w) exist and are continuous
for all w, y and h(0) = 0.

The objective of this paper is to obtain sufficient conditions for the stability and bound-
edness of solutions of the following neutral stochastic differential equation with delay of
third order:

[
x′′(t) + φx′′(t – τ (t)

)]′ + ax′′(t) + bx′(t – τ (t)
)

+ ψ(t)h
(
x
(
t – τ (t)

))

+ σx(t)ω′(t) = p(·), (1.1)

where p(·) = p(t, x(t), x(t – τ (t)), x′(t))), φ is a constant satisfying 0 ≤ φ ≤ 1
2 , the continuous

functions ψ(t), h(x) and p(·) depending only on the arguments shown and h′(x) exist and
are continuous for all x; the constants σ , a, b and β are positive with 0 ≤ τ (t) ≤ β , which
will be determined later, ω(t) ∈R is the standard Brownian motion.

Setting x′(t) = y(t), x′′(t) = z(t) and Y (t) = x′(t) + φx′(t – τ (t)), then (1.1) is equivalent to
the system of first order differential equations

x′(t) = y(t),

y′(t) = z(t),

Z′(t) = p(·) – az – by – ψ(t)h(x) – σx(t)ω′(t) + b
∫ t

t–τ (t)
z(s) ds

+ ψ(t)
∫ t

t–τ (t)
h′(x(s)

)
y(s) ds.

(1.2)

By a solution of (1.1) or (1.2), we have a continuous function x : [tx,∞) → R such that
Z(t) = z(t) + φz(t – τ (t)) ∈ C1([tx,∞),R), which satisfies (1.1) on [tx,∞).

Then from (1.2) we get

Y ′(t) = y′(t) + φy′(t – τ (t)
)(

1 – τ ′(t)
)

= z(t) + φz
(
t – τ (t)

)(
1 – τ ′(t)

)

= Z(t) – φτ ′(t)z
(
t – τ (t)

)
. (1.3)



Mahmoud and Ademola Advances in Continuous and Discrete Models         (2022) 2022:28 Page 4 of 22

We observed that the stochastic differential equations discussed in [1–4, 6–8, 32] exempt
neutral term similar to [5, 11, 12, 15, 16, 42–44, 47] where neutral differential equations are
considered and the stochastic term is exempted. Equation (1.1) is therefore an extension of
these results and the references listed therein as both terms (neutral and stochastic which
formed the major contribution of this paper) are included in equation (1.1).

It is noteworthy to mention at this junction that the inclusion of both neutral and
stochastic terms to equation (1.1) make the authentication or confirmation of Lyapunov
functional more difficult to obtain than before. Thus the Lyapunov functional employed in
this study includes and generalises the existing functionals employed in [1–4, 6–8, 32] and
[5, 11, 12, 15, 16, 42–44, 47] where qualitative behaviour of solution of stochastic differ-
ential equations and neutral functional differential equations are respectively considered.
In addition, equation (1.1) is a special case of the systems of neutral stochastic differential
equations discussed in [9, 10, 20–22, 34–39, 45, 46].

For more information on stability and boundedness to a kind of stochastic delay dif-
ferential equations, see Ademola et al. [6], Arnold [10], Mao [40, 41] and Tunç and Tunç
[48].

Consider a non-autonomous n-dimensional stochastic delay differential equation

dx(t) = f
(
t, x(t), x(t – r)

)
dt + g

(
t, x(t), x(t – r)

)
dB(t) (1.4)

for t > 0 with the initial data {x(ϑ) : –r ≤ ϑ ≤ 0}, x0 ∈ C([–r, 0];Rn). Here f : R+ ×R
2n →R

n

and g : R+ ×R
2n → R

n×m are measurable functions and satisfy the local Lipschitz condi-
tion. Let B(t) = (B1(t), B2(t), . . . , Bm(t))T be an m-dimensional Brownian motion defined
on the probability space. Hence, the stochastic delay differential equation admits trivial
solution x(t, 0) ≡ 0 for any given initial value x0 ∈ C([–r, 0];Rn).

Definition 1.1 The trivial solution of the stochastic differential equation (1.4) is said to
be stochastically stable if, for every pair ε ∈ (0, 1) and κ > 0, there exists δ0 = δ0(ε,κ) > 0
such that

Pr
{∣∣x(t; x0)

∣
∣ < κ for all t ≥ 0

} ≥ 1 – ε whenever |x0| < δ0.

Otherwise, it is said to be stochastically unstable.

Definition 1.2 The trivial solution of the stochastic differential equation (1.4) is said to
be stochastically asymptotically stable if it is stochastically stable and, in addition, if for
every ε ∈ (0, 1) and κ > 0 there exists δ = δ(ε) > 0 such that

Pr
{

lim
t→∞ x(t; x0) = 0

}
≥ 1 – ε whenever |x0| < δ.

Definition 1.3 A solution x(t0; x0) of the stochastic differential equation (1.4) is said to be
stochastically bounded if it satisfies

Ex0
∥∥x(t, x0)

∥∥ ≤ C
(
t0,‖x0‖

)
for all t ≥ t0, (1.5)

where C : R+ × R
n → R

+ is a constant function depending on t0 and x0, Ex0 denotes the
expectation operator with respect to the probability low associated with x0.



Mahmoud and Ademola Advances in Continuous and Discrete Models         (2022) 2022:28 Page 5 of 22

Definition 1.4 The solution x(t0; x0) of the stochastic differential equation (1.4) is said to
be uniformly stochastically bounded if C in (1.5) is independent of t0.

Section 2 considers the stability of the trivial solution, ultimate boundedness of solution
is discussed in Sect. 3, and finally illustrative examples are presented in the last section.

2 Stability of the trivial solution
Now, we shall state here the stability result of (1.1) with p(·) ≡ 0.

Theorem 2.1 In addition to the assumptions imposed on the functions that appeared in
(1.1), suppose that there are positive constants ψ0, h0, h1 and α such that the following
conditions are satisfied:

(H1) ψ0 ≤ ψ(t) ≤ b and ψ ′(t) ≤ 0 for all t ≥ 0;
(H2) h(0) = 0, h0 ≤ h(x)

x ≤ h1 for all x 
= 0 and h′(x) ≤ |h′(x)| ≤ α < a for all x;
(H3) for some β ≥ 0, 0 < β1,β2 < 1, such that 0 ≤ τ (t) ≤ β and β1 ≤ τ ′(t) ≤ β2;
(H4) max{α, aφ} < μ < a

2 ;
(H5) σ 2 < 2ψ0h0 – bh0β1φ – a – b – 2;
(H6) [2b(μ – α) – b – 3 – φ – bφ(1 + α + β1)](1 – β2) – bφ(1 + α) – bφ2(1 – β1) = A1 > 0;

and
(H7) [a – 2μ– 1 –φ(μ+ b + a)](1 –β2) – bφβ1(1 + h0) –φ(μ+ b + 1) – bφ2(1 –β1) = A2 > 0.

Then the trivial solution of (1.1) is uniformly stochastically asymptotically stable, provided
that

β < min

{
2ψ0h0 – bh0β1φ – a – b – 2 – σ 2

b(1 + α)
,

A1

2αb(μ + 2) + 2μb(1 + α)(1 – β2)
,

A2

2b(μ + 2) + 2bφ(1 + α) + 2b(1 + α)(1 – β2)

}
.

Remark 2.1 If p(t, x(t), x(t – τ (t)), x′(t)) = 0 in equation (1.1), we have the following obser-
vations:

(i) In the case h(x(t – τ (t))) = cx and σxω′ = p(t, x, x′, x′′) = 0, equation (1.1) specialises
to the linear first order homogeneous ordinary differential equation

x′′′ + ax′′ + bx′ + cx = 0, (2.1)

and assumptions (H1) to (H7) of Theorem 2.1 reduce to Routh Hurwitz criteria
a > 0, b > 0, c > 0, ab > c for asymptotic stability of the trivial solution of equation
(2.1);

(ii) Whenever φ = 0, bx′(t – τ (t)) = b2ω
′(t), ψ(t) = 1 and τ (t) = τ > 0 a constant delay,

equation (1.1) is cut down to that discussed in [4]. The assumptions of Theorem 2.1
include and extend the stability results in [4] Theorems 3.3 and 3.4;

(iii) Suppose that φ = 0 and ψ(t) = c1, then equation (1.1) is weakened to that discussed
in [1] and some of our assumptions are similar. Thus the uniform stability result
obtained in Theorem 2.1 include and extend the stochastic stability result
(Theorem 2.3) discussed in [1];

(iv) If τ (t) = τ > 0 is a constant delay and σ = 0, then equation (1.1) specialises to that
considered in [5] and [42], our assumptions in Theorem 2.1 include Theorem 2.1,
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Corollary 2.2 in [5] and the asymptotic stability Theorem 2.1 in [42] provided that
a(t) = b(t) = constant;

(v) To crown it all, Theorem 2.1 includes and extends the stochastic stability results
considered in [1, 4, 5, 42] and the references cited therein.

Proof of Theorem 2.1.Let (xt , yt , zt) be any solution of (1.1) or (1.2) with p(·) ≡ 0, we define
a Lyapunov continuously differentiable functional V = V (xt , yt , zt , t) employed in this work
as follows:

V = V0 + V1 + λ1

∫ 0

–τ (t)

∫ t

t+s
y2(ϑ) dϑ ds + λ2

∫ 0

–τ (t)

∫ t

t+s
z2(ϑ) dϑ ds

+ η1

∫ t

t–τ (t)
y2(s) ds + η2

∫ t

t–τ (t)
z2(s) ds, (2.2)

where

V0 = μψ(t)
∫ x

0
h(ξ ) dξ + ψ(t)h(x)Y +

b
2

Y 2,

V1 =
1
2
μay2 + μyZ +

1
2

Z2 + x2 + xZ

with λ1, λ2, η1 and η2 being positive constants which will be specified later.
From conditions (H1) and (H2), we have

V0 = μψ(t)
∫ x

0
h(ξ ) dξ +

b
2

(
Y +

ψ(t)h(x)
b

)2

–
ψ(t)2h2(x)

2b

≥ μψ(t)
∫ x

0
h(ξ ) dξ –

ψ(t)2h2(x)
2b

= μψ(t)
∫ x

0

(
1 –

ψ(t)
μb

h′(ξ )
)

h(ξ ) dξ

≥ μψ(t)
∫ x

0

(
1 –

α

μ

)
h(ξ ) dξ

≥ �

∫ x

0
h(ξ ) dξ ≥ �h0

2
x2,

where

� = μψ0

(
1 –

α

μ

)
> μψ0

(
1 –

μ

μ

)
= 0, since α < μ.

Furthermore, from the definition of V1, we get

V1 =
1
2
μay2 + μyZ +

1
4

Z2 +
(

x +
Z
2

)2

=
1
4

(Z + 2μy)2 +
1
2
μ(a – 2μ)y2 +

(
x +

Z
2

)2

.
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In the same way, it follows that

V1 =
μa
2

(
y +

Z
a

)2

+
1
4

(
a – 2μ

a

)
Z2 +

(
x +

Z
2

)2

.

Then

V1 =
1
8

(Z + 2μy)2 +
μa
4

(
y +

Z
a

)2

+
(

x +
Z
2

)2

+
1
4
μ(a – 2μ)y2 +

1
8

(
a – 2μ

a

)
Z2

≥ 1
4
μ(a – 2μ)y2 +

1
8

(
a – 2μ

a

)
Z2.

From this inequality and (H4), we can deduce a positive constant K0 such that

V1 ≥ K0
(
y2 + Z2),

where

K0 = min

{
μ

4
(a – 2μ),

1
8a

(a – 2μ)
}

.

Since

λ1

∫ 0

–τ (t)

∫ t

t+s
y2(ϑ) dϑ ds + λ2

∫ 0

–τ (t)

∫ t

t+s
z2(ϑ) dϑ ds + η1

∫ t

t–τ (t)
y2(s) ds

+ η2

∫ t

t–τ (t)
z2(s) ds > 0,

which implies that

V ≥ K1
(
x2 + y2 + Z2), (2.3)

where

K1 = min

{
�h0

2
, K0

}
.

Since h(x)
x ≤ h1 and ψ(t) ≤ b, then we get

V ≤ μb
∫ x

0
h1ξ dξ + bh1xY +

b
2

Y 2 +
1
2
μay2 + μyZ +

1
2

Z2 + x2 + xZ

+ λ1

∫ t

t–τ (t)

{
ϑ – t + τ (t)

}
y2(ϑ) dϑ + λ2

∫ t

t–τ (t)

{
ϑ – t + τ (t)

}
z2(ϑ) dϑ

+ η1

∫ t

t–τ (t)
y2(s) ds + η2

∫ t

t–τ (t)
z2(s) ds.
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Using the fact 2|uv| ≤ u2 + v2, we obtain

V ≤ 1
2
μbh1x2 +

1
2

bh1
(
x2 + Y 2) +

b
2

Y 2 +
1
2
μay2 +

μ

2
(
y2 + Z2) +

1
2

Z2 + x2

+
1
2
(
x2 + Z2) +

1
2
λ1τ

2(t)‖y‖2 +
1
2
λ2τ

2(t)‖z‖2 + +η1τ (t)‖y‖2 + η2τ (t)‖z‖2.

Since τ (t) ≤ β , Y (t) = y(t) + φy(t – τ (t)) and Z(t) = z(t) + φz(t – τ (t)), it follows that

V ≤ 1
2
{

bh1(μ + 1) + 3
}‖x‖2 +

1
2
{
μ(a + 1) + λ1β

2 + η1β + b(1 + h1)(1 + φ)2}‖y‖2

+
1
2
{
λ2β

2 + η2β + (μ + 2)(1 + φ)2}‖z‖2. (2.4)

Then there exists a positive constant K2 such that

V ≤ K2
(
x2 + y2 + z2). (2.5)

Therefore, from (2.3) and (2.5), we note that the Lyapunov functional V satisfies the in-
equalities

ν1
(|x|) ≤ V (t, x) ≤ ν2

(|x|).

By using Itô’s formula, the derivative of the Lyapunov functional V is given by

LV = μψ ′(t)
∫ x

0
h(ξ ) dξ + ψ ′(t)h(x)Y + μψ(t)h(x)y + ψ(t)h′(x)yY

+
(
ψ(t)h(x) + bY

)
Y ′ + μayz + μzZ + (x + μy + Z)Z′ + 2xy + yZ +

1
2
σ 2x2

+ λ1τ (t)y2 – λ1
(
1 – τ ′(t)

)∫ t

t–τ (t)
y2(s) ds + λ2τ (t)z2 – λ2

(
1 – τ ′(t)

)∫ t

t–τ (t)
z2(s) ds

+ η1y2 – η1y2(t – τ (t)
)(

1 – τ ′(t)
)

+ η2z2 – η2z2(t – τ (t)
)(

1 – τ ′(t)
)
.

From system (1.2) and (1.3), with conditions (H1) – (H3), it follows that

LV ≤ (μ – a + λ2β + η2)z2 + (bα – μb + λ1β + η1)y2 +
1
2
σ 2x2 – axz – bxy – ψ0h(x)x

+ 2xy + yz + bαφyy
(
t – τ (t)

)
– bh0β1φxz

(
t – τ (t)

)
– bβ1φyz

(
t – τ (t)

)

+ bφzy
(
t – τ (t)

)
+ bφ2y

(
t – τ (t)

)
z
(
t – τ (t)

)
(1 – β1) + μφzz

(
t – τ (t)

)

– aφzz
(
t – τ (t)

)
+ φyz

(
t – τ (t)

)

+ (x + μy + Z)
(

b
∫ t

t–τ (t)
z(s) ds + bα

∫ t

t–τ (t)
y(s) ds

)

– λ1(1 – β2)
∫ t

t–τ (t)
y2(s) ds – λ2(1 – β2)

∫ t

t–τ (t)
z2(s) ds

– η1(1 – β2)y2(t – τ (t)
)

– η2(1 – β2)z2(t – τ (t)
)
.
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Applying the estimate |uv| ≤ 1
2 (u2 + v2), we obtain

LV ≤ –
1
2
{

2ψ0h0 – bh0β1φ – a – b – 2 – σ 2 – b(1 + α)β
}

x2

–
1
2
{

2b(μ – α) – b – 3 – φ – bφ(1 + α + β1) – μbβ(1 + α) – 2η1 – 2λ1β
}

y2

–
1
2
{

a – 2μ – 1 – φ(μ + a + b) – bβ(1 + α) – 2η2 – 2λ2β
}

z2

+
1
2
{

bφ(1 + α) + bφ2(1 – β1) – 2η1(1 – β2)
}

y2(t – τ (t)
)

+
1
2
{

bβ1φ(1 + h0) + φ(μ + b + 1) + bβφ(1 + α)

+ bφ2(1 – β1) – 2η2(1 – β2)
}

z2(t – τ (t)
)

+
1
2
{

bα(μ + 2) – 2λ1(1 – β2)
}∫ t

t–τ (t)
y2(s) ds

+
1
2
{

b(μ + 2) – 2λ2(1 – β2)
}∫ t

t–τ (t)
z2(s) ds. (2.6)

If we let

λ1 =
bα(μ + 2)
2(1 – β2)

> 0, λ2 =
b(μ + 2)
2(1 – β2)

> 0, η1 =
bφ(1 + α) + bφ2(1 – β1)

2(1 – β2)
> 0

and

η2 =
bβ1φ(1 + h0) + φ(μ + b + 1) + bβφ(1 + α) + bφ2(1 – β1)

2(1 – β2)
> 0.

It follows that

LV ≤ –
1
2
{

2ψ0h0 – bh0β1φ – a – b – 2 – σ 2 – b(1 + α)β
}

x2

–
1
2

{
2b(μ – α) – b – 3 – φ – bφ(1 + α + β1) –

bφ(1 + α) + bφ2(1 – β1)
(1 – β2)

– μbβ(1 + α) –
bαβ(μ + 2)

(1 – β2)

}
y2

–
1
2

{
a – 2μ – 1 – φ(μ + a + b) – bβ(1 + α) –

bβφ(1 + α)
(1 – β2)

–
bβ(μ + 2)
(1 – β2)

–
bβ1φ(1 + h0) + φ(μ + b + 1) + bφ2(1 – β1)

(1 – β2)

}
z2.

From conditions (H6) and (H7), the last inequality becomes

LV ≤ –
1
2
{

2ψ0h0 – bh0β1φ – a – b – 2 – σ 2 – b(1 + α)β
}

x2

–
1
2

{
A1

1 – β2
–

μb(1 + α)(1 – β2) + bα(μ + 2)
1 – β2

β

}
y2

–
1
2

{
A2

1 – β2
–

b(1 + α)(1 – β2) + bφ(1 + α) + b(μ + 2)
1 – β2

β

}
z2.
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Therefore, there exists a positive constant K3 such that

LV ≤ –K3
(
x2 + y2 + z2), (2.7)

provided that

β < min

{
2ψ0h0 – bh0β1φ – a – b – 2 – σ 2

b(1 + α)
,

A1

2αb(μ + 2) + 2μb(1 + α)(1 – β2)
,

A2

2b(μ + 2) + 2bφ(1 + α) + 2b(1 + α)(1 – β2)

}
.

Thus, from (2.7) the inequality

LV (t, x) ≤ –ν3
(|x|) for all (t, x) ∈ R

+ ×R
3

is satisfied, then the trivial solution of (1.1) with p(·) ≡ 0 is uniformly stochastically asymp-
totically stable.

This completes the proof of Theorem 2.1.

3 Ultimate boundedness of solutions
Our main theorem in this section with respect to (1.1) is as follows.

Theorem 3.1 Assume that all the conditions of Theorem 2.1 hold and there exist positive
constants m, γ , M1 and M2 such that the following conditions are satisfied:

(H8) ab – γ > 0.
(H9) ‖p(·)‖ ≤ m.

(H10) σ 2 < 2ψ0h0(1+γ )–bh0β1(1+a)φ–a–b–2
1+a .

(H11) M1 = A1 +[2a(ab–γ )–abβ1φ–(abα+γ )(1+φ)](1–β2)–abφ(1+α)–abφ2(1–β1).
(H12) M2 = A2 + [–γ – abφ](1 – β2) – abβ1φ(1 + h0) – γφ – abφ2(1 – β1),

provided that

β < min

{
2ψ0h0(1 + γ ) – bh0β1(1 + a)φ – a – b – 2 – σ 2(1 + a)

2b(1 + α)(1 + γ )
,

M1

2αb(μ + a + a2 + 2) + 2abγ + 2b(1 + α)(μ + a2)(1 – β2)
,

M2

2b(μ + a + a2 + 2) + 2bφ(1 + α)(1 + a) + 2bγ + 2b(1 + α)(1 + a)(1 – β2)

}
.

Then
(1) All solutions of (1.1) are uniformly stochastically bounded.
(2) The zero solution of (1.1) is ω-uniformly exponentially asymptotically stable in

probability.

Remark 3.1 When p(·) 
= 0 in (1.1), we have the following comparisons:
(i) Whenever φ = 0 and ψ(t) = c1 in (1.1), assumptions (H8) to (H12) of Theorem 3.1

specialise to assumptions (i) to (iii) of Theorem 3.6 in [1] and our conclusions
coincide. Thus, Theorem 3.1 includes and generalises the boundedness results
discussed in [1];
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(ii) If φ = 0, bx′(t – τ (t)) = b2ω
′(t) and ψ(t) = 1 in (1.1), some of our assumptions of

Theorem 3.1 coincide with the assumptions of ultimate boundedness results
discussed in Theorems 3.1 and 3.2 in [4] and our conclusion on uniformly
stochastically boundedness falls together with that in [4]. We have similar cases in
[5, 6] and [8];

(iii) Suppose that a = ϕ(t), b = χ (t), p(·) = e4(t) and σ = 0, then (1.1) and boundedness
Theorem 3.1 come down to neutral differential equation (1.2) and Theorems 3.1,
3.3 and Corollary 3.2 in [5]; and finally

(iv) Theorem 3.1 is a general case of the results discussed in [1, 4–6, 8] and the
references cited therein.

Proof of Theorem 3.1.Consider the Lyapunov functional U(xt , yt , zt , t) as follows:

U(xt , yt , zt , t) = V (xt , yt , zt , t) + W (xt , yt , zt , t), (3.1)

where V is defined as (2.2) and W is defined as follows:

W = a2ψ(t)
∫ x

0
h(ξ ) dξ + aψ(t)h(x)Y +

aψ(t)
2

Y 2

+
bγ

2
x2 + γ x(Z + ay) +

a
2

(Z + ay)2. (3.2)

Now, we shall prove that

‖x‖p1 ≤ V (t, x) ≤ ‖x‖p2

is satisfied for (1.1) where p1 and p2 are positive constants, p1 ≥ 1. It suffices to show it for
W , since it was already proved for V in Sect. 2. We shall use the same techniques, which
have already been demonstrated in the proof of Theorem 2.1. Thus from (3.2) we get

W = aψ(t)
∫ x

0

{
a – h′(ξ )

}
h(ξ ) dξ +

1
2

aψ(t)
{

h(x) + Y
}2

+
a
2

{
(Z + ay) +

γ

a
x
}2

+
(ab – γ )γ

2a
x2.

Therefore, from (H2) and (H8), we obtain

W ≥ L
(
x2 + y2 + Z2) for some L > 0. (3.3)

Thus, by gathering (2.3) and (3.3), there exists a positive constant D1 such that

U(xt , yt , zt , t) ≥ D1
(
x2 + y2 + Z2), (3.4)

where D1 = min{K1, L}.
Now, by using conditions (H1) and (H2) of Theorem 2.1, we can rewrite (3.2) as the

following form:

W ≤ a2b
∫ x

0
h1ξ dξ + abh1|xY | +

ab
2

Y 2 +
bγ

2
x2 + γ

∣
∣x(Z + ay)

∣
∣ +

a
2

(Z + ay)2.
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Since |uv| ≤ 1
2 (u2 + v2), then we get

W ≤ 1
2
{

bh1
(
a + a2) + γ (a + b + 1)

}‖x‖2

+
1
2
{

ab(1 + h1)(1 + φ)2 + a
(
γ + a + a2)}‖y‖2

+
1
2
{(

γ + a + a2)(1 + φ)2}‖z‖2. (3.5)

Combining the foregoing inequalities (2.4), (3.1) and (3.5), we have

U ≤ 1
2
{

bh1
(
μ + a + a2 + 1

)
+ γ (a + b + 1) + 3

}‖x‖2

+
1
2
{
μ(a + 1) + a

(
γ + a + a2) + λ1β

2 + η1β + b(1 + a)(1 + h1)(1 + φ)2}‖y‖2

+
1
2
{
λ2β

2 + η2β +
(
μ + γ + a + a2 + 2

)
(1 + φ)2}‖z‖2.

Then we can find a positive constant D2 such that the last inequality gives

U(xt , yt , zt , t) ≤ D2
(
x2 + y2 + z2). (3.6)

Now from the results (3.4) and (3.6), we can find the Lyapunov functional U which satisfies
the inequalities

‖x‖p1 ≤ V (t, x) ≤ ‖x‖p2 .

Also we can check that

V (t, x) – V n/p2 (t, x) ≤ �

is satisfied since p1 = p2 = 2 and � = 0.
From (3.2), (1.2), (1.3) and the definitions of Y (t) and Z(t), we get

LW = W1 + aψ(t)h′(x)y2 + aψ(t)φh′(x)yy
(
t – τ (t)

)
– aψ(t)φτ ′(t)h(x)z

(
t – τ (t)

)

+ aψ(t)yz + aψ(t)φyz
(
t – τ (t)

)(
1 – τ ′(t)

)
+ aψ(t)φzy

(
t – τ (t)

)
– abyz

– γψ(t)h(x)x + γ yz + γ ay2 + aψ(t)φ2y
(
t – τ (t)

)
z
(
t – τ (t)

)(
1 – τ ′(t)

)

+ γφyz
(
t – τ (t)

)
– a2by2 – abφyz

(
t – τ (t)

)

+
(
γ x + a2y + aZ

)(
b
∫ t

t–τ (t)
z(s) ds + ψ(t)

∫ t

t–τ (t)
h′(x(s)

)
y(s) ds + p(·)

)
,

where

W1 = a2ψ ′(t)
∫ x

0
h(ξ ) dξ + aψ ′(t)h(x)Y +

aψ ′(t)
2

Y 2.



Mahmoud and Ademola Advances in Continuous and Discrete Models         (2022) 2022:28 Page 13 of 22

First, we show that W1 is a negative definite function, we can rewrite W1 as the following
form:

W1 = aψ ′(t)
∫ x

0

{
a – h′(ξ )

}
h(ξ ) dξ +

aψ ′(t)
2

h2(x) + aψ ′(t)h(x)Y +
aψ ′(t)

2
Y 2

= aψ ′(t)
∫ x

0

{
a – h′(ξ )

}
h(ξ ) dξ +

1
2

aψ ′(t)
(
h(x) + Y

)2.

From the assumptions ψ ′(t) ≤ 0 and h′(x) ≤ a, we get W1 ≤ 0.
Then from the assumptions of Theorem 3.1 and by using |uv| ≤ 1

2 (u2 + v2), we can
rewrite the above equation LW as follows:

LW ≤ –
1
2
{

2ψ0h0γ – abh0β1φ – aσ 2 – bγ (1 + α)β
}

x2

–
1
2
{

2a(ab – γ ) – abβ1φ – (abα + γ )(1 + φ) – a2bβ(1 + α)
}

y2

–
1
2
{
γ + abφ + abβ(1 + α)

}
z2 +

1
2
{

abφ(1 + α) + abφ2(1 – β1)
}

y2(t – τ (t)
)

+
1
2
{

abβ1φ(1 + h0) + abφ2(1 – β1) + abβφ(1 + α) + γφ
}

z2(t – τ (t)
)

+
1
2
{

bαγ + a2bα + abα
}∫ t

t–τ (t)
y2(s) ds

+
1
2
{

bγ + a2b + ab
}∫ t

t–τ (t)
z2(s) ds

+ γ m|x| + a2m|y| + am(1 + φ)|z|. (3.7)

From (2.2) and (1.2) and condition (H9) of Theorem 3.1 with (2.6), we find

LV ≤ –
1
2
{

2ψ0h0 – bh0β1φ – a – b – 2 – σ 2 – b(1 + α)β
}

x2

–
1
2
{

2b(μ – α) – b – 3 – φ – bφ(1 + α + β1) – μbβ(1 + α) – 2η1 – 2λ1β
}

y2

–
1
2
{

a – 2μ – 1 – φ(μ + a + b) – bβ(1 + α) – 2η2 – 2λ2β
}

z2

+
1
2
{

bφ(1 + α) + bφ2(1 – β1) – 2η1(1 – β2)
}

y2(t – τ (t)
)

+
1
2
{

bβ1φ(1 + h0) + φ(μ + b + 1) + bβφ(1 + α)

+ bφ2(1 – β1) – 2η2(1 – β2)
}

z2(t – τ (t)
)

+
1
2
{

bα(μ + 2) – 2λ1(1 – β2)
}∫ t

t–τ (t)
y2(s) ds

+
1
2
{

b(μ + 2) – 2λ2(1 – β2)
}∫ t

t–τ (t)
z2(s) ds

+ m|x| + μm|y| + m(1 + φ)|z|. (3.8)
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Therefore, by combining inequalities (3.7) and (3.8), we obtain

LU ≤ –
1
2
{

2ψ0h0(1 + γ ) – bh0β1φ(1 + a) – a – b – 2 – σ 2(1 + a) – b(1 + α)(1 + γ )β
}

x2

–
1
2
{

2b(μ – α) + 2a(ab – γ ) – bφ(1 + α + β1 + aβ1) – b – 3 – φ

– (abα + γ )(1 + φ) –
(
μ + a2)bβ(1 + α) – 2η1 – 2λ1β

}
y2

–
1
2
{

a – 2μ – γ – 1 – (μ + a + b + ab)φ – bβ(1 + a)(1 + α) – 2η2 – 2λ2β
}

z2

+
1
2
{

bφ(1 + α)(1 + a) + bφ2(1 + a)(1 – β1) – 2η1(1 – β2)
}

y2(t – τ (t)
)

+
1
2
{

bβ1φ(1 + a)(1 + h0) + (μ + b + 1 + γ )φ + bβφ(1 + α)(1 + a)

+ bφ2(1 + a)(1 – β1) – 2η2(1 – β2)
}

z2(t – τ (t)
)

+
1
2
{

bα
(
μ + a + a2 + 2

)
– abγ – 2λ1(1 – β2)

}∫ t

t–τ (t)
y2(s) ds

+
1
2
{

b
(
μ + a + a2 + 2

)
+ bγ – 2λ2(1 – β2)

}∫ t

t–τ (t)
z2(s) ds

+ m(γ + 1)|x| +
(
μ + a2)m|y| + m(1 + a)(1 + φ)|z|.

Now, if we choose

λ1 =
bα(μ + a + a2 + 2) + abγ

2(1 – β2)
> 0, λ2 =

b(μ + a + a2 + 2) + bγ

2(1 – β2)
> 0,

η1 =
bφ(1 + α)(1 + a) + bφ2(1 + a)(1 – β1)

2(1 – β2)
> 0 and

η2 =
bβ1φ(1 + a)(1 + h0) + φ(μ + b + 1 + γ ) + bβφ(1 + a)(1 + α) + bφ2(1 + a)(1 – β1)

2(1 – β2)

> 0.

It follows that

LU ≤ –
1
2
{

2ψ0h0(1 + γ ) – bh0β1φ(1 + a) – a – b – 2 – σ 2(1 + a)

– b(1 + α)(1 + γ )β
}

x2 –
1
2

{
M1

1 – β2
–

bα(μ + a + a2 + 2) + abγ

1 – β2
β

– b(1 + α)
(
μ + a2)β

}
y2 –

1
2

{
M2

1 – β2
–

bφ(1 + α)(1 + a)
1 – β2

β

–
b(μ + a + a2 + 2) + bγ

1 – β2
β – b(1 + α)(1 + a)β

}
z2 + m(γ + 1)|x|

+
(
μ + a2)m|y| + m(1 + a)(1 + φ)|z|. (3.9)
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Provided that

β < min

{
2ψ0h0(1 + γ ) – bh0β1(1 + a)φ – a – b – 2 – σ 2(1 + a)

2b(1 + α)(1 + γ )
,

M1

2αb(μ + a + a2 + 2) + 2abγ + 2b(1 + α)(μ + a2)(1 – β2)
,

M2

2b(μ + a + a2 + 2) + 2bφ(1 + α)(1 + a) + 2bγ + 2b(1 + α)(1 + a)(1 – β2)

}
.

Then one can conclude for some positive constants K and ω that

LU ≤ –ω
(
x2 + y2 + z2) + Kω

(|x| + |y| + |z|)

= –
ω

2
(
x2 + y2 + z2) –

ω

2
{(|x| – K

)2 +
(|y| – K

)2 +
(|z| – K

)2} +
3ω

2
K2

≤ –
ω

2
(
x2 + y2 + z2) +

3ω

2
K2,

where

K = max
{
γ + 1,μ + a2, (1 + a)(1 + φ)

}
.

Then we find

δ1(t) =
ω

2
, δ2(t) =

3ω

2
K2, n = 2, p1 = p2 = 2, � = 0, it follows that

∫ t

t0

{
�δ1(u) + δ2(u)

}
e–

∫ t
u δ1(s) ds du =

3ω

2
K2

∫ t

t0

e–
∫ t

u
ω
2 ds du

=
3ω

2
K2

∫ t

t0

e– ω
2 (t–u) du

≤ 3K2 for all t ≥ t0 ≥ 0,

Thus, satisfying the inequality

∫ t

t0

{
�δ1(u) + δ2(u)

}
e–

∫ t
u δ1(s) ds du ≤M for all t ≥ t0 ≥ 0, (3.10)

for some positive constant M. Now, we have the following:

gT =
(

0 0 –σx(t)
)

,

Ux = (V )x + (W )x

= μψ(t)h(x) + ψ(t)h′(x)(1 + φ)y + (1 + φ)z + 2x + a2ψ(t)h(x) + aψ(t)h′(x)(1 + φ)y

+ γ bx + γ (1 + φ)z + γ ay,

Uy = (V )y + (W )y

= ψ(t)h(x)(1 + φ) + b(1 + φ)2y + G(y) + μay + μ(1 + φ)z + aψ(t)h(x)(1 + φ)

+ aψ(t)(1 + φ)2y + aγ x + a2(1 + φ)z + a3y,
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Uz = (V )z + (W )z = μ(1 + φ)y + (1 + φ)2z + (1 + φ)x + γ (1 + φ)x + a(1 + φ)2z.

It follows that

∣∣Vxi (t, xt)gik(t, x)
∣∣ ≤ σ

[
1
2
{
μ(1 + φ) + (1 + a)(1 + φ)2 + 2(1 + γ )(1 + φ)

}
x2

+
μ(1 + φ)

2
y2 +

(1 + a)(1 + φ)2

2
z2

]
:= χ (t).

Hence, all solutions of (1.1) are uniformly stochastically bounded. Therefore, the proof of
Theorem 3.1 is completed. Next

∫ t

t0

{
�δ1(u) + δ2(u)

}
e
∫ u

t0
δ1(u) ds du =

3ω

2
K2

∫ t

t0

e
ω
2

∫ u
t0

ds du

= 3K2(e
ω
2 (t–t0) – 1

) ≤M

for all t ≥ t0 ≥ 0, where M is a positive constant. Thus, we find that the trivial solution of
(1.1) is ω-uniformly exponentially asymptotically stable with N = 1

2 .

Corollary 3.1 If assumptions (H1), (H2) and (H9) on functions ψ(t), h(x) and p(·) hold
and in addition 0 ≤ φ ≤ 1

2 , then system (1.1) satisfies the global Lipschitz continuous and
the linear growth conditions.

Proof See (2.4)–(2.6) on page 202 in [38]. �

Remark 3.2 It is noteworthy to mention here that some of our assumptions, and the result
of Corollary 3.1 in particular, complement some existing results on the system of neutral
stochastic differential equations with delay in literature.

4 Examples and discussion
In this section two examples are given to illustrate the correctness of the obtained results
of the stability and boundedness in Sects. 2 and 3.

Example 4.1 Consider the following third order non-autonomous neutral stochastic dif-
ferential equation with delay:

[
x′′(t) + φx′′(t – τ (t)

)]′ + 36x′′(t) + 6.1x′(t – τ (t)
)

+
(

6 +
1

10 + t2

)(
4x

(
t – τ (t)

)
+

x(t – τ (t))
1 + x2(t – τ (t))

)
+ x(t)ω′(t) = 0. (4.1)
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The above equation is equivalent to a system of first order differential equations as the
following:

x′(t) = y(t),

y′(t) = z(t),

Z′(t) = –36z – 6.1y –
(

6 +
1

10 + t2

)(
4x +

x
1 + x2

)
– x(t)ω′(t)

+ 6.1
∫ t

t–τ (t)
z(s) ds +

(
6 +

1
10 + t2

)∫ t

t–τ (t)

(
4 +

1 – x2

(1 + x2)2

)
y(s) ds.

(4.2)

Comparing equations (1.2) and (4.2), we find a = 36, b = 6.1, σ = 1, and the following
functions:

6 = ψ0 ≤ ψ(t) = 6 +
1

10 + t2 ≤ 6.1 = b, it follows that ψ ′(t) =
–2t

(10 + t2)2 ≤ 0.

Figures 1 and 2 depict the function ψ(t), its bounds on the interval –20 ≤ t ≤ 20 and
the derivative ψ ′(t) also on 0 ≤ t ≤ 20 respectively. The function h(x) = 4x + x

1+x2 fulfills
h(0) = 0 and

4 = h0 ≤ h(x)
x

= 4 +
1

1 + x2 ≤ 5 = h1 with x 
= 0.

The function h(x)
x and its bounds are shown in Fig. 3. The derivative of h(x) is defined as

h′(x) = 4 +
1 – x2

(1 + x2)2 ,
∣∣h′(x)

∣∣ ≤ 5 = α.

The coinciding paths of h′(x) and |h′(x)| are presented in Fig. 4. If we let β1 = 0.1, β2 = 0.3
and φ = 0.02, then from condition (H4) we can take μ = 8. Also, from conditions (H6) and

Figure 1 Bounds on the function ψ (t) for t ∈ [–20, 20]
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Figure 2 Path of ψ ′(t) for t ∈ [0, 20]

Figure 3 The function h(x)
x and its bounds for x ∈ [–20, 20]

(H7), we have

A1 = 17.98064 > 0 and A2 = 12.172404 > 0,

provided that

β < min{0.07790, 0.01763, 0.06967} = 0.01763,

If we take β = 0.017, then we find

λ1 ∼= 217.86 > 0, λ2 ∼= 43.57 > 0, η1 ∼= 0.5244 > 0 and η2 ∼= 0.3133 > 0.
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Figure 4 The behaviour of functions h′(x) and |h′(x)| for t ∈ [–4, 4]

Then all the conditions of Theorem 2.1 are contented with. Hence the trivial solution of
(4.1) is stochastically asymptotically stable.

Example 4.2 As an application of Theorem 3.1, we consider the third order neutral
stochastic delay differential equation such that

[
x′′(t) + φx′′(t – τ (t)

)]′ + 36x′′(t) + 6.1x′(t – τ (t)
)

+
(

6 +
1

10 + t2

)(
4x

(
t – τ (t)

)
+

x(t – τ (t))
1 + x2(t – τ (t))

)
+ x(t)ω′(t)

= p
(
t, x(t), x

(
t – τ (t)

)
, x′(t)

)
. (4.3)

Its equivalent system is given by

x′(t) = y(t),

y′(t) = z(t),

Z′(t) = –36z – 6.1y –
(

6 +
1

10 + t2

)(
4x +

x
1 + x2

)
– x(t)ω′(t)

+ 6.1
∫ t

t–τ (t)
z(s) ds +

(
6 +

1
10 + t2

)∫ t

t–τ (t)

(
4 +

1 – x2

(1 + x2)2

)
y(s) ds

+ p
(
t, x(t), x

(
t – τ (t)

)
, y(t)

)
.

(4.4)

By using the estimates in Example 4.1, we have

a = 36, b = 6.1, σ = 1, ψ0 = 6, h0 = 4, h1 = 5,

α = 5, β1 = 0.1, β2 = 0.3, μ = 8,

A1 = 17.98064 > 0 and A2 = 12.172404 > 0.
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If we let γ = 2, then we obtain ab – γ = 217.6 > 0.
Also it is obvious that

2ψ0h0(1 + γ ) – bh0β1(1 + a)φ – a – b – 2
1 + a

∼= 2.65 > 1 = σ 2,

M1 = 10172.88237, M2 = 5.382948,

provided that

β < min{0.278, 0.068, 0.000293} = 0.000293.

If we choose β = 0.0002, we obtain

λ1 ∼= 29550 > 0, λ2 ∼= 5856 > 0, η1 ∼= 19.4 > 0 and η2 ∼= 1.92 > 0.

Let m = 0.01, therefore (3.9) takes the following form:

LU ≤ –30.53x2 – 7252.45y2 – 2.53z2 + 0.03|x| + 13.04|y| + 0.3774|z|.

If we take ω = 2.53, K ∼= 13.04, δ1(t) = 1.265, δ2(t) = 645.31, n = 2, with p1 = p2 = 2 and
� = 0, it follows that

∫ t

t0

{
�δ1(u) + δ2(u)

}
e–

∫ t
u δ1(s) ds du ≤ 510, for all t ≥ t0 ≥ 0.

Therefore condition (3.10) holds. Now since

∣∣Vxi (t, xt)gik(t, x)
∣∣ ≤ 26.3874x2 + 4.08y2 + 19.2474z2 := χ (t).

Hence, it is evident that all the solutions of (4.3) with |P| ≤ 0.01 are (USB) and satisfy

Ex0
∥∥x(t, t0, x0)

∥∥ ≤ {
x2

0 + 510
} 1

2 for all t ≥ t0 ≥ 0.

Next

∫ t

t0

{
�δ1(u) + δ2(u)

}
e
∫ t

u δ1(s) ds du ≤ 510
(
e1.265(t–t0) – 1

) ≤M

for all t ≥ t0 ≥ 0, where M is a positive constant.
Hence we find that the trivial solution of (4.3) is ω-uniformly exponentially asymptoti-

cally stable in probability with N = 1
2 .

5 Conclusion
In this paper a third order neutral stochastic differential equation is discussed using the
second technique of Lyapunov. A standard Lyapunov functional is derived and used to
obtain suitable conditions which guarantee the stability of the zero solution and ultimate
boundedness of the nonzero solutions. Our results are new and extend many outstanding
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existing findings in the literature. Only some behaviour of solutions of this novel equation
is discussed here, existence and uniqueness, asymptotic behaviour as t → ∞, oscillatory
and nonoscillatory, integrability properties of solutions are still open for further consid-
eration.
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