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Abstract
In this paper, we investigate periodic boundary value problems for Caputo type
fractional semilinear nonautonomous differential equations with non-instantaneous
impulses. By using semigroup theory combined with the measure of
noncompactness and some fixed point theorems, the existence of PC-mild solutions
for the equations is established. At the end, an example is presented to illustrate the
application of our main results.
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1 Introduction
Fractional differential equations have gained considerable significance during the past
decades. Compared with integer order differential equations, fractional differential equa-
tions have memory in time and genetic properties, which are more suitable for describing
many problems in anomalous diffusion, viscous fluid mechanics, porous media mechan-
ics, electrical engineering and bioengineering, etc. In [1–6], the authors are committed
to fractional differential equations with instantaneous impulsive effects, which can de-
scribe sudden changes at certain times such as earthquake, the closing of the switch in the
circuit, and so on. Meanwhile, fractional differential equations with non-instantaneous
impulses have currently been proven to be useful mathematical models to explain many
phenomena occurring in biology, dynamics, control model, etc. For instance, the release
and absorption of drugs in the bloodstream is a continuous and gradual process. As re-
cent developments on fractional differential equations with non-instantaneous impulses,
we mention the papers [7–16] and the references cited therein.

Cauchy problems for the abstract integer differential equations with non-instantaneous
impulses were initially investigated by E. Hernandez and D. O’Regan [7], Pierri et al. [8] as
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follows:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = Au(t) + f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

u(0) = u0 ∈ E,

(1.1)

where A : D(A) ⊂ E → E is the generator of a C0-semigroup {S(t), t ≥ 0} on a Banach space
E, the prefixed numbers si, ti satisfy 0 = s0 < t1 ≤ s1 < t2 ≤ s2 < · · · < tm ≤ sm < tm+1 = T ,
f : [0, T] × E → E and gi : (ti, si] × E → E, i = 1, 2, . . . , m, are continuous functions, the
existence of PC-mild solutions has been proved by a fixed point theorem.

Wang and Li [9] studied periodic boundary value problems for differential equations
with non-instantaneous impulses via the fixed point theorem:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

u(0) = u(T).

(1.2)

In [10–13], the authors studied the existence of solutions for non-instantaneous impul-
sive differential equations. Chen et al. [14] studied non-autonomous parabolic evolution
equations with non-instantaneous impulses and obtained the existence results of mild so-
lutions. Yu and Wang [15] investigated periodic boundary value problems for integer dif-
ferential equations with non-instantaneous memory impulses; the existence of PC-mild
solutions was established based on the theory of semigroup.

Inspired by these contributions, we consider the following periodic boundary value
problems for fractional semilinear nonautonomous differential equations with non-
instantaneous impulses:

⎧
⎪⎪⎨

⎪⎪⎩

cDβ
t x(t) = A(t)x(t) + f (t, x(t),

∫ t
0 g(t, s, x(s)) ds), t ∈ (si, ti+1], i = 0, 1, 2, . . . , m,

x(t) = hi + Uβ (t, ti)
∫ t

ti
gi(s, x(s)) ds, t ∈ (ti, si], i = 1, 2, . . . , m,

x(0) = x(T),

(1.3)

where cDβ
t is the Caputo’s fractional derivative of order β , β ∈ (0, 1], J = [0, T], A(t) is a

closed linear operator with domain D(A) defined on a Banach space E, f , g , and Uβ are
to be specified later, the prefixed numbers si and ti (i = 1, 2, . . . , m) satisfy 0 = s0 < t1 ≤
s1 < t2 ≤ · · · < tm ≤ sm < tm+1 = T , gi : (ti, si] × E → E, i = 1, 2, . . . , m, are continuous and
nonlinear functions, hi ∈ E, i = 1, 2, . . . , m.

The rest of this paper is organized as follows. In Sect. 2, some basic definitions and aux-
iliary lemmas that will be needed in the remaining sections are collected. The existence of
PC-mild solutions is shown in Sect. 3 based on the theory of resolvent operators, measure
of noncompactness and various fixed point theorems. An example is presented to illus-
trate the main theorems in Sect. 4. Finally, Sect. 5 contains the summary of our results.

2 Auxiliary results
Let (E,‖ · ‖) be a Banach space, J = [0, T] and 0 < T < +∞. C(J , E) is the collection of all
continuous functions from J into E equipped with the norm ‖x‖C = max{‖x(t)‖, t ∈ J}.
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Let PC(J , E) = {x|x : J → E : x ∈ C((tk , tk+1], E), and there exist x(t–
k ) and x(t+

k ) with x(tk) =
x(t–

k ), k = 1, . . . , m} endowed with the PC-norm ‖x‖PC = sup{‖x(t)‖, t ∈ J}.

Definition 2.1 ([17, 18]) The Caputo fractional derivative of order β of a function f :
(0,∞) →R is defined as

cDβ
t f (t) =

1
�(n – β)

∫ t

0
(t – s)n–β–1f (n)(s) ds,

where n – 1 < β < n, n ∈ N , �(·) denotes the gamma function. The Laplace transform of
the Caputo fractional derivative of order β is given as

L
(cDβ

t f (t)
)
(s) = sβ (Lf )(s) –

n–1∑

j=1

sβ–j–1x(j)(0), n – 1 < β ≤ n,

where (Lf )(s) =
∫ ∞

0 e–stf (t) dt is the Laplace transform of the function f (t).

Definition 2.2 ([19, 20]) Let A(t) be a closed and linear operator with domain D(A) de-
fined on a Banach space E and β > 0. Let ρ[A(t)] be the resolvent set of A(t), A(t) is called
the generator of a β-resolvent family if there exist ω ≥ 0 and a strongly continuous func-
tion Uβ : R2

+ → B(E) such that {λβ : Reλ > ω} ⊂ ρ(A) and

(
λβ I – A(s)

)–1x =
∫ ∞

0
e–λ(t–s)Uβ (t, s)x dt, Re(λ) > ω, x ∈ E.

In this case, Uβ (t, s) is called the β-resolvent family generated by A(t), denote M =
max0≤s<t≤T ‖Uβ (t, s)‖.

Lemma 2.1 ([20, 21]) Uβ (t, s) satisfies the following properties:
(i) Uβ (s, s) = I , Uβ (t, s) = Uβ (t, r)Uβ (r, s) for 0 ≤ s ≤ r ≤ t ≤ a;

(ii) (t, s) → Uβ (t, s) is strongly continuous for 0 ≤ s ≤ t ≤ a;
(iii) If Uβ (t, s) is compact for t, s > 0, then Uβ (t, s) is continuous in the uniform operator

topology.

Definition 2.3 A function x ∈ PC(J , E) is said to be a PC-mild solution of problem (1.3) if
x(t) satisfies the integral equation

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uβ (t, 0)[Uβ (T , sm)hm + Uβ (T , tm)
∫ sm

tm
gm(s, x(s)) ds

+
∫ T

sm
Uβ (T , s)f (s, x(s),

∫ s
0 g(s,σ , x(σ )) dσ ) ds]

+
∫ t

0 Uβ (t, s)f (s, x(s),
∫ s

0 g(s,σ , x(σ )) dσ ) ds, t ∈ [0, t1],

hi + Uβ (t, ti)
∫ t

ti
gi(s, x(s)) ds, t ∈ (ti, si], i = 1, 2, . . . , m,

Uβ (t, si)hi + Uβ (t, ti)
∫ si

ti
gi(s, x(s)) ds

+
∫ t

si
Uβ (t, s)f (s, x(s),

∫ s
0 g(s,σ , x(σ )) dσ ) ds,

t ∈ (si, ti+1], i = 1, 2, . . . , m.

(2.1)

Lemma 2.2 ([22]) Let B ⊂ C(J , E) be equicontinuous and bounded, then CoB ⊂ C(J , E) is
also equicontinuous and bounded.
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Lemma 2.3 ([22]) Let E be a Banach space and D ⊂ E be bounded, then there exists a
countable set D0 ⊂ D such that α(D) ≤ 2α(D0), where α denotes the measure of noncom-
pactness.

Lemma 2.4 ([23]) Let B ⊂ C(J , E) be equicontinuous and bounded, then α(B(t)) is contin-
uous on J and

α

(∫

J
B(s) ds

)

≤
∫

J
α
(
B(s)

)
ds, α(B) = max

t∈J
α
(
B(t)

)
.

3 Main results
First, we demonstrate the existence of PC-mild solutions for problem (1.3) based on the
measure of noncompactness and fixed point theorem.

Theorem 3.1 If the following assumptions (H1)–(H3) are satisfied.
(H1) The function g : D × E → E is continuous, D = {(t, s)|0 ≤ s ≤ t ≤ T}, there exists

h(t, ·) ∈ L1(J ,R+) with h0 = maxt∈[0,T]
∫ t

0 h(t, s) ds for (t, s) ∈ D, x ∈ E such that

∥
∥g(t, s, x)

∥
∥ ≤ h(t, s)‖x‖.

(H2) The function f : J × TR × TR → E is bounded and continuous for every R > 0 such
that

lim
R→∞ sup

M(R)
R

<
1
	

,

where M(R) = max{M1(R), M2(R)}, M1(R) = sup{‖f (t, x1, x2)‖ : (t, x1, x2) ∈ J × TR ×
TR}, M2(R) = sup{‖gi(t, x)‖, (t, x) ∈ J × TR, i = 1, 2, . . . , m}, TR = {x ∈ E : ‖x‖ ≤ R},
	 = max{M2a0(T – tm) + Mt1a0, Ma0(ti+1 – ti), i = 1, 2, . . . , m}, a0 = max{1, h0}.

(H3) For all R > 0, there exist nonnegative Lebesgue integrable functions L′
g , L′

gi
, L′

1, L′
2 ∈

L1(J ,R+) (i = 1, 2, . . . , m) for all countable and equicontinuous sets D, Di ⊂ TR (i =
1, 2) such that

α
(
g(t, s, D)

) ≤ L′
g(t)α(D),

α
(
gi(t, D)

) ≤ L′
gi

(t)α(D),

and

α
(
f (t, D1, D2)

) ≤ L′
1(t)α(D1) + L′

2(t)α(D2).

Then problem (1.3) has at least one PC-mild solution on PC(J , E) provided that the resol-
vent operator Uβ (t, s) is compact for t, s > 0 and ρ = max{2M2 ∫ sm

tm
L′

gm (s) ds+2M2 ∫ T
sm

(L′
1(s)+

L′
2(s)

∫ T
0 L′

g(σ ) dσ ) ds + 2M
∫ t1

0 (L′
1(s) + L′

2(s)
∫ T

0 L′
g(σ ) dσ ) ds, 2M

∫ si
ti

L′
gi

(s) ds + 2M ×
∫ ti+1

si
(L′

1(s) + L′
2(s)

∫ T
0 L′

g(σ ) dσ ) ds, i = 1, 2, . . . , m} < 1.
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Proof Consider an operator F : PC(J , E) → PC(J , E) defined by

(Fx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uβ (t, 0)[Uβ (T , sm)hm + Uβ (T , tm)
∫ sm

tm
gm(s, x(s)) ds

+
∫ T

sm
Uβ (T , s)f (s, x(s),

∫ s
0 g(s,σ , x(σ )) dσ ) ds]

+
∫ t

0 Uβ (t, s)f (s, x(s),
∫ s

0 g(s,σ , x(σ )) dσ ) ds, t ∈ [0, t1],

hi + Uβ (t, ti)
∫ t

ti
gi(s, x(s)) ds, t ∈ (ti, si], i = 1, 2, . . . , m,

Uβ (t, si)hi + Uβ (t, ti)
∫ si

ti
gi(s, x(s)) ds

+
∫ t

si
Uβ (t, s)f (s, x(s),

∫ s
0 g(s,σ , x(σ )) dσ ) ds,

t ∈ (si, ti+1], i = 1, 2, . . . , m.

It is easy to see that the operator F is well defined in PC(J , E).
According to condition (H2), there exist 0 < r < 1

	
and R0 > 0 for every R ≥ a0R0 such

that

M(R) < rR.

Let η = max{R0, M2‖hm‖
1–M2ra0(T–tm)–Mra0t1

, ‖hi‖
1–Mra0(si–ti)

, M‖hi‖
1–Mra0(ti+1–ti)

, i = 1, 2, . . . , m}. For all x ∈
Bη = {x ∈ PC(J , E) : ‖x‖PC ≤ η}, t ∈ (si, ti+1], i = 0, 1, . . . , m, then

‖x‖PC ≤ η ≤ a0η,

which yields

∥
∥
∥
∥

∫ t

0
g(t, s, x) ds

∥
∥
∥
∥ ≤

∫ t

0
h(t, s)‖x‖PC ds ≤ h0η ≤ a0η.

First of all, we show that Fx ∈ Bη .
For t ∈ [0, t1],

∥
∥(Fx)(t)

∥
∥ ≤ M2‖hm‖ + M2

∫ sm

tm

∥
∥gm

(
s, x(s)

)∥
∥ds

+ M2
∫ T

sm

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

+ M
∫ t

0

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

≤ M2‖hm‖ + M2ra0η(sm – tm) + M2ra0η(T – sm) + Mra0ηt1

≤ M2‖hm‖ +
(
M2ra0(T – tm) + Mra0t1

)
η ≤ η.

For t ∈ (ti, si], i = 1, 2, . . . , m,

∥
∥(Fx)(t)

∥
∥ ≤ ‖hi‖ + M

∫ t

ti

∥
∥gi

(
s, x(s)

)∥
∥ds ≤ ‖hi‖ + Mra0η(si – ti) ≤ η.
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For t ∈ (si, ti+1], i = 1, 2, . . . , m,

∥
∥(Fx)(t)

∥
∥ ≤ M‖hi‖ + M

∫ si

ti

∥
∥gi

(
s, x(s)

)∥
∥ds

+ M
∫ t

si

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

≤ M‖hi‖ + Mra0η(si – ti) + Mra0η(ti+1 – si)

≤ M‖hi‖ + Mra0η(ti+1 – ti) ≤ η.

So F : Bη → Bη .
Furthermore, we prove that F : Bη → Bη is continuous. Let {xn}∞0 with xn → x in Bη .
For each t ∈ [0, t1], we obtain

∥
∥(Fxn)(t) – (Fx)(t)

∥
∥

≤ M2
∫ sm

tm

∥
∥gm

(
s, xn(s)

)
– gm

(
s, x(s)

)∥
∥ds

+ M2
∫ T

sm

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

+ M
∫ t1

0

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

≤ M2(sm – tm) sup
s∈J

∥
∥gm

(
s, xn(s)

)
– gm

(
s, x(s)

)∥
∥

+ M2(T – sm) sup
s∈J

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥

+ Mt1 sup
s∈J

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥.

For each t ∈ (ti, si], i = 1, 2, . . . , m, we obtain

∥
∥(Fxn)(t) – (Fx)(t)

∥
∥ ≤ M

∫ si

ti

∥
∥gi

(
s, xn(s)

)
– gi

(
s, x(s)

)∥
∥ds

≤ M(si – ti) sup
s∈J

∥
∥gi

(
s, xn(s)

)
– gi

(
s, x(s)

)∥
∥.

For each t ∈ (si, ti+1], i = 1, 2, . . . , m, we obtain

∥
∥(Fxn)(t) – (Fx)(t)

∥
∥

≤ M
∫ si

ti

∥
∥gi

(
s, xn(s)

)
– gi

(
s, x(s)

)∥
∥ds

+ M
∫ ti+1

si

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

≤ M(si – ti) sup
s∈J

∥
∥gi

(
s, xn(s)

)
– gi

(
s, x(s)

)∥
∥
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+ M(ti+1 – si) sup
s∈J

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥.

Using the fact that the functions f : J × E × E → E, g : D × E → E and gi : (ti, si] × E → E
(i = 1, 2, . . . , m) are continuous, we have

lim
n→∞ sup

s∈J

∥
∥
∥
∥f

(

s, xn(s),
∫ s

0
g
(
s,σ , xn(σ )

)
dσ

)

– f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ = 0

and

lim
n→∞ sup

t∈J

∥
∥gi

(
s, xn(s)

)
– gi

(
s, x(s)

)∥
∥ = 0 (i = 1, 2, . . . , m).

From the above, we deduce that ‖Fxn –Fx‖PC → 0 as n → ∞. This shows that F : Bη →
Bη is continuous.

Now we prove that F (Bη) is equicontinuous.
For the interval [0, t1], 0 ≤ e1 < e2 ≤ t1, x ∈ Bη , we get

∥
∥(Fx)(e2) – (Fx)(e1)

∥
∥

≤ ∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥

(

M‖hm‖ + M
∥
∥
∥
∥

∫ sm

tm

gm
(
s, x(s)

)
ds

∥
∥
∥
∥

+ M
∥
∥
∥
∥

∫ T

sm

f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

)

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e1

0

(
Uβ (e2, s) – Uβ (e1, s)

)
f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ ∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥M

(

‖hm‖ +
∥
∥
∥
∥

∫ sm

tm

gm
(
s, x(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ T

sm

f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

)

+ Mra0η(e2 – e1) + sup
s∈[0,t1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥ra0ηt1.

For the interval (ti, si], i = 1, 2, . . . , m, ti < e1 < e2 ≤ si, x ∈ Bη , we get

∥
∥(Fx)(e2) – (Fx)(e1)

∥
∥ ≤

∥
∥
∥
∥Uβ (e2, ti)

∫ e2

e1

gi
(
s, x(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

(
Uβ (e2, ti) – Uβ (e1, ti)

)
∫ e1

ti

gi
(
s, x(s)

)
ds

∥
∥
∥
∥

≤ Mra0η(e2 – e1) +
∥
∥Uβ (e2, ti) – Uβ (e1, ti)

∥
∥ra0η(si – ti).
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For interval (si, ti+1], i = 1, 2, . . . , m, si < e1 < e2 ≤ ti+1, x ∈ Bη , we get

∥
∥(Fx)(e2) – (Fx)(e1)

∥
∥

≤ ∥
∥Uβ (e2, si) – Uβ (e1, si)

∥
∥‖hi‖ +

∥
∥Uβ (e2, ti) – Uβ (e1, ti)

∥
∥

∥
∥
∥
∥

∫ si

ti

gi
(
s, x(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e1

si

(
Uβ (e2, s) – Uβ (e1, s)

)
f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ ∥
∥Uβ (e2, si) – Uβ (e1, si)

∥
∥‖hi‖ +

∥
∥Uβ (e2, ti) – Uβ (e1, ti)

∥
∥

∥
∥
∥
∥

∫ si

ti

gi
(
s, x(s)

)
ds

∥
∥
∥
∥

+ Mra0η(e2 – e1) + sup
s∈(si,ti+1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥ra0η(ti+1 – si).

We deduce that ‖(Fx)(e2) – (Fx)(e1)‖ → 0 independently of x ∈ Bη as e2 → e1, since
the compactness of Uβ (t, s) (t, s > 0) implies the continuity in the uniform operator topol-
ogy. This shows that F (Bη) is equicontinuous. In view of Lemma 2.2, CoF (Bη) ⊂ Bη is
equicontinuous and bounded.

It remains to prove that F : CoF (Bη) → CoF (Bη) is a condensing operator. For any D ⊂
CoF (Bη), by Lemma 2.3, there exists a countable set D0 = {xn} ⊂ D such that

α
(
F (D)

) ≤ 2α
(
F (D0)

)
.

Using the fact that CoF (Bη) is equicontinuous, D0 ⊂ CoF (Bη) is equicontinuous. By (H3),
for s ∈ (si, ti+1], i = 0, 1, . . . , m, then

α

(

f
(

s, D0(s),
∫ s

0
g
(
s,σ , D0(σ )

)
dσ

))

≤ L′
1(s)α

(
D0(s)

)
+ L′

2(s)
∫ s

0
L′

g(σ )α
(
D0(σ )

)
dσ

≤
(

L′
1(s) + L′

2(s)
∫ T

0
L′

g(σ ) dσ

)

α(D).

For each t ∈ [0, t1],

α
(
F (D0)(t)

)

≤ M2α

(∫ sm

tm

gm
(
s, D0(s)

)
ds

)

+ M2α

(∫ T

sm

f
(

s, D0(s),
∫ s

0
g
(
s,σ , D0(σ )

)
dσ

)

ds
)

+ Mα

(∫ t

0
f
(

s, D0(s),
∫ s

0
g
(
s,σ , D0(σ )

)
dσ

)

ds
)

≤ M2
∫ sm

tm

L′
gm (s)α

(
D0(s)

)
ds + M2

∫ T

sm

α

(

f
(

s, D0(s),
∫ s

0
g
(
s,σ , D0(σ )

)
dσ

))

ds

+ M
∫ t

0
α

(

f
(

s, D0(s),
∫ s

0
g
(
s,σ , D0(σ )

)
dσ

))

ds
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≤
(

M2
∫ sm

tm

L′
gm (s) ds + M2

∫ T

sm

(

L′
1(s) + L′

2(s)
∫ T

0
L′

g(σ ) dσ

)

ds

+ M
∫ t1

0

(

L′
1(s) + L′

2(s)
∫ T

0
L′

g(σ ) dσ

)

ds
)

α(D).

For each t ∈ (ti, si], i = 1, . . . , m,

α
(
F (D0)(t)

) ≤ Mα

(∫ t

ti

gi
(
s, D0(s)

)
ds

)

≤ M
∫ si

ti

L′
gi

(s) dsα(D).

For each t ∈ (si, ti+1], i = 1, . . . , m,

α
(
F (D0)(t)

) ≤ Mα

(∫ si

ti

gi
(
s, D0(s)

)
ds

)

+ Mα

(∫ t

si

f
(

s, D0(s),
∫ s

0
g
(
s,σ , D0(σ )

)
dσ

)

ds
)

≤
(

M
∫ si

ti

L′
gi

(s) ds + M
∫ ti+1

si

(

L′
1(s) + L′

2(s)
∫ T

0
L′

g(σ ) dσ

)

ds
)

α(D).

By Lemma 2.4,

α
(
F (D0)

)
= max

t∈J
α
(
F (D0)(t)

)
.

Hence

α
(
F (D)

) ≤ ρα(D) < α(D).

These arguments enable us to infer that F : CoF (Bη) → CoF (Bη) is a condensing op-
erator and by the fixed point theorem of Sadovskii, there exists one fixed point x� ∈
CoF (Bη) ⊂ PC(J , E) for F . In conclusion, problem (1.3) has at least one PC-mild solution.
This completes the proof. �

Now we establish the existence results of PC-mild solutions for problem (1.3) via Kras-
noselskii’s fixed point theorem.

Theorem 3.2 Assume that (G1)–(G4) hold and the resolvent operator Uβ (t, s) is compact
for t, s > 0.

(G1) The function f : J × E × E → E is continuous, there exist nonnegative Lebesgue in-
tegrable functions a, L1, L2 ∈ L1(J ,R+) for t ∈ (si, ti+1] (i = 0, 1, . . . , m) and x1, x2 ∈ E
such that

∥
∥f (t, x1, x2)

∥
∥ ≤ a(t) + L1(t)‖x1‖ + L2(t)‖x2‖.

(G2) The function g : D × E → E is continuous, D = {(t, s)|0 ≤ s ≤ t ≤ T}, there exist
nonnegative Lebesgue integrable functions b, L3 ∈ L1(J ,R+) for (t, s) ∈ D, x ∈ E such
that

∥
∥g(t, s, x)

∥
∥ ≤ b(t) + L3(t)‖x‖.
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(G3) There exists a function ωi(t) with �i = supt∈[ti ,si] ωi(t) < +∞ for t ∈ (ti, si] (i =
1, 2, . . . , m) and x ∈ E such that

∥
∥gi(t, x)

∥
∥ ≤ ωi(t).

(G4) There exist nonnegative constants Lgi > 0 for t ∈ (ti, si] (i = 1, 2, . . . , m) and x, x′ ∈ E
such that

∥
∥gi(t, x) – gi

(
t, x′)∥∥ ≤ Lgi

∥
∥x – x′∥∥.

Then problem (1.3) has at least one PC-mild solution on PC(J , E) provided that ϑ =
max{M2 ∫ T

sm
b1(s) ds+M

∫ t1
0 b1(s) ds, M

∫ ti+1
si

b1(s) ds, M2Lgm (sm – tm), MLgi (si – ti), i =
1, . . . , m} < 1, where b1(s) = L1(s) + L2(s)

∫ T
0 L3(σ ) dσ .

Proof We decompose F as F = G + H, where

(Gx)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Uβ (t, 0)[Uβ (T , sm)hm + Uβ (T , tm)
∫ sm

tm
gm(s, x(s)) ds], t ∈ [0, t1],

hi + Uβ (t, ti)
∫ t

ti
gi(s, x(s)) ds, t ∈ (ti, si], i = 1, 2, . . . , m,

Uβ (t, si)hi + Uβ (t, ti)
∫ si

ti
gi(s, x(s)) ds, t ∈ (si, ti+1], i = 1, 2, . . . , m,

and

(Hx)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Uβ (t, 0)
∫ T

sm
Uβ (T , s)f (s, x(s),

∫ s
0 g(s,σ , x(σ )) dσ ) ds

+
∫ t

0 Uβ (t, s)f (s, x(s),
∫ s

0 g(s,σ , x(σ )) dσ ) ds, t ∈ [0, t1],

0, t ∈ (ti, si], i = 1, 2, . . . , m,
∫ t

si
Uβ (t, s)f (s, x(s),

∫ s
0 g(s,σ , x(σ )) dσ ) ds, t ∈ (si, ti+1], i = 1, 2, . . . , m.

Let us fix R� > 0 such that

R� ≥ max

{M2‖hm‖ + M2�m(sm – tm) + M2 ∫ T
sm

a1(s) ds + M
∫ t1

0 a1(s) ds
1 – ϑ

,

‖hi‖ + M�i(si – ti),
M‖hi‖ + M�i(si – ti) + M

∫ ti+1
si

a1(s) ds
1 – ϑ

, i = 1, 2, . . . , m
}

,

where a1(s) = a(s) + L2(s)
∫ T

0 b(σ ) dσ .
We consider the set BR� = {x ∈ PC(J , E) : ‖x‖PC ≤ R�} for any x ∈ BR� . From conditions

(G1) and (G2), for all s ∈ (si, ti+1], i = 0, 1, . . . , m, one can find that

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ ≤ a(s) + L1(s)R� + L2(s)

∫ s

0

(
b(σ ) + L3(σ )R�

)
dσ

≤ a(s) + L2(s)
∫ T

0
b(σ ) dσ

+
(

L1(s) + L2(s)
∫ T

0
L3(σ ) dσ

)

R�

= a1(s) + b1(s)R�.
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Obviously, a1(s) and b1(s) are nonnegative Lebesgue integrable functions.
According to condition (G3) and the above inequities, for any t ∈ [0, t1], we obtain

∥
∥(Fx)(t)

∥
∥ ≤ ∥

∥Uβ (t, 0)
∥
∥

(
∥
∥Uβ (T , sm)hm

∥
∥ +

∥
∥Uβ (T , tm)

∥
∥

∥
∥
∥
∥

∫ sm

tm

gm
(
s, x(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ T

sm

Uβ (T , s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

)

+
∥
∥
∥
∥

∫ t

0
Uβ (t, s)f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ M2‖hm‖ + M2�m(sm – tm) + M2
∫ T

sm

(
a1(s) + b1(s)R�

)
ds

+ M
∫ t

0

(
a1(s) + b1(s)R�

)
ds

≤ M2‖hm‖ + M2�m(sm – tm) + M2
∫ T

sm

a1(s) ds + M
∫ t1

0
a1(s) ds + ϑR�

≤ R�.

For any t ∈ (ti, si], i = 1, 2, . . . , m, we have

∥
∥(Fx)(t)

∥
∥ ≤ ‖hi‖ +

∥
∥
∥
∥Uβ (t, ti)

∫ t

ti

gi
(
s, x(s)

)
ds

∥
∥
∥
∥

≤ ‖hi‖ + M
∫ t

ti

∥
∥gi

(
s, x(s)

)∥
∥ds

≤ ‖hi‖ + M�i(si – ti) ≤ R�.

For any t ∈ (si, ti+1], i = 1, 2, . . . , m, we have

∥
∥(Fx)(t)

∥
∥ ≤ ∥

∥Uβ (t, si)hi
∥
∥ +

∥
∥
∥
∥Uβ (t, ti)

∫ si

ti

gi
(
s, x(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

si

Uβ (t, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ M‖hi‖ + M�i(si – ti) + M
∫ t

si

(
a1(s) + b1(s)R�

)
ds

≤ M‖hi‖ + M�i(si – ti) + M
∫ ti+1

si

a1(s) ds + ϑR� ≤ R�.

From the above inequities, we conclude Fx = Gx + Hx ∈ BR� .
Next we prove that the operator G is a contraction on BR� . By (G4), for x, x′ ∈ BR� , for

any t ∈ [0, t1], we get

∥
∥(Gx)(t) –

(
Gx′)(t)

∥
∥ ≤ M2

∫ sm

tm

∥
∥gm

(
s, x(s)

)
– gm

(
s, x′(s)

)∥
∥ds

≤ M2Lgm

∥
∥x – x′∥∥

PC(sm – tm).
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For any t ∈ (ti, si], i = 1, 2, . . . , m, we get

∥
∥(Gx)(t) –

(
Gx′)(t)

∥
∥ ≤ M

∫ t

ti

∥
∥gi

(
s, x(s)

)
– gi

(
s, x′(s)

)∥
∥ds

≤ MLgi

∥
∥x – x′∥∥

PC(si – ti).

For any t ∈ (si, ti+1], i = 1, 2, . . . , m, we get

∥
∥(Gx)(t) –

(
Gx′)(t)

∥
∥ ≤ M

∫ si

ti

∥
∥gi

(
s, x(s)

)
– gi

(
s, x′(s)

)∥
∥ds

≤ MLgi

∥
∥x – x′∥∥

PC(si – ti).

From the above inequities with ϑ < 1, we have ‖Gx –Gx′‖PC < ‖x – x′‖PC. This implies that
G is a contraction.

To prove that H is completely continuous on BR� , first we claim that H is continuous
applying the arguments employed in the proof of Theorem 3.1. Moreover, H is uniformly
bounded on BR� since ‖Hx‖PC ≤ R�. Next we show that H(BR� ) is equicontinuous. To do
this, for x ∈ BR� , e1, e2 ∈ [0, t1] with e1 < e2, we have

∥
∥(Hx)(e2) – (Hx)(e1)

∥
∥

≤ ∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥M

∫ T

sm

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e1

0

(
Uβ (e2, s) – Uβ (e1, s)

)
f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ ∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥M

∫ T

sm

(
a1(s) + b1(s)R�

)
ds

+ M
∫ e2

e1

(
a1(s) + b1(s)R�

)
ds

+ sup
s∈[0,t1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

∫ e1

0

(
a1(s) + b1(s)R�

)
ds.

For e1, e2 ∈ (ti, si] with e1 < e2, i = 1, 2, . . . , m, we have

∥
∥(Hx)(e2) – (Hx)(e1)

∥
∥ = 0.

For e1, e2 ∈ (si, ti+1] with e1 < e2, i = 1, 2, . . . , m, we have

∥
∥(Hx)(e2) – (Hx)(e1)

∥
∥

≤
∫ e2

e1

∥
∥Uβ (e2, s)

∥
∥

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds

+
∫ e1

si

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

∥
∥
∥
∥f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)∥
∥
∥
∥ds
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≤ M
∫ e2

e1

(
a1(s) + b1(s)R�

)
ds

+ sup
s∈(si ,ti+1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

∫ e1

si

(
a1(s) + b1(s)R�

)
ds.

By Lemma 2.1, the compactness of the resolvent operator Uβ (t, s) implies the continuity
in the uniform operator topology and together with a1(s), b1(s) ∈ L1(J ,R+), we infer that
‖(Hx)(e2) – (Hx)(e1)‖ → 0 as e2 → e1. Consequently, H(BR� ) is equicontinuous.

Third, we prove that H(BR� ) is precompact.
For t ∈ [0, t1], 0 < ε < t, x ∈ BR� , define

(Hεx)(t) = Uβ (t, 0)
∫ T

sm

Uβ (T , s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds

+
∫ t–ε

0
Uβ (t, s)f

(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds.

Hence

∥
∥(Hx)(t) – (Hεx)(t)

∥
∥ ≤

∥
∥
∥
∥

∫ t

t–ε

Uβ (t, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ M
∫ t

t–ε

(
a1(s) + b1(s)R�

)
ds.

For t ∈ (ti, si], 0 < ε < t, x ∈ BR� , i = 1, 2, . . . , m, define (Hεx)(t) = 0.
Obviously, ‖(Hx)(t) – (Hεx)(t)‖ = 0.
For t ∈ (si, ti+1], 0 < ε < t, x ∈ BR� , i = 1, 2, . . . , m, define

(Hεx)(t) =
∫ t–ε

si

Uβ (t, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds.

Thus

∥
∥(Hx)(t) – (Hεx)(t)

∥
∥ ≤

∥
∥
∥
∥

∫ t

t–ε

Uβ (t, s)f
(

s, x(s),
∫ s

0
g
(
s,σ , x(σ )

)
dσ

)

ds
∥
∥
∥
∥

≤ M
∫ t

t–ε

(
a1(s) + b1(s)R�

)
ds.

Since Uβ (t, s) is a compact resolvent operator, then the set Yε(t) = {(Hεx)(t) : x ∈ BR�} is rel-
atively compact in E for every 0 < ε < t. Thus Y (t) = {(Hx)(t) : x ∈ BR�} is totally bounded.
Hence, Y (t) is relatively compact in E, and so, with the help of the Arzelá–Ascoli theo-
rem, H is completely continuous on BR� . Therefore, by Krasnoselskii’s fixed point theo-
rem, there exists a fixed point for F = G +H, which corresponds to a PC-mild solution of
problem (1.3) on PC(J , E). This completes the proof. �
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4 An application
In order to show the application of the main results, we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDβ
t x(z, t) = t ∂2

∂z2 x(z, t) + t
4M2(1+t2) x(z, t) +

∫ t
0

et–s|x(z,s)|
8M2e4 ds,

t ∈ [0, 1) ∪ (2, 3], z ∈ (0, 1),
∂
∂z x(0, t) = ∂

∂z x(1, t) = 0, t ∈ [0, 1) ∪ (2, 3],

x(z, t) = y1z + Uβ (t, 1)
∫ t

1
|x(z,s)|

8M2(1+t) ds, t ∈ (1, 2], z ∈ (0, 1),

x(0, t) = x(3, t), t ∈ (0, 1),

(4.1)

where E = L2[0, 3], 0 = t0 = s0, t1 = 1, s1 = 2, cDβ
t is the Caputo’s fractional derivative of

order β , 0 < β < 1. The operator A : D(A) ⊂ E → E is defined as A(t)(z) = t ∂2x
∂z2 , where

D(A) = {x ∈ E : x′′ ∈ E, x(0) = x(1) = 0}. It is well known that the operator A(t) generates a
β-resolvent family Uβ (t, s) and max0≤s<t≤T ‖Uβ (t, s)‖ ≤ M, (M > 1).

By setting

x(t)(z) = x(z, t), h1z = y1z, g1
(
t, x(t)

)
(z) =

|x(z, s)|
8M2(1 + t)

,

f
(

t, x(t),
∫ t

0
g
(
t, s, x(s)

)
ds

)

(z) =
t

4M2(1 + t2)
x(z, t) +

∫ t

0

et–s|x(z, s)|
8M2e4 ds,

problem (4.1) can be rewritten as the following abstract form:

⎧
⎪⎪⎨

⎪⎪⎩

cDβ
t x(t) = A(t)x(t) + f (t, x(t),

∫ t
0 g(t, s, x(s)) ds), t ∈ [0, 1) ∪ (2, 3],

x(t) = h1 + Uβ (t, 1)
∫ t

1 g1(s, x(s)) ds, t ∈ (1, 2],

x(0) = x(3).

(4.2)

The function f : J × TR × TR → E is bounded and continuous, for every R > 0, such that

lim
R→∞ sup

M(R)
R

<
1

Ma0(M + 1)
, (4.3)

where M(R) = max{M1(R), M2(R)}, M1(R) = sup{‖f (t, x1, x2)‖ : (t, x1, x2) ∈ J × TR × TR},
M2(R) = sup{‖g1(t, x)‖, (t, x) ∈ J × TR, }, TR = {x ∈ E : ‖x‖ ≤ R}, a0 = max{1, h0}.

Let

∥
∥g(t, s, x)

∥
∥ ≤ et–s

8M2e4 ‖x‖,

α
(
g(t, s, D)

) ≤ etα(D),

α
(
g1(t, s, D)

) ≤ 1
8M2(1 + t)

α(D),

α
(
f (t, D1, D2)

) ≤ t
4M2(1 + t2)

α(D1) + etα(D2).
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Then

2M2
∫ 2

1

1
8M2(1 + s)

ds + 2M2
∫ 3

2

(
s

4M2(1 + s2)
+ es

∫ 3

0

es–σ

8M2e4 dσ

)

ds

+ 2M
∫ 1

0

(
s

4M2(1 + s2)
+ es

∫ 3

0

es–σ

8M2e4 dσ

)

ds

<
1
4

+
1
4

+
1
4

+
1
4

= 1,

2M
∫ 2

1

1
8M2(1 + s)

ds + 2M
∫ 3

2

(
s

4M2(1 + s2)
+ es

∫ 3

0

es–σ

8M2e4 dσ

)

ds

<
1

4M
+

1
4M

+
1

4M
< 1.

We have

ρ = max

{

2M2
∫ 2

1

1
8M2(1 + s)

ds + 2M2
∫ 3

2

(
s

4M2(1 + s2)
+ es

∫ 3

0

es–σ

8M2e4 dσ

)

ds

+ 2M
∫ 1

0

(
s

4M2(1 + s2)
+ es

∫ 3

0

es–σ

8M2e4 dσ

)

ds,

2M
∫ 2

1

1
8M2(1 + s)

ds + 2M
∫ 3

2

(
s

4M2(1 + s2)
+ es

∫ 3

0

es–σ

8M2e4 dσ

)

ds
}

< 1.

Therefore, problem (4.2) satisfies the conditions of Theorem 3.1, then problem (4.2) has a
PC-mild solution, which means that problem (4.1) has a mild solution.

5 Conclusion
In this paper, we demonstrate sufficient conditions on the existence of PC-mild solutions
for periodic boundary value problems for fractional semilinear nonautonomous differen-
tial equations with non-instantaneous impulses. For the proofs of the main theorems, we
use the measure of noncompactness together with Sadovskii’s fixed point theorem and
Krasnoselskii’s fixed point theorem. Finally, an example is given to illustrate the applica-
tion of our main results.
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