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Abstract
In this article, we present a fractional Kersten–Krasil’shchik coupled KdV-mKdV
nonlinear model associated with newly introduced Atangana–Baleanu derivative of
fractional order which uses Mittag-Leffler function as a nonsingular and nonlocal
kernel. We investigate the nonlinear behavior of multi-component plasma. For this
effective approach, named homotopy perturbation, transformation approach is
suggested. This scheme of nonlinear model generally occurs as a characterization of
waves in traffic flow, multi-component plasmas, electrodynamics, electromagnetism,
shallow water waves, elastic media, etc. The main objective of this study is to provide
a new class of methods, which requires not using small variables for finding estimated
solution of fractional coupled frameworks and unrealistic factors and eliminate
linearization. Analytical simulation represents that the suggested method is effective,
accurate, and straightforward to use to a wide range of physical frameworks. This
analysis indicates that analytical simulation obtained by the homotopy perturbation
transform method is very efficient and precise for evaluation of the nonlinear
behavior of the scheme. This result also suggests that the homotopy perturbation
transform method is much simpler and easier, more convenient and effective than
other available mathematical techniques.

Keywords: Laplace transform; Homotopy perturbation method; Korteweg–de Vries
nonlinear system; Atangana–Baleanu operator

1 Introduction
Many researchers have been working on various aspects of fractional derivatives in re-
cent years. Caputo and Fabrizio modified the existing Caputo derivative to develop the
Caputo–Fabrizio fractional derivative [1–5] based on a nonsingular kernel. Because of
its advantages, numerous researchers utilized this operator to investigate various types
of fractional-order partial differential equations [6–9]. To address this issue, Atangana
and Baleanu proposed a new fractional operator called Atangana–Baleanu derivative,
which combines Caputo and Riemann–Liouville derivatives. Because of the existence of
the Mittag-Leffler kernel, which is a generalization of the exponential kernel, this new
Atangana–Baleanu derivative has a long memory. Moreover, the Atangana–Baleanu op-
erator outperforms other operators, and different scientific models have been successfully
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solved. Many advances have been made in fractional calculus over the last few years by
borrowing ideas from classical calculus, but it does not remain easy. Scholars have the
main concern to obtain a numerical solution; for this, numerous efficient methodologies
have been constructed for fractional differential equations, such as the Adomian decom-
position transform method [10], variational iteration transform method [11, 12], optimal
homotopy asymptotic method [13], the homotopy perturbation method [14, 15], etc.

Fractional coupled systems are widely applied to study complex behavior of plasma con-
tains multi components such as ions, free electrons, atoms, etc. Many researchers made ef-
forts to study this behavior numerically. In this direction, recently Paul Kersten and Joseph
Krasil’shchik studied KdV equation and modified KdV equation and proposed absolute
complexity between coupled KdV–mKdV nonlinear systems for studying the behavior of
nonlinear systems [16–19]. Numerous variations of this Kersten–Krasil’shchik coupled
KdV–mKdV nonlinear system have been introduced by many researchers [20–27]. Among
these variations, the mathematical model for describing the behavior of multi-component
plasma for waves propagating in positive χ axis, known as nonlinear fractional Kersten–
Krasil’shchik coupled KdV–mKdV system, is given by

ABCDσ
η ψ + ψ3χ – 6ψψχ + 3φφ3χ + 3φχφ2χ – 3ψχφ2

+ 6ψφφχ = 0, η > 0,χ ∈ R, 0 < σ ≤ 1,
ABCDσ

η φ + φ3χ – 3φ2φχ – 3ψφχ + 3ψχφ = 0, η > 0,χ ∈ R, 0 < σ ≤ 1,

(1)

where η is temporal coordinate and χ is spatial coordinate. The factor σ represents order
of the fractional operator. This operator is studied in the Caputo form. When σ = 1, a
fractional coupled system converts to the classical system as follows:

ψη + ψ3χ – 6ψψχ + 3φφ3χ + 3φχφ2χ – 3ψχφ2 + 6ψφφχ = 0, η > 0,χ ∈ R,

φη + φ3χ – 3φ2φχ – 3ψφχ + 3ψχφ = 0, η > 0,χ ∈ R.
(2)

If we put φ = 0, then the Kersten–Krasil’shchik coupled KdV–mKdV system converts into
the well-known KdV system

ψη + ψ3χ – 6ψψχ = 0, η > 0,χ ∈ R. (3)

If we put ψ = 0, then the Kersten–Krasil’shchik coupled KdV–mKdV system converts into
the well-known modified KdV system

φη + φ3χ – 3φ2φχ = 0, η > 0,χ ∈ R. (4)

In view of that, the Kersten–Krasil’shchik coupled KdV–mKdV system can be assumed to
be a combination of a KdV system and a mKdV system represented by (2) to (4).

In this study, we also consider a fractional nonlinear two component homogeneous time
fractional coupled third-order KdV system as follows:

Dσ
η ψ – ψ3χ – ψψχ – φφχ = 0, η > 0,χ ∈ R, 0 < σ ≤ 1,

Dσ
η φ + 2φ3χ – ψφχ = 0, η > 0,χ ∈ R, 0 < σ ≤ 1,

(5)
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where η is temporal coordinate and χ is spatial coordinate, σ is a factor representing the
order of the fractional operator. This operator is studied in the Caputo form. When σ = 1,
a fractional coupled system converts to the classical system

ψη – ψ3χ – ψψχ – φφχ = 0, η > 0,χ ∈ R,

φη + 2φ3χ – ψφχ = 0, η > 0,χ ∈ R.
(6)

He [28–30] proposed the homotopy perturbation method for solving numerous linear and
nonlinear initial and boundary value problems. Several researchers have looked into us-
ing the homotopy perturbation method to solve nonlinear equations in engineering and
science [31–33]. Because of the difficulties caused by nonlinear terms, the Laplace trans-
form is completely incapable of handling nonlinear equations. Recently, various methods
for dealing with such nonlinearities, such as the Laplace decomposition algorithm [34, 35]
and the homotopy perturbation transform method (HPTM) [36, 37], have been proposed
to produce highly effective techniques for solving many nonlinear problems. The primary
goal of this paper is to use an effective homotopy perturbation method modification to
overcome the deficiency. For solving the system of KdV equations, we use the homotopy
perturbation transform method. All conditions can be met using this method. One or two
iteration steps also yield very accurate results over a wide range. The proposed homotopy
perturbation transform method provides the solution in a rapid convergent series, which
may lead to a closed solution [38–41].

2 Basic definitions
Definition 2.1 The fractional-order Caputo derivative is defined by

CDσ
�
{

f (�)
}

=
1

�(n – σ )

∫ �

0
(� – k)n–σ–1f n(k) dk, where n – 1 < σ ≤ n, n ∈ N .

Definition 2.2 The Laplace transformation connected with fractional Caputo derivative
LCDσ

�{f (�)} is expressed by

L
{LCDσ

�
{

f (�)
}}

(s) =
1

sn–σ

[
sn
L

{
f (�)

}
(s) – sn–1f (x, 0) – · · · – f n–1(x, 0)

]
.

Definition 2.3 In the Caputo sense the Atangana–Baleanu derivative is defined as

ABCDσ
�
{

f (�)
}

=
A(σ )
1 – σ

∫ �

a
f ′(k)Eσ

[
–

σ

1 – σ
(1 – k)σ

]
dk,

where A(σ ) is a normalization function such that A(0) = A(1) = 1, f ∈ H1(a, b), b > a, σ ∈
[0, 1] and Eσ represents the Mittag-Leffler function.

Definition 2.4 The Atangana–Baleanu derivative in the Riemann–Liouville sense is de-
fined as

ABCDσ
�
{

f (�)
}

=
A(σ )
1 – σ

d
d�

∫ �

a
f (k)Eσ

[
–

σ

1 – σ
(1 – k)σ

]
dk.
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Definition 2.5 The Laplace transform connected with the Atangana–Baleanu operator
is defined as

ABDσ
�
{

f (�)
}

(s) =
A(σ )sσ

L{f (�)}(s) – sσ–1f (0)
(1 – σ )(sσ + σ

1–σ
)

.

Definition 2.6 Consider 0 < σ < 1, and f is a function of σ , then the fractional-order in-
tegral operator of σ is given as

ABCIσ
�
{

f (�)
}

=
1 – σ

A(σ )
f (�) +

σ

A(σ )�(σ )

∫ �

a
f (k)(� – k)σ–1 dk.

3 The general methodology of HPTM
In this section, the HPTM for the general form of FPDEs

Dσ
η ψ(χ ,η) + Mψ(χ ,η) + Nψ(χ ,η) = h(χ ,η), η > 0, 0 < σ ≤ 1, (7)

with the initial condition

ψ(χ , 0) = g(χ ), (8)

where is Dσ
η ψ(χ ,η) = ∂σ

∂ησ the Caputo fractional derivative of order σ , M, and N , are lin-
ear and nonlinear functions, respectively, and h is a source operator. Using the Laplace
transform of Eq. (7), we have

L
[
Dσ

η ψ(χ ,η) + Mψ(χ ,η) + Nψ(χ ,η)
]

= L
[
h(χ ,η)

]
, η > 0, 0 < σ ≤ 1,

L
[
ψ(χ ,η)

]
=

1
s

g(χ ) +
(sσ (1 – σ ) + σ )

sσ
L

[
h(χ ,η)

]

–
(sσ (1 – σ ) + σ )

sσ
L

[
Mψ(χ ,η) + Nψ(χ ,η)

]
.

(9)

Now, by taking the inverse Laplace transform, we get

ψ(χ ,η) = L
–1

[
1
s

g(χ ) +
(sσ (1 – σ ) + σ )

sσ
L

[
h(χ ,η)

]]

– L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

{
Mψ(χ ,η) + Nψ(χ ,η)

}]
, (10)

where

ψ(χ ,η) = g(χ ) + L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
h(χ ,η)

]]

– L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

{
Mψ(χ ,η) + Nψ(χ ,η)

}]
. (11)

Now, the perturbation method parameter p is defined as

ψ(χ ,η) =
∞∑

i=0

piψi(χ ,η), (12)

where perturbation term p ∈ [0, 1].
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The nonlinear functions can be defined as

Nψ(χ ,η) =
∞∑

i=0

piHi(ψi), (13)

where Hi are He’s polynomials of ψ0,ψ1,ψ2, . . . ,ψi and can be determined as

Hi(ψ0,ψ1, . . . ,ψi) =
1
i!

∂ i

∂pi

[

N

( ∞∑

i=0

piψi

)]

p=0

, i = 0, 1, 2, . . . . (14)

Putting equations (13) and (14) in equation (11), we have

∞∑

i=0

piψi(χ ,η)

= g(χ ) + L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
h(χ ,η)

]]

–

[

L
–1

{
(sσ (1 – σ ) + σ )

sσ
L

{

M
∞∑

i=0

piψi(χ ,η) +
∞∑

i=0

piHi(ψi)

}}]

.

(15)

Both sides comparison coefficient of p, we have

p0 : ψ0(χ ,η) = g(χ ) + L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
h(χ ,η)

]]
,

p1 : ψ1(χ ,η) = L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

(
Mψ0(χ ,η) + H0(ψ)

)]
,

(16)

p2 : ψ2(χ ,η) = L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

(
Mψ1(χ ,η) + H1(ψ)

)]
,

...

pi : ψi(χ ,η) = L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

(
Mψi–1(χ ,η) + Hi–1(ψ)

)]
, i > 0, i ∈ N .

(17)

4 Numerical experiments
Example 4.1 Assume that the time fractional Kersten–Krasil’shchik coupled KdV–mKdV
nonlinear system is as follows:

Dσ
η φ + φ3χ – 6φφχ + 3ψψ3χ + 3ψχψ2χ – 3φχψ2

+ 6φψψχ = 0, η > 0,χ ∈ R, 0 < σ ≤ 1,

Dσ
η ψ + ψ3χ – 3ψ2ψχ – 3φψχ + 3φχψ = 0,

(18)

with the initial conditions

φ(χ , 0) = c – 2c sech2(
√

cχ ), c > 0,

ψ(χ , 0) = 2
√

c sech(
√

cχ ).
(19)
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Using the Laplace transform on Eq. (18) by the application of the initial condition given
by Eq. (19), we get

L
[
φ(χ ,η)

]
=

1
s
{

c – 2c sech2(
√

cχ )
}

–
(sσ (1 – σ ) + σ )

sσ

×L
[
φ3χ – 6φφχ + 3ψψ3χ + 3ψχψ2χ – 3φχψ2 + 6φψψχ

]
,

L
[
ψ(χ ,η)

]
=

1
s
{

2
√

c sech(
√

cχ )
}

–
(sσ (1 – σ ) + σ )

sσ
L

[
ψ3χ – 3ψ2ψχ – 3φψχ + 3φχψ

]
.

(20)

Applying the inverse Laplace transform, we get

φ(χ ,η) = c – 2c sech2(
√

cχ ) – L
–1

[
(sσ (1 – σ ) + σ )

sσ

×L
[
φ3χ – 6φφχ + 3ψψ3χ + 3ψχψ2χ – 3φχψ2 + 6φψψχ

]]
,

ψ(χ ,η) = 2
√

c sech(
√

cχ )

– L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
ψ3χ – 3ψ2ψχ – 3φψχ + 3φχψ

]]
.

(21)

Using HPM on Eq. (21), we get

∞∑

i=0

piφi(χ ,η)

= c – 2c sech2(
√

cχ )

–

[

L
–1

{
(sσ (1 – σ ) + σ )

sσ
L

(( ∞∑

n–0

piφi(χ ,η)

)

3χ

+

( ∞∑

i=0

piHi(φ)

))}]

,

∞∑

i=0

piψi(χ ,η)

= 2
√

c sech(
√

cχ )

–

[

L
–1

{
(sσ (1 – σ ) + σ )

sσ
L

(( ∞∑

i=0

piψi(χ ,η)

)

3χ

+

( ∞∑

i=0

piHi(ψ)

))}]

.

(22)

Nonlinear steps given by He’s polynomials Hi(φ) and Hi(ψ) are given as

∞∑

i=0

piHi(φ) = –6φφχ + 3ψψ3χ + 3ψχψ2χ – 3φχψ2 + 6φψψχ ,

∞∑

i=0

piHi(ψ) = –3ψ2ψχ – 3φψχ + 3φχψ .

(23)



Iqbal et al. Advances in Continuous and Discrete Models         (2022) 2022:37 Page 7 of 20

Values of components of He’s polynomials are given by

H0(φ) = –6φ0(φ0)χ + 3ψ0(ψ0)3χ + 3(ψ0)χ (ψ0)2χ – 3(φ0)χ (ψ0)2 + 6(φ0)ψ0(ψ0)χ ,

H1(φ) = –6φ1(φ0)χ – 6φ0(φ1)χ + 3ψ1(ψ0)3χ + 3ψ0(ψ1)3χ + 3(ψ0)χ (ψ1)2χ

+ 3(ψ0)2χ (ψ1)χ – 3(φ1)χ (ψ0)2 + 6(φ0)χψ0ψ1 + 6(φ0)ψ1(ψ0)χ

+ 6(φ0)ψ0(ψ1)χ

× 6(φ1)ψ0(ψ0)χ ,

H2(φ) = –6φ2(φ0)xi – 6φ1(φ1)χ – 6φ0(φ2)χ + 3ψ2(ψ0)3χ

+ 3ψ1(ψ1)3χ + 3ψ0(ψ2)3χ

+ 3(ψ0)χ (ψ2)2χ + 3(ψ1)χ (ψ1)2χ + 3(ψ2)χ (ψ0)2χ

– 3(φ2)χ (ψ0)2 – 6(φ1)χψ0ψ1

– 6(φ1)χψ0ψ2 + 6(φ2)ψ0(ψ0)χ + 6(φ1)ψ(ψ0)χ

+ 6(φ2)ψ0(ψ0)χ + 6(φ0)ψ1(ψ1)χ

+ 6(φ1)ψ0(ψ1)χ + 6(φ0)ψ0(ψ2)χ ,

H3(φ) = –6φ3(φ0)χ – 6φ2(φ1)χ – 6φ1(φ2)χ – 6φ0(φ3)χ

+ 3ψ3(ψ0)3χ + 3ψ2(ψ1)3χ

+ 3ψ1(ψ2)3χ + 3ψ0(ψ3)3χ + 3(ψ0)χ (ψ3)2χ

+ 3(ψ1)χ (ψ2)2χ + 3(ψ2)χ (ψ1)2χ

× 3(ψ3)χ (ψ0)2χ – 3(φ3)χψ2
0 – 6(φ2)ψ0ψ1

– 6(φ1)ψ0ψ2 – 3(φ1)χψ2
1

+ φ0ψ3(ψ0)χ + 6(φ1)ψ2(ψ0)χ + 6(φ1)ψ2(ψ0)χ

+ 6(φ3)ψ0(ψ0)χ + 6(φ0)ψ2(ψ1)χ

+ 6(φ1)ψ1(ψ1)χ + 6(φ2)ψ0(ψ1)χ + 6(φ0)ψ1(ψ2)χ

+ 6(φ1)ψ0(ψ2)χ + 6(φ0)ψ0(ψ3)χ

...

(24)

and

H0(ψ) = –3(ψ0)2(ψ0)χ – 3φ0(ψ0)χ + 3(φ0)χψ0,

H1(ψ) = –3(ψ0)2(ψ1)χ – 6ψ0ψ1(ψ0)χ – 3φ1(ψ0)χ

– 3φ0(ψ1)χ + 3(φ1)χψ0 + 3(φ0)χψ1,

H2(ψ) = –3(ψ0)2(ψ2)χ – 6ψ0ψ1(ψ1)χ – 6ψ0ψ2(ψ1)χ

– 3(ψ2)2(ψ0)χ – 3φ2(ψ0)χ

– 3φ1(ψ1)χ – 3φ0(ψ2)χ + 3(φ0)χψ2 – 3(φ1)χψ1 – 3(φ2)χψ0 (25)
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H3(ψ) = –3(ψ0)2(ψ3)χ – 6ψ0ψ1(ψ2)χ – 6ψ0ψ2(ψ1)χ

– 6ψ0ψ3(ψ0)χ – 6ψ1ψ2(ψ0)χ

– 3(ψ3)2(ψ3)χ – 3φ3(ψ0)χ – 3φ2(ψ1)χ – 3φ1(ψ2)χ – 3φ0(ψ3)χ + 3(φ0)χψ3

+ 3(φ1)χψ2 + 3(φ2)χψ1 + 3(φ3)χψ0

...

Comparing the coefficients of the same powers of p, we have

p0 : φ0(χ ,η) = c – 2c sech2(
√

cχ ),

p1 : φ1(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
(φ0)3χ + H0(φ)

]]
(26)

= 8c
5
2 sinh(

√
cχ ) sech3(

√
cχ )

(
(1 – σ ) +

σησ

�(σ + 1)

)
,

p2 : φ2(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
(φ1)3χ + H1(φ)

]]

= –16c4[2 cosh2(
√

cχ ) – 3
]

× sech4(
√

cχ )
(

(1 – σ )2 +
σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)
,

p3 : φ3(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
(φ2)3χ + H2(φ)

]]
(27)

= 128c11/2[cosh2(
√

cχ ) – 3
]

sinh(
√

cχ )

× sech5(
√

cχ )
{

(1 – σ )3 + σ (1 – σ )
(
1 + σ + 2σ 2) ησ

�(σ + 1)

+
3σ 2(1 – σ )η2σ

�(2σ + 1)
+

σ 3�(2σ + 1)η3σ

�(3σ + 1)

}
,

...

and

p0 : ψ0(χ ,η) = 2
√

c sech(
√

cχ ),

p1 : ψ1(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
(ψ0)3χ + H0(ψ)

]]
,

= –4c2 sinh(
√

cχ ) sech2(
√

cχ )
(

(1 – σ ) +
σησ

�(σ + 1)

)
,

p2 : ψ2(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
(ψ1)3χ + H1(ψ)

]]

= 8c
7
2
[
cosh2(

√
cχ ) – 2

]

× sech3(
√

cχ )
(

(1 – σ )2 +
σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)
, (28)
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p3 : ψ3(χ ,η)

= –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
(ψ2)3χ + H2(ψ)

]]

= –16c2[cosh5(
√

cχ ) – 6
]

sinh(
√

cχ )

× sech4(
√

cχ )
{

(1 – σ )3 + σ (1 – σ )
(
1 + σ + 2σ 2) ησ

�(σ + 1)

+
3σ 2(1 – σ )η2σ

�(2σ + 1)
+

σ 3�(2σ + 1)η3σ

�(3σ + 1)

}
,

...

Hence a series solution is given by

φ(χ ,η) =
∞∑

i=0

φi(χ ,η)

= c – 2c sech2(
√

cχ ) + 8c
5
2 sinh(

√
cχ ) sech3(

√
cχ )

(
(1 – σ ) +

σησ

�(σ + 1)

)

– 16c4[2 cosh2(
√

cχ ) – 3
]

× sech4(
√

cχ )
(

(1 – σ )2 +
σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)

+ 128c11/2[cosh2(
√

cχ ) – 3
]

× sinh(
√

cχ ) sech5(
√

cχ )
{

(1 – σ )3 + σ (1 – σ )
(
1 + σ + 2σ 2) ησ

�(σ + 1)

+
3σ 2(1 – σ )η2σ

�(2σ + 1)
+

σ 3�(2σ + 1)η3σ

�(3σ + 1)

}
+ · · · , (29)

and

ψ(χ ,η) =
∞∑

i=0

ψi(χ ,η)

= 2
√

c sech(
√

cχ ) – 4c2 sinh(
√

cχ )

× sech2(
√

cχ )
(

(1 – σ ) +
σησ

�(σ + 1)

)
+ 8c

7
2
[
cosh2(

√
cχ ) – 2

]

× sech3(
√

cχ )
(

(1 – σ )2 +
σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)

– 16c2[cosh5(
√

cχ ) – 6
]

sinh(
√

cχ ) sech4(
√

cχ )

×
{

(1 – σ )3 + σ (1 – σ )
(
1 + σ + 2σ 2) ησ

�(σ + 1)

+
3σ 2(1 – σ )η2σ

�(2σ + 1)
+

σ 3�(2σ + 1)η3σ

�(3σ + 1)

}
+ · · · . (30)
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Putting σ = 1 in (29) and (30), we get the solution of the problem

φ(χ ,η) = c – 2c sech2(
√

cχ ) + 8ηc
5
2 sinh(

√
cχ ) sech3(

√
cχ ) – 8η2c4

× [
2 cosh2(

√
cχ ) – 3

]
sech4(

√
cχ )

+
64
3

η3c11/2[cosh2(
√

cχ ) – 3
]

sinh(
√

cχ ) (31)

× sech5(
√

cχ ) –
32
3

η4c7[2 cosh4(
√

cχ ) – 15 cosh2(
√

cχ ) + 15
]

× sech6(
√

cχ ) + · · · ,

and

ψ(χ ,η) = 2
√

c sech(
√

cχ ) – 4ηc2 sinh(
√

cχ ) sech2(
√

cχ )

+ 4η2c
7
2
[
cosh2(

√
cχ ) – 2

]

× sech3(
√

cχ ) –
8
3
η3c2[cosh5(

√
cχ ) – 6

]
(32)

× sinh(
√

cχ ) sech4(
√

cχ ) +
4
3
η4c13/2

× [
cosh4(

√
cχ ) – 20 cosh2(

√
cχ ) + 24

]
sech5(

√
cχ ) – · · · .

The solution represented by Eqs. (31) and (32) is similar to the exact solution in a closed
form as follows:

φ(χ ,η) = c – 2c sech2(√c(χ + 2cη)
)
,

ψ(χ ,η) = 2
√

c sech
(√

c(χ + 2cη)
)
.

(33)

In Figs. 1 and 3, the actual and HPTM solutions of φ(χ ,η) and ψ(χ ,η) are calculated
at σ = 1. In Figs. 2 and 4, the 3D graphs for φ(χ ,η) and ψ(χ ,η) for different fractional
order show that the HPTM solutions derived are in a strong agreement with the actual

Figure 1 The exact and analytical solutions graph at φ(χ ,η) of Example 4.1
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Figure 2 The different fractional-order figure of φ(χ ,η) of Example 4.1

Figure 3 The exact and analytical solutions graph at φ(χ ,η) of Example 4.1

Figure 4 The different fractional-order figure ψ (χ ,η) for Example 4.1
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Table 1 Variation of the actual solution with HPTM solution of φ(χ ,η) at η = 0.01

χ Exact result HPTM result Absolute error

3.0 0.9810379547 0.9810379579 1.957810944E–09
2.5 0.9488741084 0.9488741131 4.588520200E–09
2.0 0.8640471736 0.8640471812 7.500972059E–09
1.5 0.6514628688 0.6514628649 3.864259000E–09
1.0 0.1853889664 0.1853888931 7.330837940E–08
0.5 –0.543605397 0-0.5436054423 4.527637000E–08
0.0 –0.999200213 0-0.9992000000 2.130000000E–07
–0.5 –0.601733281 0-0.6017333223 4.129203000E–08
–1.0 0.1342165142 0.1342164396 7.470826874E–08
–1.5 0.6252890662 0.6252890617 4.510941000E–09
–2.0 0.8531473885 0.8531473961 7.543603848E–09
–2.5 0.9446752749 0.9446752795 4.629439800E–09
–3.0 0.9794667886 0.9794667902 1.994434944E–09

Table 2 Variation of the exact result with HPTM solution of ψ (χ ,η) at η = 0.01

χ Exact result HPTM result Absolute error

3.0 0.1947410861 0.1947410860 1.001455080E–10
2.5 0.3197683274 0.3197683273 1.358172040E–10
2.0 0.5214457334 0.5214457333 6.868329502E–11
1.5 0.8349097330 0.8349097328 2.056274600E–10
1.0 1.2764098350 1.2764098350 3.489344755E–10
0.5 1.7570460420 1.7570460420 6.046615540E–10
0.0 1.9996000670 1.9996000670 3.333333500E–10
–0.5 1.7898230530 1.7898230520 4.983904460E–10
–1.0 1.3158901820 1.3158901820 3.908333123E–10
–1.5 0.8656915546 0.8656915546 3.031660000E–12
–2.0 0.5419457750 0.5419457750 7.044098959E–11
–2.5 0.3326401212 0.3326401213 5.249600400E–11
–3.0 0.2026485202 0.2026485201 2.472076832E–10

and the approximate solution. This comparison shows that the HPTM and the actual so-
lutions are very close. As a result, the HPTM is a dependable new study that requires less
computation of computations, is adaptable, and simple to use. In Tables 1 and 2, the exact
result and HPTM solution of different fractional order of φ(χ ,η) and ψ(χ ,η) at η = 0.01
are given.

Example 4.2 Assume homogeneous two-component time fractional coupled third-order
KdV system as follows:

Dσ
η φ – φ3χ – φφχ – ψψχ = 0, η > 0,χ ∈ R, 0 < σ ≤ 1,

Dσ
η ψ + 2ψ3χ – φψχ = 0,

(34)

with the initial condition

φ(χ , 0) = 3 – 6 tanh2
(

χ

2

)
,

ψ(χ , 0) = –3c
√

2 tanh

(
χ

2

)
.

(35)
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Using the Laplace transform on Eq. (34) by the application of initial condition given by
Eq. (35), we get

L
[
φ(χ ,η)

]
=

1
s

{
3 – 6 tanh2

(
χ

2

)}
+

(sσ (1 – σ ) + σ )
sσ

L[φ3χ – φφχ – ψψχ ],

L
[
ψ(χ ,η)

]
=

1
s

{
–3c

√
2 tanh

(
χ

2

)}
–

(sσ (1 – σ ) + σ )
sσ

L[2ψ3χ – φψχ ].
(36)

Applying the inverse Laplace transform, we get

φ(χ ,η) = 3 – 6 tanh2
(

χ

2

)
+ L

–1[
(sσ (1 – σ ) + σ )

sσ
L[φ3χ – φφχ – ψψχ ],

ψ(χ ,η) = –3c
√

2 tanh

(
χ

2

)
– L

–1
[

(sσ (1 – σ ) + σ )
sσ

L[2ψ3χ – φψχ ]
]

.
(37)

Using HPM on Eq. (37), we get

∞∑

i=0

piφi(χ ,η)

= 3 – 6 tanh2
(

χ

2

)

+

[

L
–1

{
(sσ (1 – σ ) + σ )

sσ
L

(( ∞∑

i=0

piφi(χ ,η)

)

3χ

+

( ∞∑

i=0

piHi(φ)

))}]

,

(38)

∞∑

i=0

piψi(χ ,η)

= –3c
√

2 tanh

(
χ

2

)

–

[

L
–1

{
(sσ (1 – σ ) + σ )

sσ
L

(

2

( ∞∑

i=0

piψi(χ ,η)

)

3χ

–

( ∞∑

i=0

piHi(ψ)

))}]

.

(39)

Nonlinear steps given by He’s polynomials Hi(φ) and Hi(ψ) are given as follows:

∞∑

i=0

piHi(φ) = φφχ + ψψχ ,

∞∑

i=0

piHi(ψ) = –φψχ .

(40)

Values of factors of He’s polynomials are given as follows:

H0(φ) = φ0(φ0)χ + ψ0(ψ0)χ ,

H1(φ) = φ1(φ0)χ + φ0(φ1)χ + ψ1(ψ0)χ + ψ0(ψ1)χ ,

H2(φ) = φ2(φ0)χ + φ1(φ1)χ + φ0(φ2)χ + ψ2(ψ0)χ + ψ1(ψ1)χ + ψ0(ψ2)χ , (41)

H3(φ) = φ3(φ0)χ + φ2(φ1)χ + φ1(φ2)χ + φ0(φ3)χ + ψ3(ψ0)χ + ψ2(ψ1)χ
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+ ψ1(ψ2)χ + ψ0(ψ3)χ ,

...

and

H0(ψ) = –φ0(ψ0)χ ,

H1(ψ) = –φ1(ψ0)χ – φ0(ψ1)χ ,

H2(ψ) = –φ2(ψ0)χ – φ1(ψ1)χ – φ0(ψ2)χ ,

H3(ψ) = –φ3(ψ0)χ – φ2(ψ1)χ – φ1(ψ2)χ – φ0(ψ3)χ ,

...

(42)

Comparing coefficients of the same powers of p, we have

p0 : φ0(χ ,η) = 3 – 6 tanh2
(

χ

2

)
,

p1 : φ1(χ ,η) = L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
(φ0)3χ + H0(φ)

]]
,

= 6 sech2
(

χ

2

)
tanh

(
χ

2

)(
(1 – σ ) +

σησ

�(σ + 1)

)
,

p2 : φ2(χ ,η)

= L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
(φ1)3χ + H1(φ)

]]
,

= 3
[

2 + 7 sech2
(

χ

2

)
– 15 sech4

(
χ

2

)]

× sech2
(

χ

2

)(
(1 – σ )2 +

σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)
,

p3 : φ3(χ ,η) = L
–1

[
(sσ (1 – σ ) + σ )

sσ
L

[
(φ2)3χ + H2(φ)

]]
,

...

(43)

and

p0 : ψ0(χ ,η) = –3c
√

2 tanh

(
χ

2

)
,

p1 : ψ1(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
2(ψ0)3χ – H0(ψ)

]]
,

= 3c
√

2 sech2
(

χ

2

)
tanh

(
χ

2

)(
(1 – σ ) +

σησ

�(σ + 1)

)
,

p2 : ψ2(χ ,η)

= –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
2(ψ1)3χ – H1(ψ)

]]
, (44)
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=
3c

√
2

2

[
2 + 21 sech2

(
χ

2

)
– 24 sech4

(
χ

2

)]

× sech2
(

χ

2

)(
(1 – σ )2 +

σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)
,

p3 : ψ3(χ ,η) = –L–1
[

(sσ (1 – σ ) + σ )
sσ

L
[
2(ψ2)3χ – H2(ψ)

]]
,

...

Hence a series solution is given by

φ(χ ,η)

=
∞∑

i=0

φi(χ ,η),

= 3 – 6 tanh2
(

χ

2

)
+ 6 sech2

(
χ

2

)
tanh

(
χ

2

)(
(1 – σ ) +

σησ

�(σ + 1)

)

+ 3
[

2 + 7 sech2
(

χ

2

)
– 15 sech4

(
χ

2

)]

× sech2
(

χ

2

)(
(1 – σ )2 +

σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)
– · · · ,

ψ(χ ,η)
(45)

=
∞∑

i=0

ψi(χ ,η)

= –3c
√

2 tanh

(
χ

2

)
+ 3c

√
2 sech2

(
χ

2

)
tanh

(
χ

2

)(
(1 – σ ) +

σησ

�(σ + 1)

)

+
3c

√
2

2

[
2 + 21 sech2

(
χ

2

)
– 24 sech4

(
χ

2

)]

× sech2
(

χ

2

)(
(1 – σ )2 +

σ 2η2σ

�(2σ + 1)
+

2(1 – σ )σησ

�(σ + 1)

)
+ · · · .

Putting σ = 1 in (45), we get the solution of the problem

φ(χ ,η) = 3 – 6 tanh2
(

χ

2

)
+ 6η sech2

(
χ

2

)
tanh

(
χ

2

)

+
3
2
η2

[
2 + 7 sech2

(
χ

2

)
– 15 sech4

(
χ

2

)]
sech2

(
χ

2

)
– · · · ,

ψ(χ ,η) = –3c
√

2 tanh

(
χ

2

)
+ 3ηc

√
2 sech2

(
χ

2

)
tanh

(
χ

2

)

+
3c

√
2

4
η2

[
2 + 21 sech2

(
χ

2

)
– 24 sech4

(
χ

2

)]
sech2

(
χ

2

)
+ · · · .

(46)
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Figure 5 The exact and HPTM solution figure at φ(χ ,η) of Example 4.2 for σ = 1

The solution given by Eq. (46) is similar to a closed form solution

φ(χ ,η) = 3 – 6 tanh2
(

χ + η

2

)
,

ψ(χ ,η) = –3c
√

2 tanh

(
χ + η

2

)
.

(47)

In Figs. 5 and 7, the actual and HPTM solutions of φ(χ ,η) and ψ(χ ,η) are calculated
at σ = 1. In Figs. 6 and 8, the 3D graphs for φ(χ ,η) and ψ(χ ,η) for different fractional
order show that the HPTM approximated solutions derived are in a strong agreement
with the actual and the approximate solution. This comparison shows that the HPTM and
the actual solutions are very close. As a result, the HPTM is a dependable new study that
requires less computation of computations, is adaptable, and simple to use. In Tables 3 and
4, the exact result and HPTM solution of different fractional order of φ(χ ,η) and ψ(χ ,η)
at η = 0.01 are given.

5 Conclusions
In this paper, we calculated the fractional-order Kersten–Krasil’shchik coupled KdV–
mKdV nonlinear system using the Laplace transform and the Atangana–Baleanu deriva-
tive. The suggested method is applied to obtain the solution of the given two problems.
The HPTM solution is in close contact with the exact result of the given problems. The
present scenario also calculated the results of the given problems with fractional-order
derivatives. The figures of the fractional-order results achieved have shown the conver-
gence towards the results of integer order. Furthermore, the present method is simple,
straightforward and required less computational cost; the current technique can be mod-
ified to solve other fractional-order partial differential equations.
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Figure 6 The different fractional-order figure of φ(χ ,η) for Example 4.2

Figure 7 The exact and HPTM solution figure at ψ (χ ,η) and ψ (χ ,η) of Example 4.2 at σ = 1

Figure 8 The different fractional-order figure of ψ (χ ,η) for Example 4.2
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Table 3 Variation of the exact result with HPTM solution of φ(χ ,η) at η = 0.01

χ Exact result HPTM result Absolute error

5 –2.840462381 –2.840462380 1.444186835E–09
4 –2.576135914 –2.576135916 7.505047070E–10
3 –1.915858303 –1.915858299 4.760423501E–09
2 –0.480345856 –0.480345845 1.127798505E–08
1 1.718468335 1.718468318 1.736182461E–08
0 2.999999985 2.999999910 7.500000002E–08
–1 1.718904452 1.718904435 1.715811279E–08
–2 –0.479962035 –0.479962025 1.021909119E–08
–3 –1.9156620237 –1.915662020 4.383116417E–09
–4 –2.576054184 –2.576054186 1.160759310E–10
–5 –2.840430898 –2.840430897 5.811609752E–10

Table 4 The comparison of the exact solution with HPTM solution of ψ (χ ,η) at η = 0.01

χ Exact result HPTM result Absolute error

5 –0.00003128920578 –0.00005018707030 1.889786452E–09
4 –0.00002953283553 –0.00003941505303 9.882217500E–09
3 –0.00002464651012 –0.00002354262325 1.103886870E–08
2 –0.00001563187126 –0.00001368571425 1.946157010E–08
1 –0.000009064576442 –0.000008133706541 9.3086990E–08
0 –1.060578884000000 –1.050550263000000 1.769181166E–07
–1 –0.000008032738383 –0.000008064752114 3.080452365E–08
–2 –0.00001648493229 –0.00001351283541 2.711411868E–08
–3 –0.00002345262104 –0.00002565550250 1.387225658E–08
–4 –0.00002833704423 –0.00002832282225 5.778090290E–09
–5 –0.00003218607047 –0.00003218920551 2.226059143E–09

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this article. They read and approved the final manuscript.

Author details
1Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi Arabia. 2Department of
Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand. 3Faculty of Science, Mansoura
University, Mansoura, 35516, Egypt.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 December 2021 Accepted: 12 April 2022

References
1. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2),

1–13 (2015)
2. Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog.

Fract. Differ. Appl. 2(2), 1–11 (2016)
3. Iqbal, N., Yasmin, H., Ali, A., Bariq, A., Al-Sawalha, M.M., Mohammed, W.W.: Numerical methods for fractional-order

Fornberg–Whitham equations in the sense of Atangana–Baleanu derivative. J. Funct. Spaces 2021, Article ID 2197247
(2021)



Iqbal et al. Advances in Continuous and Discrete Models         (2022) 2022:37 Page 19 of 20

4. Areshi, M., Khan, A., Shah, R., Nonlaopon, K.: Analytical investigation of fractional-order Newell–Whitehead–Segel
equations via a novel transform. AIMS Math. 7(4), 6936–6958 (2022)

5. Alesemi, M., Iqbal, N., Botmart, T.: Novel analysis of the fractional-order system of non-linear partial differential
equations with the exponential-decay kernel. Mathematics 10(4), 615 (2022)

6. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to
heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

7. Kumar, S., Kumar, R., Osman, M.S., Samet, B.: A wavelet based numerical scheme for fractional order SEIR epidemic of
measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021)

8. Arqub, O.A., Osman, M.S., Abdel-Aty, A.H., Mohamed, A.B.A., Momani, S.: A numerical algorithm for the solutions of
ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method.
Mathematics 8(6), 923 (2020)

9. Park, C., Nuruddeen, R.I., Ali, K.K., Muhammad, L., Osman, M.S., Baleanu, D.: Novel hyperbolic and exponential ansatz
methods to the fractional fifth-order Korteweg-de Vries equations. Adv. Differ. Equ. 2020(1), 1 (2020)

10. Alderremy, A.A., Khan, H., Shah, R., Aly, S., Baleanu, D.: The analytical analysis of time-fractional Fornberg–Whitham
equations. Mathematics 8(6), 987 (2020)

11. He, J.H.: A short remark on fractional variational iteration method. Phys. Lett. A 375(38), 3362–3364 (2011)
12. Shah, R., Khan, H., Baleanu, D., Kumam, P., Arif, M.: A semi-analytical method to solve family of Kuramoto–Sivashinsky

equations. J. Taibah Univ. Sci. 14(1), 402–411 (2020)
13. Sarwar, S., Alkhalaf, S., Iqbal, S., Zahid, M.A.: A note on optimal homotopy asymptotic method for the solutions of

fractional order heat-and wave-like partial differential equations. Comput. Math. Appl. 70(5), 942–953 (2015)
14. Shah, R., Khan, H., Baleanu, D.: Fractional Whitham–Broer–Kaup equations within modified analytical approaches.

Axioms 8(4), 125 (2019)
15. Wang, J., Jamal, A., Li, X.: Numerical solution of fractional-order Fredholm integrodifferential equation in the sense of

Atangana–Baleanu derivative. Math. Probl. Eng. 2021, Article ID 6662808 (2021)
16. Naeem, M., Zidan, A.M., Nonlaopon, K., Syam, M.I., Al-Zhour, Z., Shah, R.: A new analysis of fractional-order equal-width

equations via novel techniques. Symmetry 13(5), 886 (2021)
17. Iqbal, N., Akgul, A., Shah, R., Bariq, A., Mossa Al-Sawalha, M., Ali, A.: On solutions of fractional-order gas dynamics

equation by effective techniques. J. Funct. Spaces 2022, Article ID 3341754 (2022)
18. Sunthrayuth, P., Zidan, A.M., Yao, S.W., Shah, R., Inc, M.: The comparative study for solving fractional-order

Fornberg–Whitham equation via ρ-Laplace transform. Symmetry 13(5), 784 (2021)
19. Alesemi, M., Iqbal, N., Botmart, T.: Novel analysis of the fractional-order system of non-linear partial differential

equations with the exponential-decay kernel. Mathematics 10(4), 615 (2022)
20. Qasim, A.F., Al-Amr, M.O.: Approximate solution of the Kersten–Krasil’shchik coupled Kdv-Mkdv system via reduced

differential transform method. Eurasian J. Sci. Eng. 4(2), 1–9 (2018)
21. Kalkanli, A.K., Sakovich, S.Y., Yurdusen, I.: Integrability of Kersten–Krasil’shchik coupled KdV-mKdV equations:

singularity analysis and Lax pair. J. Math. Phys. 44(4), 1703–1708 (2003)
22. Hon, Y.C., Fan, E.G.: Solitary wave and doubly periodic wave solutions for the Kersten–Krasil’shchik coupled KdV-mKdV

system. Chaos Solitons Fractals 19(5), 1141–1146 (2004)
23. Keskin, Y., Oturanc, G.: Reduced differential transform method for generalized KdV equations. Math. Comput. Appl.

15(3), 382–393 (2010)
24. Goswami, A., Singh, J., Kumar, D.: Numerical computation of fractional Kersten–Krasil’shchik coupled KdV-mKdV

system occurring in multi-component plasmas. AIMS Math. 5(3), 2346–2368 (2020)
25. Rui, W., Qi, X.: Bilinear approach to quasi-periodic wave solutions of the Kersten–Krasil’shchik coupled KdV-mKdV

system. Bound. Value Probl. 2016(1), 1 (2016)
26. Kersten, P., Krasil’shchik, J.: Complete integrability of the coupled KdV-mKdV system. In: Lie Groups, Geometric

Structures and Differential Equations One Hundred Years After Sophus Lie, pp. 151–171. Math. Soc. Japan, Tokyo
(2002)

27. Yi, Q., Yi-Tian, G., Xin, Y., Gao-Qing, M.: Bell polynomial approach and N-soliton solutions for a coupled KdV-mKdV
system. Commun. Theor. Phys. 58(1), 73–78 (2012)

28. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3–4), 257–262 (1999)
29. He, J.H.: Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput.

156(2), 527–539 (2004)
30. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput.

151(1), 287–292 (2004)
31. Yildirim, A.: Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem.

Comput. Math. Appl. 57(4), 612–618 (2009)
32. Odibat, Z., Momani, S.: Modified homotopy perturbation method: application to quadratic Riccati differential

equation of fractional order. Chaos Solitons Fractals 36(1), 167–174 (2008)
33. Ganji, D.D.: The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer.

Phys. Lett. A 355(4–5), 337–341 (2006)
34. Khuri, S.A.: A Laplace decomposition algorithm applied to a class of nonlinear differential equations. J. Appl. Math.

1(4), 141–155 (2001)
35. Khan, M., Gondal, M.A., Kumar, S.: A new analytical solution procedure for nonlinear integral equations. Math.

Comput. Model. 55(7–8), 1892–1897 (2012)
36. Khan, Y., Wu, Q.: Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput.

Math. Appl. 61(8), 1963–1967 (2011)
37. Singh, J., Kumar, D., Kumar, S.: New treatment of fractional Fornberg–Whitham equation via Laplace transform. Ain

Shams Eng. J. 4(3), 557–562 (2013)
38. Alesemi, M., Iqbal, N., Abdo, M.S.: Novel investigation of fractional-order Cauchy-reaction diffusion equation involving

Caputo–Fabrizio operator. J. Funct. Spaces 2022, Article ID 4284060 (2022)
39. Agarwal, R.P., Mofarreh, F., Shah, R., Luangboon, W., Nonlaopon, K.: An analytical technique, based on natural

transform to solve fractional-order parabolic equations. Entropy 23(8), 1086 (2021)



Iqbal et al. Advances in Continuous and Discrete Models         (2022) 2022:37 Page 20 of 20

40. Iqbal, N., Yasmin, H., Rezaiguia, A., Kafle, J., Almatroud, A.O., Hassan, T.S.: Analysis of the fractional-order
Kaup–Kupershmidt equation via novel transforms. J. Math. 2021, Article ID 2567927 (2021)

41. Aljahdaly, N.H., Agarwal, R.P., Shah, R., Botmart, T.: Analysis of the time fractional-order coupled Burgers equations
with non-singular kernel operators. Mathematics 9(18), 2326 (2021)


	Numerical investigation of fractional-order Kersten-Krasil'shchik coupled KdV-mKdV system with Atangana-Baleanu derivative
	Abstract
	Keywords

	Introduction
	Basic deﬁnitions
	The general methodology of HPTM
	Numerical experiments
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


