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Abstract
This paper is concerned with the complete controllability of a nonlinear fractional
neutral functional differential equation. Some sufficient conditions are established for
the complete controllability of the nonlinear fractional system. The conditions are
established based on the fractional power of operators and the fixed-point theorem
under the assumption that the associated linear system is completely controllable.
Finally, an example is presented to illustrate our main result.
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1 Introduction
In this paper, we assume that X is a Hilbert space with the norm | · |. Let r > 0 and C be
the Banach space of all continuous functions from an interval [–r, 0] into X with the norm
‖x‖ = supt∈[–r,0] |x(t)|. The purpose of this paper is to study the complete controllability for
the following nonlinear fractional neutral functional differential system

⎧
⎨

⎩

CDq
t [x(t) – h(t, xt)] = Ax(t) + Bu(t) + f (t, xt , u(t)), t ∈ I = [0, T],

x0(θ ) = φ(θ ), –r ≤ θ ≤ 0,
(1)

where CDq
t is the Caputo fractional derivative of order 0 < q < 1, the state variable x(·) takes

values in the Hilbert space X, h : I × C → X is a given function, A : D(A) ⊂ X → X is the
infinitesimal generator of an analytic semigroup {T(t)}t≥0. B : U → X is a bounded linear
operator, U is a Hilbert space, the control function u(·) ∈ L2(I, U) and f : I ×C ×U → X is
a given function satisfying some assumptions. If x : [–r, T] → X is a continuous function,
then xt is an element in C defined by xt(θ ) = x(t + θ ), θ ∈ [–r, 0] and φ ∈ C.

In mathematical control theory, the controllability is one of the important concepts that
has been studied by many authors (see [1–7] and the references therein). By means of semi-
group theory and the fixed-point approach, various types of controllability problems have
been investigated, for instance, approximate controllability [8–15] and complete control-
lability [16–25]. There are several papers devoted to the approximate or complete control-

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-022-03706-8
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-022-03706-8&domain=pdf
mailto:wenyanhua0405@163.com


Wen and Xi Advances in Continuous and Discrete Models         (2022) 2022:33 Page 2 of 11

lability for fractional differential systems, when the nonlinear term is independent of the
control function. Wang and Zhou [22] studied the complete controllability of fractional
evolution systems in infinite-dimensional spaces by using fractional calculus, the proper-
ties of characteristic solution operators and fixed-point theorems. Meanwhile, Sakthivel
et al. [23] established a new set of sufficient conditions for the complete controllability of
a fractional nonlinear neutral functional differential equation. Du and Jiang [24] investi-
gated the approximate controllability of impulsive Hilfer fractional differential inclusions.

In [25, 26], the approximate controllability of first-order delay control systems has been
proved when the nonlinear term is a function of both the state function and the control
function by assuming that the corresponding linear system is approximately controllable.
As far as we know, the fractional functional differential systems have been proved to be ab-
stract formulations in many problems arising in engineering, physics, automatic control,
etc. The delay differential equations had shown their efficiency in the study of the behav-
ior of real populations. Thus, the study of controllability for such systems is important for
many applications. In 2011, Sukavanam [27] investigated the approximate controllability
of the following fractional-order semilinear delay system in which the nonlinear term is a
function of both the state function and the control function.

⎧
⎨

⎩

CDq
t x(t) = Ax(t) + Bu(t) + f (t, xt , u(t)), t ∈ I = [0, T],

x0(θ ) = φ(θ ), –r ≤ θ ≤ 0,
(2)

where 1
2 < q < 1, the state x(·) takes values in the Banach space X, the control function

u(·) takes values in the Banach space Y , A : D(A) ⊂ X → X is a closed linear operator with
dense domain D(A) generating a C0-semigroup S(t); B is a bounded linear operator from
L2([0, T]; Y ) to L2([0, T]; X); the operator f : [0, T] × C([–r, 0]; X) × Y → X is nonlinear. If
x : [–r, T] → X is a continuous function, then xt : [–r, 0] → X is defined as xt(θ ) = x(t + θ ),
θ ∈ [–r, 0] and φ ∈ C([–r, 0]; X).

Motivated by the above work, we consider the functional differential equations in which
the delay terms also occur in the derivative of the unknown solution. That is, we study the
complete controllability of the nonlinear fractional neutral functional differential system
(1) when the nonlinear term is a function of both the state function and the control func-
tion.

In the past decades, with the development of theories of fractional differential equations,
there has been a great deal of interest in the study of solutions of fractional differential
systems; see Byszewski [28], Podlubny [29], Kilbas et al. [30] and Lakshmikantham et al.
[31]. Moreover, there are different types of mild solutions that have been investigated; see
Byszewski and Lakshmikantham [32], Pazy [33], Zhou and Jiao [34, 35] and Wang and
Zhou [36, 37]. In particular, Zhou and Jiao [34] obtained the existence and uniqueness of
mild solutions for fractional neutral evolution equations by using the fractional power of
operators and some fixed-point theorems. In addition, Wang and Zhou [36] introduced
a new mild solution for semilinear fractional evolution equations and the existence and
uniqueness of α-mild solutions are proved.

In order to derive the complete controllability of the nonlinear fractional neutral func-
tional differential system (1), in this paper, we first give the concept of mild solutions of
the system (1) in the light of [34, 36]. Then, we establish sufficient conditions for the com-
plete controllability of the nonlinear fractional neutral functional differential system (1) in
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which the nonlinear term depends on the control function. To obtain the complete con-
trollability of the system (1), we impose some necessary hypotheses on A, B, h, f and the
assumption that the corresponding linear system of the system (1) is completely control-
lable.

The rest of our paper is organized as follows. Section 2 is devoted to some necessary
preliminaries. In Sect. 3, the complete controllability for the system (1) is given. Finally,
an example is presented to demonstrate our complete controllability result.

2 Preliminaries
In this section, we introduce some notations, definitions and lemmas that will be used
throughout the paper.

Definition 2.1 ([29]) The fractional integral of order α with the lower limit 0 for a func-
tion f is defined as

Iα
0 f (t) =

1
�(α)

∫ t

0

f (s)
(t – s)1–α

ds, t > 0,α > 0, (3)

provided the right-hand side is pointwise defined on [0,∞), where � is the gamma func-
tion.

Definition 2.2 ([29]) The Caputo derivative of order α with the lower limit 0 for a func-
tion f can be written as

CDα
0 f (t) =

1
�(n – α)

∫ t

0

f (n)(s)
(t – s)α+1–n ds = In–αf (n)(t), t > 0, 0 ≤ n – 1 < α < n. (4)

Remark 2.1 If f is an abstract function with values in X, then integrals that appear in
Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Throughout this paper, we assume that A is the infinitesimal generator of an analytic
semigroup {T(t)}t≥0 of bounded operators on X. Let 0 ∈ ρ(A), where ρ(A) is the resol-
vent set of A, then for η ∈ (0, 1], we define the fractional power Aη as a closed linear
operator on its domain D(Aη). Moreover, T(t) and Aη have the following basic proper-
ties.

(i) There is a M ≥ 1 such that

M = sup
t∈[0,T]

∥
∥T(t)

∥
∥ < ∞. (5)

(ii) For any η ∈ (0, 1], there exists a constant cη > 0 such that

∥
∥AηT(t)

∥
∥ ≤ cη

tη
, 0 < t ≤ T . (6)

For more details, see [33].

Lemma 2.1 ([33]) There exists a constant C such that

∥
∥A–α

∥
∥ ≤ C for 0 ≤ α ≤ 1, (7)

where A–α = 1
�(α)

∫ ∞
0 tα–1T(t) dt.
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By comparison with the fractional differential equation given in [34], we give the follow-
ing definition of the mild solution of the system (1).

Definition 2.3 A function x ∈ C([–r, T]; X) is called a mild solution of the system (1) if
on [–r, T] it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = Sq(t)[φ(0) – h(0, x0)] + h(t, xt) +
∫ t

0 (t – s)q–1ATq(t – s)h(s, xs) ds

+
∫ t

0 (t – s)q–1Tq(t – s)(Bu(s) + f (s, xs, u(s))) ds, t ∈ [0, T],

x0(θ ) = φ(θ ), –r ≤ θ ≤ 0,

(8)

where Sq(t) =
∫ ∞

0 φq(θ )T(tqθ ) dθ , Tq(t) = q
∫ ∞

0 θφq(θ )T(tqθ ) dθ and for θ ∈ (0,∞)

φq(θ ) =
1
q
θ

–1– 1
q ψq

(
θ

– 1
q
)
, ψq(θ ) =

1
π

∞∑

n=1

(–1)n–1θ–qn–1 �(nq + 1)
n!

sin(nπq).

In addition, φq(θ ) is the probability density function defined as

φq(θ ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0
φq(θ ) dθ = 1.

Lemma 2.2 ([4, 34]) The operators Sq(t) and Tq(t) have the following properties:
(i) For any t ≥ 0, the operators Sq(t) and Tq(t) are linear and bounded operators, that is,

for any x ∈ X ,

∥
∥Sq(t)x

∥
∥ ≤ M‖x‖ and

∥
∥Tq(t)x

∥
∥ ≤ Mq

�(1 + q)
‖x‖.

(ii) {Sq(t)}t≥0 and {Tq(t)}t≥0 are strongly continuous.

Lemma 2.3 ([34]) For any x ∈ E, E is a Banach space, β ∈ (0, 1) and η ∈ (0, 1], we have

ATq(t)x = A1–βTq(t)Aβx, 0 ≤ t ≤ T (9)

and

∥
∥AηTq(t)

∥
∥ ≤ qcη

tqη

�(2 – η)
�(1 + q(1 – η))

, 0 < t ≤ T . (10)

Consider the following linear fractional differential system

⎧
⎨

⎩

CDq
t x(t) = Ax(t) + Bu(t), t ∈ [0, T],

x(0) = φ(0)
(11)

and it is convenient to introduce the controllability operator associated with (11) as

�T
0 =

∫ T

0
(T – s)q–1Tq(T – s)BB∗T∗

q (T – s) ds, (12)

where B∗, T∗
q (t) denote the adjoints of B and Tq(t), respectively.
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By [23, 38], the definition of complete controllability for the linear fractional differential
system (11) is as follows.

Lemma 2.4 ([23, 38]) The linear fractional control system (11) is completely controllable
on I if and only if there exists a γ > 0 such that

〈
�T

0 x, x
〉 ≥ γ ‖x‖2 in the Hilbert space X, i.e.,

∥
∥
(
�T

0
)–1∥∥ ≤ 1

γ
.

3 Complete controllability
We present our main results of the paper in this section. We need the definition of com-
plete controllability of the system (1).

Definition 3.1 The system (1) is said to be completely controllable on the interval I if
R(T ,φ) = X, where R(T ,φ) = {xT (φ, u)(0) : u(·) ∈ L2(I, U)}.

To prove the main results, we impose the following hypotheses:
(P1) The function h : [0, T] × C → X is continuous and there exists a constant β ∈ (0, 1)

and L, L1, for any x, y ∈ C, Aβh(·, x) is strongly measurable and Aβh(t, ·) satisfies the
Lipchitz condition ‖Aβh(t, x) – Aβh(t, y)‖ ≤ L‖x – y‖ and the inequality ‖Aβh(t, x)‖ ≤
L1(‖x‖ + 1).

(P2) The nonlinear function f : I × C × U → X is continuous and there exists a constant
L2 > 0 such that

∥
∥f (t,ϕ, u)

∥
∥ ≤ L2

(
1 + ‖ϕ‖C + ‖u‖), (t,ϕ, u) ∈ I × C × U .

(P3) The linear fractional control system (11) is completely controllable.
(P4) The nonlinear function f (t, xt , u(t)) satisfies the Lipschitz condition, that is, there

exists a constant L3 such that

∥
∥f (t,ϕ1, u1) – f (t,ϕ2, u2)

∥
∥ ≤ L3

(‖ϕ1 – ϕ2‖C + ‖u1 – u2‖
)
, (ϕ1, u1), (ϕ2, u2) ∈ C × U .

Define an operator  on C(I, C) × C(I, U) as

(x, u) = (z, v) (13)

with the norm ‖(x, u)‖ = ‖xt‖C + ‖u‖, (x, u) ∈ C(I, C) × C(I, U), t ∈ I , where

v(t) = B∗T∗
q (T – t)

(
�T

0
)–1p(x, u), (14)

z(t) = Sq(t)
[
φ(0) – h(0, x0)

]
+ h(t, xt) +

∫ t

0
(t – s)q–1ATq(t – s)h(s, xs) ds

+
∫ t

0
(t – s)q–1Tq(t – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds, t ∈ [0, T],

z0(θ ) = φ(θ ), –r ≤ θ ≤ 0,

(15)

p(x, u) = xT – Sq(T)[φ(0) – h(0, x0)] – h(T , xT ) –
∫ T

0 (T – s)q–1ATq(T – s)h(s, xs) ds –
∫ T

0 (T –
s)q–1Tq(T – s)f (s, xs, u(s)) ds.
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It will be shown that the system (1) is completely controllable on I if the operator  has
a fixed point in C(I, C) × C(I, U).

Theorem 3.1 Assume that the hypotheses (P1)–(P4) are satisfied. Then, the problem (1)
has a unique mild solution in C([–r, T]; X) provided that

∣
∣A–β

∣
∣L +

(

1 +
MMBTq

�(1 + q)

)(
d�(1 + β)c1–βLTqβ

β�(1 + qβ)
+

dMTqL3

�(1 + q)

)

+
MTqL3

�(1 + q)
< 1, (16)

where β ∈ (0, 1), MB = |B|, d = MBMq
γ�(1+q) .

Proof Obviously, x ∈ C([–r, T]; X) is a mild solution of the system (1) if and only if the
operator  has a fixed point in C(I, C) × C(I, U). Therefore, it is sufficient to prove that
 has a fixed point in C(I, C) × C(I, U). We first show that  maps C(I, C) × C(I, U) into
itself. Based on Lemma 2.3 and the condition (P1), we have

∥
∥
∥
∥

∫ t

0
(t – s)q–1ATq(t – s)h(s, xs) ds

∥
∥
∥
∥

≤
∫ t

0
(t – s)q–1A1–βTq(t – s)Aβh(s, xs) ds

≤
∫ t

0
(t – s)q–1 q�(1 + β)c1–β

(t – s)q(1–β)�(1 + qβ)
L1

(‖xs‖C + 1
)

ds

≤ �(1 + β)c1–β

β�(1 + qβ)
L1

(‖xt‖C + 1
)
Tqβ , β ∈ (0, 1). (17)

According to Lemma 2.2(i) and the hypothesis (P2), we have

∥
∥
∥
∥

∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds

∥
∥
∥
∥ ≤ MTq

�(1 + q)
L2

(
1 + ‖xt‖C + ‖u‖). (18)

By using (17) and (18), Lemmas 2.1 and 2.4, and hypothesis (P3), it can be shown that there
exist two constants C1, C2 > 0 such that

∥
∥v(t)

∥
∥ =

∥
∥
∥
∥B∗T∗

q (T – t)
(
�T

0
)–1

(

xT – Sq(T)
[
φ(0) – h(0, x0)

]
– h(T , xT )

–
∫ T

0
(T – s)q–1ATq(T – s)h(s, xs) ds

–
∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds

)∥
∥
∥
∥

≤ MBMq
γ�(1 + q)

[

|xT | + M‖φ‖ + M
∣
∣A–β

∣
∣L1

(‖φ‖ + 1
)

+
∣
∣A–β

∣
∣L1

(‖xT‖ + 1
)

+
�(1 + β)c1–β

β�(1 + qβ)
L1

(‖xt‖C + 1
)
Tqβ +

MTq

�(1 + q)
L2

(
1 + ‖xt‖C + ‖u‖)

]

≤ C1
(
1 + ‖xt‖C + ‖u‖) (19)
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and

∥
∥z(t)

∥
∥ =

∥
∥
∥
∥Sq(t)

[
φ(0) – h(0, x0)

]
+ h(t, xt) +

∫ t

0
(t – s)q–1ATq(t – s)h(s, xs) ds

+
∫ t

0
(t – s)q–1Tq(t – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds

∥
∥
∥
∥

≤ M‖φ‖ + M
∣
∣A–β

∣
∣L1

(‖φ‖ + 1
)

+
∣
∣A–β

∣
∣L1

(‖xt‖C + 1
)

+
�(1 + β)c1–β

β�(1 + qβ)
L1

(‖xt‖C + 1
)
Tqβ

+
MMBTq

�(1 + q)
C1

(
1 + ‖xt‖C + ‖u‖) +

MTq

�(1 + q)
L2

(
1 + ‖xt‖C + ‖u‖)

≤ C2
(
1 + ‖xt‖C + ‖u‖), (20)

where β ∈ (0, 1). It follows from (15), (19) and (20) that there exists a constant C3 such that

∥
∥(x, u)

∥
∥ = ‖z‖C([–r,T];X) + ‖v‖ ≤ C3

(
1 + ‖xt‖C + ‖u‖), (21)

which means that  maps C(I, C) × C(I, U) into itself.
We next prove that the operator  is a contraction mapping on C(I, C) × C(I, U). For

any (x, u), (y, w) ∈ C(I, C) × C(I, U), it holds that

∥
∥(x, u) – (y, w)

∥
∥

= ‖v1 – v2‖ + ‖z1 – z2‖C([–r,T];X)

≤ ‖v1 – v2‖ +
∥
∥h(t, xt) – h(t, yt)

∥
∥ +

∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)B

(
v1(s) – v2(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)(f

(
s, xs, u(s) – f

(
s, ys, w(s)

))
ds

∥
∥
∥
∥

= I1 + I2 + I3 + I4. (22)

By hypotheses (P1)–(P4), Lemma 2.2(i), and (17) and (18), we have

I1 =‖v1 – v2‖

=
∥
∥
∥
∥B∗T∗

q (T – t)
(
�T

0
)–1

(∫ T

0
(T – s)q–1ATq(T – s)

(
h(s, xs) – h(s, ys)

)
ds

+
∫ T

0
(T – s)q–1Tq(T – s)

(
f
(
s, xs, u(s) – f

(
s, ys, w(s)

))
ds

)
∥
∥
∥
∥

≤ MBMq
γ�(1 + q)

(
�(1 + β)c1–βLTqβ

β�(1 + qβ)
‖xt – yt‖C +

MTqL3

�(1 + q)
(‖xt – yt‖C + ‖u – w‖)

)

≤
(

d�(1 + β)c1–βLTqβ

β�(1 + qβ)
+

dMTqL3

�(1 + q)

)
(‖x – y‖C([–r,T];X) + ‖u – w‖), (23)

where d = MBMq
γ�(1+q) . The condition (P1) implies

I2 =
∥
∥h(t, xt) – h(t, yt)

∥
∥ ≤ ∣

∣A–β
∣
∣L‖x – y‖C([–r,T];X). (24)
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Based on Lemma 2.2(i) and (23), one can obtain

I3 =
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)B

(
v1(s) – v2(s)

)
ds

∥
∥
∥
∥

≤ MMBTq

�(1 + q)
‖v1 – v2‖

≤ MMBTq

�(1 + q)

(
d�(1 + β)c1–βLTqβ

β�(1 + qβ)
+

dMTqL3

�(1 + q)

)
(‖x – y‖C([–r,T];X) + ‖u – w‖). (25)

Similar to the discussion of I1, we obtain

I4 =
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)

(
f
(
s, xs, u(s) – f

(
s, ys, w(s)

)))
ds

∥
∥
∥
∥

≤ MTqL3

�(1 + q)
(‖x – y‖C([–r,T];X) + ‖u – w‖). (26)

Then, (22)–(26) imply

∥
∥(x, u) – (y, w)

∥
∥

C([–r,T];X)

≤
[
∣
∣A–β

∣
∣L +

(

1 +
MMBTq

�(1 + q)

)(
d�(1 + β)c1–βLTqβ

β�(1 + qβ)

)

+
MTqL3

�(1 + q)

]
(‖x – y‖C([–r,T];X) + ‖u – w‖). (27)

In view of (16), we obtain that  is a contraction. Consequently,  has a fixed point in
C(I, C)×C(I, U) by the Banach fixed-point theorem, which is a mild solution of the system
(1). This completes the proof. �

Theorem 3.2 If all the assumptions of Theorem 3.1 hold, then the system (1) is completely
controllable on I .

Proof Let (x̄(·), ū) be a fixed point of the operator  in (13), that is


(
x̄(·), ū

)
=

(
x̄(·), ū

)
, (28)

where

x̄(t) = Sq(t)
[
φ(0) – h(0, x0)

]
+ h(t, x̄t) +

∫ t

0
(t – s)q–1ATq(t – s)h(s, x̄s) ds

+
∫ t

0
(t – s)q–1Tq(t – s)

(
Bū(s) + f

(
s, x̄s, ū(s)

))
ds, t ∈ [0, T],

x̄0(θ ) = φ(θ ), –r ≤ θ ≤ 0

(29)

and the control function

ū(t) = B∗T∗
q (T – t)

(
�T

0
)–1p(x̄, ū), (30)
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here p(x̄, ū) = xT – Sq(T)[φ(0) – h(0, x0)] + h(T , xT ) +
∫ T

0 (T – s)q–1ATq(T – s)h(s, x̄s) ds –
∫ T

0 (T – s)q–1Tq(T – s)f (s, x̄s, ū(s)) ds.
According to Theorem 3.1, any fixed point of  is a mild solution of the system (1).

Then, by (12), (29) and (30), we have

x̄(T) = xT – p(x̄, ū) +
∫ T

0
(T – s)q–1Tq(T – s)Bū(s) ds

= xT – p(x̄, ū) +
∫ T

0
(T – s)q–1Tq(T – s)BB∗T∗

q (T – s)
(
�T

0
)–1p(x̄, ū) ds

= xT – p(x̄, ū) + p(x̄, ū)

= xT . (31)

Thus, the system (1) is approximately controllable on I by Definition 3.1. The proof is
completed. �

4 Example
As an application of our complete controllability result, we consider the following frac-
tional partial differential equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
q
t [x(t, z) –

∫ π

0 g(z, y)xt(θ , y) dy] = ∂2
z x(t, z) + μ(t, z) + f (t, xt(θ , z), u(t)),

t ∈ I := [0, 1], z ∈ [0,π ],

x(t, 0) = x(t,π ) = 0, 0 < t ≤ 1,

x(θ , z) = φ(θ , z), –r ≤ θ ≤ 0,

(32)

where ∂
q
t is the Caputo fractional partial derivative of order 0 < q < 1, g , f are given con-

tinuous functions, μ : I × [0,π ] → [0,π ] is continuous in t, xt(θ , z) = x(t + θ , z) and φ(θ , z)
is continuous.

Taking X = U = L2[0,π ]. Let A : D(A) ⊂ X → X be an operator defined by Aw = w′′ with
the domain

D(A) =
{

w ∈ X | w(·) ∈ L2[0,π ], w, w′ are absolutely continuous,

w′′ ∈ X, w(0) = w(π ) = 0
}

.

Then,

Aw = –
∞∑

n=1

n2(w, en)en, z ∈ D(A),

where en(z) =
√

2
π

sin(nz), 0 ≤ z ≤ π , n = 1, 2, . . . . It is known that {en}, n = 1, 2, . . . is an
orthonormal base for U and A generates a compact semigroup T(t), t > 0 in X that is
given by

T(t)w =
∞∑

n=1

e–n2t(w, en)en, w ∈ X.

For more details, please refer to [33].
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Put xt = xt(θ , ·), i.e., (x(t + θ ))(z) = x(t + θ , z), θ ∈ [–r, 0]. Define the functions h : [0, 1] ×
C → X by (h(t, xt))(z) =

∫ π

0 g(z, y)xt(θ , y) dy and f : [0, 1] × C × U → X as f (t, xt , u)(z) =
f (t, xt(θ , z), u(t)). Moreover, define B : U → X by (Bu(t))(z) = μ(t, z), z ∈ [0,π ]. Let us take
f (t, xt , u) = ‖xt‖Ce3 + ‖u‖e4, then the conditions (P2) and (P4) are satisfied.

Consequently, the system (32) can be written in the abstract form (1) with the appropri-
ate choices of A, B, h and f , and its associated linear system

⎧
⎨

⎩

CDq
t x(t) = Ax(t) + Bu(t), t ∈ [0, T],

x(0) = φ(0)
(33)

is completely controllable according to Lemma 2.4, which means that the condition (P4)
is satisfied. Meanwhile, the inequality (3.4) is also satisfied with the appropriate choices of
A, B, h and f . Therefore, all the conditions of Theorem 3.2 are satisfied. Hence, the system
(32) is completely controllable on [0, 1].
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