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Abstract
We consider � as a subset of a Banach spaceW and � as a function of � intoW . Let
� be a function whose image values lie inW and domain is �(�)× � or � × �. In
this paper, we establish some fixed-point results for a generalized expansive and
equiexpansive operator� such that � ⊆ �(�ω,�) or � ⊆ �(ω,�). We apply our
results to acquire the solutions of fractional evolution equations and certain types of
integral equations. We demonstrate our results with examples, and plot approximate
and exact solutions with errors.
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1 Introduction
Fixed-point theory has been playing a vital role to analyze the stability and existence of
many linear and nonlinear problems over the last few decades. Two of the most celebrated
results of fixed-point theory are the Banach contraction principle and Schauder’s fixed-
point result. In addition to the beauty of the Banach contraction principle to determine the
stability and uniqueness of the solution, Schauder’s result is still more applicable. Both the
results have their own importance and domain. During the analysis of solutions of neutral
and delayed differential equations, Krasnoselskii observed that, in most of the cases, the
solutions of these equations might be expressed as a sum of contractive and compact op-
erators. Therefore, in [10] Krasnoselskii generalized both results of Banach and Schauder,
for finding the fixed points of the sum of contractive and compact operators. Huge imple-
mentations in the existence theory of differential and integral equations can be seen in the
following monographs [9, 17, 29].

Fractional evolution equations can provide a unique way to analyze the well-posedness
of many complex systems. Most differential systems with fractional derivatives provide
useful tools for the representation of memory and inherited properties. The real physi-
cal systems of fractional order are always more applicable than the classical integer-order
systems. Recently, the existence of many fractional-order controlled problems and frac-
tional evolution differential equations have been studied, see [5, 13, 14, 22, 24]. Due to the
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involvement of contractive operators in Krasnoselskii’s result, the existence results cover
a small class of physical problems. To overcome this issue, some new results are required
involving other less restrictive conditions like expansive operators. In this regard, we de-
scribe a new class of generalized equiexpansive mappings, assume F is an implicit function
of two variables with some conditions, we present many variants of Krasnoselskii’s fixed-
point theorem.

Krasnoselskii, in 1958, combined the Schauder theorem and the Banach contraction
principle to consider the fixed-point problem:

�ω + Bω = ω, ω ∈ �,

where � is a subset of Banach space W . Keeping the importance of this type of problems,
many researchers have solved the operator equation �ω+Bω = ω under different assump-
tions on �, B and �. These types of results can be seen in [2, 6, 7, 16, 18, 23, 25–28]. The
Krasnoselskii theorem can be stated in the following way.

Theorem 1 ([21]) Suppose that � is a nonempty closed convex subset of a Banach space
W . � and B are mappings of � into W such that

(1) �ω + Bν ∈ � for all ω,ν ∈ �;
(2) � is compact and continuous;
(3) B is a contraction.

Then, there is ω ∈ � such that �ω + Bω = ω.

Xiang and Yuan ([26], see also in [25]) proved the following theorem that is a variant of
the Banach contraction principle.

Theorem 2 Let � ⊆ W be a nonempty closed set, where W is a complete metric space and
ϒ : � −→ W is an expansive operator such that ϒ(�) ⊇ �. Thus, there is a unique ω ∈ �

such that ϒω = ω.

In most fixed-point results the condition ϒ(�) ⊆ � is used, for example, in the Banach
contraction principle, the Schauder fixed-point theorem and the Sadovskii fixed-point
theorem. Xiang and Yuan [26] discussed and proved the fixed-point result for an expan-
sive operator satisfying the reverse condition ϒ(�) ⊇ �. They (in [26]) also proved the
following fixed-point result that is a variant of the Krasnoselskii fixed-point theorem.

Theorem 3 Let � ⊆ W be a nonempty closed and convex set, where W is a Banach space.
Assume that � : � −→ W and B : � −→ W are mappings such that

(1) � is continuous and �(�) ⊆ C, where C is a compact subset of W ;
(2) B is an expansive mapping;
(3) � ⊆ υ + B(�) for all υ ∈ �(�).

Thus, there is ω ∈ � such that �ω + Bω = ω.

In Theorem 1, �ω + Bν ∈ � and B is a contraction, while in Theorem 3, � ⊆ υ + B(�)
and B is an expansive mapping. The single operator �ω+Bν combined from two operators
� and B can be considered in the general form �(ω,ν) = �ω + Bν . The fixed-point study
for this type of operator � can be seen in [4, 8, 12, 15].
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Let W be a Banach space and � be a subset of W . Suppose � : � × � −→ W or � :
�(�) ×� −→ W . We, in this paper, study the fixed-point results of the equations of types
ω = �(�ω,ω) or ω = �(ω,ω) by using generalized expansive and equiexpansive conditions
on the operator � and such that � ⊆�(�ω,�) or � ⊆�(ω,�).

2 Main results
Definition 2.1 ([26]) Let (W , dW ) be a metric space and � be a subset of W . A mapping ϒ

of � into W is said to be expansive if there exists a constant h > 1 such that dW (ϒω,ϒν) ≥
hdW (ω,ν).

Definition 2.2 Let (W , dW ) be a metric space and � be a subset of W . A mapping ϒ of
� into W is said to be generalized expansive if

cdW (ϒω,ϒν) + adW (ϒω,ω) + bdW (ϒν,ν)

≥ hdW (ω,ν) a, b ≥ 0, c, h > 0, a + b + c < h.

Below in Example 30, it is proved that a generalized expansive mapping may not be an
expansive mapping. Also, note that every expansive mapping is one to one but every gen-
eralized expansive mapping may not be one to one. In the case of a generalized expansive
mapping or an expansive mapping we need to have one to one mapping. We pose here a
question, whether in the case of a generalized expansive, does a mapping has a fixed point
if it is not one to one?

Theorem 4 Assume that � is a nonempty closed subset of a complete metric space W and
ϒ is a one to one mapping of � into W such that

(1) � ⊆ ϒ(�);
(2) cdW (ϒω,ϒν) + adW (ϒω,ω) + bdW (ϒν,ν) ≥ hdW (ω,ν), a, b ≥ 0, c, h > 0,

a + b + c < h.
Thus, there is a unique ω ∈ � such that ϒω = ω.

Proof Since ϒ is one to one, the inverse of ϒ : � −→ ϒ(�) exists. For υ,ϑ ∈ ϒ(�) there
are ω,ν ∈ � such that ϒω = υ and ϒν = ϑ , then ω = ϒ–1υ and ν = ϒ–1ϑ . From (2)

hdW
(
ϒ–1υ,ϒ–1ϑ

) ≤ adW
(
υ,ϒ–1υ

)
+ bdW

(
ϑ ,ϒ–1ϑ

)
+ cdW (υ,ϑ)

for all υ,ϑ ∈ ϒ(�). Thus,

dW
(
ϒ–1υ,ϒ–1ϑ

) ≤ a′dW
(
υ,ϒ–1υ

)
+ b′dW

(
ϑ ,ϒ–1ϑ

)
+ c′dW (υ,ϑ),

where a′ + b′ + c′ = a
h + b

h + c
h < 1. Since � ⊆ ϒ(�), therefore ϒ–1|� : � −→ � is the Reich

contraction. Hence, by [19] there is ω ∈ � such that ϒ–1ω = ω and ω = ϒω. For unique-
ness, let ω,ν ∈ � such that ϒω = ω and ϒν = ν . Thus, from (2), cdW (ω,ν) ≥ hdW (ω,ν),
which implies that ω = ν . �

Corollary 5 Let � be a nonempty closed subset of a complete metric space W and ϒ is a
mapping of � into W such that
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(1) � ⊆ ϒ(�);
(2) dW (ϒω,ϒν) ≥ h′dW (ω,ν), h′ > 1.

Thus, there is a unique ω ∈ � such that ϒω = ω.

Proof From (2) we deduce that ϒ is one to one. Using the above theorem, we can take
a = b = 0 and h > c > 0 such that h′ = h

c . Thus, there is a unique ω ∈ � such that
ϒω = ω. �

Remark 6 The above corollary is Theorem 2.1 in [26] (see also Theorem 2.1 in [25]).

Definition 7 Suppose � is a nonempty subset of a Banach space W . Let � be a mapping
of � × � into W . � is called equiexpansive if there exists a constant h > 1 such that

∥
∥�(ω,ν) – �

(
ω,ν ′)∥∥ ≥ h

∥
∥ν – ν ′∥∥

for all (ω,ν), (ω,ν ′) in the domain of �.

If we define� by�(ω,ν) = �ω+Bν where B : � −→ W is expansive, then� is an equiex-
pansive mapping.

Definition 8 Suppose � is a nonempty subset of a Banach space W . Let � be a mapping
of � × � into W . � is called generalized equiexpansive if

c
∥
∥�(ω,ν) – �

(
ω,ν ′)∥∥ + a

∥
∥�(ω,ν) – ν

∥
∥ + b

∥
∥�

(
ω,ν ′) – ν ′∥∥ ≥ h

∥
∥ν – ν ′∥∥

for all (ω,ν), (ω,ν ′) in the domain of �, a, b ≥ 0, c, h > 0, a + b + c < h.

Theorem 9 Suppose � is a nonempty closed subset of a Banach space W . Let � be a gen-
eralized equiexpansive mapping of � × � into W such that � ⊆ �(ω,�) for all ω ∈ �

and
(1) For each ω ∈ �, �(ω,ν) = �(ω,ν ′) yields ν = ν ′;
(2) ‖�(ω,ν) – �(ω′,ν)‖ ≤ ‖ω – ω′‖ for all (ω,ν), (ω,ν ′) ∈ � × �.

Then, there is a unique ω ∈ � such that �(ω,ω) = ω.

Proof For ω ∈ �, define a mapping H of � into W such that H(ν) = �(ω,ν). From (1)

c
∥∥H(ν) – H

(
ν ′)∥∥ + a

∥∥H(ν) – ν
∥∥ + b

∥∥H
(
ν ′) – ν ′∥∥ ≥ h

∥∥ν – ν ′∥∥.

Also

� ⊆�(ω,�) = H(�)

and, using (2), H is a one to one function. Thus, (by Theorem 4) there is a unique Gω ∈ �

such that Gω = �(ω, Gω). Now,

∥
∥G(ω) – G

(
ω′)∥∥

=
∥∥�(ω, Gω) – �

(
ω′, Gω′)∥∥
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=
∥∥(
�

(
ω′, Gω

)
– �

(
ω′, Gω′)) –

(
�

(
ω′, Gω

)
– �(ω, Gω)

)∥∥

≥ ∥∥�
(
ω′, Gω

)
– �

(
ω′, Gω′)∥∥ –

∥∥�
(
ω′, Gω

)
– �(ω, Gω)

∥∥

≥ h
c
∥∥Gω – Gω′∥∥ –

a
c
∥∥�

(
ω′, Gω

)
– Gω

∥∥ –
b
c
∥∥�

(
ω′, Gω′) – Gω′∥∥

–
∥
∥�

(
ω′, Gω

)
– �(ω, Gω)

∥
∥

=
h
c
∥
∥Gω – Gω′∥∥ –

a
c
∥
∥�

(
ω′, Gω

)
– �(ω, Gω)

∥
∥ –

b
c
∥
∥Gω′ – Gω′∥∥

–
∥
∥�

(
ω′, Gω

)
– �(ω, Gω)

∥
∥.

Simplifying

∥
∥G(ω) – G

(
ω′)∥∥ ≤ a + c

h – c
∥
∥�

(
ω′, Gω

)
– �(ω, Gω)

∥
∥ ≤ a + c

h – c
∥
∥ω – ω′∥∥,

which yields that G is a contraction mapping of � into �. Thus, there is a unique ω ∈ �

such that Gω = ω. Since for this ω ∈ � there is a unique Gω ∈ � such that Gω = �(ω, Gω),
there is a unique ω satisfying �(ω,ω) = ω. �

Corollary 10 Suppose � is a nonempty closed subset of a Banach space W . Let � be a
mapping of � × � into W such that � ⊆�(ω,�) for all ω ∈ � and

(1) c‖�(ω,ν) – �(ω,ν ′)‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of �, c, h > 0,
2c < h;

(2) ‖�(ω,ν) – �(ω′,ν)‖ ≤ ‖ω – ω′‖ for all (ω,ν), (ω,ν ′) ∈ � × �.
Then, there is a unique ω ∈ � such that �(ω,ω) = ω.

Proof From (1),�(ω,ν) = �(ω,ν ′) yields ν = ν ′. Putting a = b = 0 in the generalized equiex-
pansive condition, used in Theorem 9, we acquire the required result. �

Corollary 11 Suppose � is a nonempty closed subset of a Banach space W . � and B are
mappings of � into W such that � ⊆ �ω + B(�) for all ω ∈ � and

(1) c‖Bν – Bν ′‖ + a‖�ω – (I – B)ν‖ + b‖�ω – (I – B)ν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′)
in the domain of �, a, b ≥ 0, c, h > 0, a + b + c < h, a + c < h – c;

(2) B is a one to one mapping;
(3) ‖�ω – �ω′‖ ≤ ‖ω – ω′‖ for all ω,ω′ ∈ �.

Thus, there is a unique ω ∈ � such that �ω + Bω = ω.

Proof Define �(ω,ν) = �ω + Bν . Clearly � is a mapping of � × � into W . Also, � ⊆
�ω + B(�) = �(ω,�). From (1)

h
∥∥ν – ν ′∥∥ ≤ c

∥∥Bν – Bν ′∥∥ + a
∥∥�ω – (I – B)ν

∥∥ + b
∥∥�ω – (I – B)ν ′∥∥

= c
∥∥(�ω + Bν) –

(
�ω + Bν ′)∥∥ + a

∥∥ν – (�ω + Bν)
∥∥

+ b
∥∥ν ′ –

(
�ω + Bν ′)∥∥

= c
∥∥�(ω,ν) – �

(
ω,ν ′)∥∥ + a

∥∥�(ω,ν) – ν
∥∥ + b

∥∥�
(
ω,ν ′) – ν ′∥∥.
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Since B is a one to one mapping, Bν = Bν ′ implies ν = ν ′ and hence �(ω,ν) = �(ω′,ν)
implies ν = ν ′. Also,

∥
∥�(ω,ν) – �

(
ω′,ν

)∥∥ =
∥
∥�ω – �ω′∥∥ ≤ ∥

∥ω – ω′∥∥.

Hence, (by Theorem 9) there is a unique ω ∈ � such that �ω + Bω = ω. �

Remarkk 11.1 If � = O in the above corollary, then we acquire the result like Theorem 4.

Corollary 12 Suppose � is a nonempty closed subset of a Banach space W . � and B are
mappings of � into W such that � ⊆ �ω + B(�) for all ω ∈ � and

(1) c‖Bν – Bν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of �, c, h > 0, 2c < h;
(2) ‖�ω – �ω′‖ ≤ ‖ω – ω′‖ for all ω,ω′ ∈ �.

Then, there is a unique ω ∈ � such that �ω + Bω = ω.

Proof From (1) we deduce that B is one to one. Hence, the result can be obtained by taking
a = b = 0 in Corollary 11. �

Theorem 13 Suppose � is a nonempty closed subset of a Banach space W . Let � be a
mapping of �(�) × � into W such that � ⊆�(�ω,�) for all �ω ∈ �(�) such that

(1) c‖�(�ω,ν) – �(�ω,ν ′)‖ + a‖�(�ω,ν) – ν‖ + b‖�(�ω,ν ′) – ν ′‖ ≥ h‖ν – ν ′‖ for all
(ω,ν), (ω,ν ′) in the domain of �, a, b ≥ 0, c, h > 0, a + b + c < h, a + c < h – c;

(2) For each �ω ∈ �, �(�ω,ν) = �(�ω,ν ′) implies ν = ν ′ for all ν,ν ′ ∈ �;
(3) ‖�(�ω,ν) – �(�ω′,ν)‖ ≤ ‖ω – ω′‖ for all (�ω,ν), (�ω′,ν) ∈ �(�) × � and � is a

mapping of � into W .
Then, there is a unique ω ∈ � such that �(�ω,ω) = ω.

Proof For �ω ∈ �(�), define a mapping H of � into W such that H(ν) = �(�ω,ν). From
(1)

c
∥
∥H(ν) – H

(
ν ′)∥∥ + a

∥
∥H(ν) – ν

∥
∥ + b

∥
∥H

(
ν ′) – ν ′∥∥ ≥ h

∥
∥ν – ν ′∥∥.

Also,

� ⊆�(�ω,�) = H(�)

and, using (2), H is a one to one function. Thus, (by Theorem 4) there is a unique point
G(�ω) ∈ � such that G(�ω) = �(�ω, G(�ω)). Now,

∥∥G(�ω) – G
(
�ω′)∥∥

=
∥
∥�

(
�ω, G(�ω)

)
– �

(
�ω′, G

(
�ω′))∥∥

=
∥
∥(
�

(
�ω′, G(�ω)

)
– �

(
�ω′, G

(
�ω′))) –

(
�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

))∥∥

≥ ∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω′, G

(
�ω′))∥∥ –

∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥

≥
(

h
c
∥
∥G(�ω) – G

(
�ω′)∥∥ –

a
c
∥
∥�

(
�ω′, G(�ω)

)
– G(�ω)

∥
∥
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–
b
c
∥
∥�

(
�ω′, G

(
�ω′)) – G

(
�ω′)∥∥ –

∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥
)

=
(

h
c
∥
∥G(�ω) – G

(
�ω′)∥∥ –

a
c
∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥

–
b
c
∥∥G

(
�ω′) – G

(
�ω′)∥∥ –

∥∥�
(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥
)

.

Simplifying

∥
∥(G ◦ �)ω) – (G ◦ �)ω′)

∥
∥ ≤ a + c

h – c
∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥

≤ a + c
h – c

∥
∥ω – ω′∥∥,

which implies that G ◦ � is a contraction mapping of � into � and there is a unique
ω ∈ � such that (G ◦ �)ω = ω or G(�ω) = ω. Also, for �ω ∈ �(�) there is a unique
G(�ω) ∈ � such that G(�ω) = �(�ω, G(�ω)). Hence, there is a unique ω such that ω =
�(�ω,ω). �

Definition 14 ([3]) Assume that W̃ is the family of bounded subsets of a Banach space W .
A mapping μ of W̃ into [0, +∞) is called a measure of noncompactness (MNC) if the
following properties hold for A, B ∈ W̃ .

(1) μ(A) = 0, ⇐⇒ A is precompact;
(2) μ(A) = μ(A);
(3) μ(A ∪ B) = max{μ(A),μ(B)}.

We can also deduce the following properties;
(4) A ⊆ B implies μ(A) ≤ μ(B);
(5) μ(A + B) ≤ μ(A) + μ(B).

Definition 15 ([26]) Assume that � is a subset of a Banach space W and ϒ is a mapping
of � into W . ϒ is said to be k-set contractive if μ(ϒ(A)) ≤ kμ(A) for any bounded subset
of A of � and ϒ is bounded and continuous.

ϒ is said to be strictly k-set contractive if ϒ is k-set contractive and μ(ϒ(A)) < kμ(A)
for all bounded subsets A of � with μ(A) �= 0. ϒ is called a condensing map if ϒ is strictly
1-set contractive.

Theorem 16 Suppose that � is a nonempty bounded closed convex subset of a Banach
space W . � is a mapping of �(�) × � into W such that � ⊆�(�ω,�) for all �ω ∈ �(�)
such that

(1) c‖�(�ω,ν) – �(�ω,ν ′)‖ + a‖�(�ω,ν) – ν‖ + b‖�(�ω,ν ′) – ν ′‖ ≥ h‖ν – ν ′‖ for all
(ω,ν), (ω,ν ′) in the domain of �, a, b ≥ 0, c, h > 0, a + b + c < h;

(2) For each ω ∈ �, �(�ω,ν) = �(�ω,ν ′) implies ν = ν ′ for all ν,ν ′ ∈ �.
(3) ‖�(�ω,ν) – �(�ω′,ν)‖ ≤ ‖�ω – �ω′‖ for all (�ω,ν), (�ω,ν ′) ∈ �(�) × � and �

is a k-set contractive mapping of � into W for k < h–c
a+c .

Then, there is ω ∈ � such that �(�ω,ω) = ω.

Proof For �ω ∈ �, define a mapping H of � into W such that H(ν) = �(�ω,ν). From (1)

c
∥∥H(ν) – H

(
ν ′)∥∥ + a

∥∥H(ν) – ν
∥∥ + b

∥∥H
(
ν ′) – ν ′∥∥ ≥ h

∥∥ν – ν ′∥∥.
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Also,

� ⊆�(�ω,�) = H(�)

and, using (2), H is a one to one function. Thus, (by Theorem 4) there is a unique G(�ω) ∈
� such that G(�ω) = �(�ω, G(�ω)). Now,

∥∥G(�ω) – G
(
�ω′)∥∥

=
∥
∥�

(
�ω, G(�ω)

)
– �

(
�ω′, G

(
�ω′))∥∥

=
∥∥(
�

(
�ω′, G(�ω)

)
– �

(
�ω′, G

(
�ω′)))

–
(
�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

))∥∥

≥ ∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω′, G

(
�ω′))∥∥

–
∥∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥

≥
(

h
c
∥∥G(�ω) – G

(
�ω′)∥∥ –

a
c
∥∥�

(
�ω′, G(�ω)

)
– G�ω

∥∥

–
b
c
∥∥�

(
�ω′, G

(
�ω′)) – G

(
�ω′)∥∥ –

∥∥�
(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥
)

=
(

h
c
∥
∥G(�ω) – G

(
�ω′)∥∥ –

a
c
∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥

–
b
c
∥
∥G

(
�ω′) – G

(
�ω′)∥∥ –

∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥
)

.

Simplifying

∥
∥(G ◦ �)ω) – (G ◦ �)ω′)

∥
∥ ≤ a + c

h – c
∥
∥�

(
�ω′, G(�ω)

)
– �

(
�ω, G(�ω)

)∥∥

≤ a + c
h – c

∥
∥�ω – �ω′∥∥,

which implies that G ◦ � is a continuous mapping of � into �. Now,

μ
(
G ◦ �(N)

)
= μ

(
G

(
�(N)

))

≤ a + c
h – c

μ
(
�(N)

)

≤ k
a + c
h – c

μ(N) < μ(N)

for all N ⊆ �. By the Sadovskii fixed-point theorem there is ω ∈ � such that (G ◦ �)ω =
ω or G(�ω) = ω. Now, for �ω ∈ �(�) there is a unique G(�ω) ∈ � such that G(�ω) =
�(�ω, G(�ω)). Hence, ω = G(�ω) = �(�ω, G(�ω)) = �(�ω,ω). �

Corollary 17 Suppose that � is a nonempty bounded closed convex subset of a Banach
space W . � is a mapping of �(�) × � into W such that � ⊆�(�ω,�) for all �ω ∈ �(�)
such that

(1) c‖�(�ω,ν) – �(�ω,ν ′)‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of �,
c, h > 0, c < h;
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(2) ‖�(�ω,ν) – �(�ω′,ν)‖ ≤ ‖�ω – �ω′‖ for all (�ω,ν), (�ω′,ν) ∈ �(�) × � and �

is a k-set contractive mapping of � into W for k < h–c
c .

Then, there is ω ∈ � such that �(�ω,ω) = ω.

Proof From (1), �(�ω,ν) = �(�ω,ν ′) implies ν = ν ′. Putting a = b = 0 in Theorem 16, we
acquire the required result. �

Corollary 18 Suppose that � is a nonempty bounded closed convex subset of a Banach
space W . � and B are mappings of � into W such that � ⊆ �ω + B(�) for all ω ∈ � and

(1) B is a one to one mapping;
(2) c‖Bν – Bν ′‖ + a‖�ω – (I – B)ν‖ + b‖�ω – (I – B)ν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′)

in the domain of �, a, b ≥ 0, c, h > 0, a + b + c < h;
(3) � is a k-set contractive mapping of � into W for k < h–c

a+c . Then, there is ω ∈ � such
that �(�ω,ω) = ω.

Proof Define �(�ω,ν) = �ω + Bν . Clearly � is a mapping of �(�) × � into W . Also,
� ⊆ �ω + B(�) = �(�ω,�). From (2)

h
∥
∥ν – ν ′∥∥ ≤ c

∥
∥Bν – Bν ′∥∥ + a

∥
∥�ω – (I – B)ν

∥
∥ + b

∥
∥�ω – (I – B)ν ′∥∥

= c
∥∥(�ω + Bν) –

(
�ω + Bν ′)∥∥ + a

∥∥ν – (�ω + Bν)
∥∥ + b

∥∥ν ′ –
(
�ω + Bν ′)∥∥

= c
∥∥�(�ω,ν) – �

(
�ω,ν ′)∥∥ + a

∥∥�(�ω,ν) – ν
∥∥ + b

∥∥�
(
�ω,ν ′) – ν ′∥∥.

Since B is a one to one mapping, Bν = Bν ′ implies ν = ν ′, and hence �(ω,ν) = �(ω′,ν)
implies ν = ν ′. Also,

∥
∥�(ω,ν) – �

(
ω′,ν

)∥∥ =
∥
∥�ω – �ω′∥∥ ≤ ∥

∥�ω – �ω′∥∥.

Hence, (by Theorem 16) there is ω ∈ � such that �ω + Bω = ω. �

Corollary 19 Suppose � is a nonempty bounded closed convex subset of a Banach
space W . � and B are mappings of � into W such that

(1) � ⊆ �ω + B(�) for all ω ∈ �;
(2) c‖Bν – Bν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of �, c, h > 0, c < h;
(3) � is a k-set contractive mapping of � into W for k < h–c

c .
Then, there is ω ∈ � such that �ω + Bω = ω.

Proof (2) implies that B is a one to one mapping. Putting a = b = 0 in Corollary 18, we
acquire the required result. �

Remarkk 19.1 Corollary 19 is Theorem 2.6 in [26].

Corollary 20 Suppose � is a nonempty bounded closed convex subset of a Banach
space W . Let � and B be the mappings of � into W such that

(1) � ⊆ �ω + B(�) for all ω ∈ �;
(2) � is continuous and �(�) lies in a compact subset of W ;
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(3) c‖Bν – Bν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of �, c, h > 0, c < h;
Then, there is ω ∈ � such that �ω + Bω = ω.

Proof We show that all the conditions of Corollary 17 are satisfied. Define � : �(�) ×
� −→ W by �(�ω,ν) = �ω + Bν . From (1), since � ⊆ �ω + B(�), therefore � ⊆ �ω +
B(�) = �(�ω,�). Now, using (3)

c
∥∥�(�ω,ν) – �

(
�ω,ν ′)∥∥ = c

∥∥Bν – Bν ′∥∥ ≥ h
∥∥ν – ν ′∥∥

and

∥
∥�(�ω,ν) – �

(
�ω′,ν

)∥∥ =
∥
∥�ω – �ω′∥∥ ≤ ∥

∥�ω – �ω′∥∥.

Since �(�) lies in a compact subset C of W , therefore for every N ⊆ �

μ
(
�(N)

) ≤ μ
(
�(�)

) ≤ μ(C) = 0.

Hence, � is a k-set contractive mapping for k = 0. Hence, there is ω ∈ � such that ω =
�(�ω,ω) = �ω + Bω. �

Remarkk 20.1 Corollary 20 is Theorem 2.2 in [26] with the assumption that � is a bounded
set.

Theorem 20∗ ([11]. p. 392) If (W , dW ) is a complete metric space, 0 ≤ q < 1/2 and ϒ :
W −→ W is a map such that

dW (ϒω,ϒν) ≤ q
[
dW (ω,ϒω) + dW (ν,ϒν)

]

for all ω,ν ∈ W . Then, ϒ has a unique fixed point.

Theorem 21 Let � be nonempty closed subset of a complete metric space W and ϒ is a
one to one mapping of � into W such that

(1) � ⊆ ϒ(�);
(2) dW (ϒω,ω) + dW (ϒν,ν) ≥ hdW (ω,ν), h > 2.

Then, there is a unique ω ∈ � such that ϒω = ω.

Proof By Theorem 4 and utilizing the result of Theorem 20∗, we deduce the required re-
sult. �

Theorem 22 Suppose that � is a nonempty closed subset of a Banach space W . � is a
mapping of �(�) × � into W such that � ⊆�(�ω,�) for all �ω ∈ �(�) and

(1) ‖�(�ω,ν) – ν‖ + ‖�(�ω,ν ′) – ν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of
�, h > 2;

(2) For each ω ∈ �, �(�ω,ν) = �(�ω,ν ′) implies ν = ν ′ for all ν,ν ′ ∈ �;
(3) ‖�(�ω,ν) – �(�ω′,ν)‖ ≤ ‖ω – ω′‖ for all (�ω,ν), (�ω′,ν) ∈ �(�) × � and � is a

mapping of � into W .
Then, there is a unique ω ∈ � such that �(�ω,ω) = ω.
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Proof For �ω ∈ �, define a mapping H of � into W such that H(ν) = �(�ω,ν). From (1)

∥∥H(ν) – ν
∥∥ +

∥∥H
(
ν ′) – ν ′∥∥ ≥ h

∥∥ν – ν ′∥∥.

Also,

� ⊆�(�ω,�) = H(�)

and, using (2), H is a one to one function. Therefore, there is a unique G(�ω) ∈ � such
that G(�ω) = �(�ω, G(�ω)). Now, putting ν = G(�ω) and ν ′ = G(�ω′) in (1) we deduce

h
∥
∥G(�ω) – G

(
�ω′)∥∥

≤ ∥∥�
(
�ω, G(�ω)

)
– G(�ω)

∥∥ +
∥∥�

(
�ω, G

(
�ω′)) – G

(
�ω′)∥∥

≤ ∥
∥G(�ω) – G(�ω)

∥
∥ +

∥
∥�

(
�ω, G

(
�ω′)) – �

(
�ω′, G

(
�ω′))∥∥

=
∥∥�

(
�ω, G

(
�ω′)) – �

(
�ω′, G

(
�ω′))∥∥

≤ ∥
∥ω – ω′∥∥.

This gives

∥
∥(G ◦ �)ω – (G ◦ �)ω′∥∥ ≤ 1

h
∥
∥ω – ω′∥∥,

which shows that G ◦ � is a contraction mapping and there is a unique ω ∈ � such
that (G ◦ �)ω = ω or G(�ω) = ω. Also, for �ω ∈ �(�) there is a unique G(�ω) ∈ �

such that G(�ω) = �(�ω, G(�ω)). Hence, there is a unique ω such that ω = G(�ω) =
�(�ω, G(�ω)) = �(�ω,ω). �

Theorem 23 Suppose that � is a nonempty closed subset of a Banach space W . � is a
mapping of � × � into W such that � ⊆�(ω,�) for all ω ∈ � and

(1) ‖�(ω,ν) – ν‖ + ‖�(ω,ν ′) – ν ′‖ ≥ h‖ν – ν ′‖ for all (ω,ν), (ω,ν ′) in the domain of �,
h > 2;

(2) For each ω ∈ �, �(ω,ν) = �(ω,ν ′) implies ν = ν ′;
(3) ‖�(ω,ν) – �(ω′,ν)‖ ≤ ‖ω – ω′‖ for all (ω,ν), (ω′,ν) ∈ � × �.

Thus, there is a unique ω ∈ � such that �(ω,ω) = ω.

Proof For ω ∈ �, define a mapping H of � into W such that H(ν) = �(ω,ν). From (1)

∥
∥H(ν) – ν

∥
∥ +

∥
∥H

(
ν ′) – ν ′∥∥ ≥ h

∥
∥ν – ν ′∥∥.

Also,

� ⊆�(ω,�) = H(�)

and, using (2), H is a one to one function. Thus, there is a unique Gω ∈ � such that Gω =
�(ω, Gω). Now, putting ν = Gω and ν ′ = Gω′ in (1) we deduce

h
∥∥Gω – Gω′∥∥ ≤ ∥∥�(ω, Gω) – Gω

∥∥ +
∥∥�

(
ω, Gω′) – Gω′∥∥
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≤ ‖Gω – Gω‖ +
∥∥�

(
ω, Gω′) – �

(
ω′, Gω′)∥∥

=
∥
∥�

(
ω, Gω′) – �

(
ω′, Gω′)∥∥

≤ ∥
∥ω – ω′∥∥,

which shows that G is a contraction. Hence, (by similar arguments as in Theorem 22) there
is a unique ω ∈ � such that �(ω,ω) = ω. �

Remark 24 Theorems 4 and 9 are extensions of Theorem 2.1 in [26] (see also Theorem 2.1
in [25]).

Remark 25 Theorem 16 is an extension of Theorem 2.6 and Theorem 2.2 in [26].

3 Applications
In this section, first we prove the existence result for the solutions of Cauchy problem (A)
given below, with suitable conditions on given functions. Then, we propose a general class
of integral equations and using our main Theorem 9, we will discuss the existence of solu-
tions. This integral equations presents many kinds of evolution equations. We summarize
the discussion in the form of Theorems at the end.

Problem 26 Consider the following Cauchy problem:

ABCDρω(σ ) = Aω(σ ) + g
(
σ ,ω(σ )

)
+ �(σ )υ(σ ), (A)

ω(0) = ω0.

The mild solution of the above problem is given as;

ω(σ ) = GTρ(σ )ω0 +
KG(1 – ρ)
B(ρ)�(ρ)

∫ σ

0
(σ – 
)ρ–1g

(

,ω(
)

)
d


+
ρG2

B(ρ)

∫ σ

0
Sρ(σ – 
)g

(

,ω(
)

)
d


+
KG(1 – ρ)
B(ρ)�(ρ)

∫ σ

0
(σ – 
)ρ–1�(
)υ(
)

+
ρG2

B(ρ)

∫ σ

0
Sρ(σ – 
)�(
)υ(
) d
,

where

G = μ(μI – A)–1

and

K = –μA(μI – A)–1

with μ = B(ρ)
1–ρ

and

Tρ(σ ) = Eρ

(
–Kσρ

)
=

1
2π i

∫

�

eδσ δρ–1(δρI – K
)–1 dδ,
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Sρ(σ ) = σρ–1Eρ

(
–Kσρ

)
=

1
2π i

∫

�

eδσ
(
δρI – K

)–1 dδ,

here, � is a specific path lying on E(β ,� ) and g ∈ C(J × E, E), � ∈ C(J , E) where J = [0, T]
for some T > 0, see [1]. If A ∈ Aρ(β0,�0), thus ‖Tρ(σ )‖ ≤ �e�σ and ‖Sρ(σ )‖ ≤ C1e�σ (1 +
σρ–1) for every σ > 0 and � > �0. Set � = supσ>0 ‖Tρ(σ )‖ and �1 =
supσ>0 C1e�σ (1 + σρ–1) then we obtain

∥
∥Tρ(σ )

∥
∥ ≤ � and

∥
∥Sρ(σ )

∥
∥ ≤ �1.

Define � : Bδ × Bδ → W by

�(ω,υ)(σ )

= GTρ(σ )ω0 +
KG(1 – ρ)
B(ρ)�(ρ)

∫ σ

0
(σ – 
)ρ–1g

(

,ω(
)

)
d


+
ρG2

B(ρ)

∫ σ

0
Sρ(σ – 
)g

(

,ω(
)

)
d


+
KG(1 – ρ)
B(ρ)�(ρ)

∫ σ

0
(σ – 
)ρ–1�(
)υ(
) d


+
ρG2

B(ρ)

∫ σ

0
Sρ(σ – 
)�(
)υ(
) d
. (B)

Set min{ KG(1–ρ)
B(ρ)�(ρ) , ρG2

B(ρ) } = KG.
Assume that the following conditions hold:
(H1) ‖ ∫ σ

0 {(σ – 
)ρ–1 + Sρ(σ – 
)}�(
)(υ(
) – ϑ(
)) d
‖ ≥ KS‖υ – υ‖ for some KS > 0.
(H2) ‖g(
,ω1(
)) – g(
,ω2(
))‖ ≤ Lg‖ω1 – ω2‖ for some Lg > 0.
(H3) ( ‖G‖

B(ρ)‖K (1–ρ)
�(ρ) ‖ 1

ρ
+ ρ‖G‖�1)Lg ≤ 1 and 2 < KGKS ,

where Bδ is a closed ball with radius δ and center at 0 in W .
First, we show that � satisfies (1) of Corollary 10,

c
∥∥�(ω,υ) – �(ω,ϑ)

∥∥

= c

∥∥
∥∥
∥∥

KG(1–ρ)
B(ρ)�(ρ)

∫ σ

0 (σ – 
)ρ–1�(
)υ(
) d
 + ρG2

B(ρ)
∫ σ

0 Sρ(σ – 
)�(
)υ(
) d


– KG(1–ρ)
B(ρ)�(ρ)

∫ σ

0 (σ – 
)ρ–1�(
)ϑ(
) d
 + ρG2

B(ρ)
∫ σ

0 Sρ(σ – 
)�(
)ϑ(
) d


∥∥
∥∥
∥∥

= c
∥∥
∥∥

KG(1 – ρ)
B(ρ)�(ρ)

∫ σ

0
(σ – 
)ρ–1�(
)

(
υ(
) – ϑ(
)

)
d


+
ρG2

B(ρ)

∫ σ

0
Sρ(σ – 
)�(
)

(
υ(
) – ϑ(
)

)
d


∥∥
∥∥

≥ cKG

∥
∥∥
∥

∫ σ

0
(σ – 
)ρ–1�(
)

(
υ(
) – ϑ(
)

)
d


+
∫ σ

0
Sρ(σ – 
)�(
)

(
υ(
) – ϑ(
)

)
d


∥
∥∥
∥

= cKG

∥∥
∥∥

∫ σ

0

{
(σ – 
)ρ–1 + Sρ(σ – 
)

}
�(
)

(
υ(
) – ϑ(
)

)
d


∥∥
∥∥

≥ cKGKS‖υ – ϑ‖.
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Now, we show that � satisfies (1) of Corollary 10, consider

∥∥�(υ,ω1) – �(υ,ω2)
∥∥

=

∥∥∥
∥∥
∥∥
∥∥
∥

GTρ(σ )ω0 + KG(1–ρ)
B(ρ)�(ρ)

∫ σ

0 (σ – 
)ρ–1g(
,ω1(
)) d


+ ρG2

B(ρ)
∫ σ

0 Sρ(σ – 
)g(
,ω1(
)) d
 + υ(σ )
– GTρ(σ )ω0 – KG(1–ρ)

B(ρ)�(ρ)
∫ σ

0 (σ – 
)ρ–1g(
,ω2(
)) d


– ρG2

B(ρ)
∫ σ

0 Sρ(σ – 
)g(
,ω2(
)) d
 – υ(σ )

∥∥∥
∥∥
∥∥
∥∥
∥

≤
∥
∥∥∥

KG(1 – ρ)
B(ρ)�(ρ)

∫ σ

0
(σ – 
)ρ–1[g

(

,ω1(
)

)
– g

(

,ω2(
)

)]
d


+
ρG2

B(ρ)

∫ σ

0
Sρ(σ – 
)

[
g
(

,ω1(
)

)
– g

(

,ω2(
)

)]
d


∥
∥∥∥

≤
∥
∥∥
∥

KG(1 – ρ)
B(ρ)�(ρ)

∥
∥∥
∥

1
ρ

∥∥g
(

,ω1(
)

)
– g

(

,ω2(
)

)∥∥

+
∥
∥∥
∥

ρG2

B(ρ)

∥
∥∥
∥�1

∥∥g
(

,ω1(
)

)
– g

(

,ω2(
)

)∥∥

≤
( ‖G‖

B(ρ)

∥∥∥
∥

K(1 – ρ)
�(ρ)

∥∥∥
∥

1
ρ

+ ρ‖G‖�1

)∥∥g
(

,ω1(
)

)
– g

(

,ω2(
)

)∥∥

≤
( ‖G‖

B(ρ)

∥∥
∥∥

K(1 – ρ)
�(ρ)

∥∥
∥∥

1
ρ

+ ρ‖G‖�1

)
Lg‖ω1 – ω2‖.

Since ( ‖G‖
B(ρ)‖K (1–ρ)

�(ρ) ‖ 1
ρ

+ ρ‖G‖�1)Lg ≤ 1, therefore � satisfies (2). All the conditions of
Corollary 10 are satisfied to obtain a point γ ∈ Bδ such that γ = �(γ ,γ ), which is the
solution of our main problem (A).

Example 27 We take into consideration

⎧
⎪⎪⎨

⎪⎪⎩

∂αυ(σ ,ω)
∂σα = ∂2υ(σ ,ω)

∂ω2 + f (σ ,υ(σ ,ω)) + �(σ ,υ(σ )),

υ(σ , 0) = υ(σ ,π ), υ ′(σ , 0) = υ ′(σ ,π ),

υ(0,ω) = υ0(ω),

(P)

where σ ∈ J = [0, 1], ω ∈ (0,π ), 0 < α < 1, let W = L2([0,π ]) and consider the operator
A : D(A) ⊆ W → W defined by

A(υ) =
∂2υ

∂ω2

with domain

D(A) =
{
υ,

∂υ

∂ω
,
∂2υ

∂ω2 ∈ W
}

.

Clearly, A is densely defined in W and is the infinitesimal generator of a resolvent family
{Tα(σ )}σ≥0 on W [20] and let υ,ϑ ∈ C(J , W ). Define the operators f by

f (σ ,υ) =
1

(σ + 2)2 tan–1 υ.
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Clearly,

∣
∣f (σ ,υ) – f (σ ,ϑ)

∣
∣ ≤ 1

4
|ϑ – υ|.

All the conditions of the above theorem are satisfied to acquire the solution of given con-
trolled problem (P).

Problem 28 More generally, the above solution (B) can be represented by the following
integral equation:

ω(σ ) = ζ (σ )ω0 + λ

∫ σ

0
h(σ )g

(

,ω(
)

)
d
 + μ

∫ σ

0
k(σ )g

(

,ω(
)

)
d
 + h

(
υ(σ )

)

or

ω(σ ) = ζ (σ )ω0 +
∫ σ

0

[
λh(σ ) + μk(σ )

]
g
(

,ω(
)

)
d
 + h

(
υ(σ )

)
, (C)

where h : C(J ,R) →R, ζ , k,υ ∈ C(J ,R) and g ∈ C(J ×R,R). The integral equation (C) and
the fixed-point problem ω = �(ω,ω) are equivalent, where

�(ω,υ) = ζ (σ )ω0 +
∫ σ

0

[
λh(σ ) + μk(σ )

]
g
(

,ω(
)

)
d
 + h

(
υ(σ )

)
. (D)

We assume the following:
(C1) h is injective and there exists η > 0 such that

∥∥h(υ) – h
(
υ ′)∥∥ ≥ η

∥∥υ – υ ′∥∥, for all υ,υ ′ ∈ Bδ .

(C2)

∣
∣g

(
σ ,ω(σ )

)
– g

(
σ ,ω′(σ )

)∣∣ ≤ ∣
∣ω(σ ) – ω′(σ )

∣
∣ for all ω,ω′ ∈ Bδ and σ ∈ J .

(C3) a + b + c < 2 + ηc and T(μ + λ)� ≤ 1, where � = max{‖k‖,‖h‖}.
We apply Theorem 9, to show that there exists ω such that ω = �(ω,ω).

For this purpose consider

∣
∣�(ω,υ) – �

(
ω′,υ

)∣∣

=

∣∣
∣∣∣

ζ (σ )ω0 +
∫ σ

0 [λh(σ ) + μk(σ )]g(
,ω(
)) d
 + h(υ(σ ))
–ζ (σ )ω0 –

∫ σ

0 [λh(σ ) + μk(σ )]g(
,ω′(
)) d
 – h(υ(σ ))

∣∣
∣∣∣

≤
∣
∣∣
∣

∫ σ

0

[
λh(σ ) + μk(σ )

]
g
(

,ω(
)

)
d
 –

∫ σ

0

[
λh(σ ) + μk(σ )

]
g
(

,ω′(
)

)
d


∣
∣∣
∣

≤ (μ + λ)�
∫ σ

0

∣
∣g

(

,ω(
)

)
– g

(

,ω′(
)

)∣∣d
,

which implies using (C2)–(C3) that

∥∥�(ω,υ) – �
(
ω′,υ

)∥∥ ≤ T(μ + λ)�
∥∥ω – ω′∥∥ ≤ ∥∥ω – ω′∥∥, since T(μ + λ)� ≤ 1.
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This shows that condition (2) of Theorem 9 is satisfied. Since h is injective, �(ω,υ) =
�(ω,υ ′) implies υ = υ ′, which is condition (1) of Theorem 9. Set

min

[
a‖ζ (σ )ω0 +

∫ σ

0 [λh(σ ) + μk(σ )]g(
,ω(
)) d
 + h(υ(σ )) – υ(σ )‖,
b‖ζ (σ )ω0 +

∫ σ

0 [λh(σ ) + μk(σ )]g(
,ω(
)) d
 + h(υ ′(σ )) – υ ′(σ )‖

]

≥ ∥
∥υ – υ ′∥∥.

Also, as

c
∥∥�(ω,υ) – �

(
ω,υ ′)∥∥

= c

∥∥
∥∥
∥

ζ (σ )ω0 +
∫ σ

0 [λh(σ ) + μk(σ )]g(
,ω(
)) d
 + h(υ(σ ))
–ζ (σ )ω0 –

∫ σ

0 [λh(σ ) + μk(σ )]g(
,ω(
)) d
 – h(υ ′(σ ))

∥∥
∥∥
∥

= c
∥∥h

(
υ(σ )

)
– h

(
υ ′(σ )

)∥∥,

a
∥∥�(ω,υ) – υ

∥∥

= a
∥∥
∥∥ζ (σ )ω0 +

∫ σ

0

[
λh(σ ) + μk(σ )

]
g
(

,ω(
)

)
d
 + h

(
υ(σ )

)
– υ(σ )

∥∥
∥∥,

and

b
∥
∥�

(
ω,υ ′) – υ ′∥∥

= b
∥∥
∥∥ζ (σ )ω0 +

∫ σ

0

[
λh(σ ) + μk(σ )

]
g
(

,ω(
)

)
d
 + h

(
υ ′(σ )

)
– υ ′(σ )

∥∥
∥∥.

Then, clearly

c
∥
∥�(ω,υ) – �

(
ω,υ ′)∥∥ + a

∥
∥�(ω,υ) – υ

∥
∥ + b

∥
∥�

(
ω,υ ′) – υ ′∥∥

≥ 2
∥∥υ – υ ′∥∥ + c

∥∥h
(
υ(σ )

)
– h

(
υ ′(σ )

)∥∥

≥ (2 + ηc)
∥∥υ – υ ′∥∥.

All the conditions of Theorem 9 are satisfied to obtain ω ∈ Bδ such that ω = �(ω,ω), which
is a solution of (C). We can obtain the following consequences.

In the following example we will use the above theorem and iterative scheme to find the
approximate solution of the given integral equation.

Example 29 Consider the following integral equation;

ν(t) =
(
t + e–t) – t sin

(
ν(t)

)
+

t∫

0

sin(ν(t))ν(s)
(s + e–s)

ds

a special kind of the above integral equation (D). Clearly, it satisfies all the conditions of
the above theorem for t ∈ [0, 1]. We have the following iterative sequence

νn+1(t) =
(
t + e–t) – t sin

(
νn(t)

)
+

t∫

0

sin(νn(t))νn(s)
(s + e–s)

ds.
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Figure 1 Exact and approximate solution

Figure 2 Error plot

We take an initial guess ν0(t) = 1 + t2

2 – t3

6 , after two iterations we have the approximate
solution ν2(t) and exact solution ν(t) = t + e–t given in Fig. 1. The error is plotted in Fig. 2.

Example 30 Consider the mapping

ϒx = 1 – kx, x ∈
[

0,
1
2

]
, for some k ≤ 1.

Then, ϒ is a generalized expansive mapping but not expansive. Being a closed subset of R
with the usual metric, the set [0, 1

2 ] is complete. Also, ϒ satisfies the following condition:

cdW (ϒω,ϒν) + adW (ϒω,ω) + bdW (ϒν,ν)

≥ hdW (ω,ν), a, b ≥ 0, c, h > 0, a + b + c < h, (E)

for a = 1.1, b = 1.1, c = 1 and h = 3.21 > a + b + c. Figure 3 shows the above inequality (E)
holds for different values of k, but note that we can not find, h > 1 for a = b = 0, to show
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Figure 3 Inequality (E) for different values of k

that ϒ is an expansive mapping. Therefore, ϒ is not an expansive mapping. For k = 1 the
mapping is neither expansive nor contractive.

Theorem 31 Let ζ , h, k, g be as defined above, and � is defined in (D). If (C1), (C2) and
(C3) are satisfied, there is a solution ω ∈ C(J ,R) of integral equation (C).

Remark 32 Comparing equations (B) with (D), we can choose specific values of ζ , h, k, g ,
in this case, the above theorem also provides the existence of solutions of the evolution
equation (A).

4 Conclusion
In this article, we proved some new variants of Krasnoselskii’s fixed-point theorem for
equiexpansive and generalized equiexpansive mappings. We consider � a mapping with
domain either �(�)×� or �×� and range in a Banach space W , where � is an operator
from � into W . The operator equation ω = �(�ω,ω) is solved with the assumption that
� is either equiexpansive of generalized equiexpansive. We also apply our main results to
obtain the solutions of a general class of integral equations, which represents solutions of
many evolution equations of fractional order. Some examples are established to validate
the results.
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