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Abstract
Image denoising approaches based on partial differential modeling have attracted a
lot of attention in image processing due to their high performance. The nonlinear
anisotropic diffusion equations, specially Perona–Malik model, are powerful tools that
improve the quality of the image by removing noise while preserving details and
edges. In this paper, we propose a powerful and accurate local meshless algorithm to
solve the time-fractional Perona–Malik model which has an adjustable fractional
derivative making the control of the diffusion process more convenient than the
classical one. In order to overcome the complexities of the problem, a suitable
combination of the compactly supported radial basis function method and operator
splitting technique is proposed to convert a complex time-fractional partial
differential equation into sparse linear algebraic systems that standard solvers can
solve. The numerical results of classical and fractional models are explored in different
metrics to demonstrate the proposed scheme’s effectiveness. The numerical
experiments confirm that the method is suitable to denoise digital images and show
that the fractional derivative increases the model’s ability to remove noise in images.
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1 Introduction
Nowadays, images have tremendous applications in scientific studies and should be of
good quality in order to be useful [1, 2]. So, image denoising has an important role in
image processing and computer vision to prepare images with better resolutions. Partial
differential equations (PDEs) are widely used in different parts of image processing, such
as filtering, restoration, segmentation, edge enhancement, detection [3], and especially
denoising. There are some PDE models that are applied for image and signal denoising,
such as diffusion equation, geometric curvature equation, and TV flow [4, 5]. In the models
based on the diffusion equation, the PDE model uses a nonlinear anisotropic diffusion to
enhance the quality of an image by removing noise while preserving details and edges
[6]. In this paper, we focus on the time-fractional Perona–Malik model (FPMM) with the
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Caputo fractional derivative for temporal derivative denoted by C
0 Dα

t . The FPMM model
is defined as follows:

C
0 Dα

t u(x, y, t) = div
(
g
(∥∥∇Gσ ∗ u(x, y, t)

∥∥)∇u(x, y, t)
)
,

(x, y, t) ∈ � × I, 0 < α < 1,

∂u
∂n

= 0, (x, y, t) ∈ ∂� × I,

u(x, y, 0) = u0, (x, y) ∈ �,

(1.1)

where � ⊆R
2, I = (0, T) is the scaling time interval, α is the order of time fractional deriva-

tive, and n is the unit outward normal to the boundary of �. The Caputo fractional deriva-
tive of order α is defined as

C
0 Dα

t u(x, y, t) =
1

�(1 – α)

∫ t

0

1
(t – τ )α

∂u(x, y, τ )
∂τ

dτ , (1.2)

in which �(z) =
∫ ∞

0 e–ssz–1 ds has the following property:

�(z + 1) = z�(z – 1).

The nonlinear anisotropic diffusion filtering has been widely used in image processing
and performed significantly [7–9]. Koenderink found a relationship between the solution
of a heat equation with an initial noisy image and its convolution with Gaussian function
at each scale [10]. In fact, the denoising process can be described as the solution of the
following linear diffusion equation:

∂u(x, y, t)
∂t

= �u(x, y, t), u(x, y, 0) = u0. (1.3)

The solution of this equation can be obtained by the following integral convolution:

u(x, y, t) = Gt ∗ f , (1.4)

where Gt is the Gaussian function with standard deviation σ . In this model, u(x, y, 0) is
the initial noisy image whose noise reduces over time. However, this model also fades the
image on the edges which leads to losing some essential data of the image. So, Perona and
Malik, in 1990, proposed a nonlinear diffusion model, called Perona–Malik model (PMM),
to overcome the problems of previous models [11]. Actually, they used the gradient of the
actual image u(x, y, t) as feedback into a diffusion process and introduced the following
anisotropic diffusion equation with a zero Neumann boundary condition:

∂u(x, y, t)
∂t

= div
(
g
(∥∥∇u(x, y, t)

∥∥)∇u(x, y, t)
)
, (1.5)

where g(·) is a smooth decreasing function in terms of ‖∇u(x, y, t)‖, which controls the
diffusion strength and is called the diffusion coefficient. This function is considered such
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that becomes equal to 1 inside the region and tends to zero near the edges. A typically
used diffusion coefficient is [12]

g
(∥∥∇u(x, y, t)

∥
∥)

=
1

1 + ( ‖∇u(x,y,t)‖
K )2

, (1.6)

where K is an edge detector threshold parameter that decides the amount of diffusion to
take place.

However, PMM is an ill-posed problem as it is a degenerate and backward diffusion
equation. In other words, if the signal-to-noise ratio (SNR) is very low, most of noises
remain on the edges. Therefore, Catté et al. proposed the regularized PMM to triumph
over this disadvantage [13]. This model is defined as follows:

∂u(x, y, t)
∂t

= div
(
g
(∥∥∇Gσ ∗ u(x, y, t)

∥
∥)∇u(x, y, t)

)
, (1.7)

where Gσ ∈ C∞(R2) is Gauss kernel with variance σ , and we have

‖∇Gσ ∗ u‖ =
((

∂Gσ

∂x
∗ ũ

)2

+
(

∂Gσ

∂y
∗ ũ

)2) 1
2

, (1.8)

in which ∗ represents the standard convolution and ũ is an extension of u to R
2 specified

by a periodic reflection through the boundary of the problem.
PMM is a powerful model which has been utilized in nonlinear data filtration, im-

age restoration, noise removal, and edge detection [11, 13, 14]. For instance, scientists
used PMM in optical coherence tomography [15], radiography image processing [16],
etc. Moreover, solving the PMM model with numerical algorithms is a challenging prob-
lem and some researchers have been trying to improve suitable approaches to simulate
its solution. In [17], the domain decomposition approach combined with the finite dif-
ference method was proposed to solve nonlinear problems in image denoising. Kamra-
nian and Dehghan developed a meshfree finite point method to solve PMM [12]. Gu, in
2020, proposed a finite element approach for two Peron–Malik and Yu–Kaveh models
and compared the obtained results with the finite difference method [4]. Moreover, Hjouji
et al. proposed a mixed finite element method for bivariate PMM [18]. Also, Sidi Ammi
and Jamiai applied finite difference and Legendre spectral methods to a time-fractional
diffusion–convection equation and its application for image processing [3].

Fractional integration and fractional differentiation are generalizations of integer–order
ones which have various applications in modeling the phenomena in different fields of
sciences [3, 19–22], and scientists have been trying to develop various proper numerical
approaches for solving fractional differential equations [23–28]. Fractional calculus has a
long history in mathematics [29, 30], and various definitions and operators are provided
to express the fractional derivative, including Grunwald–Letnikow [31], Marchaud [31],
Riemann–Liouville [31, 32], Caputo [33, 34], Riesz [35, 36], etc. [37–39]. Recently, frac-
tional calculus has also been used for many image processing applications such as image
restoration, segmentation, texture enhancement, edge detection, image encryption, and
image denoising to improve their performances [19, 40–42].

FPMM is an extension of the classical one whose temporal derivatives are taken in the
Caputo sense, which enhances model’s applicability. It is worth mentioning that if α = 1,
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the classical model is obtained. The fractional model, in comparison with the classical
one, has an extra parameter α which can enhance the model’s flexibility and improve its
performance.

In recent decades, meshless algorithms have been among the most powerful numerical
techniques utilized to approximate solutions of complex differential equations. Unlike the
other methods which need mesh generation, meshless methods only work with a scattered
set of collocation points without any prior information on the domain of the problem.
This property drastically reduces the computational cost compared to the other numer-
ical methods which need mesh generation [43]. In addition, using radial basis functions
(RBFs) in meshless methods has some advantages like spectral convergence for smooth
functions in even complex geometries, ease of implementation, and is appropriate for
high-dimension problems [44]. RBFs can be divided into two categories, namely global
and local. Global RBFs (e.g., Gaussian, Multiquadric, etc.) have a severe drawback, in par-
ticular they have a dense and ill-conditioned coefficient matrix of the obtained linear sys-
tem [45–47]. On the other hand, compactly-supported radial basis functions (CS–RBFs)
such as Wendland’s functions are defined on the local arbitrary subdomain [48–51] which
makes them more stable. The CS–RBF method is more stable due to the sparsity of the
obtained coefficient matrix, but it is not as accurate as the global RBFs. CS–RBFs have
been introduced by Wu and Wendland for the first time for scattered data interpolation
and have been used broadly in numerical simulations [52].

Since FPMM is applied to images, we usually face a large domain, making the numer-
ical simulation difficult. In the current paper, with the aid of the operator splitting (OS)
method, PMM is divided into two partial differential equations. Then, the CS–RBF ap-
proach is applied to obtained PDEs. Finally, the subproblems reduce to linear algebraic
equations of small dimension that can be efficiently solved by a proper algorithm such as
the LU factorization technique. Finally, we evaluate the proposed method by applying it to
some examples for image denoising. To summarize, we propose an advanced and proper
numerical method based on OS and CS–RBF schemes to remove noise by FPMM. This ap-
proach has some significant advantages. First, the model considered in this paper is FPMM
which has a fractional order derivative that improves model’s ability in noise removal com-
pared to the classical PMM. Second, the proposed approach converts a complex nonlinear
system to some simple linear ones and dramatically decreases computational costs. Finally,
as we use a local RBF method, the obtained linear systems are sparse and well-posed in
comparison with global approaches that can be solved by standard solvers. Moreover, we
report the obtained numerical results with a proper value of α with different test cases
and compare them with PMM in different metrics, which confirms the high accuracy and
effectiveness of the proposed algorithm.

The organization of this paper is as follows: In Sect. 2, the basic properties of the al-
gorithm presented in this work, such as the details about fractional derivative, OS, and
CS–RBF collocation approaches, are briefly described. The numerical results obtained by
the proposed method are presented and discussed in Sect. 3, and some concluding re-
marks are given in Sect. 4.

2 Proposed approach
In this section, the Trotter OS scheme [53] is applied to Eq. (1.1) and converts it to some
simpler PDEs. Then, the time dimension is discretized by a backward Euler approach.
Finally, the obtained equations are solved by the CS–RBF method.
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2.1 Temporal discretization
In this part, we apply a divide-and-conquer approach which is known as the OS method,
to divide Eq. (1.1) into two subproblems in separate directions. Then, the Caputo time
derivative is discretized in each subproblem.

2.1.1 Trotter splitting scheme
First, in order to reduce the complexity of problem (1.1), a first-order OS method called
Trotter splitting approach is employed on Eq. (1.1) to solve FPMM along separate direc-
tions. Using this scheme reduces the size of obtained matrices and thus substantially re-
duces the computational complexity. Consider the time interval I which is divided into
M + 1 equally spaced steps t0, t2, . . . , tM , tk = k�t, k = 0, 1, . . . , M, and �t = T

M . Equation
(1.1) can be written as follows:

C
0 Dα

t u = Lx(u) + Ly(u), (2.1)

where Lx and Ly are suboperators on function u as follows:

Lx(u) =
∂

∂x
g
(‖∇Gσ ∗ u‖) ∂

∂x
u + g

(‖∇Gσ ∗ u‖) ∂2

∂x2 u, (2.2)

Ly(u) =
∂

∂y
g
(‖∇Gσ ∗ u‖) ∂

∂y
u + g

(‖∇Gσ ∗ u‖) ∂2

∂y2 u. (2.3)

By employing the Trotter splitting method, the approximate solution of u(x, y, tk+1), which
can simply be written as uk+1, is obtained as uk+1 = [S�t

x S�t
y ]uk , in which S�t

x and S�t
y

are C
0 Dα

t u∗ = Lx(u∗) and C
0 Dα

t u∗∗ = Ly(u∗∗), respectively. Finally, we have uk+1 = u∗∗k+1 . The
interested readers can see [43, 54–56] for more details about the OS methods.

Now, a proper scheme should be proposed to discretize the Caputo time derivative op-
erator C

0 Dα
t in the subproblems.

2.1.2 Discretization of Caputo derivative
At each time step tk , k = 0, 2, . . . , M, using the backward Euler approach, the time fractional
derivative is approximated as follows:

C
0 Dα

t u(x, y, tk+1) =
1

�(1 – α)

k∑

j=0

∫ tj+1

tj

1
(tk+1 – τ )α

∂

∂τ
u(x, y, τ ) dτ . (2.4)

So, we have

C
0 Dα

t u(x, y, tk+1)

=
1

�(1 – α)

k∑

j=0

u(x, y, tj+1) – u(x, y, tj)
�t

∫ tj+1

tj

dτ

(tk+1 – τ )α
+ Rk+1,

(2.5)

in which Rk+1 is the truncation error and we have

Rk+1 ≤ C
[

1
�(1 – α)

k∑

j=0

∫ tj+1

tj

tj+1 + tj – 2τ

(tk+1 – τ )α
dτ + O

(
�t2)

]

, (2.6)
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where C is a constant that depends only on u. Based on Lemma 3.1 in [57] and the fact
that �(2 – α) ≥ 2 for all α ∈ [0, 1], it can be concluded that

∣
∣∣∣
∣

1
�(1 – α)

k∑

j=0

∫ tj+1

tj

tj+1 + tj – 2τ

(tk+1 – τ )α
dτ

∣
∣∣∣
∣
≤ 2�t2–α .

So

|Rk+1| ≤ C�t2–α . (2.7)

Moreover, from Eq. (2.4), the following equations can be computed:

1
�(1 – α)

k∑

j=0

∫ tj+1

tj

1
(tk+1 – τ )α

∂

∂τ
u(x, y, τ ) dτ

=
1

�(1 – α)

k∑

j=0

u(x, y, tj+1) – u(x, y, tj)
�t

∫ tk+1–j

tk–j

dt
tα

=
1

�(1 – α)

k∑

j=0

u(x, y, tk+1–j) – u(x, y, tk–j)
�t

∫ tj+1

tj

dt
tα

=
1

�(2 – α)

k∑

j=0

u(x, y, tk+1–j) – u(x, y, tk–j)
�tα

(
(j + 1)1–α – j1–α

)
.

(2.8)

The discrete fractional differential operator Dα
t is as follows:

Dα
t =

1
�(2 – α)

k∑

j=0

u(x, y, tk+1–j) – u(x, y, tk–j)
�tα

(
(j + 1)1–α – j1–α

)
. (2.9)

Thus, we can write

C
0 Dα

t u(x, y, tk+1) = Dα
t + Rk+1. (2.10)

So Dα
t is an approximation to C

0 Dt and we have

C
0 Dα

t u(x, y, tk+1)

≈ 1
�(2 – α)(�t)α

k∑

j=0

(
(j + 1)1–α – j1–α

)(
u(x, y, tk–j+1) – u(x, y, tk–j)

)
.

(2.11)

For the sake of simplicity, we define Cα
�t = 1

�(2–α)(�t)α , Aα
j = (j + 1)1–α – j1–α , and u(x, y, tk) =

uk .

Remark 2.1 From Theorems 3.1 and 3.2 in [57], it can be deduced that the proposed tem-
poral discretization scheme is unconditionally stable for �t > 0 and has globally (2 – α)-
order accuracy for 0 < α < 1.
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Now, by using Eq. (2.11), the subproblems are discretized along the temporal dimension
as follows:

Cα
�t

[

u∗k+1
– uk +

k∑

j=1

(
uk+1–j – uk–j)Aα

j

]

=
∂

∂x
g
(∥∥∇Gσ ∗ uk∥∥) ∂

∂x
u∗k+1

+ g
(∥∥∇Gσ ∗ uk∥∥) ∂2

∂x2 u∗k+1,

(2.12)

Cα
�t

[

u∗∗k+1
– u∗k

+
k∑

j=1

(
u∗k+1–j

– u∗k–j)Aα
j

]

=
∂

∂y
g
(∥∥∇Gσ ∗ u∗k ∥∥) ∂

∂y
u∗∗k+1

+ g
(∥∥∇Gσ ∗ u∗k ∥∥) ∂2

∂y2 u∗∗k+1.

(2.13)

2.2 Spatial discretization
Before going to the space discretization of problems (2.12) and (2.13), we focus on the con-
volution term Gσ ∗uk(Gσ ∗u∗k ). Since the kernel Gσ is smooth, the term Gσ ∗uk(Gσ ∗u∗k )
can be replaced by a heat equation with initial condition uk(u∗k ). These heat equations
are solved by the OS method in conjunction with the Crank–Nicolson and CS–RBF ap-
proaches. The solutions of heat equations replaced in Eqs. (2.12) and (2.13) are represented
by uc and u∗c , respectively.

By substituting of the solution of the heat equations, Eqs. (2.12) and (2.13) can be con-
sidered in the following forms:

∂

∂x
g
(∥∥∇uc∥∥) ∂

∂x
u∗k+1

+ g
(∥∥∇uc∥∥) ∂2

∂x2 u∗k+1 – Cα
�tu

∗k+1

= Cα
�t

k∑

j=1

(
uk+1–j – uk–j)Aα

j – Cα
�tu

k ,
(2.14)

∂

∂y
g
(∥∥∇u∗c∥∥) ∂

∂y
u∗∗k+1 + g

(∥∥∇u∗c∥∥) ∂2

∂y2 u∗∗k+1 – Cα
�tu

∗∗k+1

= Cα
�t

k∑

j=1

(
u∗k+1–j

– u∗k–j)Aα
j – Cα

�tu
∗k

.
(2.15)

By obtaining uc and u∗c , functions g(‖∇uc‖) and g(‖∇u∗c‖) are computed as follows:

g
(∥∥∇uc∥∥)

=
1

1 +
( ∂uc

∂x )2+( ∂uc
∂y )2

K2

, g
(∥∥∇u∗c∥∥)

=
1

1 +
( ∂u∗c

∂x )2+( ∂u∗c
∂y )2

K2

.

Moreover, ∂g(‖∇uc‖)
∂x and ∂g(‖∇u∗c ‖)

∂y can be obtained by the chain rule.
Now, CS–RBF method is applied on Eqs. (2.14) and (2.15) which has two main benefits.

First, as there is no need for any mesh generation for constructing the shape functions, the
CS–RBFs scheme is considered truly meshless, and the coefficient matrix of this approach
is well-conditioned and can be solved by common methods easily. Moreover, the local
RBFs like Wendland CS–RBFs do not have a shape parameter and are more stable than
global ones.
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At the first step of the space discretization, the nodal points over the domain � should
be selected at each time step tk . We consider pixels of the images, i.e., X × Y where X =
{x1, . . . , xNx} and Y = {y1, . . . , yNy}, as the mesh nodes on the boundary and inside of the
domain. In order to approximate uk for all k ≥ 0, u0 is computed by the interpolation,
then uk for k > 0 is obtained by solving Eq. (2.12) using the CS–RBFs scheme. In addition,
CS–RBFs are symmetric with respect to their center points by the following definition:

Definition 2.2 ([45]) A function φ : Rs → R is called radial provided there exists a uni-
variate function ϕ : [0,∞) →R such that

φ(x) = ϕ(r), where r = ‖x‖ (2.16)

and ‖ · ‖ is some norm on R
s, usually the Euclidean norm.

Among different choices of existing radial basis functions, in this paper, Wendland’s
compactly supported radial basis functions (WCS–RBFs) with C2 smoothness are selected
because they do not include any shape parameters that make these functions easier to use.
These functions are defined as follows:

φi(x) = (1 – δri)4
+(1 + 4δri), (2.17)

in which ri = ‖x – xi‖ is the distance from node xi to x, and δ is the size of support for the
radial function φi(x). Moreover, function (1 – δri)4

+ is defined such that for 0 ≤ δri < 1 it is
equal to (1 – δri)4, otherwise is zero.

To approximate functions uk , u∗k+1 , and u∗∗k+1 in � over center points (xi, yj), i =
1, 2, . . . , Nx, j = 1, 2, . . . , Ny, the CS–RBF interpolation approximations ûk , û∗k+1 , and û∗∗k+1

are defined as

ûk(x, yj) =
Nx∑

i=0

θ k
ij φi(x), j = 1, 2, . . . , Ny, (2.18)

û∗k+1
(x, yj) =

Nx∑

i=1

λk+1
ij φi(x), j = 1, 2, . . . , Ny, (2.19)

û∗∗k+1
(xi, y) =

Ny∑

j=1

γ k+1
ij φj(y), i = 1, 2, . . . , Nx, (2.20)

in which φi and φj are RBFs based on centers {xi}Nx
i=0 and {yj}Ny

j=0. Additionally, λij and γij are
unknown coefficients which should be specified.

Finally, substituting the approximation function of Eq. (2.19) into Eq. (2.14) associated
to the x-direction, for all nodes in �, the matrix forms of their discrete equations are
obtained as follows:

Aj�
k+1
j = Bj, j = 1, 2, . . . , Ny, (2.21)
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where �k+1
j = [λk+1

1j ,λk+1
2j , . . . ,λk+1

Nxj ]T , Aj and Bj are Nx × Nx matrix and Nx × 1 vector, re-
spectively, defined as

Aj = D
(
Gj

xϒx + Gj�x – Cα
�t�x

)
+ Hx, (2.22)

Bj = D

(

Cα
�t

k∑

p=1

Aα
k
(
�x�

p+1–k
j – �x�

p–k
j

)
– Cα

�t�x�
k
j

)

, (2.23)

where

�x =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

φ1(x1) φ2(x1) . . . φNx–1(x1) φNx (x1)
φ1(x2) φ2(x2) . . . φNx–1(x2) φNx (x2)

...
...

. . .
...

...
φ1(xNx–1) φ2(xNx–1) . . . φNx–1(xNx–1) φNx (xNx–1)
φ1(xNx ) φ2(xNx ) . . . φn(xNx ) φNx (xNx )

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

,

ϒx =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎣

φ′
1(x1) φ′

2(x1) . . . φ′
Nx–1(x1) φ′

Nx (x1)
φ′

1(x2) φ′
2(x2) . . . φ′

Nx–1(x2) φ′
Nx (x2)

...
...

. . .
...

...
φ′

1(xNx–1) φ′
2(xNx–1) . . . φ′

Nx–1(xNx–1) φ′
Nx (xNx–1)

φ′
1(xNx ) φ′

2(xNx ) . . . φ′
n(xNx ) φ′

Nx (xNx )

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

�x =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

φ′′
1 (x1) φ′′

2 (x1) . . . φ′′
Nx–1(x1) φ′′

Nx (x1)
φ′′

1 (x2) φ′′
2 (x2) . . . φ′′

Nx–1(x2) φ′′
Nx (x2)

...
...

. . .
...

...
φ′′

1 (xNx–1) φ′′
2 (xNx–1) . . . φ′′

Nx–1(xNx–1) φ′′
Nx (xNx–1)

φ′′
1 (xNx ) φ′′

2 (xNx ) . . . φ′′
n(xNx ) φ′′

Nx (xNx )

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

D = diag(0, 1, 1, 1, . . . , 1, 0),

Gj = diag
(
g
(∥∥∇uc(x1, yj)

∥
∥)

, g
(∥∥∇uc(x2, yj)

∥
∥)

,

. . . , g
(∥∥∇uc(xNx–1, yj)

∥
∥)

, g
(∥∥∇uc(xNx , yj)

∥
∥))

,

Gj
x = diag

(
∂

∂x
g
(∥∥∇uc(x1, yj)

∥
∥)

,
∂

∂x
g
(∥∥∇uc(x2, yj)

∥
∥)

,

. . . ,
∂

∂x
g
(∥∥∇uc(xNx–1, yj)

∥
∥)

,
∂

∂x
g
(∥∥∇uc(xNx , yj)

∥
∥))

,

Hx is an Nx × Nx matrix whose first and last rows are first and last rows of ϒx and the
other rows contain only zero elements. Moreover,

�m
j =

(
θm

1j , θm
2j , . . . , θm

Nxj
)T ,

that are known coefficients computed in previous iterations. Indeed, there are Ny linear
systems of Nx algebraic equations which are well-posed and can be solved by a standard
approach such as LU factorization. By solving these systems, the coefficient vectors �k+1

j

are obtained and the approximation of û∗k+1 is computed as follows:

U∗k+1
= �

[
�k+1

1 ,�k+1
2 , . . . ,�k+1

Ny

]
, (2.24)
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in which

U∗k+1
=

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

u∗k+1 (x1, y1) u∗k+1 (x1, y2) . . . u∗k+1 (x1, yNy–1) u∗k+1 (x1, yNy )
u∗k+1 (x2, y1) u∗k+1 (x2, y2) . . . u∗k+1 (x2, yNy–1) u∗k+1 (x2, yNy )

...
...

. . .
...

...
u∗k+1 (xNx–1, y1) u∗k+1 (xNx–1, y2) . . . u∗k+1 (xNx–1, yNy–1) u∗k+1 (xNx–1, yNy )
u∗k+1 (xNx , y1) u∗k+1 (xNx , y2) . . . u∗k+1 (xNx , yNy–1) u∗k+1 (xNx , yNy )

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

,

The same procedure is applied on Eq. (2.15); as a result, the following system is obtained:

Ai�
k+1
i = Bi, i = 1, 2, . . . , Nx, (2.25)

where �k+1
i = [γ k+1

i1 ,γ k+1
i2 , . . . ,γ k+1

iNy ]T , Ai and Bi are Ny × Ny matrix and Ny × 1 vector, re-
spectively, defined as follows:

Ai = D
(
G̃i

yϒy + G̃i�y – Cα
�t�y

)
+ Hy, (2.26)

Bi = D

(

Cα
�t

k∑

p=1

Aα
k
(
�y�

p+1–k
i – �y�

p–k
i

)
– Cα

�t�y�
k
i

)

. (2.27)

Vector �
m
i is calculated by the multiplying �–1 in the mth column of (U∗k )T ; �y, ϒy, and

�y are Ny × Ny matrices which are constructed same as �x, ϒx, and �x, respectively, with
{y1, y2, . . . , yNy}. Moreover, Hy is an Ny × Ny matrix like Hx whose first and last rows are
equal to the first and the last rows of matrix ϒy; G̃i and G̃i

y have the following structures:

G̃i = diag
(
g
(∥∥∇u∗c

(xi, y1)
∥∥)

, g
(∥∥∇u∗c

(xi, y2)
∥∥)

,

. . . , g
(∥∥∇u∗c

(xi, yNy–1)
∥∥)

, g
(∥∥∇u∗c

(xi, yNy )
∥∥))

,

G̃i
y = diag

(
∂

∂y
g
(∥∥∇u∗c (xi, y1)

∥
∥)

,
∂

∂y
g
(∥∥∇u∗c (xi, y2)

∥
∥)

,

. . . ,
∂

∂y
g
(∥∥∇u∗c

(xi, yNy–1)
∥∥)

g(xi, yNy–1),
∂

∂y
g
(∥∥∇u∗c

(xi, yNy )
∥∥))

,

By solving Nx systems (2.25), û∗∗k+1 is calculated as

U∗∗k+1
= �

[
�k+1

1 ,�k+1
2 , . . . ,�k+1

Nx

]
, (2.28)

in which

U∗∗k+1 =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

u∗∗k+1 (x1, y1) u∗∗k+1 (x1, y2) . . . u∗∗k+1 (x1, yNy–1) u∗∗k+1 (x1, yNy )
u∗∗k+1 (x2, y1) u∗∗k+1 (x2, y2) . . . u∗∗k+1 (x2, yNy–1) u∗∗k+1 (x2, yNy )

...
...

. . .
...

...
u∗∗k+1 (xNx–1, y1) u∗∗k+1 (xNx–1, y2) . . . u∗∗k+1 (xNx–1, yNy–1) u∗∗k+1 (xNx–1, yNy )
u∗∗k+1 (xNx , y1) u∗∗k+1 (xNx , y2) . . . u∗∗k+1 (xNx , yNy–1) u∗∗k+1 (xNx , yNy )

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

.

Finally, uk+1(xi, yj), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny are obtained from (U∗∗k+1 )T .
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Algorithm 1 The developed numerical algorithm to solve FPMM
Input:Noisy image (u0), �t, M, K , and α

Compute Wendland’s functions and their derivatives on the pixels
for i = 1 to M

uc
1 ← Solve ∂uc

∂t = ∂2uc

∂x2 with initial condition ui–1

uc ← Solve ∂uc

∂t = ∂2uc

∂y2 with initial condition uc
1

Compute g(‖∇uc‖) and ∂g(‖∇uc‖)
∂x

u∗i ← Solve Eq. (2.14) by the proposed method
u∗c

1 ← Solve ∂u∗c

∂t = ∂2u∗c

∂x2 with initial condition u∗i

u∗c ← Solve ∂u∗c

∂t = ∂2u∗c

∂y2 with initial condition u∗c
1

Compute g(‖∇u∗c‖) and ∂g(‖∇u∗c ‖)
∂y

u∗∗i ← Solve Eq. (2.15) by the proposed method
ui ← Transpose of u∗∗i

end for
Output:Denoised image (uM)

We summarize the proposed approach in Algorithm 1.

3 Numerical experiments
This section is devoted to evaluating the performance of the proposed algorithm by ap-
plying it to some examples. This section includes a 512 × 512 image (Lena) and two
256 × 256 images (Cameraman and Racoon). We consider Signal-to-Noise Ration (SNR),
Peak Signal-to-Noise Ration (PSNR), Structure Similarity Index Measure (SSIM), and
Mean Squared Error as four metrics to measure the performance of denoising with FPMM
and PMM which are defined as follows:

SNR = 10 log

( ∑N
i=1

∑M
j=1 û2(xi, yj)

∑N
i=1

∑M
j=1(û(xi, yj) – u(xi, yj))2

)
, (3.1)

PSNR = 10 log

(
MNκ2

∑N
i=1

∑M
j=1(û(xi, yj) – u(xi, yj))2

)
, (3.2)

MSE =
1

MN

N∑

i=1

M∑

j=1

(
û(xi, yj) – u(xi, yj)

)2, (3.3)

SSIM =
(2μuμû + c1)(2σuû + c2)

(μ2
u + μ2

û + c1) + (σ 2
u + σ 2

û + c2)
, (3.4)

in which u is the uncorrupted image, κ is its maximum intensity value, û is the recon-
structed image, and M ×N is the size of the image. Moreover, μu and μû are the averaging
over all the pixel values of the images, σ 2

û , σ 2
u are the variance of all the pixel values of the

images and σuû is the covariance of u and û. The c1, and c2 coefficients are also defined as
follows:

c1 = (k1L)2, c2 = (k2L)2,

where k1, k2 � 1 are constant coefficients and L is the dynamic range of pixel values.
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In order to illuminate the validity of the proposed method, different kinds of noise, i.e.,
Gaussian, Poisson, and speckle, are added to images, and the denoising process results of
FPMM and PMM are demonstrated for each example. Moreover, the appropriate value of
α in FPMM is selected according to SNR and PSNR indicators. Also, the stopping criterion
for the denoising process is the value of PSNR that should be maximized. All the imple-
mentations are done with MATLAB 2017a, on a computer with the following hardware
configuration: Intel Core i7, 16 GB RAM.

3.1 Test case 1
As the first example, we consider the image of Lena of size 512 × 512 pixels. We set �t =
10–3, δ = 5. Based on the value of δ, the obtained coefficient matrices are well-posed, and
their condition numbers are almost 107. According to Fig. 1, α = 0.9 can be a good choice
for this example. Figure 2 shows the results of FPMM with α = 0.9 and PMM for different
input noises. This figure implies that FPMM overall is better than the classic one and is
applicable for all types of noise. Table 1 reports this example’s result for different Gaussian
noise variances. It seems that by increasing the noise variance, FPMM performs better
than PMM.

Figure 1 PSNR and SNR for different values of α in test case 1

Table 1 Quantitative analysis of obtained results of FPMM and PMM for denoising the test case 1
with the Gaussian noise

SNR PSNR SSIM MSE

Noisy image (variance 0.01) 14.5313 20.0380 0.2617 644.5915
FPMM (α = 0.9, K = 100, iteration = 20) 23.4089 29.1101 0.7721 89.6835
PMM (K = 4, iteration = 20) 22.5107 28.1970 0.7148 100.4876

Noisy image (variance 0.05) 13.2799 17.5327 0.2599 1.1476e+03
FPMM (α = 0.9, K = 100, iteration = 32) 20.9961 26.7036 0.5994 189.9814
PMM (K = 100, iteration = 32) 20.5716 25.8288 0.7525 169.9014

Noisy image (variance 0.09) 8.5878 13.6391 0.0980 2.81e+03
FPMM (α = 0.9, K = 105, iteration = 50) 19.4164 25.1185 0.5634 231.1342
PMM (K = 100, iteration = 50) 19.1496 24.18522 0.5023 245.7101
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Figure 2 Test case 1: (a) the original image Lena, (b) noisy image with Gaussian noise (variance 0.02),
(c) denoised image of the Gaussian noise by FPMM (α = 0.9), (d) denoised image of the Gaussian noise by
PMM, (e) noisy image with Poisson noise, (f) denoised image of the Poisson noise by FPMM (α = 0.9),
(g) denoised image of the Poisson noise by PMM, (h) noisy image with speckle noise, (i) denoised image of
the speckle noise by FPMM (α = 0.9), and (j) denoised image of the speckle noise by PMM
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Figure 3 PSNR and SNR for different values of α in test case 2

Table 2 Quantitative analysis of obtained results of FPMM and PMM for denoising the test case 2
with the Gaussian noise

SNR PSNR SSIM MSE

Noisy image (variance 0.01) 15.0030 20.4392 0.3417 587.7050
FPMM (α = 0.9, K = 90, iteration = 20) 20.1193 25.7335 0.6025 203.2346
PMM (K = 100, iteration = 20) 17.8155 23.3781 0.5845 190.7179

Noisy image (variance 0.03) 10.6852 15.8952 0.2126 1.67e+03
FPMM (α = 0.9, K = 110, iteration = 42) 16.8226 22.4020 0.4141 419.4402
PMM (K = 100, iteration = 42) 16.3136 21.8572 0.3919 431.1948

Noisy image (variance 0.05) 8.8399 13.8739 0.1647 2.66e+03
FPMM (α = 0.9, K = 110, iteration = 70) 14.8705 20.4323 0.3384 654.0687
PMM (K = 110, iteration = 70) 14.4288 19.9599 0.3143 668.8500

3.2 Test case 2
In this case, we regard the Cameraman image of size 256×256. The parameters in this ex-
ample are �t = 10–3, δ = 5, and α = 0.9. Figure 3 represents the effect of α on the accuracy
of the denoising process. From this figure, α = 0.9 is the suitable choice for the order of
fractional derivative. Figure 4 depicts the result of denoising by FPMM (α = 0.9) and PMM
for the Gaussian (variance 0.02), Poisson, and speckle noises. In addition, Table 2 contains
the values of performance measurement metrics for FPMM and PMM against different
Gaussian noise variances. It can be concluded that FPMM is stronger than PMM, and
fractional derivative lets us denoise images more effectively.

3.3 Test case 3
In the last example, the Racoon image of size 256 × 256 is considered as the test case.
The numerical approach is applied with �t = 10–2, α = 0.8, and δ = 5. Like the previous
examples, α = 0.8 is selected based on the values of PSNR and SNR in Fig. 5. Additionally,
Table 3 analyzes the results of FPMM and PMM. Both models can eliminate the noise;
however, FPMM is much better for a higher level of noise variance. For instance, for vari-
ance 0.01, the MSE of PMM is less than that of FPMM, but as the noise intensity increases,
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Figure 4 Test case 2: (a) the original image of a cameraman, (b) noisy image with Gaussian noise (variance
0.02), (c) denoised image of the Gaussian noise by FPMM (α = 0.9), (d) denoised image of the Gaussian noise
by PMM, (e) noisy image with Poisson noise, (f) denoised image of the Poisson noise by FPMM (α = 0.9),
(g) denoised image of the Poisson noise by PMM, (h) noisy image with speckle noise, (i) denoised image of
the Speckle noise by FPMM (α = 0.9), and (j) denoised image of the speckle noise by PMM
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Figure 5 PSNR and SNR for different values of α in test case 3

Table 3 Quantitative analysis of obtained results of FPMM and PMM for denoising the test case 3
with the Gaussian noise

SNR PSNR SSIM MSE

Noisy image (variance 0.01) 15.2463 20.950 0.4278 636.1865
FPMM (α = 0.8, K = 90, iteration = 21) 20.7950 25.8404 0.7078 204.7152
PMM (K = 90, iteration = 21) 20.4959 25.4701 0.6501 195.3838

Noisy image (variance 0.03) 10.8789 15.5071 0.2445 1.80e+03
FPMM (α = 0.8, K = 95, iteration = 37) 19.0699 24.1365 0.5789 303.7352
PMM (K = 95, iteration = 37) 18.7141 23.6894 0.5689 317.1837

Noisy image (variance 0.05) 9.0813 13.5449 0.1748 2.87e+03
FPMM (α = 0.8, K = 110, iteration = 82) 17.7842 22.8075 0.4986 408.3009
PMM (K = 110, iteration = 82) 14.2662 19.2006 0.3647 734.4369

the MSE model will be better. In Fig. 6, we show the performance of FPMM (with α = 0.8)
and PMM for eliminating various kinds of noise for the Racoon example. In summary, the
superiority of FPMM with α = 0.8 is obvious in this test case.

4 Conclusion
In this study, we proposed a practical and accurate numerical approach based on the com-
bination of Trotter splitting and compactly supported radial basis function methods to
investigate the time-fractional Perona–Malik model (FPMM) which is a strong model for
image denoising. The operator splitting approach allowed us to divide the main prob-
lem with a large domain into simpler subproblems, significantly decreasing computa-
tional costs. By employing the proposed scheme, the model was reduced to sparse and
well-posed linear algebraic systems; thus, these systems could be solved by classical algo-
rithms like the LU approach. Various test cases were examined in different factors such as
SNR, PSNR, MSE, and SSIM to demonstrate the efficiency and accuracy of the proposed
method. We showed that by choosing an appropriate value for fractional derivative or-
der α, FPMM can outperform the classical one. In this paper, the proper value of α was
selected such that the values of PSNR and SNR were maximized.
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Figure 6 Test case 3: (a) the orginal image Racoon, (b) noisy image with Gaussian noise (variance 0.02),
(c) denoised image of the Gaussian noise by FPMM (α = 0.8), (d) denoised image of the Gaussian noise by
PMM, (e) noisy image with Poisson noise, (f) denoised image of the Poisson noise by FPMM (α = 0.8),
(g) denoised image of the Poisson noise by PMM, (h) noisy image with speckle noise, (i) denoised image of
the speckle noise by FPMM (α = 0.8), and (j) denoised image of the speckle noise by PMM
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