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Abstract
In this study, the time-dependent potential coefficient in a higher-order PDE with
initial and boundary conditions is numerically constructed for the first time from a
nonlocal integral condition. Even though the inverse identification problem
investigated in this study is ill-posed, it has a unique solution. For discretizing the
direct problem and finding stable and accurate solutions, we employ the Quintic
B-spline (QBS) collocation and Tikhonov regularization methods, respectively. The
following nonlinear minimization problem is solved using MATLAB. The collected
findings demonstrate that accurate and stable solutions can be found.
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1 Introduction
With the current advancement and reliance on science and engineering, inverse problems
(IPs) are becoming a core component in these fields. Some of the applications include the
use of heat equation which has been widely applied in scientific processes such as melt-
ing, freezing, and manufacturing, in microwave heating applications, medicine, biology,
seismology, movement of liquid in a porous media, desalination of seawater, and many
more. Many of the applications are modeled using partial differential equations (PDEs).
If the input values or conditions are known, solutions can be obtained to determine the
behavior of the system [5]. Some of the necessary inputs that are required include initial
and boundary conditions, solution domain’s geometry, coefficients, and forcing terms. If
some of this information is missing or unknown, in general it will not be possible to deter-
mine the behavior of the physical system. However, certain outputs can be experimentally
measured and this information, in addition to the input data, can be used to restore the
missing input data. This is what is called an inverse problem. IPs are in general ill-posed. In
most cases, this means that a small change in the input data can bring about a substantial
change in the output solution.

The scope of IPs has been present in several branches of mathematics, engineering, and
physics for a long period. Over the past decade, the theory of inverse problems has been
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considerably developed given partly its significance in applications. However, numerical
solutions to these problems require considerable computations. For example, deconvolu-
tion in parameter identification, image reconstruction, and seismic exploration all require
high performance computers to do the computation in a timely fashion, or to solve the
problem more precisely within a specific time interval [36].

Most of the time, the coefficient entries in a PDE model are linked to the physical prop-
erties of the system under consideration. In cases where the model is quite simple, these
physical properties can be identified through experimentation and the outcomes used to
reduce the model to a particular physical system. In cases where the model is sophisti-
cated, it may be difficult or even impossible to measure the physical properties linked to a
coefficient in a model equation. In such a case, it may be important to move forward indi-
rectly because of inadequate information, that is, to design and solve the inverse problem
for the missing data.

Parameter identification problems tend to involve the use of actual observation or indi-
rect measurement contaminated by noise, to deduce the values of the parameters making
up the system under consideration. In most cases, these inverse problems are ill-posed in
line with the Hadamard postulate, that is, if the solution does not exist or is not unique,
or if it is in violation of the continuous dependence on input data [8]. Over the past few
years, many scholars have shown a significant interest in inverse coefficient identification
problems. The primary motivation for this study is to determine the unknown potential
property of a given region by considering only the data on its boundary. There is also spe-
cific attention to such coefficients that describe a physical quantity of a medium.

The existence of additional unknown terms in the inverse problems needs to impose
some additional conditions such as nonlocal integral condition as an overdetermination
condition. The basic theory and investigation of inverse problems were established in the
underlying works of Ivanov [13], Lavrentiev et al. [23], Tikhonov [34], etc. Inverse prob-
lems of the higher order PDEs with additional measurements have been studied by few
authors. For example, in [10–12], the authors studied IP to recover the timewise potential
coefficients in fourth-order pseudo-parabolic equations. In [25, 37], the authors consid-
ered an IP to recover an unknown term in fourth- and sixth-order PDEs. Yuldashev [38]
established the unique solvability for the solutions for IPs of the fourth-order PDE. Fur-
thermore, Senapati and Jena [33] developed an FEM including the collocation method
with septic B-splines for solving the fifth-order boundary value problems. Jena and Ge-
bremedhin [15–17] applied nonic B-spline, decatic B-spline, and octic B-spline collocation
techniques, respectively, to approximate the Kuramoto–Sivashinsky equation, Burgers’
equation, and heat and advection–diffusion equations. The authors of [7, 19] proposed
ninth and tenth step methods, respectively, to approximate a fourth-order differential
equation, while the authors of [6, 14, 18] developed six, seven, and eighth step block meth-
ods, respectively, for a fifth-order differential equation. Jena et al. [20] approximated the
real definite integrals using the mixed quadrature rule with the quasi-singular integral of
electromagnetic field problems. Jena et al. [21, 22] used quartic B-spline approach together
with the Butcher’s fifth-order Runge–Kutta scheme to find the approximate solution of the
MRLW equation. Mohanty et al. [29] proposed three integral transforms through modi-
fied ADM to approximate analytical solutions of different mathematical models arising in
physical problems, while Mohanty and Jena [28] presented the differential transformation
method to approximate an ODE. Mohanty et al. [30] adopted five-point ILMM by collo-
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cation and interpolation on the basic of power series and its derivatives, respectively, for
the approximation of fourth-order ODEs.

Recently, Abbasova et al. [1] investigated of solvability and proved the existence and
uniqueness of the classical solution for the IP of the linear equation of motion of a homo-
geneous elastic beam. In this paper, the time-dependent potential coefficient and temper-
ature are determined numerically for the first time for a higher-order PDE from nonlocal
integral condition. This is a completely new inverse problem, which has never been investi-
gated before. We use a QBS collocation method to discretize the direct problem whilst the
least-squares objective functional is minimized to obtain a quasi-solution to the inverse
problem. The potential coefficient is proved [1] to be unique by the contraction mapping
principle for the problem. It should be noted that the fundamental contribution of this
work is the proposal of a regularization algorithm to solve the identification problem and
its numerical realization. Nevertheless, since the inverse problem under investigation is
ill-posed, the Tikhonov regularization method is employed in order to obtain stable nu-
merical results.

The layout of the proposed study is considered as follows: The higher-order PDE form
nonlocal integral condition is formulated in Sect. 2. In Sect. 3, the QBS collocation tech-
nique is given. The convergence and stability of the proposed method are analyzed in
Sects. 4 and 5, respectively. Section 6 proposes a numerical minimization approach for
the regularized objective function, whereas Sect. 7 offers numerical experiments. The con-
cluding remarks of proposed work are given in Sect. 8.

2 Mathematical formulation of the inverse problem
As a mathematical model, we consider a fourth-order motion equation of a homogeneous
elastic beam (HEB) in an square plate DT = (0, 1) × (0, T), over the time interval from the
initial time t = 0 to a given final time t = T > 0. The governing equation is given by the
following HEB [1]:

∂2u
∂t2 +

∂4u
∂x4 + β

∂2u
∂x2 = q(t)u + g(x, t), (x, t) ∈ DT , (1)

where u = u(x, t) is the temperature, β is a given positive number, q(t) is the potential
coefficient, and g(x, t) is transverse force, subject to the initial conditions (ICs)

u(x, 0) = ζ (x), ut(x, 0) = η(x), 0 ≤ x ≤ 1, (2)

where ζ (x) and η(x) are the given initial temperature and its rate of change, respectively.
For the boundary conditions, we assume that these are of Dirichlet and Neumann type
(BCs)

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, 0 ≤ t ≤ T . (3)

The direct problem is concerned with the determination of the temperature u satisfying
the initial boundary value problem (1)–(3), when q(t) and g(x, t) are known. The inverse
problem, on the other hand, is to determine the unknown q(t) satisfying (1)–(3) and the
nonlocal integral observation

∫ 1

0
f (x)u(x, t) dx = κ(t), 0 ≤ t ≤ T , (4)
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where f (x), κ(t) are given functions. Physically, expression (4) represents a space average
measurement of the temperature. This inverse formulation is significant to modeling sev-
eral practical applications related to unknown potential and temperature. For instance, in
the various fields of human activity, such as mineral exploration, medicine, seismology,
biology, desalination of seawater, movement of liquid in a porous medium, etc. [1].

Denote

C̃2,4(DT =
{

(x, t) : x ∈ [0, 1], t ∈ [0, T]
})

=
{

u : u ∈ C2(DT ), uxxxx ∈ C(DT )
}

.

Definition 1 The solution {q(t), u} comprising functions q(t) ∈ C[0, T] and u ∈ C̃2,4(DT )
of the IP (1)–(4) satisfies equation (1) in DT , conditions (2) in [0, 1] and conditions (3) in
[0, T].

The following theorem is true [1].

Theorem 1 Let g(x, t) ∈ C(DT ), ζ (x),η(x) ∈ C[0, 1], f (x) ∈ L2(0, 1), κ(t) ∈ C2[0, T], and

∫ 1

0
f (x)ζ (x) dx = κ(0),

∫ 1

0
f (x)η(x) dx = κ ′(0)

be fulfilled. Then, finding the required solution of equations (1)–(4) is equivalent to the
problem of obtaining q(t) ∈ C[0, T] and u ∈ C̃2,4(DT ) from (1)–(3) and satisfying

κ ′′(t) +
∫ 1

0
f (x)uxxxx dx + β

∫ 1

0
f (x)uxx dx

= q(t)κ(t) +
∫ 1

0
f (x)g(x, t) dx, 0 ≤ t ≤ T . (5)

Let the data of equations (1)–(3), (5) satisfy:
1. ζ (x) ∈ C4[0, 1], ζ (5)(x) ∈ L2(0, 1), ζ (0) = ϕ(1) = ζ ′′(0) = ζ ′′(1) = ζ (4)(0) = ζ (4)(1) = 0,
2. η(x) ∈ C4[0, 1], η′′′(x) ∈ L2(0, 1), η(0) = η(1) = η′′(0) = η′′(1) = 0,
3. g(x, t), gx(x, t), gxx(x, t) ∈ C(DT ), gxxx(x, t) ∈ L2(DT ),

g(0, t) = g(1, t) = gxx(0, t) = gxx(1, t) = 0, 0 ≤ t ≤ T ,
4. 0 < β < π2

2 , f (x) ∈ L2(0, 1), κ(t) ∈ C2[0, T], κ(t) �= 0, 0 ≤ t ≤ T .

Theorem 2 Let the above conditions (1)–(4) of Theorem 1 and

∫ 1

0
f (x)ζ (x) dx = κ(0),

∫ 1

0
f (x)η(x) dx = κ ′(0)

be fulfilled. Then, {q(t), u} from C[0, T] × C̃2,4(DT ) of the IP (1)–(4) contains a unique so-
lution in the ball K .

3 Discretization of the direct problem via quintic spline functions
In mathematical physics, a direct problem is a problem of modeling some physical fields,
processes, or phenomena, especially using partial differential equations (PDEs). The aim
of solving a direct problem is to obtain the main dependent variable function that de-
scribes and governs naturally a physical field or process.
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Table 1 The Qsi , Qs′i , Qs′′i , Qs′′′i and Qs(iv)i

xi–3 xi–2 xi–1 xi xi+1 xi+2 xi+3

Qsi(x) 0 1 26 66 26 1 0
Qs′i (x) 0 τ1 10τ1 0 –10τ1 –τ1 0
Qs′′i (x) 0 τ2 2τ2 –6τ2 2τ2 τ2 0
Qs′′′i (x) 0 τ3 –2τ3 0 2τ3 –τ3 0
Qs(iv)i (x) 0 τ4 –2τ4 6τ4 –2τ4 τ4 0

First, the QBS collocation technique is used for solving the proposed problem (1)–(3),
when β , q(t), ζ (x), η(x), and g(x, t) are given. For using the QBS method, we divide [0, 1]
into equally spaced grid points, xi+1 – xi, i = 0(1)M apart. We denote u(xi, tj) = uj

i, q(tj) = qj,
and g(xi, tj) = gj

i , where xi = i
x, tj = j
t, 
x = 1
M and 
t = T

N for i = 0(1)M and j = 0(1)N .
The Qsi(x), i = –2(1)M + 2 are defined as [4, 26]:

Qsi(x) =
1

(
x)5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ5
i–3, [xi–3, xi–2),

μ5
i–3 – 6μ5

i–2, [xi–2, xi–1),

μ5
i–3 – 6μ5

i–2 + 15μ5
i–1, [xi–1, xi),

–μ5
i+3 + 6μ5

i+2 – 15μ5
i+1, [xi, xi+1),

–μ5
i+3 + 6μ5

i+2, [xi+1, xi+2),

μ5
i+3, [xi+2, xi+3),

0, else,

(6)

where μi = x – xi and the set of QBS functions {Qs–2, Qs–1, . . . , QsM+2} form a basis over
[0, 1]. The Qsi, Qs′

i, Qs′′
i , Qs′′′

i and Qs(iv)
i are defined in Table 1.

Theorem 3 Let β be a positive number and g(x, t), ζ (x), η(x), f (x), κ(t), q(t) given func-
tions. Suppose the QBS method and finite difference scheme are used for space and time
discritization, respectively. Then, numerical solution u(x, t) is given in equations (23), (29),
and (32).

Proof Assume the expression for approximate solution u(x, t) at (x, tj) is defined as

u(x, tj) =
M+2∑
k=–2

Cj
kQsk(x), (7)

where Cj
k are the time-dependent quantities. The variation of the uM(x, t), over the ele-

ment, can be defined as

u(x, tj) =
i+2∑

k=i–2

Cj
kQsk(x). (8)

Using (8), function u with its first four derivatives can be defined as:

uj
i = Cj

i+2 + 26Cj
i+1 + 66Cj

i + 26Cj
i–1 + Cj

i–2, (9)

(ux)j
i = τ1

(
Cj

i+2 + 10Cj
i+1 – 10Cj

i–1 – Cj
i–2

)
, (10)
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(uxx)j
i = τ2

(
Cj

i+2 + 2Cj
i+1 – 6Cj

i + 2Cj
i–1 + Cj

i–2
)
, (11)

(uxxx)j
i = τ3

(
Cj

i+2 – 2Cj
i+1 + 2Cj

i–1 – Cj
i–2

)
, (12)

(uxxxx)j
i = τ4

(
Cj

i+2 – 4Cj
i+1 + 6Cj

i – 4Cj
i–1 + Cj

i–2
)
, (13)

where

τ1 =
5


x
, τ2 =

20
(
x)2 , τ3 =

60
(
x)3 , τ4 =

120
(
x)4 .

Now the discretization of equation (1) yields

uj+1
i – 2uj

i + uj–1
i

(
t)2 +
1
2
(
(uxxxx)j+1

i + (uxxxx)j
i
)

+
β

2
(
(uxx)j+1

i + (uxx)j
i
)

=
1
2
(
qj+1uj+1 + qjuj) +

1
2
(
gj+1

i + gj
i
)
, i = 0(1)M, j = 0(1)N . (14)

Simplifying (14) yields

(
1 –

(
t)2

2
qj+1

)
uj+1

i +
β(
t)2

2
(uxx)j+1

i +
(
t)2

2
(uxxxx)j+1

i

=
(

2 +
(
t)2

2
qj

)
uj

i –
β(
t)2

2
(uxx)j

i –
(
t)2

2
(uxxxx)j

i +
(
t)2

2
(
gj+1

i + gj
i
)
,

i = 0(1)M, j = 0(1)N ,

(15)

which can be written as
(
1 – Aj+1)uj+1

i + βB(uxx)j+1
i + B(uxxxx)j+1

i

=
(
2 + Aj)uj

i – βB(uxx)j
i – B(uxxxx)j

i +
(
t)2

2
(
gj+1

i + gj
i
)
,

i = 0(1)M, j = 0(1)N ,

(16)

where

Aj =
(
t)2

2
qj, B =

(
t)2

2
.

Now, using u, uxx, and uxxxx from equations (9)–(13), we get

Āj+1Cj+1
i–2 + B̄j+1Cj+1

i–1 + D̄j+1Cj+1
i + B̄j+1Cj+1

i+1 + Āj+1Cj+1
i+2

= ĒjCj
i–2 + F̄ jCj

i–1 + ḠjCj
i + F̄ jCj

i+1 + ĒjCj
i+2 – Cj–1

i–2 – 26Cj–1
i–1 – 66Cj–1

i

– 26Cj–1
i+1 – Cj–1

i+2 +
(
t)2

2
(
gj+1

i + gj
i
)
, i = 2, . . . , M – 2, j = 0(1)N ,

(17)

where

Āj = 1 – AjβBτ2 + Bτ4, B̄j = 26 – 26Aj + 2βBτ2 – 4Bτ4,

D̄ = 66 – 66Aj – 6βBτ2 + 6Bτ4, Ēj = 2 + Aj – βBτ2 – Bτ4,

F̄ j = 52 + 26Aj – 2βBτ2 + 4Bτ4, Ḡj = 132 + 66Aj + 6βτ2 – 6Bτ4.
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Now, discretizing the boundary conditions (3), we get

Cj
–1 = –Cj

1 – 3Cj
0, Cj

–2 = –Cj
2 – 12Cj

0,

Cj
M+2 = 12Cj

M – Cj
M–2, Cj

M+1 = –3Cj
M – Cj

M–1, j = 0(1)N .
(18)

For i = 0, using equation (18) in (17), we get

(
12Āj+1 – 3B̄j+1 + D̄j+1)Cj+1

0

=
(
12Ēj – 3F̄ j + Ḡj)Cj

0 +
(
t)2

2
(
gj+1

0 + gj
0
)
, j = 0(1)N .

(19)

Now, for i = 1, we get

(
–3Āj+1 + B̄j+1)Cj+1

0 +
(
–Āj+1 + D̄j+1)Cj+1

1 + B̄j+1Cj+1
2 + Āj+1Cj+1

3

=
(
–3Ēj + F̄ j)Cj

0 +
(
–Ēj + Ḡj)Cj

1 + F̄ jCj
2 + ĒjCj

3 – 23Cj–1
0 – 65Cj–1

1

– 26Cj–1
2 – Cj–1

3 +
(
t)2

2
(
gj+1

1 + gj
1
)
, j = 0(1)N .

(20)

Next, for i = M – 1, we get

Āj+1Cj+1
M–3 + B̄j+1Cj+1

M–2 +
(
–Āj+1 + D̄j+1)Cj+1

M–1 +
(
–3Āj+1 + B̄j+1)Cj+1

M

= ĒjCj
M–3 + F̄ jCj

M–2 +
(
–Ēj + Ḡj)Cj

M–1 +
(
–3Ēj + F̄ j)Cj

M – Cj–1
M–3

– 26Cj–1
M–2 – 65Cj–1

M–1 – 23Cj–1
M +

(
t)2

2
(
gj+1

M–1 + gj
M–1

)
, j = 0(1)N .

(21)

Finally, for i = M, we get

(
12Āj+1 – 3B̄j+1 + D̄j+1)Cj+1

M

=
(
12Ēj – 3F̄ j + Ḡj)Cj

M +
(
t)2

2
(
gj+1

M + gj
M

)
, j = 0(1)N .

(22)

At tj+1, j = 1, . . . , N – 1, (19), (20), (17), (21), and (22) can be reformulated as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂j+1 0 0 0 0 0 . . . 0
q̂j+1 r̂j+1 B̄j+1 Āj+1 0 0 . . . 0
Āj+1 B̄j+1 D̄j+1 B̄j+1 Āj+1 0 · · · 0

0 Āj+1 B̄j+1 D̄j+1 B̄j+1 Āj+1 · · · 0
...

...
. . . . . . . . . . . . . . .

...
0 . . . 0 Āj+1 B̄j+1 D̄j+1 B̄j+1 Āj+1

0 . . . 0 0 Āj+1 B̄j+1 r̂j+1 q̂j+1

0 . . . 0 0 0 0 0 p̂j+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cj+1
0

Cj+1
1

Cj+1
2
...

Cj+1
M–2

Cj+1
M–1

Cj+1
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rj
0

Rj
1

Rj
2
...

Rj
M–2

Rj
M–1

Rj
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (23)

where

p̂j+1 = 12Āj+1 – 3B̄j+1 + D̄j+1,
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q̂j+1 = –3Āj+1 + B̄j+1, r̂j+1 = –Āj+1 + D̄j+1,

Rj
0 =

(
12Ēj – 3F̄ j + Ḡj)Cj

0 +
(
t)2

2
(
gj+1

0 + gj
0
)
, j = 0, . . . , N ,

Rj
1 =

(
–3Ēj + F̄ j)Cj

0 +
(
–Ēj + Ḡj)Cj

1 + F̄ jCj
2 + ĒjCj

3 – 23Cj–1
0

– 65Cj–1
1 – 26Cj–1

2 – Cj–1
3 +

(
t)2

2
(
gj+1

1 + gj
1
)
, j = 0(1)N ,

Rj
i = ĒjCj

i–2 + F̄ jCj
i–1 + ḠjCj

i + F̄ jCj
i+1 + ĒjCj

i+2

– Cj–1
i–2 – 26Cj–1

i–1 – 66Cj–1
i – 26Cj–1

i+1 – Cj–1
i+2

+
(
t)2

2
(
gj+1

i + gj
i
)
, i = 2, . . . , M – 2, j = 0(1)N ,

Rj
M–1 = ĒjCj

M–3 + F̄ jCj
M–2 +

(
–Ēj + Ḡj)Cj

M–1 +
(
–3Ēj + F̄ j)Cj

M

– Cj–1
M–3 – 26Cj–1

M–2 – 65Cj–1
M–1 – 23Cj–1

M

+
(
t)2

2
(
gj+1

M–1 + gj
M–1

)
, j = 0(1)N ,

Rj
M =

(
12Ēj – 3F̄ j + Ḡj)Cj

M +
(
t)2

2
(
gj+1

M + gj
M

)
, j = 0(1)N .

Now for j = 0, using the initial condition (2) in (17), we have

(
1 + Ā1)C1

i–2 +
(
26 + B̄1)C1

i–1 +
(
66 + D̄1)C1

i +
(
26 + B̄1)C1

i+1 +
(
1 + Ā1)C1

i+2

= Ē0C0
i–2 + F̄0C0

i–1 + Ḡ0C0
i + F̄0C0

i+1 + Ē0C0
i+2 + 2(
t)η(xi) +

(
t)2

2
(
g1

i + g0
i
)
,

i = 2, . . . , M – 2.

(24)

For i = 0, using (18) in (24), we have

(
12Ā1 – 3B̄1 + D̄1)C1

0 =
(
12Ē0 – 3F̄0 + Ḡ0)C0

0 +
(
t)2

2
(
g1

0 + g0
0
)
. (25)

Now, for i = 1, we have

(
23 – 3Ā1 + B̄1)C1

0 +
(
65 – Ā1 + D̄1)C1

1 +
(
26 + B̄1)C1

2 +
(
1 + Ā1)C1

3

=
(
–3Ē0 + F̄0)C0

0 +
(
–Ē0 + Ḡ0)C0

1 + F̄0C0
2 + Ē0C0

3

+ 2(
t)η(x1) +
(
t)2

2
(
gj+1

1 + gj
1
)
.

(26)

Next, for i = M – 1, we get

(
1 + Ā1)C1

M–3 +
(
26 + B̄1)C1

M–2 +
(
65 – Ā1 + D̄1)C1

M–1 +
(
23 – 3Ā1 + B̄1)C1

M

= Ē0C0
M–3 + F̄0C0

M–2 +
(
–Ē0 + Ḡ0)C0

M–1 +
(
–3Ē0 + F̄0)C0

M

+ 2(
t)η(xM–1) +
(
t)2

2
(
g1

M–1 + g0
M–1

)
.

(27)
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Finally, for i = M, we have

(
12Ā1 – 3B̄1 + D̄1)C1

M =
(
12Ē0 – 3F̄0 + Ḡ0)C0

M +
(
t)2

2
(
g1

M + g0
M

)
. (28)

At time step t1, (24)–(28) can be reformulated as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̂1 0 0 0 0 0 . . . 0
23 + q̂1 65 + r̂1 26 + B̄1 1 + Ā1 0 0 . . . 0
1 + Ā1 26 + B̄1 66 + D̄1 26 + B̄1 1 + Ā1 0 . . . 0

0 1 + Ā1 26 + B̄1 66 + D̄1 26 + B̄1 1 + Ā1 . . . 0
...

...
. . . . . . . . . . . . . . .

...
0 . . . 0 1 + Ā1 26 + B̄1 66 + D̄1 26 + B̄1 1 + Ā1

0 . . . 0 0 1 + Ā1 26 + B̄1 65 + r̂1 23 + q̂1

0 . . . 0 0 0 0 0 p̂1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1
0

C1
1

C1
2
...

C1
M–2

C1
M–1

C1
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R0
0

R0
1

R0
2
...

R0
M–2

R0
M–1

R0
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(29)

where

R0
0 =

(
12Ē0 – 3F̄0 + Ḡ0)C0

0 +
(
t)2

2
(
g1

0 + g0
0
)
,

R0
1 =

(
–3Ē0 + F̄0)C0

0 +
(
–Ē0 + Ḡ0)C0

1 + F̄0C0
2

+ Ē0C0
3 + 2(
t)η(x1) +

(k)2

2
(
g1

1 + g0
1
)
,

R0
i = Ē0C0

i–2 + F̄0C0
i–1 + Ḡ0C0

i + F̄0C0
i+1 + Ē0C0

i+2

+ 2(
t)η(xi) +
(
t)2

2
(
gj+1

i + gj
i
)
, i = 2, 3, . . . , M – 2,

R0
M–1 = Ē0C0

M–3 + F̄0C0
M–2 +

(
–Ē0 + Ḡ0)C0

M–1 +
(
–3Ē0 + F̄0)C0

M

+ 2(
t)η(xM–1) +
(
t)2

2
(
g1

M–1 + g0
M–1

)
,

R0
M =

(
12Ē0 – 3F̄0 + Ḡ0)C0

M +
(
t)2

2
(
g1

M + g0
M

)
.

Now, we determine the initial vector (Cj
–2, Cj

–1, C0
0 , . . . , C0

M+1, C0
M+2). For removing C0

–2, C0
–1,

C0
M+1, and C0

M+2, we use

ux(0, 0) = ζx(x0), ux(1, 0) = ζx(xM), (30)

uxx(0, 0) = 0, uxx(1, 0) = 0. (31)
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Using ux and uxx from (10), (11) in equations (30) and (31), we get C0
–2, C0

–1, C0
M+1, and

C0
M+2, and removing the unknowns C0

–2, C0
–1, C0

M+1, and C0
M+2, we have an (M + 1)× (M + 1)

order system as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

54 60 6 0 0 0 · · · 0
101

4
135

2
105

4 1 0 0 · · · 0
1 26 66 26 1 0 · · · 0
0 1 26 66 26 1 · · · 0
...

...
. . . . . . . . . . . . . . .

...
0 · · · 0 1 26 66 26 1
0 · · · 0 0 1 105

4
135

2
101

4
0 · · · 0 0 0 6 60 54

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0
0

C0
1

C0
2

C0
2
...

C0
M–2

C0
M–1

C0
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ (x0) + 3.5
τ1

ζx(x0)
ζ (x1) + 1

8τ1
ζx(x0)

ζ (x2)
ζ (x3)

...
ζ (xM–2)

ζ (xM–1) – 1
8τ1

ζx(xM)
ζ (xM) + 3

τ1
ζx(xM)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(32)

�

4 Stability analysis
For the discretized system of (1), the von Neumann stability analysis is performed [2, 27,
31, 35]. For stability, we take g(x, t) = 0 and assume local constant P = k1 for a known level,
which gives the discretized system of (1) as follows:

ÃCj+1
i–2 + B̃Cj+1

i–1 + D̃Cj+1
i + B̃Cj+1

i+1 + ÃCj+1
i+2

= ẼCj
i–2 + F̃Cj

i–1 + G̃Cj
i + F̃Cj

i+1 + ẼCj
i+2

– Cj–1
i–2 – 26Cj–1

i–1 – 66Cj–1
i – 26Cj–1

i+1 – Cj–1
i+2 ,

(33)

where

Ã = 1 – 0.5(
t)2k1 + 0.5β(
t)2τ2 + 0.5(
t)2τ4,

B̃ = 26 – 13(
t)2k1 + β(
t)2τ2 – 2(
t)2τ4,

D̃ = 66 – 33(
t)2k1 – 3β(
t)2τ2 + 3(
t)2τ4,

Ẽ = 2 + 0.5(
t)2k1 – 0.5β(
t)2τ2 – 0.5(
t)2τ4,

F̃ = 52 + 132(
t)2k1 – β(
t)2k1τ2 + 2(
t)2k1τ4,

G̃ = 132 + 33(
t)2k1 + 3β(
t)2τ2 – 3(
t)2τ4.
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Now we consider trial solution Cj
i = δjekiφ at xi, where φ = θh and k =

√
–1. Using the trial

solution in (33), we get

(
2Ã cos(2φ) + 2B̃ cos(φ) + D̃

)
δ2 –

(
2Ẽ cos(2φ) + 2F̃ cos(φ) + G̃

)
δ

+
(
2 cos(2φ) + 52 cos(φ) + 66

)
= 0,

(34)

which can be written as

ζ1δ
2 – ζ2δ + ζ3 = 0, (35)

where

ζ1 = 2Ã cos(2φ) + 2B̃ cos(φ) + D̃,

ζ2 = 2Ẽ cos(2φ) + 2F̃ cos(φ) + G̃,

ζ3 = 2 cos(2φ) + 52 cos(φ) + 66.

Applying the Routh–Hurwitz criterion under the transformation û = 1+ρ

1–ρ
in (35), we get

(ζ1 + ζ2 + ζ3)ρ2 + 2(ζ1 – ζ3)ρ + (ζ1 – ζ2 + ζ3) = 0. (36)

The necessary and sufficient conditions for (33) to be stable |û| ≤ 1 are

ζ1 + ζ2 + ζ3 ≥ 0, ζ1 – ζ3 ≥ 0, ζ1 – ζ2 + ζ3 ≥ 0. (37)

Using ζ1, ζ2, ζ3 and simplifying the terms, we get

ζ1 + ζ2 + ζ3 = 8 cos2(φ) + 208 cos2
(

φ

2

)
+ 156, (38)

ζ1 – ζ3 = 2(
t)2((–k1 + τ4 + βτ2) cos2(φ) – 26k1 + 4τ4 + 2βτ2

+ 3(–k1 + 3τ4 – βτ2)
)
, (39)

ζ1 – ζ2 + ζ3 = 4(
t)2((–k1 + τ4 + βτ2) cos2(φ) – 26k1 + 12τ4 – 12βτ2

+ 3(–k1 + τ4 – 3βτ2 – 33)
)
. (40)

Since ζ1 + ζ2 + ζ3 ≥ 0, ζ1 – ζ3 ≥ 0, and ζ1 – ζ2 + ζ3 ≥ 0, the discretized system for (1) is
unconditionally stable.

Lemma 4.1 The quintic B-spline satisfies

∣∣∣∣∣
M+2∑
i=–2

Qsi(x)

∣∣∣∣∣ ≤ 186, 0 ≤ x ≤ 1. (41)

Proof We know that

∣∣∣∣∣
M+2∑
i=–2

Qsi(x)

∣∣∣∣∣ ≤
M+2∑
i=–2

∣∣Qsi(x)
∣∣



Huntul and Abbas Advances in Continuous and Discrete Models         (2022) 2022:55 Page 12 of 27

at any particular knot xi, so we have

M+2∑
i=–2

∣∣Qsi(x)
∣∣ =

∣∣Qsi–2(x)
∣∣ +

∣∣Qsi–1(x)
∣∣ +

∣∣Qsi(x)
∣∣ +

∣∣Qsi+1(x)
∣∣ +

∣∣Qsi+2(x)
∣∣

= 1 + 26 + 66 + 26 + 1 = 120.

Also in each subinterval xi–1 ≤ x ≤ xi,

∣∣Qsi–3(x)
∣∣ ≤ 1,

∣∣Qsi–2(x)
∣∣ ≤ 26,

∣∣Qsi–1(x)
∣∣ ≤ 66,

∣∣Qsi(x)
∣∣ ≤ 66,

∣∣Qsi+1(x)
∣∣ ≤ 26,

∣∣Qsi+2(x)
∣∣ ≤ 1.

Hence

M+2∑
i=–2

∣∣Qsi(x)
∣∣ =

∣∣Qsi–3(x)
∣∣ +

∣∣Qsi–2(x)
∣∣ +

∣∣Qsi–1(x)
∣∣

+
∣∣Qsi(x)

∣∣ +
∣∣Qsi+1(x)

∣∣ +
∣∣Qsi+2(x)

∣∣
= 1 + 26 + 66 + 66 + 26 + 1 ≤ 186.

Thus the proof is complete. �

Theorem 4 Suppose that f (x) ∈ C5 ∈ [a, b] and f 5(x) < l∗ with equally spaced partitioning
of the domain with uniform step size (
x). If the spline U∗(x) uniquely interpolates f (x) at
the knots then there exists a constant ρn such that

∥∥(
f (x)

)n –
(
U∗)n∥∥∞ ≤ δnl∗(
x)6–n. (42)

Proof See [3] and [9]. �

5 Convergence analysis
Suppose U(x, tj) =

∑M+2
i=–2 Cj

iQsi(x) is the quintic B-spline approximation to the exact solu-
tion u(x, tj). Due to computational error, we assume that U∗(x, tj) =

∑M+2
i=–2 C∗j

i Qsi(x) is the
computed spline approximation to U(x, tj) where C∗j

i = (C∗j
–2, C∗j

–1, C∗j
0 , . . . , C∗j

M+1, C∗j
M+2)T .

So, we estimate the error ‖uj
i – U∗j

i ‖∞ and ‖U∗j
i – Uj

i‖∞ separately to estimate the error
‖uj

i – Uj
i‖∞. By putting U∗j

i in the simplified form of equation (22), we obtain

RC∗(j+1)
i = S∗j

i . (43)

From above equation, we have

R
(
C∗(j+1)

i – Cj+1
i

)
=

(
S∗j

i – Sj
i
)
. (44)

Also equation (16) can be written as

Uj+1
i + βB(Uxx)j+1

i + B(Uxxxx)j+1
i + ω

j+1
i = χ

j
i , (45)



Huntul and Abbas Advances in Continuous and Discrete Models         (2022) 2022:55 Page 13 of 27

where

ω
j+1
i = –Aj+1Uj+1

i ,

χ
j
i =

(
2 + Aj)Uj

i – βB(Uxx)j
i – B(Uxxxx)j

i +
(
t)2

2
(
gj+1

i + gj
i
)
.

Applying the triangle inequality and Theorem 4, equation (45) gives

∣∣χ∗j
i – χ

j
i
∣∣ =

∣∣(U∗j
i + βB(Uxx)∗j

i + B(Uxxxx)∗j
i + ω

∗j
i
)

–
(
Uj

i + βB(Uxx)j
i + B(Uxxxx)j

i + ω
j
i
)∣∣

=
∣∣(U∗j

i – Uj
i
)

+ βB
(
(Uxx)∗j

i – (Uxx)j
i
)

+ B
(
(Uxxxx)∗j

i – (Uxxxx)j
i
)

+ ω
∗j
i – ω

j
i
∣∣

≤ ∣∣U∗j
i – Uj

i
∣∣ + βB

∣∣(Uxx)∗j
i – (Uxx)j

i
∣∣

+ B
∣∣(Uxxxx)∗j

i – (Uxxxx)j
i
∣∣ +

∣∣ω∗j
i – ω

j
i
∣∣.

Thus we can write

∥∥(
S∗ – S

)j
i

∥∥ ≤ (1 + δ)ρ0l∗(
x)6 + βBρ2l∗(
x)4 + Bρ4l∗(
x)2,

or

∥∥(
S∗ – S

)j
i

∥∥ ≤ ξ (
x)2, (46)

where ξ = (1 + δ)ρ0l∗(
x)6 + βBρ2l∗(
x)4 + Bρ4l∗(
x)2.
Now from (44) we have

R
(
C∗ – C

)j
i =

(
S∗ – S

)j
i,

which can be written as

(
C∗ – C

)j
i = R–1(S∗ – S

)j
i.

By using (46), we obtain

∥∥(
C∗ – C

)j
i

∥∥ ≤ ∥∥R–1∥∥ξ (
x)2 (47)

and, by the properties of matrices, we have

∥∥R–1∥∥ ≤ 1
|vi| , (48)

where vi is the sum of the ith row of the matrix R. Now substituting the above equation
into (47), we have

(
C∗ – C

)j
i ≤ ξ1(
x)2, (49)

where ξ1 = ξ

|vi| is some finite constant.
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Since

U∗(j+1)
i – Uj+1

i =
M+2∑
i=–2

(
C∗(j+1)

i – Cj+1
i

)
Qsi(x),

by taking the norm of both sides and using equations (49) and (41), we have

∥∥U∗(j+1)
i – Uj+1

i
∥∥ ≤ 186ξ (
x)2.

Using the triangle inequality, the latter equation yields

∥∥uj+1
i – Uj+1

i
∥∥ =

∥∥uj+1
i – U∗(j+1)

i + U∗(j+1)
i – Uj+1

i
∥∥∞

≤ ∥∥uj+1
i – U∗(j+1)

i
∥∥∞ +

∥∥U∗(j+1)
i – Uj+1

i
∥∥∞

≤ ρ0l∗(
x)6 + 186ξ (
x)2

= γ (
x)2,

where γ = ρ0l∗(
x)4 + 186ξ . If Uj+1(x, t) is the approximate solution of the exact solution
uj+1(x, t) then

∥∥uj+1
i – Uj+1

i
∥∥ ≤ γ (
x)2 + α(
t)2. (50)

Hence, the theoretical order of convergence of the proposed scheme is O(
x2 + 
t2).

6 Inverse problem of HEB equation
We now try to identify the stable and accurate solution for terms q(t) and u(x, t) satisfy-
ing (1)–(4). Keep in mind that, since the inverse problem under investigation is ill-posed
and very sensitive to noise (small errors in the additional input data cause large errors in
the output potential), the solution needs to be regularized. Therefore, the Tikhonov regu-
larization method is employed in order to obtain a stable and accurate solution. More-
over, the total variation regularization algorithm’s technique may also be applied [32].
The quasi-solution of the inverse problem (1)–(4) is approximated by the minimizer of
the Tikhonov regularization functional, which is the gap between the computed and mea-
sured data, namely

F(q) =
∥∥∥∥
∫ 1

0
f (x)u(x, t) dx – κ(t)

∥∥∥∥
2

+ λ
∥∥q(t)

∥∥2, (51)

where u solves (1)–(3) for known q(t), and λ ≥ 0 is a parameter of regularization that is
introduced to stabilize the approximation solutions. For the discrete form, (51) turns into

F(q) =
N∑

j=1

[∫ 1

0
f (x)u(x, tj) dx – κ(tj)

]2

+ λ

N∑
j=1

(
qj)2. (52)

The MATLAB subroutine [24] is utilized to minimize the cost function (52).



Huntul and Abbas Advances in Continuous and Discrete Models         (2022) 2022:55 Page 15 of 27

To measure the errors in this data, κ(tj) in (52) is replaced by perturbed (noisy) data
κε(tj) as follows:

κε(tj) = κ(tj) + εj, j = 0, 1, . . . , N , (53)

where εj are random variables with mean zero and standard deviation

σ = p max
t∈[0,T]

∣∣κ(t)
∣∣, (54)

where p represents the noise.

7 Numerical experiments
The solutions for q(t) and u(x, t) are constructed in this section for the case of noisy (53)
and exact data. We use

rmse(q) =

[
T
N

N∑
j=1

(
qnumerical(tj) – qexact(tj)

)2
]1/2

(55)

for measuring the accuracy. Now, we choose T = 1, for simplicity. The lower bound for
q(t) is taken as –102 while 102 is used for the upper bound.

Example 1 First, when the problem proposed in equations (1)–(4) is taken with a smooth
potential

q(t) = –1 – t, 0 ≤ t ≤ 1, (56)

the analytical solution is

u(x, t) = x7(1 – x)7e–t , 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (57)

the BCs are

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, 0 ≤ t ≤ 1, (58)

the nonlocal integral condition is

κ(t) =
∫ 1

0
f (x)u(x, t) dx =

e–t

51,480
, 0 ≤ t ≤ 1, (59)

where f (x) = 1, and the rest of the data are as follows:

ζ (x) = u(x, 0) = x7(1 – x)7, η(x) = ut(x, 0) = –x7(1 – x)7, β = 1,

g(x, t) = –e–t(–1 + x)3x3(840 – 9240x + 33,306x2 – 48,314x3 + (24,614 + t)x4

– 2(277 + 2t)x5 + 2(97 + 3t)x6 – 4(2 + t)x7 + (2 + t)x8).

(60)
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Figure 1 The approximate and exact (59) solutions for κ (t) of Example 1

Table 2 The rmse error norm for κ (t), for the direct problem

M = N 10 20 40 80

rmse(κ ) 2.4E–6 3.8E–8 8.6E–9 3.2E–9

It is shown that the criteria of Theorems 1 and 2 are met, indicating that a unique so-
lution is guaranteed. First, when q(t) is supplied by (56), the accuracy of (1)–(3) is tested
using the data (57) and (60). The approximate nonlocal integral measurement in (4) is
compared to the analytical solution (59) derived using the QBS collocation technique with
M = N ∈ {10, 20, 40, 80} in Fig. 1. Figure 2 shows the analytical (57) and estimated u(x, t),
as well as absolute errors, for various grid sizes. As the mesh size is reduced, there is a
good agreement between the analytical (59) and the estimated κ(t), as seen in Table 2.

In the IP (1)–(4), we take the initial guess for q as

q0(tj) = q(0) = –1, j = 1, 2, . . . , N . (61)

When p = 0 in (53), we use M = N = 40 to begin the analysis for recovering q(t) and
u(x, t). The term F in (52) is depicted in Fig. 3(a), where a monotonically decreasing con-
vergence is achieved in 20 iterations for a specified tolerance of O(10–16). Figures 3(b)
and 3(c) show the exact (56) and approximate q(t) without and with regularization, re-
spectively. These figures show that, for λ = 0, we get inexact and unstable solutions for
q(t) with rmse(q) = 0.3861, as predicted from to the ill-posedness issue. As a result,
regularization is used to stabilize the answer. It is determined from all chosen λ that
λ ∈ {10–18, 10–17, 10–16} provides an acceptable and stable accurate estimate for the co-
efficient q(t), yielding rmse(q) ∈ {0.0437, 0.0394, 0.0560}.

Now, as in equation (53), we add p ∈ {0.01%, 0.1%} to the nonlocal integral κ(t) through
(54). In Figs. 4 and 5, the potential q(t) is shown. As noise p is increased, the approximate
results start to build up oscillations with rmse(q) ∈ {0.8750, 24.6756}, as seen in Figs. 4(a)
and 5(a). Figures 4(b) and 5(b) illustrate the reconstructed potential coefficient for a variety
of λ, and one can observe that the most accurate solution is achieved for λ ∈ {10–17, 10–16},
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Figure 2 The analytical (57) and approximate u(x, t) with absolute errors for M = N: (a) 10, (b) 20, (c) 40, and
(d) 80, for the direct problem
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Figure 3 (a) The function F in (52) and the exact (56) and approximate q(t), for p = 0 with (b) λ = 0 and
(c) λ = {10–18, 10–17, 10–16}, for Example 1
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Figure 4 The exact (56) and approximate q(t), for p = 0.01% with (a) λ = 0 and (b) λ = {10–18, 10–17, 10–16}, for
Example 1

yielding rmse(q) ∈ {0.0406, 0.0825}; see Table 3 for additional details. The absolute error
norms between the exact (57) and estimated solutions u are shown in Fig. 6, where the
influence of λ > 0 in minimizing the unstable behavior of the reconstructed u can be seen.

Example 2 Now, we consider the problem proposed in equations (1)–(4), with a nonlin-
ear potential coefficient q(t). Therefore, it is a critical test for the proposed technique of
regularization for the governing equation

utt + uxxxx + βuxx = q(t)u + g(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (62)

subject to the ICs

ζ (x) = u(x, 0) = 7x – 10x3 + 3x5,

η(x) = ut(x, 0) = –7x + 10x3 – 3x5, 0 ≤ x ≤ 1,
(63)
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Figure 5 The exact (56) and approximate q(t), for p = 0.1% with (a) λ = 0 and (b) λ = {10–17, 10–16, 10–15}, for
Example 1

Table 3 The rmse values (55), for p ∈ {0, 0.01%, 0.1%} with λ = 0, 10–19, 10–18, 10–17, and 10–16 of
Example 1

λ p = 0 p = 0.01% p = 0.1%

0 0.3861 0.8750 24.6756
10–19 0.0767 0.0853 0.1012
10–18 0.0437 0.0513 0.0733
10–17 0.0394 0.0406 0.0848
10–16 0.0560 0.0578 0.0825

BCs

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, 0 ≤ t ≤ 1, (64)

and nonlocal integral condition

κ(t) =
∫ 1

0
f (x)u(x, t) dx =

3e–t

2
, 0 ≤ t ≤ 1, (65)
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Figure 6 The errors between the exact (57) and approximate u(x, t) with λ being: (a) 0, (b) 10–17, (c) 10–16,
and (d) 10–15, with p = 0.1% noise, for Example 1
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Figure 7 (a) The function F in (52) and the exact (68) and approximate q(t), with p = 0, and (b) without and
(c) with regularization, for Example 2
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Figure 8 The exact (68) and approximate q(t), for p = 0.01% with (a) λ = 0 and (b) λ = 10–8, 10–7, for
Example 2

where f (x) = 1 and

g(x, t) = e–tx
(
314 + 40x2 + 6x4 + π

(
7 – 10x2 + 3x4) sin2(π t)

)
. (66)

The exact solution is

u(x, t) =
(
3x5 – 10x3 + 7x

)
e–t , (67)

q(t) = –1 – π sin2(π t). (68)

Then, with this input data, the conditions of Theorems 1 and 2 are fulfilled and so the
solution is unique. The initial guess for q for this example has been chosen as

q0(tj) = q(0) = –1, j = 1, 2, . . . , N . (69)
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Figure 9 The exact (68) and approximate q(t), for p = 0.1% with (a) λ = 0 and (b) λ = 10–8, 10–7, for Example 2

As in Example 1, we start with h = k = 0.025 and pick the situation where p = 0 in the
data κ(t), as in (54). Figure 7(a) illustrates F from (52), which shows how a monotonically
declining convergence is attained in 20 iterations with a specified tolerance of O(10–8).
Figures 7(b) and 7(c) show the computed potential q(t) without and with regularization,
respectively, yielding rmse(q) ∈ {0.1916, 0.0731, 0.0549, 0.0591}, as shown in Table 4. De-
spite the fact that no random noise is simulated using perturbed data (53), numerical noise
arises owing to the discrepancy between the QBS collocation solution with a fixed mesh
and the actual values of (63)–(68). As a result, regularization is required to reestablish
the stability in the q(t) solution. It is determined that λ = 10–10 produces a more stable
potential coefficient solution.

Now we will test the solution’s stability using noisy data. We use (53) for κ(t) and in-
clude p ∈ {0.01%, 0.1%} for replicating the input noisy data. In Figs. 8 and 9, the poten-
tial q(t) is shown. Figures 8(a) and 9(a) demonstrate the determined potential q(t), where
the unstable results are obtained if λ = 0, with rmse(q) = 1.7669 and 24.5476. To stabi-
lize q(t), we use regularization with λ ∈ {10–9, 10–8, 10–7} for p = 0.01% noise, resulting in
rmse(q) ∈ {0.0693, 0.0688, 0.1369}, and λ ∈ {10–8, 10–7, 10–6} for p = 0.1% noise, resulting
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Figure 10 The exact (67) and approximate u(x, t), and absolute errors with p = 0.1% and λ (a) 0, (b) 10–8, and
(c) 10–7, for Example 2

in rmse(q) ∈ {0.1939, 0.1678, 0.3608}. Figures 8(b) and 9(b) demonstrate the reconstructed
potential for various λ, with the best solution achieved for λ = 10–8 and 10–7, respectively.
The influence of λ > 0 in lowering the unstable behavior of the reconstructed u(x, t) can
be identified in Fig. 10, which shows the precise (67) and approximated u(x, t) with ab-
solute error norms. We refer to Table 4 for further information on the rmse values (55)
and the minimum value of F (52) at the last iteration. For the stable reconstruction of q(t),
identical results may be derived.
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Table 4 The rmse and the least value of (52) for p ∈ {0, 0.01%, 0.1%}, with λ = 10–10, 10–9, 10–8, 10–7,
and 10–6 at the last iteration for Example 2

p λ rmse(q) Minimum values of (52)

0 0 0.1916 2.9E–8
10–10 0.0731 3.6E–7
10–9 0.0549 2.2E–6
10–8 0.0591 1.9E–5

0.01% 0 1.7669 1.9E–7
10–9 0.0693 3.5E–6
10–8 0.0688 2.1E–5
10–7 0.1369 1.8E–4

0.1% 0 24.5476 2.4E–6
10–8 0.1939 1.5E–4
10–7 0.1678 3.1E–4
10–6 0.3608 1.6E–3

8 Conclusions
The reconstruction problem of the potential q(t) along with u(x, t) from the nonlocal
integral condition in a higher-order PDE has been solved numerically. The QBS col-
location technique has been applied for discretizing the direct problem. The solution
has been stabilized using the Tikhonov regularization method. From the obtained re-
sults, it has been deduced that stable accurate approximations for q(t) have been ob-
tained for λ ∈ {10–18, 10–17, 10–16}, when the noise p = 0, and for λ ∈ {10–17, 10–16}, when
p ∈ {0.01%, 0.1%}. For a nonlinear potential coefficient q(t), it has been observed that sta-
ble accurate approximations for q(t) have been obtained for λ = 10–10, when the noise
p = 0, and for λ ∈ {10–8, 10–7}, when p ∈ {0.01%, 0.1%}. The stability has been analyzed,
demonstrating that the present technique is unconditionally stable for the discretized sys-
tem of the higher-order equation of motion of a homogeneous elastic beam.
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