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Abstract
In order to describe the dynamic process of epidemic transmission with vertical
transmission and vaccination in more detail and to better track the factors that lead to
the occurrence of epidemics, we construct a stochastic delayed model with a specific
functional response to describe its epidemic dynamics. We first prove the existence
and uniqueness of the positive solution of the model. Moreover, we analyze the
sufficient conditions for the extinction and persistence of the model. Finally,
numerical simulations are presented to illustrate our mathematical findings.

Keywords: Stochastic delayed SIR epidemic model; Temporary immunity;
Vaccination; Persistence; Extinction; Threshold

1 Introduction
A mathematical model has always been an important tool in the study of infectious dis-
eases; there are many works about epidemic such as SIS, SIR, SEIR, and so on. In recent
years, research on infectious diseases has been developing, and some good results have
been achieved. Elaiw and Agha considered the delayed partial differential equation model
to analyze Oncolytic virotherapy based on previous work about ODE [1]. In [2, 3], they
all applied different models to analyze the SARS-CoV-2 and some useful suggestions were
put forward. There are many other papers about epidemic model, such as [4–6]. All of
these works show that it is an effective method to analyze infectious diseases using the
infectious disease model.

However, in real life, some infectious diseases may be transmitted vertically from one
person to another; that is, the offspring of infected parents may be infected with infectious
diseases such as hepatitis and tuberculosis at birth, called vertical transmission [7], so how
to effectively prevent and control the spread of infectious diseases has become an impor-
tant topic in epidemiology, on the current research shows that vaccination has become
an important and commonly used strategy to eliminate infectious diseases, it can effec-
tively reduce the infection of infectious diseases [8–10]. Based on the SIR epidemic model
with vaccination and vertical transmission model proposed by Meng and Chen [11], we
establish the following model, and a framework diagram of the disease model is shown in
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Figure 1 The compartmental diagram for the model

Fig. 1.

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = –βS(t)I(t) – dS(t) + pb′I(t) + b(S(t) + R(t)) – mS(t),

dI(t)
dt = βS(t)I(t) – d′I(t) – γ I(t) + qb′I(t),

dR(t)
dt = γ I(t) – dR(t) + mS(t).

In the above model, S(t), I(t), and R(t) denote the number of susceptible, infective, re-
covered individuals at time t, respectively. We suppose that b and b′ are the birth rate
coefficients of the non-infected person (S + R) and infected person; I , d, and d′ are their
corresponding death coefficients, respectively. The infection rate of the disease is β ; the
susceptible person is an infected as infected person at a bilinear rate of βI(t), and the in-
fection recovery rate is γ . The proportion of the offspring of infectious parents who are
susceptible is p; the proportion of the offspring of infectious parents who are infected is
q, 0 < p < 1, 0 < q < 1 and p + q = 1. m (0 < m < 1) is the proportion of the successfully
vaccinated population to the entire susceptible population.

But in fact, the vaccine validity is usually limited, and the immunized person’s immunity
can disappear [12–16]. Suppose ω denotes the period of vaccine validity, then the suscep-
tible inoculated at t – ω will become susceptible again at t. However, due to the existence
of natural mortality, the probability of these vaccinated people still alive at t is e–dω [17].
Then, we can get the model as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = –βS(t)I(t) – dS(t) + pb′I(t) + b

(
S(t) + R(t)

)
– mS(t) + mS(t – ω)e–dω,

dI(t)
dt = βS(t)I(t) – d′I(t) – γ I(t) + qb′I(t),

dR(t)
dt = γ I(t) – dR(t) + mS(t) – mS(t – ω)e–dω.

(1.1)

Here, we assume b, d, b′, and d′ to be equal; the case can be seen in [18, 19]. It can be
found from the model that d(S(t)+I(t)+R(t))

dt = 0 and the population has a constant size, which is
normalized to unity. Our analysis below is simplified with this assumption. By calculations,
the basic reproduction number of model (1.1) is obtained R1

0 = βb
(b+m(1–e–bω))(pb+γ ) , and we

find that when R1
0 < 1, the model has a disease-free equilibrium point (S0, 0, R0), where

S0 = b
b+m(1–e–bω) , R0 = m(1–e–bω)

b+m(1–e–bω) , when R1
0 > 1, the model has an endemic equilibrium point

(Se, Ie, Re), where Se = bp+γ

β
, Ie = b

b+r (1 – 1
R1

0
), Re = βγ R1

0+βb–(bp+γ )(b+γ )R1
0

βR1
0(b+γ ) .

To model the disease transmission process, several authors improved the following bi-
linear incidence rate βSI to get a more suitable infection rate, where β is a positive constant
[20]. However, there are many forms of nonlinear incidence rates for a more generalized
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form. The incidence rate βSI/(1 + α1S + α2I + α3SI) was introduced by Hattaf et al. [21]
and used in [22]; it is a general form, which represents mutual interference between S and
I , βI and measures the infectivity of the disease when it enters a fully susceptible popu-
lation. 1/(1 + α1S + α2I + α3SI) measures the inhibition effect from the behavioral change
of the susceptible population and the infected population when their number increases
or from the crowding effect of the infected individuals, that is, due to the information of
the disease. The infected or susceptible population will cause behavioral changes and in-
hibitory effects; therefore, it is more interesting and valuable than bilinear incidence rate.
It has been widely applied in epidemiological studies. When α1 = α3 = 0, then we have
the saturated incidence rate βSI/(1 + α2I) [23], which was used in [24–26]; when α3 = 0,
we get the Beddington–DeAngelis functional response βSI/(1 + α1S + α2I) [27], which
was used in [28, 29]; when α3 = α1α2, we get the Crowley–Martin functional response
βSI/(1 + α1S + α2I + α1α2SI) [30]. α1, α2, and α3 are used to measure the inhibitory effect
on infectious diseases when crowding effect or behavioral changes caused by the increase
of susceptible individuals occur, and the infection coefficient can be effectively reduced by
reasonably selecting appropriate parameters.

In this article, a Crowley–Martin functional response is considered; that is, the incidence
rate of disease is modeled by βSI/f (S, I) = βSI/(1 + α1S + α2I + α1α2SI), where β is the
infection coefficient and α1, α2 ≥ 0 are constants. Thus, we get

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = – βS(t)I(t)

f (S,I) – bS(t) + pbI(t) + b(1 – I(t)) – mS(t) + mS(t – ω)e–bω,
dI(t)

dt = βS(t)I(t)
f (S,I) – γ I(t) – pbI(t),

dR(t)
dt = γ I(t) – bR(t) + mS(t) – mS(t – ω)e–bω.

(1.2)

For model (1.2), we can use the results presented by Hattaf et al. [31]. It is easy to get the
basic reproduction number of disease that is given by

R2
0 =

f (S0, 0)
pb + γ

=
βb

(b + α1b + m(1 – e–bω))(pb + γ )
. (1.3)

On the other hand, the current environmental fluctuations have a great impact on all as-
pects of real life, so we will consider the impact of environmental fluctuations on the trans-
mission rate β . Unless otherwise specified, it is assumed here that the random disturbance
is a type of white noise, namely β dt → β dt + σ dB(t), where B(t) is a Brownian motion,
and σ is intensity. We let B(t) be defined on a complete probability space (�,F , {Ft}t≥0, P)
with a filtration {Ft} satisfying conditions that are increasing and right continuous while
F0 contains all P-null sets. Then the form of the stochastic model corresponding to the
deterministic model (1.2) is as follows

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t) = [– βS(t)I(t)
f (S,I) – bS(t) + pbI(t) + b(1 – I(t)) – mS(t) + mS(t – ω)e–bω] dt

– σSI
f (S,I) dB(t),

dI(t) = [ βS(t)I(t)
f (S,I) – γ I(t) – pbI(t)] dt + σSI

f (S,I) dB(t),

dR(t) = [γ I(t) – bR(t) + mS(t) – mS(t – ω)e–bω] dt.

(1.4)

For biological significance, the following analysis satisfies the condition S(t) ≥ 0, I(t) ≥ 0,
R(t) ≥ 0. Then, noticing the first two stochastic differential equations in system (1.4) do
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not depend on the function R(t), we can exclude the third one without loss of generality
[32, 33]. Hence, we will only discuss the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [– βS(t)I(t)
f (S,I) – bS(t) + pbI(t) + b(1 – I(t)) – mS(t) + mS(t – ω)e–bω] dt

– σSI
f (S,I) dB(t),

dI(t) = [ βS(t)I(t)
f (S,I) – γ I(t) – pbI(t)] dt + σSI

f (S,I) dB(t).

(1.5)

This paper is organized as follows: in Sect. 2, the global existence, positivity, and bound-
edness of solutions of our stochastic model (1.5) will be proved. In Sects. 3 and 4, we
respectively show sufficient conditions for the extinction and persistence of the disease.
In Sect. 5, some numerical simulations are presented to illustrate our main results. Finally,
the paper ends with a brief discussion and conclusion in Sect. 6.

2 Existence of the positive solution
In this section, we establish the global existence, positivity, and boundedness of solu-
tions of system (1.5). Since S(t) and I(t) in system (1.5) denote population sizes, they
should be nonnegative, so for further study, we should firstly give region to prove that
system (1.5) has a unique global positive solution. First, we can find that it is clear that
region

� =
{

(S, I) ∈ R2
+ : S + I ≤ b

b + m(1 – e–bω)

}

,

is a positive invariant set of the deterministic model (1.2). Here, we will show that the
region � is almost surely a positive invariant set of the corresponding stochastic model
(1.5), i.e., if X0 = (S(0), I(0)) ∈ �, then P(X(t) ∈ �) = 1 for all t ≥ 0 [34].

Theorem 2.1 The region � is almost surely positive invariant of stochastic model (1.5).

Proof Let (S(θ ), I(0)) ∈ �, θ ∈ [–ω, 0) and n0 > 0 be sufficiently large such that each com-
ponent of (S(θ ), I(0)) is contained within the interval ( 1

n0
, b

b+m(1–e–bω) ]. Define, for each in-
teger n ≥ n0, the stopping times

τn = inf

{

t > 0 : X(t) ∈ � and X(t) ∈
(

1
n

,
b

b + m(1 – e–bω)

)}

,

τ = inf
{

t > 0 : X(t) /∈ �
}

.

It suffices to prove that P(τ = ∞) = 1, that is P(τ < t) = 0, ∀t > 0, we can see clearly that
P(τ < t) ≤ P(τn < t). We only need to show that lim supn→∞ P(τn < t) = 0 for this matter,
referring to [35, 36], we can take a similar function and use some approaches to prove the
theorem. Then, we set a C2-function U : R2

+ → R+ for all (S(t), I(t)) > 0:

U(X) =
1
S

+
1
I

.
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Applying Itô’s formula, for all t ≥ 0 and s ∈ [0, t ∧ τn], we obtain

dU
(
X(s)

)

=
[(

βI
Sf (S, I)

+
b
S

–
pbI
S2 –

b(1 – I)
S2 +

m
S

–
me–bωS(t – ω)

S2 +
1
S

(
σ I

f (S, I)

)2)]

ds

+
[(

–
βS

If (S, I)
+

pb + γ

I
+

1
I

(
σS

f (S, I)

)2)]

ds +
[(

σ (I2 – S2)
SIf (S, I)

)]

dB(t)

≤ [
βI + b + m + (σ I)2]ds

S
+

[
pb + γ + (σS)2]ds

I
+

[
σ (I2 – S2)
SIf (S, I)

]

dB(t)

≤ [
β + b + m + σ 2]ds

S
+

[
pb + γ + σ 2]ds

I
+

[
σ (I2 – S2)
SIf (S, I)

]

dB(t).

Then

dU
(
X(s)

) ≤ ηU
(
X(s)

)
ds +

[
σ (I2 – S2)
SIf (S, I)

]

dB(t), (2.1)

where η = max{β + b + m +σ 2, pb +γ +σ 2}. Taking integral and expectations on both sides
of (2.1) and applying Fubini’s theorem, we get

EU
(
X(s)

) ≤ U(X0) + η

∫ s

0
EU

(
X(u)

)
du.

Using Gronwall’s inequality, we have

∀s ∈ [0, t ∧ τn], EU
(
X(s)

) ≤ U(X0)eηs.

Hence,

EU
(
X(t ∧ τn)

) ≤ U(X0)eη(t∧τn) ≤ U(X0)eηt , ∀t ≥ 0. (2.2)

Since U(X(t ∧ τn)) > 0 and some component of X(τn) is less than or equal to 1
n , we deduce

that

EU
(
X(t ∧ τn)

) ≥ EU
[
X(τn)X{τn<t}

] ≥ nP(τn < t). (2.3)

By (2.2) and (2.3), we get for all t ≥ 0

P(τn < t) ≤ U(X0)eηt

n
.

Thus, lim supn→∞ P(τn < t) = 0. This completes the proof. �

The following theorem proves that there is a unique globally positive solution to system
(1.5) for any initial value X0 = (S(θ ), I(0)) ∈ R2

+, where R2
+ = {(X1, X2) ∈ R2 |: Xi > 0, i = 1, 2}.

Theorem 2.2 For any initial value S(θ ) ≥ 0 and I(0) > 0, ∀θ ∈ [–ω, 0), system (1.5) has a
unique positive solution (S(t), I(t)) on t > 0, and the solution will remain in R2

+ with proba-
bility one, that is to say (S(t), I(t)) ∈ R2

+ for all t > 0 almost surely.
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Proof Since the coefficients of system (1.5) satisfy the local Lipschitz conditions, then for
any initial value S(θ ) ≥ 0 for all θ ∈ [–ω, 0) and S(0) > 0, I(0) > 0, there is a unique local
solution (S(t), I(t)) on t ∈ [0, τe), where τe represents the explosion time [37]. To verify this
solution is global, we only need to show τe = ∞ a.s. To this end, let k0 ≥ 1 be sufficiently
large such that (S(θ ), I(0)) belongs to the interval [ 1

k0
, k0]. For each integer k ≥ k0, let us

define the following stopping time

τk = inf

{

t ∈ [0, τe] : S(t) /∈
(

1
k

, k
)

or I(t) /∈
(

1
k

, k
)}

,

where throughout this paper, we set inf∅ = ∞ (as usual, ∅ represents the empty set). Ob-
viously, τk is increasing as k → ∞. Let τ∞ = limk→∞ τk , whence τ∞ ≤ τe a.s. If τ∞ = ∞ a.s.
is true, then τe = ∞ a.s. and (S(t), I(t)) ∈ R2

+ a.s. for all t > 0. That is to say, to complete the
proof, we only need to show τ∞ = ∞ a.s. If this assertion is false, then there exists a pair of
constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thereby, there is an integer k1 ≥ k0

such that

P{τk ≤ T} ≥ ε for all k ≥ k1. (2.4)

Define

V (S, I) = (S – 1 – ln S) + (I – 1 – ln I) + me–bω

∫ t

t–ω

S(s) ds,

the nonnegativity of the above function can be seen from u – 1 – ln u ≥ 0 for ∀u > 0, let
k ≥ k0 and T > 0 be arbitrary. Applying Itô’s formula, for all t ≥ 0, we can get:

dV (S, I) = LV (S, I) dt + σ (I – S) dB(t),

where

LV (S, I) = –
βSI

f (S, I)
– bS + pbI + b(1 – I) + me–bωS(t – ω) +

βI
f (S, I)

+ b –
pbI
S

–
b(1 – I)

S
+ m –

me–bωS(t – ω)
S

+
βSI

f (S, I)
– (pb + r)I –

βS
f (S, I)

+ pb + γ

– m
(
1 – e–bω

)
S – me–bωS(t – ω) +

1
2

(
σ I

f (S, I)

)2

+
1
2

(
σS

f (S, I)

)2

≤ βI
f (S, I)

+ 2b + m + pb + γ +
1
2

((
σ I

f (S, I)

)2

+
(

σS
f (S, I)

)2)

,

here because f (S, I) ≥ 0, so LV (S, I) ≤ β + 2b + m + pb + γ + σ 2 =: K , where K > 0 is a con-
stant. So, the above can be written as

dV (S, I) ≤ K dt + σ (I – S) dB(t), (2.5)

integrating the above inequality (2.5), we obtain:

V (S, I) ≤ V (S(0), I(0)) + Kt +
∫ t

0
σ (I – S) dB
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because
∫ t

0 σ (I – S) dB. It is a process with a mean value of 0, taking expectation, we obtain

EV
(
S(τk ∧ T), I(τk ∧ T)

) ≤ V
(
S(0), I(0)

)
+ KE(τk ∧ T).

Thus

EV
(
S(τk ∧ T), I(τk ∧ T)

) ≤ V
(
S(0), I(0)

)
+ KT . (2.6)

Set �k = {τk ≤ T} for k ≥ k1 and by virtue of (2.4), we obtain P(�k) ≥ ε. Note that for
every ω ∈ �k , the S(τk ,ω) or I(τk ,ω) equals either k or 1

k . Consequently, V (S(τk ,ω), I(τk ,ω))
is no less than either k – 1 – ln k or 1

k – 1 – ln 1
k = 1

k – 1 + ln k. Hence, we can get

V
(
S(τk ,ω), I(τk ,ω)

) ≥ [k – 1 – ln k] ∧
[

1
k

– 1 + ln k
]

.

It follows from (2.6) that

V
(
S(0), I(0)

)
+ KT ≥ E

[
I�k (ω)V

(
S(τk ,ω), I(τk ,ω)

)]

≥ ε

[

(k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)]

,

where I�k is the indicator function of �k . Letting k → ∞, then we have ∞ > V (S(0), I(0)) +
KT = ∞, which yields the contradiction, we get τ∞ = ∞. This means that S(t) and I(t) will
not explode in a finite time, almost surely. This completes the proof. �

3 Extinction of the disease
In this section, we study the extinction of the disease. Before giving our main result of this
section, let us present some lemmas.

Lemma 3.1 Let (S(t), I(t)) be the solution of system (1.5) with any initial value I(0) > 0 and
S(θ ) ≥ 0 for all θ ∈ [–ω, 0) with S(0) > 0, then

lim
t→∞

S(t) + I(t) + me–bt ∫ t
t–ω

ebsS(s) ds
t

= 0 a.s.

Furthermore,

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0, lim
t→∞

e–bt ∫ t
t–ω

ebsS(s) ds
t

t = 0 a.s.

Proof The proof is similar to that in Liu et al. [38] and hence is omitted. �

Lemma 3.2 Let M = {Mt}t≥0 be a real-valued continuous local martingale vanishing at
t = 0. Then

lim
t→∞〈M, M〉t = ∞ a.s. ⇒ lim

t→∞
Mt

〈M, M〉t
= 0 a.s.

and also

lim sup
t→∞

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→∞
Mt

t
= 0 a.s.
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Now we will give our main result of this section.

Theorem 3.1 Let (S(t), I(t)) be the solution of system (1.5) with initial value (S(θ ), I(0)) ∈
�, θ ∈ [–ω, 0), assume that (a) σ 2 > β2

2(pb+γ ) , (b) Rs
0 < 1 and σ 2 ≤ β(b+α1b+m(1–e–bω))

b . Then
if (a) holds,

lim sup
t→∞

ln I(t)
t

≤ β2

2σ 2 – (pb + γ ) < 0 a.s., (3.1)

if (b) holds,

lim sup
t→∞

ln I(t)
t

≤ (
Rs

0 – 1
)
(pb + γ ) < 0 a.s., (3.2)

where

Rs
0 = R2

0

(

1 –
σ 2b

2β(b + α1b + m(1 – e–bω))

)

,

namely, I(t) tends to zero exponentially a.s., the disease fades with probability 1.

Proof It follows from Itô’s formula that

d ln I =
[

βS
f (S, I)

– (pb + γ ) –
1
2

(
σS

f (S, I)

)2]

dt +
σS

f (S, I)
dB,

integrating this from 0 to t and dividing by t on both sides, we have

ln I(t)
t

=
1
t

∫ t

0

[
βS(s)
f (S, I)

– (pb + γ ) –
1
2

σ 2S2(s)
f 2(S, I)

]

ds +
ln I(0)

t
+

M(t)
t

, (3.3)

where M(t) =
∫ t

0 σ S(s)
f (S(s),I(s)) dB(s). By the large number theorem for martingales (Lem-

ma 3.2) [39], we have

lim
t→∞

Mt

t
= lim

t→∞
B(t)

t
= 0 a.s.,

if the condition (a) is satisfied, Eq. (3.3) becomes

ln I(t)
t

=
1
t

∫ t

0

[

–
1
2
σ 2

(
S(s)

f (S, I)
–

β2

σ 2

)2

– (pb + γ ) +
β2

2σ 2

]

ds +
ln I(0)

t
+

M(t)
t

≤
[

–(pb + γ ) +
β2

2σ 2

]

+
ln I(0)

t
+

M(t)
t

,

taking the limit superior of both sides, we obtain the desired assertion (3.1).
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On the other hand, noting that the Crowley–Martin functional response can be written
differently as

βS
f (S, I)

=
βS

1 + α1S + α2I + α1α2SI

=
βb

b + α1b + m(1 – e–bω)

–
β(b + m(1 – e–bω))

(b + α1b + m(1 – e–bω))(1 + α1S + α2I + α1a2SI)

×
(

b
b + m(1 – e–bω)

– S
)

–
βbα2

(b + α1b + m(1 – e–bω))(1 + α1S + α2I + α1α2SI)
I

–
βbα1α2

(b + α1b + m(1 – e–bω))(1 + α1S + α2I + α1α2SI)
SI,

(3.4)

thus, if (b) holds, then we can transpose (3.3) into

ln I(t)
t

≤ βb
b + α1b + m(1 – e–bω)

– (pb + γ ) –
1
2

(
σb

b + α1b + m(1 – e–bω)

)2

+
ln I(0)

t
+

M(t)
t

.

By the law of large number for martingales and for Rs
0 < 1, we obtain

ln I(t)
t

≤
[

R2
0

(

1 –
σ 2b

2β(b + α1b + m(1 – e–bω))

)

– 1
]

(pb + γ ) +
ln I(0)

t
+

M(t)
t

≤ (
Rs

0 – 1
)
(pb + γ ) +

ln I(0)
t

+
M(t)

t
,

taking the limit superior of both sides, we get the assertion (3.2). We have proved that

lim sup
t→∞

ln I(t)
t

≤ λI < 0 a.s.,

where λI = β2

2σ 2 – (pb + γ ) if (a) holds; λI = (Rs
0 – 1)(pb + γ ) if (b) holds. This completes the

proof. �

4 Persistence of the disease
In this section, we study the conditions for the Persistence of the disease. For simplicity, we
define 〈X(t)〉 = 1

t
∫ t

0 X(s) ds and present the definition of persistence in the mean as follows
[37].

Definition 4.1 System (1.5) is said to be persistent in the mean if

lim inf
t→∞

〈
S(t)

〉
> 0, lim inf

t→∞
〈
I(t)

〉
> 0 a.s.
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Lemma 4.1 Let g ∈ C([0,∞) × �, (0,∞)) and G ∈ C([0,∞) × �, R). If there exist two real
numbers λ0 ≥ 0 and λ > 0 for all t ≥ 0 such that

ln g(t) ≥ λ0t – λ

∫ t

0
g(s) ds + G(t) and lim

t→∞
G(t)

t
= 0 a.s.,

then

lim inf
t→∞

〈
g(t)

〉 ≥ λ0

λ
a.s.

Theorem 4.1 Suppose that Rs
0 > 1, then the solution (S(t), I(t)) to system (1.5) is persistent

in the mean for any given initial value (S(θ ), I(0)) ∈ �, θ ∈ [–ω, 0). Moreover,

lim inf
t→∞

〈
I(t)

〉 ≥ I∗ > 0, (4.1)

lim inf
t→∞

〈
b

b + m(1 – e–bω)
– S(t)

〉

≥ b + γ

b + m(1 – e–bω)
I∗ > 0, (4.2)

where

I∗ =
(pb + γ )(Rs

0 – 1)(b + α1b + m(1 – e–bω))(b + m(1 – e–bω))
β[(b + γ )(b + m(1 – e–bω)) + α2b(b + m(1 – e–bω) + α1α2b2)]

.

Proof Since (S(t), I(t)) ∈ �, from the Crowley–Martin functional response (3.4), we get

βS
f (S, I)

≥ βb
b + α1b + m(1 – e–bω)

–
β(b + m(1 – e–bω))

(b + α1b + m(1 – e–bω))

(
b

b + m(1 – e–bω)
– S

)

–
βbα2

(b + α1b + m(1 – e–bω))
I –

βb2α1α2

(b + α1b + m(1 – e–bω))(b + m(1 – e–bω))
I

≥ β(b + m(1 – e–bω))
(b + α1b + m(1 – e–bω))

S –
βbα2

(b + α1b + m(1 – e–bω))

(

1 +
bα1

b + m(1 – e–bω)

)

I.

We have 0 ≤ S
f (S,I) ≤ b

b+α1b+m(1–e–bω) , then

d ln I =
[

βS
f (S, I)

– (pb + γ ) –
1
2

(
σS

f (S, I)

)2]

dt +
σS

f (S, I)
dB

≥
[

βS
f (S, I)

– (pb + γ ) –
1
2

(
σb

b + α1b + m(1 – e–bω)

)2]

dt +
σS

f (S, I)
dB

≥
[

βS(b + m(1 – e–bω))
b + α1b + m(1 – e–bω)

– (pb + γ ) –
1
2

(
σb

b + α1b + m(1 – e–bω)

)2]

dt

–
[

βbα2

(b + α1b + m(1 – e–bω))

(

1 +
bα1

b + m(1 – e–bω)

)]

I dt +
σS

f (S, I)
dB,

(4.3)
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integrating both sides of (4.3) from 0 to t, there is

ln I(t) – ln I(0) ≥ β(b + m(1 – e–bω))
b + α1b + m(1 – e–bω)

∫ t

0
S(θ ) dθ – (pb + γ )t

–
1
2

(
σb

b + α1b + m(1 – e–bω)

)2

t

–
[

βbα2

(b + α1b + m(1 – e–bω))

(

1 +
bα1

b + m(1 – e–bω)

)]

×
∫ t

0
I(θ ) dθ + M(t),

then

ln I(t) ≥ β(b + m(1 – e–bω))
b + α1b + m(1 – e–bω)

∫ t

0
S(θ ) dθ – (pb + γ )t

–
1
2

(
σb

b + α1b + m(1 – e–bω)

)2

t

–
[

βb
(b + α1b + m(1 – e–bω))

(

α2 +
bα1α2

b + m(1 – e–bω)

)]

×
∫ t

0
I(θ ) dθ + M(t) + ln I(0).

(4.4)

Note that

d
(

S(t) + I(t) + me–bω

∫ t

t–ω

S(s) ds
)

= b – bS(t) – m
(
1 – e–bω

)
S(t) – (b + γ )I(t),

then we have

S(t) + I(t) + me–bω
∫ t

t–ω
S(s) ds

t
–

S(0) + I(0) + me–bω
∫ 0

–ω
S(s) ds

t

= b –
(
b + m

(
1 – e–bω

))〈
S(t)

〉
– (b + γ )

〈
I(t)

〉
.

Thus

〈
S(t)

〉
=

b
b + m(1 – e–bω)

–
b + γ

b + m(1 – e–bω)
〈
I(t)

〉
–

φ1(t)
t

, (4.5)

where

φ1(t) =
S(t) + I(t) + me–bω

∫ t
t–ω

S(s) ds
b + m(1 – e–bω)

–
S(0) + I(0) + me–bω

∫ 0
–ω

S(s) ds
b + m(1 – e–bω)

.

In view of Lemma 3.1, one can easily obtain that

lim
t→∞

φ1(t)
t

= 0 a.s.,
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so

〈
S(t)

〉
=

b
b + m(1 – e–bω)

–
b + γ

b + m(1 – e–bω)
〈
I(t)

〉
, (4.6)

by (4.4) and (4.6), we get

ln I(t) ≥
[

β(b + m(1 – e–bω))
b + α1b + m(1 – e–bω)

b
b + m(1 – e–bω)

– (pb + γ )

–
1
2

(
σb

b + α1b + m(1 – e–bω)

)2]

t

–
β

(b + α1b + m(1 – e–bω))

[

(b + γ ) + b
(

α2 +
bα1α2

b + m(1 – e–bω)

)]

×
∫ t

0
I(θ ) dθ + φ2(t)

= (pb + γ )
(
Rs

0 – 1
)
t –

β

(b + α1b + m(1 – e–bω))

×
[

(b + γ ) + b
(

α2 +
bα1α2

b + m(1 – e–bω)

)]∫ t

0
I(θ ) dθ + φ2(t),

where φ2(t) = M(t) + ln I(0) – β

(b+α1b+m(1–e–bω))φ1(t). Obviously, limt→∞ φ2(t)
t = 0 a.s., by

Lemma 4.1 and Rs
0 > 1, we deduce that

lim inf
t→∞

〈
I(t)

〉 ≥ (pb + γ )(Rs
0 – 1)(b + α1b + m(1 – e–bω))(b + m(1 – e–bω))

β[(b + γ )(b + m(1 – e–bω)) + α2b(b + m(1 – e–bω) + α1α2b2)]
= I∗ > 0.

This is the required inequality (4.1), and from (4.5), we have

〈
b

b + m(1 – e–bω)
– S(t)

〉

=
b + γ

b + m(1 – e–bω)
〈
I(t)

〉
+

φ1(t)
t

.

Therefore,

lim inf
t→∞

〈
b

b + m(1 – e–bω)
– S(t)

〉

=
b + γ

b + m(1 – e–bω)
lim inf

t→∞
〈
I(t)

〉

≥ b + γ

b + m(1 – e–bω)
I∗ > 0. �

5 Simulations
In this section, we will use the Milstein method and the Euler–Maruyama method [40] to
illustrate our results, and all the step sizes are 0.1 [41]. We take 50 realizations and use their
average to plot such as I(t) = �50

i=1Ii(t)/50, where the Ii(t) represents the ith realization. We
compare the threshold parameters of the deterministic model and stochastic model to
explain the effect of white noise on the system. A typical example of vertical contagious
and vaccine-related infectious diseases is hepatitis B. There are many studies on hepatitis
B. In this part of numerical simulation, the value of parameters is taken from [42–45]. For
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the stochastic model (1.5), we consider the discrete equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = Sk + [– βSk Ik
1+α1Sk +α2Ik +α1α2Sk Ik

– bSk + pbIk + b(1 – Ik) – mSk

+ mSk–ωe–bω]�t – σSk Ik
1+α1Sk +α2Ik +α1α2Sk Ik

√
�tξk

– 0.5σ 2 Sk Ik
1+α1Sk +α2Ik +α1α2Sk Ik

(ξ 2
k – 1)�t,

Ik+1 = Ik + [ βSk Ik
1+α1Sk +α2Ik +α1α2Sk Ik

– γ Ik – pbIk]�t

+ σSk Ik
1+α1Sk +α2Ik +α1α2Sk Ik

√
�tξk

+ 0.5σ 2 Sk Ik
1+α1Sk +α2Ik +α1α2Sk Ik

(ξ 2
k – 1)�t.

Here ξk (k = 1, 2, . . .) is the N(0, 1)-distributed independent Gaussian random variables.
Now σ (t) is the intensity of white noise and time increment �t > 0.

For the deterministic system (1.2), we choose the initial value (S(0), I(0)) = (0.5, 0.2) and
the parameter values β = 0.4, b = 0.3, p = 0.1, m = 0.9, α1 = 0.6, α2 = 0.1, γ = 0.2. We com-
pare the two cases of ω = 1 and ω = 2 when β = 0.4. By simple calculations, we get both of
them R2

0 < 1 and find that the I tend to 0, which means that the disease fades. In Fig. 2(a),
(b), we see that the larger the value of the time delay ω, the faster the disease will fade.
When β = 0.6 and ω = 1, we get R2

0 > 1, it shows that the disease becomes endemic, but
when we increase the time delay to 2, we get R2

0 < 1 and find that the disease is extinct from

Figure 2 Dynamics of the deterministic system (1.2)
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Figure 3 Dynamics of the stochastic system (1.5)

Fig. 2(c), (d). From the above analysis, it is found that the longer immune period, that is,
time delay ω, the less likely the disease will break out.

For the stochastic system (1.5), we first use the Milstein method [40] to illustrate our
results, and we choose the initial value (S(0), I(0)) = (0.7, 0.4) and the parameter values b =
0.3, p = 0.5, m = 0.2, α1 = 0.6, α2 = 0.1, γ = 0.2, ω = 1. When β = 0.4 and σ = 0.5, we get Rs

0 =
0.5310 < 1 and σ 2 ≤ β(b+α1b+m(1–e–bω))

b ; hence, the condition (b) of Theorem 3.1 is satisfied.
When β = 0.4 and σ = 0.9, we get σ 2 > β2

2(pb+γ ) , the condition (a) of Theorem 3.1 is satisfied.
In Fig. 3(a), (b), the I both exponentially decays to zero, which indicates the extinction of
the disease. Next, we let parameter β = 0.8 and σ = 0.5 and others are the same as above.
In this case, we get Rs

0 = 1.2712 > 1, according to Theorem 4.1, the disease is persistent, see
Fig. 3(c). As shown in Fig. 3(d), when σ increases to 0.9, the I also exponentially decays
to zero, which indicates the extinction of the disease. The above results show that, to a
certain extent, stochastic noise has an effect on infectious diseases, properly increasing
noise intensity can reduce the spread of infectious diseases.

On the basic, we use Euler–Maruyama method and present the parameter values β = 0.7,
b = 0.3, p = 0.5, m = 0.2, α1 = 0.6, α2 = 0.1, γ = 0.2. Here we analyze the impact of time
delay ω changes on infectious diseases when the noise intensity σ is little, i.e., σ = 0.2. We
find that when ω = 1, the disease is persistent and is shown in Fig. 4(a), when ω = 2 the
disease is beginning to go extinct, until ω = 3 or ω = 5, the disease has become extinct, and
they are shown in Fig. 4(b), (c), (d), respectively. Based on the above analysis, we can get
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Figure 4 The effect of delay ω on dynamics of the stochastic system (1.5)

that the time delay can contribute to the extinction of the disease, the larger the value of
the time delay ω, the faster the disease will fade.

Next, we use the Milstein method [40] to analyze the influence of some parameters. We
choose the initial value (S(0), I(0)) = (0.5, 0.4) and the parameter values β = 0.8, b = 0.3,
m = 0.2, α1 = 0.6, α2 = 0.1, γ = 0.2, σ = 0.2, ω = 1. Under these parameter values, we choose
that in contrast, p = 0.4, p = 0.6 and p = 0.8, see Fig. 5(a). The higher the p value, the
more susceptible, the fewer people vertically infected; therefore, the disease will be quickly
controlled. Then, we consider the proportion of successfully vaccinated population m,
choose p = 0.5, and other parameters do not change. Taking different values of m, we get
that the bigger proportion of the successfully vaccinated population, the less infected, see
Fig. 5(b).

Lastly, we briefly describe the immunity level. We consider the form of successful im-
munization as dV (t)

dt = mS(t) – mS(t – ω)e–bω and analyze how the immunity level changes
as the time delay ω and the decay rate b change. We set β = 0.8, p = 0.5, m = 0.3, α1 = 0.6,
α2 = 0.1, γ = 0.2, σ = 0.1, and the initial value (S(0), I(0)) = (0.5, 0.4). Then, we can find
when b is larger, the V ((t)) is higher in Fig. 6(a). The higher the decay rate b, the smaller
the probability of death due to disease, and then, the population size of successful vacci-
nation is larger. On the other hand, we set b = 0.3, and other parameters do not change.
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Figure 5 The effect of some parameters on dynamics of the stochastic system (1.5)

Figure 6 The immunity level

Then, in Fig. 6(b), we can find when ω is larger, the V ((t)) is higher. The greater the time
delay ω, the less likely it is to die from the disease, and then, the population size of suc-
cessful vaccination is larger. This shows that the effective period of vaccine is the longer,
the immunity level is higher.

6 Conclusions
In this paper, we have analyzed a stochastic delayed SIR epidemic model with vertical
transmission and vaccination, the introduction of stochastic effect and time delay into
deterministic models gives us a more realistic way of constructing epidemic model. In
addition, we consider a specific functional response incidence rate. In this model, firstly,
we have proved the global existence, positivity, and boundedness of the solution. In addi-
tion, we have shown that the disease fades when the white noise is large enough such that
σ 2 > β2

2(pb+γ ) . Moreover, when the noise is small, i.e., σ 2 ≤ β(b+α1b+m(1–e–bω))
b , the extinction

of the disease can be determined by the value of Rs
0; if Rs

0 < 1, the disease fades. The persis-
tence of the disease is determined by Rs

0, i.e., if Rs
0 > 1, the disease persists. Finally, we have
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simulated our theoretical result and have also found that when the white noise is small, the
stochastic system is similar to the deterministic system, but when the white noise is large
enough, the stochastic system will appear to be a different phenomenon. Large white noise
can suppress the spread of disease. And the higher the p value, the higher the proportion
of susceptible newborns and the fewer patients with vertical transmission. With the devel-
opment of modern medical treatment, there will be more medical measures to block the
vertical transmission of infectious diseases. In addition, the increase in vaccination rate
m and time delay ω have some influence on the development progress of the disease, they
can effectively suppress the occurrence of the disease under the right circumstances.

It is very meaningful to study the epidemic model with time delay caused by vaccination,
and we can not ignore the influence of vaccination on some infectious diseases. Moreover,
by studying the dynamic behavior of stochastic infectious disease system, we can reflect
the actual phenomenon more accurately and reveal the influence of stochastic disturbance
on infectious disease system, which is of great significance for the scientific prediction of
disease development trend and epidemic prevention and control. It can help us offer some
useful control strategies to regulate disease dynamics. In future work, we will consider the
delayed SIR model with different incidences to build more realistic models and analyze
some other characteristics about them.
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