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PR. China Firstly, the threshold dynamic behavior of the model is proved by using the operator
semigroup method, the well-posedness of the solution and the basic reproduction
number Ry are given. When Ny < 1, the disease-free equilibrium is globally
asymptotically stable, the disease will be extinct; when Ry > 1, the epidemic
equilibrium is globally asymptotically stable, the disease will persist with probability
one. Then, we introduce the patient’s treatment into the system as the control
parameter, and the optimal control of the system is discussed by applying the
Hamiltonian function and the adjoint equation. Finally, the theoretical results are
verified by numerical simulation.
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1 Introduction

The SARS in 2003, the Zika virus (ZIKV) invasion in 2013, the H7N9 avian influenza pan-
demic, and the emergence of the Dengue virus in the world, these recurrent infectious
diseases and various emerging infectious diseases have been challenging modern life and
medical standards [1]. For example, COVID-19, which broke out in 2019, is still affecting
the world. As of August 24, 2021, the cumulative number of COVID-19 cases and deaths
has reached 212,357,898 and 4,439,843. Therefore, how to prevent and control the occur-
rence and spread of infectious diseases is one of the hot issues today.

From the perspective of mathematics, the study of infectious diseases usually starts
according to the transmission mechanism of diseases, which is analyzed by establish-
ing mathematical models. The earliest epidemic model was established by Kermack and
Mckendrick. They established the plague susceptibility infection removal model (SIR) [2]
in 1927 and the plague susceptible infected susceptible model (SIS) [3] in 1932, respec-
tively. Since the establishment of SIR and SIS models, most of the subsequent research is
based on the standard SIR model. Among the existing prevention and treatment meth-
ods for infectious diseases, vaccine injection is one of the fast and effective methods. For
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example, in the prevention and control of COVID-19, vaccine injection can reduce the in-
fection rate of the Delta variant virus to a certain extent. Therefore, an increasing number
of researchers take vaccine injection into account in the process of modeling infectious
diseases to make the model close to the actual situation.

Among them, Chen et al. in [4] established the susceptibility vaccination—infection
isolation—recovery (SVIQR) model and susceptibility—vaccination—infection isolation
(SVIQS) model, respectively. The basic reproduction number of the two models was given.
Furthermore, the global attractivity and the global asymptotic stability of the solutions
were proved by the Lyapunov function method. And the existence of backward bifurca-
tion was also proved. In [5], Kribs-Zaleta and Velasco-Herndndez studied a simple SIV
model with inoculation and demonstrated the backward bifurcation of solutions to some
parameter values. At the same time, complete bifurcation analysis of the model was given
under the condition that the vaccine reduces the basic reproduction number. Liu et al. in
[6] studied the following SIVR system:

S =1 —B1SI - (u +a)S,
Vi=aS—- B VI-(u+y)E,
I = ST+ BoVI — (u + 8)1,
Ri=yV +68I—puR.

(1.1)

Here, A is the constant update rate of the susceptible host and « is the rate at which sus-
ceptible individuals are vaccinated. 8; and f; are the transmission rates of infected people
in contact with susceptible groups and vaccinated groups, respectively. Since vaccinated
individuals may have partial immunity during vaccination, it is assumed that 81 > 8. p is
the host mortality per compartment. y and § are the recurrence rates of vaccinated people
and infected people, respectively. All of these parameters are assumed to be positive. In
[6], the authors gave the threshold dynamics of system (1.1) by using the basic reproduc-
tion number, showing that reducing the number of infected individuals by vaccination can
control the disease. In addition, many researchers have studied infectious disease models
with immunization from the perspective of age structure [7] and pulse vaccination [8].

The above models are all established in a homogeneous space environment. However, in
practice, the transmission of some diseases is often related to spatial location. For exam-
ple, the transmission rate of COVID-19 in Asia is different from that in North America.
In [9], Wu et al. discussed a class of spatially heterogeneous host-pathogen models. The
authors used the basic reproduction number to discuss the threshold dynamic behavior of
the models and gave the asymptotic behavior of the models. In [10], a reaction-diffusion
model of SVIR infection in a spatially heterogeneous environment was proposed. The
authors gave the proof of the extinction and persistence of the disease by giving a ba-
sic reproduction number. In [11], the authors established an SIVS epidemic model with a
degree-dependent transmission rate and incomplete vaccination on a scale-free network.
The global asymptotic stability of the equilibrium and the global attractivity of the unique
endemic equilibrium were proved. In addition, the effects of various immunization pro-
grams such as unified immunization, target immunization, and acquaintance immuniza-
tion were studied and compared.

Motivated by the recent development of epidemic modeling, the optimal control prob-
lem is often discussed in some cases, optimal control theory is one of the important
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branches of mathematical optimization, which is often used to study how to find a con-
trol for a dynamic system in a period of time to optimize the objective function. Thus
we consider two different models based on (1.1). The first is a direct extension of (1.1).
A reaction-diffusion SIVR model is established based on spatial heterogeneity with in-
complete immunity. The well-posedness of the system is discussed by using the operator
semigroup method. At the same time, the global dynamic behavior of the system solu-
tion is discussed by analyzing the basic reproduction number. In the second model, as
[12, 13], it is assumed that the spread of a disease can be influenced by decision-makers.
That is, decision-makers can control the response rate to a certain extent by increasing the
treatment ability or the efficiency of drug treatment. Therefore, by further expanding the
model, we obtain the control system under the assumption of limited control resources.
Considering the progress of medical technology, the targeted treatment for patients will
be gradually developed, so we will consider the targeted treatment for patients as a control
parameter in the system and discuss its optimal control problem. In addition, we analyze
the optimal control of the system by using the Hamilton equation and the adjoint equation.
In the proof, we may encounter the following problems:

+ How to determine the basic regeneration number of the system. In the presence of the
diffusion term, it is necessary to select an appropriate method to represent the basic
reproduction number Ry, which is an important prerequisite for discussing the
dynamic behavior of the system by using Ny as the threshold value.

«+ Can the existence of optimal control be obtained? Because of the existence of
diffusion terms, it is difficult to define the adjoint equation and the Hamiltonian
function of the control system. At the same time, there are some requirements for the
selection of parameters in the numerical simulation.

In view of the above problems, this article is organized as follows. In Sect. 2, an SIVR
model with incomplete immunity and spatial heterogeneity is established. Furthermore,
the well-posedness of the model is derived, meanwhile, the global existence and global
attractiveness of the solution are proved. Section 3 is devoted to studying the threshold
dynamic behavior of the system. The extinction or persistence of diseases is analyzed by
using the basic reproductive number as the threshold. In Sect. 4, the optimal control of
the control system is analyzed by taking the treatment for the patient as the control pa-
rameter in the system. Meanwhile, the optimal control problem is discussed by using the
Hamiltonian function and adjoint equation. Finally, in Sect. 5, the corresponding results
are verified by numerical simulation.

2 Model formulation and well-posedness

In this paper, the spatial heterogeneity of the spread of infectious diseases and spatial dif-
fusion is considered. In addition, for vaccines, we consider vaccination rates in susceptible
individuals and the effectiveness of the vaccine. Based on model (1.1), we can establish the
following epidemic model of SVIR with incomplete immunity. The meanings of parame-
ters in the system (2.1) are shown in Table 1.

35 _ DIAS + A) - r(®)S — (1 - r(x) B®)SI — dy (%)S,
U = Dy AT+ (1= r()B@)SI + (1 - (X)) BB — (v (x) + do(®))], o

& = D3AV +r(@)S - (L= (@) g - (1) + ds(x)V,

3R = DyAR + y (x)] + n(x)V — da(x)R.
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Table 1 Description of parameters of the model

Parameter Biological implication

Di(i=1,2,3,4) Diffusion coefficient in susceptibility, infection, vaccination, recovery path
Ax) Recruitment rate of the susceptible host

r(x) Vaccination coverage rates of susceptible persons

ax) Transmission between infected and vaccinated hosts

Bx) Transmission between infected and susceptible hosts

dix) (i=1,2,3,4) Mortality of susceptible, infected, vaccinated, and recovered hosts

yX) Recovery rate of infected persons

Kx) Half-saturation concentration

Effectiveness of vaccine

=
3

Remark 1 We considered that there is a vaccine coverage rate r(x) for susceptible path S,
and unvaccinated susceptible persons will be injected into the infected path with a trans-
mission rate B(x). The susceptible person who has been vaccinated enters the vaccinated
compartment, suppose the effectiveness rate of the vaccine to be 7(x), and if the vaccine
fails, the vaccinator will also be injected into the infected path since the inoculated host
has some resistance to the virus after being vaccinated. Thus this propagation process is

assumed to obey a half-saturation rate W and B(x) > a(x).

In addition, because R(f) does not appear in the first three equations of (2.1), we denote
system (2.1) as

% =D AS + Ax) — r(x)S — (1 — r(x)) B(x)SI — dy (x)S,
U = Dy AT+ (1= r(x)B@)SI + (1 - n(x)) 222 02
—(yx) +dy(x))I, x€,tel0,00),

W = D3AV +1(x)S - (1- () 2% — (n(x) + ds(x)V/,

with the initial value and boundary conditions

S _ I _ 3V _
= =% =0, x€0dQ,t>0,

(Sr]r V)(r 0) = (S(),I(), Vo)(x) >0, «xe Q.

It is sufficient to determine the dynamics of (2.1). Here, Q2 is a smooth bounded region in
R”. Define a Banach space X := C(Q, R®) with the supremum norm | - || and X* = C(Q, R3).
Next, we mainly analyze the dynamic behavior of system (2.2).

Let 7;: C(Q,R) — C(,R) (i = 1,2,3) be the Cp-semigroup associated with D; A — (r(x) +
di(x)), Do A = (y (%) + da(x)), D3sA — (n(x) + d3(x)). For any ¢ € C(2,R), 7; is given by the
following formula:

(T (0)0) (@) = / C2(t,2,9)0 () dy,
Q
(To(0)p) (x) = Vet fﬂ Lot 2,9)00) d,

and

(To(0)p) (x) = - Cn6as ot /Q L3ty %9)p() dy,
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where T'; (i = 1,2,3) is the Green function associated with the operator ‘3—’; =Anin Q

subject to the boundary condition. With [14, Section 7], T = (71, T2, T3) are compact and
strongly positive. Set

F($)(0) = A®) - (1= r(x)Bx)1 (X)2(),
Fy(9)(x) = (1= r(x)) B®)1 (x)pa () + (1 — () 222, (23)
F3($)(0) = r(x) (x) — (1 = () ez,

Then we can rewrite (2.2) as the following integral equation:
t
Pit)=T¢+ / Tt - s)]:(P(s)) ds
0

for F = (F1, Fy, F3) and ¢ = (¢1, ¢, ¢3)(x) = (So, Lo, Vo) (%).
For a positive and continuous function ¢ (x) on €, define

I =max{§(x)}, g“_:min{;“(x)}.
Thus, for the local solution of (2.2), we have the following.

Lemma 2.1 System (2.2) with any initial value ¢ for t € [0, Tyans) (Where Tyans < 00) has

a unique solution P(x,t,¢) = (S(x,t),I(x, t), V(x,t)) with P(-,0, ¢) = ¢. Moreover, P(x, t,p) =
(S(x, ), I(x, 1), V(x, 1)) is a classical solution.

The proof is shown in Appendix A.
In the remainder of this section we will prove the global existence and boundedness of
the solution. Consider the following equation:

do _ SEe
3t =DAw + A() - u()o, (2.4)

Jow _
o =0

where D > 0 and A(-), u(-) are positive and continuous functions on Q. Thus we have the
following.

Lemma 2.2 ([9, Lemma 1]) System (2.4) admits a positive steady state wy which is unique
and asymptotically stable. Furthermore, if A(x) = A, pu(x) = u are constants, thus wg = %

The following theorem proves the boundedness of the model.

Theorem 2.1 Forx € Q, ¢t € [0,00), the solution of system (2.2) satisfies
(D(t)¢ = P('r t; ¢) = (S(; t; ¢)!1(7 ty ¢)y V('J t; ¢))7 vx € §7 te [O; OO),

where ®(t) is the semiflow associated with the solution. Moreover, ®(t) is ultimately
bounded.

The proof is shown in Appendix B.
From what has been discussed above, we can get the following results.
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Lemma 2.3 The semiflow ®(t) : X* — X* admits a compact and global attractor.

Proof With Theorem 2.1 we ensure the ultimate boundedness of system (2.2). Notice that
the equation of (2.2) has the diffusion term, which ensures that ®(¢) is compact. With the
direct consequence in [15, Theorem 2.4.6], we can complete the proof. d

In Sect. 3, we analyze the threshold dynamics of system (2.2). The global stability of
disease-free equilibrium (DFE) and endemic equilibrium (EE) is analyzed by establishing

the relationship between the basic reproduction number 9y and the principal eigenvalue.

3 Threshold dynamics

3.1 Basic reproduction number

In this section, applying the methods in [16, Sect. 3], we give the basic reproduction
number Ny of (2.2). It is easy to see that (2.2) admits a disease-free equilibrium (DFE)
Py = (59,0, V?), where S°, V? satisfy

3~ DIAS + A() = (r(-) + di(-))S,
W =DsAV +1()S - (n(-) + ds(-))V.

Linearizing (2.2) at Py, we can get the following system:

8 =DIAS =S8 = (1= r()B()S°L = (r(-) + dr (NS - S°),

at

U= Dy AL+ (1= r()BOST + (1= () L () + do( D,

W= D3A(V = V) +1()(S = 8°) = (1= n(DULFE () + ds()(V = VO).

In order to discuss the basic reproduction number R, we will focus on the linearized

equation of infected person 1.

U = Dy AL+ (1= r()B()SOL + (1 - ()% L TORT 10))8

)
0 KO (3.2)
ol _ ’
= =0, x€0Q,t>0.

v

Substituting I(-,t) = €*§(-), we consider the following subsystem:

DyAS +[(1=r(DBOS + (L= () D15 — (1 () + da())3 = A3,

' (3.3)
$-o0.
Thus, define
. 0
P (1-rO)BOS + (1-00) T B =aDa) - (/) + (),

then the next generation operator is defined as £ = —FB 1. Set Tizans as the Cy-semigroup
associated with B, then

Lo() = / F() Towans ()9 i = F() /0 () Tuans(DP() dt, xS

0

Page 6 of 22
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We can use the variational formula to give the solution of the eigenvalue problem as
Ao = —inf{f (Dz(-)|V8|2
Q
a()Vvo
| a=r)p0s (=) - 0+ ) |5

1 2 _
(SeH(Q),/QS _1}.

By [16, Theorem 3.2], we have

1= r()B()S0 + LIV 52
NRo = 0(L) = Jol@=r()B() ] x}’

su
56111,1;#0{ JoDal V812 + (y () + dz( ))82) dx
and o(L) is the spectral radius of L.

A 0 _ rA
r+dy’ V= (r+dy)(n+ds)

1 ((A-rBA (1 -n)arA
m"‘f{( r+d +1<(r+d1)(n+d3))/(”+d2)

Remark 2 If all parameters are all constants, SO = , we have

From Remark 2, we can see the relationship between N, and parameters. We have the
following lemma on the impact of D, with Ry.

Lemma 3.1 For the basic reproduction number Ny, we have:

1. 9{0 = 1/)\.0;

2. For Dy >0, Ny is a positive and strictly monotonic decline function;
(A=r()B()SO+ (1—n(1-g)(¢_x)(-)v0

3. Ng — max({ S 0B0
wo,

L Jal(-r(p()sO+ eV g
4 No — Q00 (2 () Jor Ds(-) = 00;

5. For [o[(1=r())B(-)S° + M] dx < |Q(y(-) + da(-)), there exists D such that,
for Dy < D, Ro > 1 and D, > D;, NRo < 1; For

Sl =7(-)B()S° + 1"(?)]abc>|§2|()/()+dz() Ro > 1 for all D, > 0.

} for Dy — 0;

Define the principal eigenvalue of (3.3) as Ag. Thus, we have the following result.
Lemma 3.2 Ny — 1 has the same sign as Xy.

The proof is shown in Appendix C.

3.2 Extinction of disease
In this subsection we give the proof of 9 < 1, the stability of DFE.

Theorem 3.1 If Ny < 1, the disease-free equilibrium Py is globally asymptotically stable.
Thus, for x € €2,

t]lpgop(’ L ¢) = PO()
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Proof Applying Lemma 3.1, we can infer that for iy < 1 the principal eigenvalue 1o < 0.
By the equation of S, V in (2.2), with continuity, there exist v; and #; >0

S(,t) <8 + vy, V() < VOt

Thus, for x € , t € [t1,00), the eigenvalue problem

% = DyAE +(1-r(DBONSO + v1)§ + (L () EE (3 () + dy())E,
%=0

v —

(3.5)

has a principal eigenvalue A;' < 0. Thus, (3.2) implies

U < DyAT +(1= (DB + v + (1= () XL (3 () + dy()],

a _
5 =0.

By the comparison principle, we can find a positive constant ©; which satisfies
ot =) gur
I(yt1¢) Sﬁle 0 g ’ te [tlxoo);

where £"1 is a strong positive eigenfunction associated with A" Since A," < 0, we directly
have

lim 1(,2,¢) = 0.

Thus the equation of S, V in (2.2) is asymptotic to (3.1), with asymptotic autonomous
semiflow theory in [17, Corollary 4.3], such that

lim S(-, ¢, ¢) = S°, lim V(. ¢¢)=V°.
t—00 t—00
This completes the proof. d

3.3 Disease persistence

In this section, we prove the global asymptotic stability of the endemic equilibrium in the
case of My > 1. First, using [10, Lemma 4.1], we get the following conclusion, which ensures
that (2.2) has a positive epidemic equilibrium.

Lemma 3.3 Let S(x,t), I(x,t), V(x,t) be the solution of (2.2) with the initial value ¢. If there
exists a positive t* such that I(-,t*,¢) > 0, thus for any t > t*, I(-, t,¢) > 0. Moreover, for S,
V}

A
(1-r)p I +d:

liminfS(-, ¢, ¢) >
t—00 r* +

and

Fe Ny
Iiminf V (-, ¢ ¢) > ,
MtV L) = e T F T + A = e T+ (7 + )]

where h* = sup,.q h(-), h, = inf, g h(-).
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The proof is shown in Appendix D.

Next, we conclude this section by proving the global stability of the endemic equilibrium.

Theorem 3.2 For Ny > 1, (2.2) admits at least one positive steady state, and we can find
positive € for any ¢ € X* with Sy, Iy, Vo % 0 such that

iminfP>¢, P=(S(,t,0),1(t¢), V(- t,9)).

t—00

Proof Define two sets as

Ho = {¢() = (1, P2, ¢3) € X' : 5 #0}

and
0Hp = X*/Ho = {¢(-) = (¢1, 2, p3) € X" : ¢9 = 0}.

With Lemma 3.3, for ¢, € Hy, we can find that x € @, V¢ > 0, which implies I(-, ¢, >0
and ®(¢t)Hy C H,. Set

M, :={¢ € 9Hy: (1) € IH,}, Vt=0,

here w(¢) is an omega limit set.
Claim 1. w(¢) = {Po}.

With ¢ € IMj, we know that ®(t)¢ € My, Vt > 0, thus we have I(-,£;¢) = 0. Thus we can
find that (2.2) is asymptotic to

3 = DIAS + A() - r()S - di()S,

W =DsAV +7()S = (n() +d3() V.

(3.6)

Then, with Lemma 2.2, on x € 2, S, I satisfy lim;_, o, S(-, £;¢) = S°(-) and lim;_ oo V' (-, £;¢) =
VO(.), uniformly. Hence w(¢)) = {Po}, V¢ € M.

Claim 2. P, satisfies

lim sup|| O(t)p — Py ” >o09, V¢ € Hy,
t—00

where oy > 0 = min{o{,8;} is a positive constant, here o7, §; will be defined in what fol-

lows.

First, by using [16, Lemma 2.2], there exists positive o > 0 sufficiently small, the following

eigenvalue problem

2 Dy A + (1= r(DBONS” - o) + (1= n()a()(VO - o)l s - o)

— (y () + dr (N, (3.7)
Wa g
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admits a principal eigenvalue A(’. To deal with nonlinear terms in the system, we can

choose 8} with

1
KO+1 KO

oy, I<38;.
Then, to the contrary, assume that there is positive oy > 0 such that, for ¢ € H,

lim sup|| O(t)p — Py || < 0p.
t— 00

It follows that there exists t; > 0 for x € Q which satisfies
S%)—00<S(t,9),  I(-t,¢) <0y, VO—oy < V(,t,4), Vt=>t,.
Define (-, t) for x € ©, t € [0, 00) which satisfies

8= DaAT + (1= r)BOS o) + (1~ (N (VO ~o0) (5~ o0)
= (r () + da( DI, (3.8)

a _ g,

Thus, for ¢ >0, 1, = gl&zgoe(t‘tsngo is the unique solution of (3.7). (lﬁgao is the strong
positive eigenfunction corresponding to A¢°). For ¢ € Hy, with Lemma 3.3, it follows that
I(-,t,¢) > 0. From the definition of the upper solution, for the solution of (3.8) and I(, ¢, ¢),
we can find that

I(,6,0) 2 1(,8), Q x [t3,00).
By the comparison principle, we can find a small positive constant ¢ which satisfies
I('r t;¢) > g&Zer(t_ta))\goﬂ tE t?;'

Thus, for Ry > 1, with Lemma 3.2, which implies Ag" >0, then I(-, £,¢p) — oo when t — o0.
It means that I(-, ¢, ¢) is unbounded, which contradicts the previous proof. This completes
the proof.

Here we give the definition of a distance function in the semiflow ®(¢) : X* — X* as

follows:

(@) :=min{gy()}, V¢ eX",

xeQ

where ¢(-) : X* — [0, 00). Hence, applying [10, Theorem 4.1], for any 7; > 0, we have

min c¢ >¢e1, Voeld
min (¥)>e1, VYoell

and

liminfI(-, ;) > €1, V¢ € Hy.

t—00
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By Lemma 3.3, we can set

Ay T\ }

2= mm{ P (- r)p 4+ dy [+ (- )BT + dil[(— o)l + (7 + d5)]

thus liminf,_, o S(-, £, @), liminf;_, oo V(-,£,¢) > &5. Set ¢ = min{ey, &5}, we can get the result
that the endemic equilibrium is uniformly persistent. Therefore, by [18, Theorem 4.7], for
(2.2), there is at least one positive steady state of on Hy. a

4 Optimal control

In the previous chapters, we have focused on the disease-free equilibrium and the in-
fectious equilibrium of infectious diseases. But if there is a sudden outbreak, we need
to control the impact of the disease at a lower level as far as possible, that is, to control
the number of infected people. In addition to calling for vaccinations, governments often
spend more money on treatment. The mathematical language to describe this method is
the optimal control problem. The main aim of this section is to develop effective strate-
gies for controlling the spread of infectious diseases. We hope that the number of infected
people does not exceed the number of susceptible and effective vaccinators.

In this section, we introduce the control strategy to (2.2) and analyze its properties. For
convenience, we rewrite A(x) as A, the same for other parameters. To complete our re-
search, we analyze the control variables of the model (2.2). Therefore, the control variables
are given as follows.

With the development of medical technology, infected patients can be treated better.

Therefore, define u = u(x, t) represents the medical intervention for infected patients.

cul
1+wl

Considering that medical resources are limited, we use for specific. Here, c is the

cure rate and w denotes the saturation constant.
From this, we give the control system of (2.2) as follows:

S _DIAS+A-rS—(1-r)BSI—d;S,

at

Y —DyAI+(1=1)BST+ (1 =) —(y +dy)[ - 2L, x€Q,te[0,00), (4.1)

L =DsAV +1S—(1 -2 —(n+ds)V,

with the boundary condition

oS 9l dV
—=—=—=0, (xtH)eX=(0,T)x0%,

v Jdv  Jv

here u is measurable, other parameters are the same as in (2.2).

Define an objective function

T
](u(x,t)) :/0 /QL(I(x,t);u(x,t)) dxdt,

where u(x,t) € Z (2 x [0, T]) = {0 < u(x,t) <1} and L = A1I(x,t) + %Azuz(x, t). Assume
that the control set 77 (22 x [0, T]) is convex, A1, A, are weight of each item. This objective
function describes our goal to control the problem: to reduce the number of susceptible
and infected people with minimal intervention costs. The value function is defined as

V(07 ¢(’0)) = ](0: ¢(!O): Lt(, t))

min
u(x,t)e (2x[0,T7)
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Define a Hilbert space H = L?(22?) and S?,1°, V2 > 0 as the initial value of (4.1), which
satisfies (IOC: Initial value of Optimal Control)

(1I0C) S,I°eHX(Q),  aSlav=0,  3I°/dv=0, AV /v =0.
Let f¢=(1(t,S, 1, V),£2(¢,S, L, V), f5(t, S, 1, V)), where

AtS,L,V)=A—-rS—(1-r)BSI-d,S,
HES,LV)=(1-r)BSI+ (1 -0 —(y +dy)[ - 4

K+ — T+wl’

ABES,LV)=rS—(1-n)%L —(n +d3)V.

With the method in [19, 20], we have the following lemma.

Lemma 4.1 For the initial value S°, I°, V0, system (4.1) admits a unique strong so-
lution (S,I,V) € WY*(0,T;H) such that S,I,V > 0 and (S,I,V) € L*(0, T; H*(R2)) N
L>®(0, T; HY(Q)) N L>®(%). Furthermore, there exists a positive constant C independent

of u, for any t € [0, T,

aS

E H + ||S||L2(0,T;H2(S2)) + “S(t) HHl(Q) + ”SHLOO(Q) =G
12(Q)

ol

5 H + ||1||L2(0,T;H2(9)) + ”I(t)”Hl(Q) + “IHLOO(Q) =G
12(Q)

IV lzoraz@) + [V |0 + 11VIe@ < C

8t LZ(Q)

where Q= Q x [0, T].

Lemma 4.1 ensures the existence and boundedness of the global solution of system (4.1).

Next, according to [21], we can analyze the existence of optimal control of system (4.1).

Theorem 4.1 Let the initial value be defined in (I0C). Then there exists an optimal solu-
tion P' = (S,I', V') of the control system (4.1) corresponding to optimal control u'.

Proof From the boundedness we have proved in Sect. 3, we can infer that p = inf J(u(x, £))
is finite. Thus, for P, = (S,,I,, V,) and u, € % ,we can find a sequence (P,, u,) that is the

solution to the following subsystem:

B = DIAS, + A —rSy — (1 =1)BSuly —di Sy
Un = Dy ALy + (1= 1)BSuly + (1 — )22 —(y + dy)I,

K+1y (42)
Iy
- li”w]n, xeQ,tel0,T],
8 = D3AV, + 7S, — (1 - )22 — (5 + d3) V,,

K+I

with the initial condition

S,,(O, t) = SO(x)r In(0¢ t) = IO(x)r Vn(ov t) = VO(x)
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and the boundary condition

aS, 09I, dV,
=— = =0, (xt)eXx,
av av av
such that

p <J(u(x,t)) §p+%, Vn > 1.

With Lemma 4.1, for system (4.2), we can infer that

as

d . +1Sullz2o @ + S5 | 1) + 1Sullx@ = €,

2T
ol
I lleermee) + [5@) g + Ml < C, (4.3)
at LZ(Q)
aV,

5 . + WVallzo a2y + [ Va®l gy + 1Vallie@ < €.

tle

Since H'(2) is compactly imbedded in L%(2), we can also get the compactness of S,,, I,,,

V, and %, aaif, i’;/t” . Here, by using the Arzela—Ascoli theorem [22], for the compactness

we proved in Sect. 2,

S, — S, IL,—1TI, v, —V,

uniformly in L2(2) with respect to a subsequence denoted by P,. In addition, with the
weak convergence of AS,, Al,, AV, (with the boundedness in system (4.2)), we have

AS, — AS/, AL, — Al AV, — AV’

weakly in L2(Q). With (4.3), we have for P’ = (S,I', V') and P,, = (S,,, 1,, V)

0P, or
—

ot at

P, — P weakly star in L*([0, T]; H'(R)),

weakly in L*(Q),

P,— P weaklyin L*([0, T; H'(Q)).

Next, we focus on the second equation of (4.2). By direct calculation we have

aV,l, . aV'r
(l—r)ﬂ5n1n+(1—r/)ﬁ—[(1—V)ﬂ51 +(1—n)K+I,}

B O[ann / / / /

=(1- S, — ST 1-n)————|(K+1'),(S,-S)+KS(I,-1)]|.
Thus

aV,l, aV'r
1-nBS,l,+(1-n)——- 1-7r)BST +(1- .
(L =7)BSuly + ( '7)1<+1 = (1=-rBST +( ")1<+1’

n

Page 13 of 22
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Similarly, we can discuss the first and third equation of (4.3). For the subsequence u,,

u, — u’ weakly in L2(Q). With the convexity and closeness of %, hence u’ € % , we have

cu,l, cu'l’

— .
1+wl, 1+wl

With the analysis above, we can give the conclusion that for n — oo, P’ = (§',I’, V') is the
optimal solution associated with the optimal function ' of system (4.1), which completes
the proof. d

The Hamiltonian function of the control system is given as follows:

H*(x,t,S,1,V,u,p)

1
=AI(xt) + §A2u2(x, t)+p (DlAS +A-rS—-(1-r)BSI- dls)

cul ) (4.4)

aVI
+p2<D2AI+ AQ-rpSI+(1- n)ﬁ —(y +da)I - T2 ol

aVIl
+p3<D3AV+rS—(1— )ﬁ - (n+ds) )

Next we give the adjoint equation for the control system (4.1)

1ed) _ O [p 4 (1-1)BI +dylpy — D1Apy — (1 —1)Blps — 1ps,

am_om:_@
at al
=(1=NBSp1 + 1y + oz — (L= 1)BS - (1 - ) 255 1p ws)
~DaApy + (1 - 1) w3 — A
Spstul) — _OHY — (1~ )& ps + [(1 - )2 + 1+ ds]ps — D3 Aps,

pi(T)=0, i=1,2,3.

Using the method in [23], give the partial derivative of the Hamiltonian function to ,

substitute it into the optimal control solution P/,

oH* cpa(x, )
=Au — ———.
ou 1+wl

Let % = 0, the optimal control pair # satisfying the minimum value of the objective

function miny yea J (1) can be expressed as

b pax, t)cl’
u =min{maxy ——,0¢,1¢.
Ay(1 + wl)

5 Numerical simulation
In this section, we use numerical simulation to verify the stability of the system and the
impact of controls on the development of the disease. The values of each parameter are

shown in Table 2.
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Table 2 Values for the parameters in numerical simulation

Parameter Data 1 Data 2 Source Parameter Data 1 Data 2 Source

Dy 125%x 10 125x 10 [10] r 04 02 Assume

D> 125x 107 125x 10 [10] i 0.1595 0.1595 [26]

Ds 125%x 104 125x 10 [10] d> 0.1815 0.2145 Assume

A 04 08 Assume ds 0.1595 0.1595 [26]

B 06 0.75 [24] Y 09 0.75 [27], Assume
n 0.72 0.62 [25] c 0.75 0.75 Assume

o 0.5 0.7 [24], Assume @ 0.5 0.5 Assume

0 s 100 150 200 250 00 30 40 0 s 100 150 200 250 00 350 400 0 s 100 150 200 250 00 30 400
t (day) t(day) t(day)

(a) (b) ()

Figure 1 My =0.322 < 1,the density of S, /, V

0 s 10 150 200 250 30 30 400 0 s 100 10 200 250 00 350 400 o s 10 10 20 250 30 350 400
t(day) t(day) t(day)

(2) (b) (©)

Figure 2 My =1.721>1,the density of S, /, V

5.1 Stability of equilibrium
In this section, we discuss the stability of the solution of system (2.2). First of all, use the
method in [28] to make difference and solve system (2.2). Then, for %y < 1 and Ry > 1,
take the data in Data 1 and Data 2, respectively. We get the simulation results obtained as
follows.

Firstly, take the value in Data 1. As we can see from Fig. 1, when 9, < 1, from Theo-
rem 3.1, the disease-free equilibrium (S°,0, V?) is asymptotically stable. In fact, as shown

in Fig. 1(b), for ¢ — oo, I(x,t) converges to zero; in addition, S° = yi\dl =0.7149, V0 =
rA

oy = 0-3252. This is the same conclusion given by Theorem 3.1.

Then, using Data 2, we get the numerical simulation when 9 > 1. With Theorem 3.2,
we can get the uniform persistence of disease. Actually, as we can see in Fig. 2(b), with
t — o0, I(x,t) approaches a constant positive value. This is consistent with our proof in

Theorem 3.2.

5.2 Influence of control parameters on disease progression

In this section, we discuss the impact of control on a disease. The main idea of this section
is that we solve the optimal control problem by applying the iterative method. Then the op-
timal system is obtained by using the state equation and adjoint equation given in Sect. 4.
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And by solving the optimal system, the optimal control strategy is obtained. Furthermore,
the method in [28] is used to make difference and solve the control system and the adjoint
equation. In order to control the susceptible population, the infected population, and the
vaccinated population, targeted treatment of patients is taken as control, and the impact of
targeted treatment on the susceptible population, the infected population, and the density
of the vaccinated population in a long-term state is considered. Finally, through numerical
simulation, the actual situation of each path in the original system (2.2) and the control
system (4.1) is compared.

First, we define the objective function as follows. Let the objective function correspond-
ing to the control system (4.1) be as follows:

T
](u(x, t)) :/0 /QAll(x, t) + %Aguz(x, t)dxdt,

where A; = 0.4, A; = 0.5 [29]. The values of other parameters are the same as in Sect. 5.1.
The numerical simulation results are as follows.

In Fig. 3, for 9Ny < 1, under controlled conditions, the duration of the disease is shorter
and the time of extinction is earlier than without control. At the same time, the overall den-
sity of susceptible and vaccinated people before reaching the stabilization point was also
higher in the controlled condition than without control. In addition, according to Fig. 4,
the control intensity reached the maximum in the early stage and gradually decreased with

the weakening of the disease scale, reaching zero value when the disease disappeared.

o s 100 150 a0 30 400 o s 100 150 250 300 30 400 0 50 100 150 200 250 300 30 400

20 200
t(day) t(day) t(day)

(a) Sfor Ry < 1 (b) I forRp <1 (c) VforRp <1

Figure 3 Infectious path S, /, V without and with control (Rg < 1)

Optimal Control u(x,t]
025 p‘lma v.?n rol u‘(x )

0.2 0.2

0.1

0 50 100 150 200 250 300 350 400
t (day)

(a) (b)

Figure 4 The optimal control when g < 1
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0 s 100 150 200 250 00 30 400 0 s 10 150 200 250 300 350 400 0 s 10 180 20 250 30 380 400
t(day) t(day) t(day)

(a) S for Rp > 1 (b) I for Ry >1 (c) V for Ry > 1

Figure 5 Infectious path S, /, V without and with control (Rg > 1)

Optimal Control u(x,t)

04 .

0.3

3% 02
el
0.1
TR
0 L[ el
60 - H\m» "»H-L, i
g it e S i
a0 U I < 300
20 200
S 100 0
x [ t (day) 0 50 100 150 200 250 300 350 400

t (day)

(2) (b)

Figure 6 The optimal control when 9ip > 1

As shown in Fig. 5, for 9y > 1, when control exists, the scale of the disease reaches a
minimum earlier than without control, and when the disease eventually becomes endemic,
the total scale of the disease is lower than without control. In addition, when the disease
reaches a stable state, the density of susceptible and vaccinated persons is higher in the
controlled condition than without control. Furthermore, by Fig. 6, when the disease is in
its initial state of development, control rises, and when the disease reaches equilibrium
and becomes endemic, control is maintained at a stable value along with the duration of

the disease.

6 Conclusion and discussion

In this paper, a kind of SIVR infectious disease model including vaccine immunity and
vaccine effectiveness is considered. The optimal control theory is applied to the study of
the model, and the threshold dynamics and optimal control of the model are discussed.
Firstly, we prove the well-posedness of the model, which provides a theoretical basis for
the following discussion. Secondly, we give the basic reproduction number N, to analyze
the dynamic behavior of the disease threshold. In addition, the Hamiltonian function and
adjoint equation of the optimal control problem is given. Finally, the stability of the system
solution is verified by numerical simulation and the number of infections can be reduced
as much as possible, while the cost is reduced under the treatment control. In this paper,
the parameters are assumed to be accurate; in fact, due to various uncertainties, each pa-
rameter may be inaccurate or random. At the same time, according to the changes in the

parameters, it can be seen that the vaccination rate and the effective rate of the vaccine

Page 17 of 22
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Optimal Control u(x,t) Optimal Control u(x,t)

7=0.62
035 —— =072 |
7=0.82

0.05 0.05
o . . h . . 0 . . . . . . .
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
t (day) t (day)
(a) The optimal control « under Ry > 1 with different r (b) The optimal control u under Ry > 1 with different n

Figure 7 Optimal control under different parameter values

also have a certain impact on the control (see Fig. 7(a), (b)). In addition, because the near-
optimal control is more flexible, it can adapt to different degrees of model uncertainty.
Therefore, in future work, the near-optimal control problem of the epidemic model can
be further studied by considering the influence of random parameters, noise, the vaccina-
tion rate, and the efficiency rate of the vaccine as the control parameter.

Appendix A: Proof of Lemma 2.1
Define the domain of the linear homogeneous part 7 as

8¢_
ar

D(’T):{q&: OonBQ,T¢EX}.

Thus, there exists # > 0 which satisfies

¢1+ HIAG) — (1= r(x)B(x)¢1 (X)dr ()]
¢+ hF(@®) = | ¢+ hl(1 ~ (@)A1 (x)a(x) + (1 n(e) “FEE"] (A1)
@3 + Hlr()n (x) - (1= n(x) “ R3]

K(x)+¢2 (%)
11 - h(l-r_)p2p.]
z [03) . (A.2)
#3[1 - h(l -n_)pra,]

We can directly get
N N
hlirgo 7 dist(¢ + hF,X*) = 0.
With [30, Corollary .4], we can prove the lemma.

Appendix B: Proof of Theorem 2.1
Define

H(t):/[S(-,t)+I(~,t)+ V(- t)]dx.
Q
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Differential with respect on ¢

dH(2)
T :/QA(-)dx

- /Q [d()SC,8) + (v () + da()IC, ) + (n(-) + ds()) V(- 8)] d (B.1)
< A()|Q| - OH(D),
where 6 = min{d;(-), y (-) + d2(-), n(-) + d3(-)}. Hence we have

H@®) <HO)e™ + %(1 —-e) <00,

thus for some ¢ > ¢#; and positive constant N, we have H(f) < N.
With Lemma 2.2 and first and third equation of (2.2), by the comparison principle, we

have, for some ¢ > ¢,

limsup S(-, £) < wy, limsup V (-, £) < w;.

t—00 t—00

Thus, S(-,£) and V(-,t) are ultimately bounded. With the above condition, 7, is the Cy
semigroup associated with D, A — (v (x-) + da(-)). We can rewrite T, with a Green function

as

(To(0)p) ) = YO0 /Q Lol %, 3)6 () dy,

kot

thus there exists a positive constant M satisfying || 75| < Me*, where k; is the principle

eigenvalue of D, A — (y (+) + da(+)). With [31, Theorem 2.4.7], for Green function I'; satisfies
FZ(t) xd’) =< me*(y,-ﬁ—dz,)t’

where m > 0 is a positive constant. By (2.1), we can conclude that, for ¢, = max{¢, t},

1) = Tt + | tm‘s’[@ ) BGST + (1 - ) 2V }ds

Kx)+V

<Me | 1, 1,,)|
t
+ f f ot - s,x,y)[(l —r_)Brwo + (1 - n_)a+w1] dyds
tm JQ
< Me | 1, 1,,)|
t
+ f me~r-+a2-)(t=9) { [(1 —r_)Brwo + (1 - n_)oz+a)1] f I(s,) dy} ds (B.2)
tm Q
< M1, 5,

t
+ f me’()’*"@*)(t’”{[(l —r_)Brwo + (1 - n_)a+a)1]N} ds
tm
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Nirans(1 — e~ -+d2-)(t=tm))

y_+dy

= Mek2=tm) [ 1Cotm) || +

N, trans
Y-+ dz_ ’

< MR 1 1,)] +

where Nigans = mN[(1 —r_)B.wo + (1 — n_)a,w1]. Since k; is the principle eigenvalue asso-

ciated with Dy A — (y(-) + da(-)), we can get to the conclusion that

trans

y-+dy

limsup”I(',t)” <
t—00

Thus S(-,¢), I(-,£), V (-, £) are uniformly bounded, and the semiflow ®(¢) is point dissipative.

Appendix C: Proof of Lemma 3.2
With the conclusion in Lemma 3.1, we denote by & the eigenfunction of the following

eigenvalue problem:

[A-r()BOSO+(1-n() 2 )¢

DyAE + T —(y()+ds(-)E =0, )
Z=o. '

Here we list the first equation of (C.1) separately:

a-)V0
K()

DAk s [(1 —rO)BOS + (1-1())
JNo

]E - (v()+da())€ =0. (C2)

Set §* as the positive eigenfunction corresponding to A, thus

o) VO
K()

DyAS* + [(1 —-7r())BS° + (1 -n()) ]5* —(y() +da())8* = 1o8*. (C.3)

Multiplying (C.2) by §* and (C.3) by &, integrating them on €2, then subtracting, we have

(1 5){())/9[(1 r( )):3( )S + I &S dx—kofﬂé(ﬁ dx.

1

Since both sides of integrals are positive, thus 1 — o and XA have the same sign.

Appendix D: Proof of Lemma 3.3
With the equation of I in (2.2), with the maximum principle and Hopf boundary lemma,
for t* and I(-, t*,¢) #£ 0, we have I > 1, where I satisfies

A DAL= (y() 4+ (D, (38) € 2 x [0,00),

A_0, xedQ.

(D.1)

Page 20 of 22
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With Lemma 2.2, which implies I(-, £, ¢) > 0. Thus from the equation of S and V in (2.2)

we have S, V satisfies

B >DiIAS+ AS—(r* + (1 =1)B*I* +d})S, (x,t) € Q2 x [0,00),

W = DsAV +1r,S—((L-n)e* I +n* +d5)V, (x,t) € Q x [0,00), (D.2)
a5 _ v
Iy il 0, xe Q2.

By applying the comparison principle, we can infer that

A
r*+ (1 —r)p** + di

liminf S(-, ¢, ¢) >
t—>00

and

re Ay
(A= r )BT+ di][(1 - n)a*I* + (7* + d3)]

liminf V(- £, ¢) >
t—00 [ +
which completes the proof.
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