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Abstract
In this study, the event-triggered finite-time consensus problem of a class of general
linear leader-follower multi-agent systems with unmeasurable states is investigated.
First, an observer-based distributed event-triggered strategy is proposed in view of
introducing an external dynamic threshold that is independent of the state variables.
Second, the Lyapunov method and proposed event-triggered strategy are
implemented as the control scheme to ensure that the tracking error can converge to
the origin within a finite time under given conditions. Analytical findings indicate that
the Zeno behavior can be avoided by selecting the appropriate parameters. Finally, a
numerical simulation is implemented, and the results verify the effectiveness of the
proposed method.
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1 Introduction
In recent decades, the cooperative control of multi-agent systems (MAS) has attracted
great attention because of its wide application in smart grid [1], sensor network [2], Un-
manned Aerial Vehicle (UAV) formation [3], and multi-robot systems [4]. MAS has the
advantage of solving complex problems that cannot be completed by a single agent, and
it has higher flexibility and stronger adaptability [5]. As an important research branch of
MAS cooperation, the consensus has received extensive attention [6–8]. The consensus
design involves a reasonable and effective control protocol based on the local information
exchange between agents. In this manner, all agents in the system reaching a final state
can be ensured.

According to whether a leader is present in a system, the consensus algorithm is divided
into a leaderless consensus algorithm and a leader-following consensus algorithm with
leaders. Olfati-Saber et al. [9] and Wen et al. [10] studied the problem of consensus without
leaders. The consensus state of the system was determined on the basis of the information
exchange and initial state between agents. In [11] and [12], the problem of leader-following
consensus of systems was also studied. Interestingly, the abovementioned studies [9–12]
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have a common feature: each agent needs to communicate continuously with its neighbors
to reach a consensus. However, in practical applications, the continuous communication
between agents is not always sufficient, and it even increases the burden of communication
and energy consumption, especially in the case of limited resources of a single agent.

Despite the limitations, the communication network resources can be effectively uti-
lized by introducing an event-triggered strategy into the multi-agent consensus problem.
In [13], the real-time performance of event-triggered systems was found to be better than
that of time-triggered systems. In [14], the average consensus of event-trigger conditions
in MAS was considered to have single integrator dynamics. In [15], a decentralized event-
triggered consensus algorithm was considered for MAS with single integrator and double
integrator dynamics. In [16], a distributed adaptive event-triggered protocol was designed
on the basis of local sampling state or local output information, and the leaderless and
leader-following consensus issues were simultaneously considered. Zhang et al. [17] con-
sidered the event-triggered tracking control problem of nonlinear MAS with unknown
disturbances and proposed a new adaptive event-triggered control method for this system.
In [18], a distributed event-triggered consensus controller for each agent was proposed to
achieve consensus without the need for continuous communication between agents. The
abovementioned studies entailed in-depth research of event-trigger conditions to effec-
tively reduce the communication burden and energy consumption of systems. However,
the key performance of the control system, namely, convergence performance, should also
be considered.

The finite-time convergence of closed-loop systems is the time-optimal control method
from the perspective of time optimization of control systems. However, the event-
triggered consensus in the literature represents an asymptotic consensus. As the frac-
tional power term is present in the finite-time controller, the finite-time consensus has
better robustness and anti-interference than the asymptotic consensus [19–22]. In [23],
the finite-time consensus problem of leaderless and leader-follower MAS was investigated,
and two new nonlinear consensus protocols were proposed to substantially reduce com-
munication cost and controller update frequency. In [24], the tracking control problem of
MAS with bounded disturbances was studied with respect to the sliding mode controller.
In [25], the finite-time consensus of second-order MAS with internal nonlinear dynamics
and external bounded disturbances was explored. However, the abovementioned results
mainly concentrated on integrator-type dynamics, and they could not deal with general
linear dynamics. In the research about general linear dynamics in [26], the problem of
finite-time consensus with distributed event-trigger conditions was analyzed, and a dy-
namic threshold that could converge to zero within a finite time in the trigger function
was designed. Cao et al. [27] proposed a distributed event-triggered control strategy to
achieve the finite-time consensus of general linear MAS.

In the abovementioned studies, a common assumption is that the state of the system
is measurable. However, in many practical engineering applications, not all system state
variables can be directly detected. In such cases, the control based on the state feedback
cannot be used, and the one based on the output feedback should be utilized [28]. An
unstable operating system with an unknown state is generally reconstructed using an ob-
server, and then this reconstructed state is used to replace the real state of the system as a
means of achieving the required state feedback. In [29–31], the event-triggered control of
the first-order MAS based on the output feedback is studied. In [32], two observer-based
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control protocols (centralized and distributed protocols) were considered in relation to
the relative output information. In [33], a fully distributed event-triggered control strategy
was proposed for general linear MAS, and the schemes for leaderless and leader-follower
consensus were simultaneously considered. In [34], an observer-based consensus track-
ing control based on the distributed velocity estimation method was designed for second-
order leader-follower MAS. In [35], for general linear MAS with different topologies and
unknown states, observer-based distributed controllers are proposed for different situa-
tions, and finite-time coordinated tracking is achieved. To the best of our knowledge, the
studies on the event-triggered finite-time consensus control of MAS with unmeasured
states are few, hence the motivation of the present research.

On the basis of the above discussion and existing results, this study investigates the
observer-based control of event-triggered finite-time consensus for general linear leader-
follower MAS. Some of the contributions of this research are as follows. First, construct a
universal observer based on the output feedback information of the system to estimate the
real state of the system and use the estimated state information of the observer to define
the measurable error. Second, on the basis of the measurable error, a dynamic threshold
that converges to zero within a finite time is introduced in the trigger function, and a new
model-based event-triggered controller is proposed. Finally, we prove that the finite-time
leader-follower consensus can be achieved under the observer-based and event-triggered
scheme, which ensures the finite-time convergence of the system under consideration and
substantially reduces the controller update. In addition, the Zeno behavior is analyzed
comprehensively, and the appropriate parameters can be selected to avoid the Zeno be-
havior.

The rest of this paper is organized as follows. Section 2 briefly discusses the preparations
and problem description. The main results are given in Sect. 3. An example is given in
Sect. 4. Section 5 concludes the study.

Notation In this study, R, Rn, and Rn×m denote the set of real numbers, an n-dimensional
real vector, and the set of n × m real matrices, respectively. In denote n-dimensional
identity matrix. Given a matrix x = [x1, x2, . . . , xn] and α > 0, Define sig (x)α = [sig(xα

1 ), . . . ,
sig(xα

n)]T , sig(xα
n) = sign(xn)|xn|α , where sign(·) means signum function. λmax(x) and λmin(x)

indicate the maximum and minimum eigenvalues of x, respectively. ‖x‖ represents the Eu-
clidean norm of vector x or the induced matrix 2-norm. ⊗ is the Kronecker product.

2 Preliminaries and problem formulation
2.1 Graph theory and lemmas
The topology of MAS is usually described using a directed graph or an undirected graph.
In this study, the leader-follower MAS consists of a leader (marked as 0) and N followers.
The weighted undirected topological graphs between N agents are described by graph
G = (V ,E ,A), where V = {1, 2, . . . , N} represents the set of nodes, E ⊆ V × V denotes the
set of edges, and A = [aij]N×N means the related weighted adjacency matrix, where aii = 0.
If (j, i) ∈ E , then aij > 0; otherwise aij = 0. Ni represents the set of neighbors of the follower
i (i = 1, . . . , N ). D = diag{d1, . . . , dN } ∈ RN×N represents the connection matrix between the
follower and the leader. If the follower i can obtain information from the leader, then di >
0; otherwise, di = 0. The Laplacian matrix L = [lij] ∈ RN×N of G related to the adjacency
matrix A is defined as lij = –aij, i �= j and lii =

∑N
j=1,j �=i aij. If aij = aji, ∀i, j = 1, . . . , N , then
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the graph G is undirected; otherwise, it is directed. H = L + D is defined to describe the
topological information of the leader-follower MAS. The path from vi to vj in the graph is
a sequence of adjacent nodes starting from vi and ending in vj. If a path is present between
any two agents, then the graph is connected.

Lemma 1 ([22]) The matrix H has positive eigenvalues λ1,λ2, . . . ,λN , and the H is positive
definite if and only if the undirected graph G is connected.

Lemma 2 ([23]) For any xi ∈ R, i = 1, . . . , N and 0 < p ≤ 1, then

( N∑

i=1

|xi|
)p

≤
N∑

i=1

|xi|p ≤ N1–p

( N∑

i=1

|xi|
)p

.

Lemma 3 ([25]) Consider the system ẋ = f (x), x ∈ Rn and f (0) = 0. Suppose that there exists
a positive definite continuously differentiable function V : Rn → R and the real number
c > 0, 0 < α < 1, making the following inequality

V̇
(
x(t)

) ≤ –cV α
(
x(t)

)

holds, then the origin of the system is global finite-time stable. The settling time T is bounded
as

T ≤ V 1–α(x(0))
c(1 – α)

.

Lemma 4 ([27]) For the Laplacian matrix L, we have

xT (t)Lx(t) =
1
2

N∑

i=1

N∑

j=1

aij
(
xi(t) – xj(t)

)T(
xi(t) – xj(t)

)
,

where L is positive semidefinite. In addition, when 1T x(t) = 0, λ2(L)xT (t)x(t) ≤ xT (t)Lx(t) ≤
λmax(L)xT (t)x(t).

Lemma 5 ([36]) Young’s inequality: Let a, b > 0 and p, q > 1 be real numbers with 1
p + 1

q = 1,
then inequality ab ≤ 1

p ap + 1
q bq holds.

2.2 Problem formulation
Consider a MAS with N followers and a leader. The dynamic equation of follower i is

⎧
⎨

⎩

ẋi(t) = Axi(t) + Bui(t),

yi(t) = Cxi(t),
i = 1, 2, . . . , N (1)

where xi(t) ∈ Rn, ui(t) ∈ Rm, and yi(t) ∈ Rp represent the state, control input, and output of
follower i, respectively. A, B, and C denote the constant matrix with appropriate dimen-
sions.

For system (1), the following assumptions are introduced:
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Assumption 1 The matrix pairs (A, B) and (C, A) are stabilizable and detectable, respec-
tively.

Assumption 2 GraphG is composed of N followers and a leader, and it contains a directed
spanning tree, and leader 0 is its root node.

The dynamics of leader 0 is given by

⎧
⎨

⎩

ẋ0(t) = Ax0(t),

y0(t) = Cx0(t),
(2)

where x0(t) ∈ Rn and y0(t) ∈ Rp denote the state and output of the leader, respectively.

Definition 1 Consider a general linear leader-follower MAS with a fixed undirected
graph G . For any initial conditions, if the system state satisfies limt→∞ ‖xi(t) – x0(t)‖ = 0,
i = 1, 2, . . . , N , then the system has achieved a consensus.

The local degree matrix is defined as D = diag{di} ∈ RN×N , i = 1, 2, . . . , N to represent the
communication mode between the follower and the leader. If the follower can receive the
information from the leader, then di = 1; otherwise, di = 0.

3 Main results
Given the difficulty of obtaining or detecting the complete state in many systems, the fol-
lowing observers are considered:

⎧
⎨

⎩

˙̂xi(t) = Ax̂i(t) + Bui(t) + G(ŷi(t) – yi(t)),

ŷi(t) = Cx̂i(t),
i = 1, 2, . . . , N , (3)

where x̂i(t) ∈ Rn and G represent the state and gain matrix of the observer, respectively,
and ŷi(t) ∈ Rp is the output information of the observer-based system.

On the basis of the above observer (3), the event-triggered and leader-following consen-
sus protocols are designed as follows:

ui(t) = – K
(∑

j∈Ni

aij
(
x̂i

(
ti
k
)

– x̂j
(
tj
k′
))

+ di
(
x̂i

(
ti
k
)

– x0
(
ti
k
))

)

– K sig

(∑

j∈Ni

aij
(
x̂i

(
ti
k
)

– x̂j
(
tj
k′
))

+ di
(
x̂i

(
ti
k
)

– x0
(
ti
k
))

)α

, (4)

where K = BT P ∈ Rm×n is the control gain matrix, P is a positive definite matrix, 0 < α ≤
0.5, aij represents the ijth item of the adjacency matrix A, ti

k is the latest trigger moment
of agent i, and x̂(ti

k) represents the latest broadcast state of agent i.

Remark 1 Controller (4) is designed in two parts. The first part aims to reduce the state
error to near zero, and the second part ensures that the state error converges to zero within
a finite time.
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The state tracking error and observation error are defined as follows:

x̃i(t) = x̂i(t) – x0(t), (5)

hi(t) = x̂i(t) – xi(t). (6)

Therefore, the following result is obtained:

˙̃xi(t) = Ax̃i(t) – BBT P
(∑

j∈Ni

aij
(
x̂i

(
ti
k
)

– x̂j
(
tj
k′
))

+ di
(
x̂i

(
ti
k
)

– x0
(
ti
k
))

)

– BBT Psig
(∑

j∈Ni

aij
(
x̂i

(
ti
k
)

– x̂j
(
tj
k′
))

+ di
(
x̂i

(
ti
k
)

– x0
(
ti
k
))

)α

+ GC
(
x̂i(t) – xi(t)

)
. (7)

The measurement error of the current state and the trigger state is defined as follows:

ei(t) = x̃i
(
ti
k
)

– x̃i(t). (8)

Substituting (8) into (7) obtains

˙̃xi(t) = Ax̃i(t) – BBT P(
∑

j∈Ni

aij
((

x̃i(t) – x̃j(t)
)

+
(
ei(t) – ej(t)

))

+ di
(
x̃i(t) + ei(t)

)
– BBT P sig

(∑

j∈Ni

aij
((

x̃i(t) – x̃j(t)
)

+
(
ei(t) – ej(t)

))
+ di

(
x̃i(t) + ei(t)

)
)α

+ GChi(t). (9)

The event-triggered mechanism can be applied by introducing a dynamic variable as
follows:

ϑ̇i(t) = –εi sig
(
ϑi(t)

)γ , (10)

where ϑi is a non-zero real number, εi > 0, and γ ∈ (0, 1).
The event-triggered function of agent i is designed as follows:

fi
(
t, ei(t), x̃i(t),ϑi(t)

)
= η1

∥
∥ei(t)

∥
∥2 + η2

∥
∥ei(t)

∥
∥2α + η3

∥
∥x̃i(t)

∥
∥2α

– ρεiδ
∣
∣ϑi(t)

∣
∣2γ , (11)

where ρ ∈ (0, 1), δ > 0. In addition,

η1 ≥ a1λmax
(
HT H ⊗ PBBT P

)
,

η2 ≥ a2λmax
(
PBBT P

)
(Nn)1–α2α

∥
∥(H ⊗ IN )

∥
∥2α ,

η3 ≥ (
a2λmax

(
PBBT P

)
(Nn)1–α2α + 1

) × ∥
∥(H ⊗ IN )

∥
∥2α ,

here a1 > 0, a2 > 0.
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Under the proposed event-triggered consensus strategy, the agent i not only monitors
its own state but also receives the broadcast state of its in-neighbors. The event will be
triggered when fi(t, ei(t), x̃i(t),ϑi(t)) > 0. Then, the agent i updates its controller with its
current state and broadcasts its current state to out-neighbors. At the same time, ei(t) is
reset to zero. If the agent i receives the broadcast state of its in-neighbor, the controller
will also be updated.

Remark 2 The threshold used in [15] and [18] is suitable for asymptotic consensus control;
however, the threshold is incompatible for finite-time control because it cannot converge
to 0 within a finite time. In contrast to the methods in [15] and [18], the threshold used in
this study can ensure the convergence of the control to 0 within a finite time. This scheme
also plays an important role in verifying the accuracy of the proposed MAS finite-time
event-triggering algorithm.

Theorem 1 Consider systems (1) and (2) with observer (3) and control protocol (4). Sup-
pose that Assumption 1 holds. If there exists a positive definite matrix P and an appropriate
positive scalar μ and β , such that the following Riccati inequality

PA + AT P – 2μPBBT P + βIn < 0 (12)

holds, and the trigger function is given by (11), then the finite-time leader-following consen-
sus can be achieved for all initial conditions.

Proof With the Kronecker product, (9) can be written in compact form as follows:

˙̃x(t) =
(
IN ⊗ A – H ⊗ BBT P

)
x̃(t) –

(
H ⊗ BBT P

)
e(t)

–
(
IN ⊗ BBT P

)
sig

(
(H ⊗ IN )

(
x̃(t) + e(t)

))α

+ (IN ⊗ GC)h(t), (13)

where x̃(t) = [x̃T
1 (t), . . . , x̃T

N (t)]T , e(t) = [eT
1 (t), . . . , eT

N (t)]T , h(t) = [hT
1 (t), . . . , hT

N (t)]T .
When Assumption 2 is satisfied, matrix H has N eigenvalues, and the real part of each

eigenvalue is positive.
According to the observation error, ḣi(t) = (A + GC)hi(t). Thus,

ḣ(t) =
(
IN ⊗ (A + GC)

)
h(t). (14)

If the observer feedback matrix G is designed such that A + GC is a Hurwitz matrix,
then hi(t) will asymptotically approach zero. According to (13) and (14), the estimation
error h(t) is decoupled from the dynamics x̃(t), and the stability of (13) is equivalent to the
stability of the following system:

˙̃x(t) =
(
IN ⊗ A – H ⊗ BBT P

)
x̃(t) –

(
H ⊗ BBT P

)
e(t)

–
(
IN ⊗ BBT P

)
sig

(
(H ⊗ IN )

(
x̃(t) + e(t)

))α . (15)
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For system (15), the Lyapunov function is constructed as follows:

V = x̃T (IN ⊗ P)x̃ +
N∑

i=1

δ

1 + γ
|ϑi|1+γ . (16)

Let V1 = x̃T (IN ⊗ P)x̃, V2 =
∑N

i=1
δ

1+γ
|ϑi|1+γ . Take the derivative of V1 along the trajectory

of system (15)

V̇1 = 2x̃T (IN ⊗ P) ˙̃x
= 2x̃T (IN ⊗ P)

[(
IN ⊗ A – H ⊗ BBT P

)
x̃ –

(
H ⊗ BBT P

)
e

–
(
IN ⊗ BBT P

)
sig

(
(H ⊗ IN )(x̃ + e)

)α]
.

= 2x̃T(
IN ⊗ P – H ⊗ PBBT P

)
x̃ – 2x̃T(

H ⊗ PBBT P
)
e.

– 2x̃T(
IN ⊗ PBBT P

)
sig

(
(H ⊗ IN )(x̃ + e)

)α . (17)

After analysis, the first item of (17) obtains the following results:

2x̃T(
IN ⊗ P – H ⊗ PBBT P

)
x̃

= x̃T(
IN ⊗ (

PA + AT P
)

– 2H ⊗ PBBT P
)
x̃

≤
N∑

i=1

ξT
i

((
PA + AT P

)
– 2λ1PBBT P

)
ξi

≤
N∑

i=1

ξT
i

((
PA + AT P

)
– 2μPBBT P

)
ξi

≤ –β

N∑

i=1

ξT
i ξi

≤ –β‖x̃‖2. (18)

According to Lemma 5, the second term in (17) is bounded as follows:

–2x̃T(
H ⊗ PBBT P

)
e = – 2

((
IN ⊗ BT P

)
x̃
)T(

H ⊗ BT P
)
e

≤ λmax(PBBT P)
a1

‖x̃‖2

+ a1λmax
(
HT H ⊗ PBBT P

)‖e‖2. (19)

According to Lemma 5, the last item in (17) is bounded as follows:

– 2x̃T(
IN ⊗ PBBT P

)
sig

(
(H ⊗ IN )(x̃ + e)

)α

= –2
((

IN ⊗ BT P
)
x̃
)T(

IN ⊗ BT P
)

sig (q)α

≤ λmax(PBBT P)
a2

‖x̃‖2 + a2λmax
(
PBBT P

)(
sig (q)α

)T
sig (q)α , (20)

where a1 > 0, a2 > 0, and q = (H ⊗ IN )(x̃ + e).
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Substituting (18), (19), and (20) into (17) yields

V̇1 = 2x̃T (IN ⊗ P) ˙̃x

≤ – β‖x̃‖2 +
λmax(PBBT P)

a1
‖x̃‖2 + a1λmax

(
HT H ⊗ PBBT P

)‖e‖2

+
λmax(PBBT P)

a2
‖x̃‖2 + a2λmax

(
PBBT P

)(
sig (q)α

)T
sig (q)α . (21)

On the basis of equation (10), the time derivative of V2 satisfies

V̇2 =
N∑

i=1

δ sig (ϑi)γ ϑ̇i = –
N∑

i=1

δεi|ϑi|2γ . (22)

Consequently, combining (21) and (22), we obtain

V̇ = V̇1 + V̇2

≤ – β‖x̃‖2 +
λmax(PBBT P)

a1
‖x̃‖2 + a1λmax

(
HT H ⊗ PBBT P

)‖e‖2

+
λmax(PBBT P)

a2
‖x̃‖2 + a2λmax

(
PBBT P

)(
sig (q)α

)T
sig (q)α

–
N∑

i=1

δεi|ϑi|2γ

=
(

–β +
λmax(PBBT P)

a1
+

λmax(PBBT P)
a2

)

‖x̃‖2

+ a1λmax
(
HT H ⊗ PBBT P

)‖e‖2

+ a2λmax
(
PBBT P

)(
sig (q)α

)T
sig (q)α –

N∑

i=1

δεi|ϑi|2γ . (23)

According to Lemma 2, for a2λmax(PBBT P)(sig (q)α)T sig (q)α , the following results can
be attained:

a2λmax
(
PBBT P

)(
sig (q)α

)T
sig (q)α

= a2λmax
(
PBBT P

)∥
∥(H ⊗ IN )(x̃ + e)

∥
∥2α

2α

≤ a2λmax
(
PBBT P

)
(Nn)1–α

∥
∥(H ⊗ IN )x̃ + (H ⊗ IN )e

∥
∥2α

≤ a2λmax
(
PBBT P

)
(Nn)1–α

(
2
∥
∥(H ⊗ IN )x̃

∥
∥2 + 2

∥
∥(H ⊗ IN )e

∥
∥2)α

≤ a2λmax
(
PBBT P

)
(Nn)1–α2α

(∥
∥(H ⊗ IN )x̃

∥
∥2α +

∥
∥(H ⊗ IN )e

∥
∥2α)

=
(
a2λmax

(
PBBT P

)
(Nn)1–α2α + 1

)∥
∥(H ⊗ IN )x̃

∥
∥2α –

∥
∥(H ⊗ IN )x̃

∥
∥2α

+ a2λmax
(
PBBT P

)
(Nn)1–α2α

∥
∥(H ⊗ IN )e

∥
∥2α

≤ (
a2λmax

(
PBBT P

)
(Nn)1–α2α + 1

)∥
∥(H ⊗ IN )

∥
∥2α‖x̃‖2α –

∥
∥(H ⊗ IN )x̃

∥
∥2α

+ a2λmax
(
PBBT P

)
(Nn)1–α2α

∥
∥(H ⊗ IN )

∥
∥2α‖e‖2α . (24)
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Substituting (24) into (23) obtains the following:

V̇ ≤
(

–β +
λmax(PBBT P)

a1
+

λmax(PBBT P)
a2

)

‖x̃‖2

+ a1λmax
(
HT H ⊗ PBBT P

)‖e‖2

+
(
a2λmax

(
PBBT P

)
(Nn)1–α2α + 1

)∥
∥(H ⊗ IN )

∥
∥2α‖x̃‖2α

+ a2λmax
(
PBBT P

)
(Nn)1–α2α

∥
∥(H ⊗ IN )

∥
∥2α‖e‖2α

–
∥
∥(H ⊗ IN )x̃

∥
∥2α –

N∑

i=1

δεi|ϑi|2γ . (25)

Using the triggering functions (11) and (25), V̇ can be rewritten as

V̇ ≤
(

–β +
λmax(PBBT P)

a1
+

λmax(PBBT P)
a2

)

‖x̃‖2

–
∥
∥(H ⊗ IN )x̃

∥
∥2α – (1 – ρ)δ

N∑

i=1

εi|ϑi|2γ . (26)

Let β > λmax(PBBT P)
a1

+ λmax(PBBT P)
a2

. Then,

V̇ ≤ –
∥
∥(H ⊗ IN )x̃

∥
∥2α – (1 – ρ)δ

N∑

i=1

εi|ϑi|2γ . (27)

After analysis, the first part of (27) obtains the following results:

–
∥
∥(H ⊗ IN )x̃

∥
∥2α = –

∥
∥x̃T(

HT ⊗ IN
)
(H ⊗ IN )x̃

∥
∥α

= –
∥
∥x̃T(

HT H ⊗ IN
)
x̃
∥
∥α

= –
(

x̃T (HT H ⊗ IN )x̃
x̃T (IN ⊗ P)x̃

x̃T (IN ⊗ P)x̃
)α

= –
(

x̃T (HT H ⊗ IN )x̃
x̃T (IN ⊗ P)x̃

)α

V α
1

≤ –
(

λmin(HT H)
λmax(P)

)α

V α
1

= – c1V α
1 , (28)

where c1 = ( λmin(HT H)
λmax(P) )α > 0.

Meanwhile, the second part of (27) indicates that the term can be bounded as follows:

–(1 – ρ)δ
N∑

i=1

εi|ϑi|2γ = – (1 – ρ)εmin

N∑

i=1

(1 + γ )
δ

1 + γ
|ϑi|(1+γ ) 2γ

1+γ

≤ – (1 – ρ)εmin
(1 + γ )

2γ
1+γ

δ
γ –1
1+γ

( N∑

i=1

δ

1 + γ
|ϑi|(1+γ )

) 2γ
1+γ
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= – c2V
2γ

1+γ

2 , (29)

where c2 = (1 – ρ)εmin
(1+γ )

2γ
1+γ

δ

γ –1
1+γ

> 0, and εmin = min{ε1, . . . , εN }.

According to (28) and (29), (27) can further obtain the following results:

V̇ ≤ –c1V α
1 – c2V

2γ
1+γ

2 . (30)

According to (30), V will converge to V ≤ 1 within a finite time. This scenario indicates
that V1 ≤ 1 and V2 ≤ 1 hold within a finite time. Furthermore, with γ ∈ (0, 1) in (10), one

has α < 2α
1+α

and 2γ

1+γ
< 2α

1+α
, then V α

1 > V
2α

1+α
1 and V

2γ
1+γ

2 > V
2α

1+α
2 . Then, we have

V̇ ≤ –c1V
2α

1+α
1 – c2V

2α
1+α

2

< – min(c1, c2)
(
V

2α
1+α

1 + V
2α

1+α
2

)

< – min(c1, c2)(V1 + V2)
2α

1+α

< –cV η, (31)

where c = min(c1, c2) and η = 2α
1+α

.
According to Lemma 3, we can derive V (t) → 0 within a finite time T . At this phase, the

proof is completed. �

Remark 3 Consider the event-triggered mechanism and finite-time consensus [19, 20,
22, 25, 27] and the event-triggered mechanism and the problem of unmeasurable state
[28, 29, 31, 32, 34] in the literature. The problems of unmeasurable state and conver-
gence within finite time are also considered in [35]. However, the aforementioned studies
have not considered simultaneously the problems of unmeasurable state, event-triggered
mechanism, and finite-time consensus. These problems are jointly investigated in the cur-
rent research.

Remark 4 An observer-based event-triggered strategy is proposed, and the event-triggered
condition (11) is distributed, and the trigger time of each agent is independent. Under the
finite-time event-triggered consensus protocol, when the state-based measurement error
of agent i exceeds a given threshold, an event will be triggered for it, the controller will be
updated with the current state, and its current state will be broadcast to external neigh-
bors. At the same time, the state-based agent i measurement error is reset to zero. If the
state-based measurement error is less than the given threshold, it will not trigger, and no
communication is required until the next event is triggered.

Theorem 2 Consider the leader-follower MAS (1) and (2). If the event-trigger condition
(11) is satisfied, then the Zeno behavior can be avoided under the effect of consensus control
protocol (4).

Proof Assuming that the current trigger time is ti
k , the next trigger time ti

k+1 is determined
by event-trigger condition (11). Consider the time interval t ∈ [ti

k , ti
k+1), and let the event
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interval time be τ = ti
k+1 – ti

k . From the previous analysis, we know that x̃i and ei are con-
vergent, and ‖x̃i‖ and ‖ei‖ are bounded. Let the upper bounds of ‖x̃i‖ and ‖ei‖ be b1τ and
b2τ , respectively, where b1 and b2 are positive constants. Then, we can derive the following
results:

η1‖ei‖2 + η2‖ei‖2α + η3‖x̃‖2α ≤ η1(b1τ )2 + η2(b1τ )2α + η3(b2τ )2α = q(τ ). (32)

The lower bound of the time interval can be determined using the solution to (32).

ρεiδ
∣
∣ϑi(t)

∣
∣2γ = η1‖ei‖2 + η2‖ei‖2α + η3‖x̃‖2α

= η1(b1τ1)2 + η2(b1τ1)2α + η3(b2τ1)2α . (33)

According to equation (33), if ϑi(t) �= 0, then τ ≥ τ1 > 0. As the proposed dynamic thresh-
old will converge to 0 within a finite time, the system cannot guarantee that the lower
bound of the time interval between events will be strictly greater than zero. However, if
the appropriate parameters are selected such that the time of system consensus is less than
the time ϑi(t) converges to 0 (i.e., the finite-time consensus is achieved before the dynamic
threshold of each agent converges to 0), then the Zeno behavior will not occur. �

Remark 5 The research results of this study provide ideas for solving the problem of finite-
time output consensus in general linear MAS using event-triggered mechanisms. In par-
ticular, this study can help to ensure that the Zeno behavior will not occur when appropri-
ate parameters are selected. Our future research will focus on the event-triggered mech-
anism that will not have Zeno behavior at all.

4 Numerical simulation
A numerical example is given to verify the theoretical results. Consider an undirected
topology consisting of five followers and a leader, as shown in Fig. 1. The connection
weight between agents is 1, and the Laplacian matrix of the network topology is given
by

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 –1 0 –1 0
–1 2 –1 0 0
0 –1 2 0 –1

–1 0 0 2 –1
0 0 –1 –1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The adjacency matrix is D = diag{1, 1, 1, 0, 0}.

Figure 1 Communication topology
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The constant matrix of system dynamics are as follows: A = [0 5; –2 2], B = [1; 1], G =
[1; 1], C = [1, 0]. Then, we select the relevant parameters, namely, α = 0.5, γ = 0.45, a1 = 3,
a2 = 2, δ = 60, ρ = 0.8, and μ = 0.4. Let the initial state of system (1) be x1(0) = [2, –1.3]T ,
x2(0) = [0.5, –1.8]T , x3(0) = [1.5, –0.8]T , x4(0) = [0.8, –1]T , and x5(0) = [2.6, –1.2]T . The ini-
tial state of the leader is x0(0) = [0, 0]T .

Figures 2 and 3 show the state tracking error of each agent reaching zero within a finite
time. Figure 4 is the event-triggered update state xij(tk) (i = 1, . . . , 5, j = 1, 2). Figures 5 and
6 show the observer error reaching zero within a finite time. Figure 7 shows the event-
triggered interval of each agent under strategy (11). The error and threshold in the trigger
function are shown in Fig. 8. The state tracking error xi – x0, event-triggered update state

Figure 2 State tracking error of each agent (first component)

Figure 3 State tracking error of each agent (second component)
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Figure 4 Event-triggered update state

Figure 5 Observer error hi1(t)

x(tk), and observer error hi(t) all approach zero within a finite time, which means that
the system can achieve consensus within a finite time. The results of the numerical sim-
ulation verify the feasibility and effectiveness of the control method and event-triggered
strategy.

5 Conclusion
The finite-time leader-following consensus of observer-based MAS is studied. As the state
of some systems cannot be measured directly, an observer is used to estimate the state of
the system. An observer-based distributed control protocol is proposed, in which the dy-
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Figure 6 Observer error hi2(t)

Figure 7 The trigger interval of each agent under the control strategy

namic event-triggered mechanism depends on an external dynamic threshold to achieve
consensus within a finite time. Then, the finite-time consensus is obtained using matrix
theory, the Lyapunov control method, and algebraic graph theory. The analysis indicates
that the Zeno behavior can be avoided by selecting the appropriate parameters. Finally, a
numerical example is given to verify the effectiveness of the method. Although the cur-
rent work only considers general linear dynamics, in future work, we will consider how to
extend the results to other practical nonlinear systems.
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Figure 8 The errors and thresholds for each agent
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