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Abstract
Parametric interpolatory curves play a vital part in geometric modeling. Cubic
Catmull–Rom spline is a well-known tool for constructing parametric interpolatory
curves, but it cannot be modified once its control points are fixed. We propose a
novel quartic Catmull–Rom spline with free parameters to tackle this issue. The
quartic Catmull–Rom spline owns shape adjustability based on inheriting the features
of the cubic Catmull–Rom spline. Some modeling examples show that the shape of
the quartic Catmull–Rom spline can realize both global adjustment and local
adjustment by changing the free parameters. In addition, we give three schemes for
optimizing the shape of the quartic Catmull–Rom spline, which can generate the
spline with minimal internal energy, the shape-preserving spline, and the
monotonicity-preserving spline. Numerical examples indicate that the proposed
schemes are effective and the quartic Catmull–Rom spline is more practical than the
cubic Catmull–Rom spline in data interpolation.
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1 Introduction
Parametric curves defined by control points have always been an important research topic
in computer-aided geometric design and computer graphics, in which approximation and
interpolation are the two most commonly used tools. This paper focuses on parametric
interpolatory curves, that is, parametric curves that interpolate their control points.

There are a large number of parametric interpolatory curve constructions that have been
developed. We cannot provide an exhaustive survey, but many of these methods can be re-
ferred to [1]. Among these methods, the cubic Catmull–Rom spline [2–5] is a well-known
parametric interpolatory curve representation. But the shape of the cubic Catmull–Rom
spline cannot be adjusted when the control points are fixed, which limits its applications
to a certain extent. For practical shape modeling, we often need to change the local shape
of the spline. The first purpose of this paper is to propose a novel quartic Catmull–Rom
spline with free parameters that can achieve local and global adjustment by keeping the
control points unchanged.
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After the new quartic Catmull–Rom spline is constructed, a further problem arises:
how to determine the optimal values of the free parameters to make the modified quar-
tic Catmull–Rom spline meet some specific requirements? Indeed, shape optimization
of parametric curves has attracted more and more attention in recent years, and various
objective functions have been proposed to optimize the shape of parametric curves. The
internal energy of curves is a widely used objective function, which usually includes stretch
energy, strain energy (also called bending energy), and curvature variation energy (often
replaced by Jerk’s energy), see [6–13]. The external energy of curves is another common
objective functional for optimizing the shape of curves, see [14–16]. Because the control
polygon can be regarded as the simplest shape-preserving interpolation, the quadratic os-
cillation in average minimization has been adopted to optimize the shape of interpolation
curves, see [17, 18]. The derivative oscillation minimization has been used to optimize
the shape of some interpolation curves because approximating the derivative of the con-
trol polygon can be regarded as the simplest way to construct monotonicity-preserving
interpolation, see [19]. Inspired by these shape optimization methods, this paper’s second
purpose is to optimize the shape of the quartic Catmull–Rom spline by minimizing the
internal energy, the quadratic oscillation in average, and the derivative oscillation.

The main contributions of this paper are as follows:
(a) We present a novel quartic Catmull–Rom spline with free parameters. The spline not

only inherits the features of the cubic Catmull–Rom spline but also has local adjustability
when the control points remain fixed.

(b) We adopt the internal energy minimization, the quadratic oscillation in average min-
imization, and the derivative oscillation minimization to determine the optimal values of
the free parameters contained in the quartic Catmull–Rom spline. The three minimization
methods can construct the quartic Catmull–Rom spline with minimal internal energy, the
shape-preserving quartic Catmull–Rom spline, and the monotonicity-preserving quartic
Catmull–Rom spline, respectively.

The rest of this paper is organized as follows. In Sect. 2, we briefly review the cubic
Catmull–Rom spline. In Sect. 3, we present the definition and characteristics of the quartic
Catmull–Rom spline. In Sect. 4, we provide three methods for optimizing the shape of the
quartic Catmull–Rom spline. Finally, we give a brief conclusion in Sect. 5.

2 Review of the cubic Catmull–Rom spline
Cubic Catmull–Rom spline is one of the common parametric curves defined by control
points. Generally, the cubic Catmull–Rom spline is given by [2–5]

ci(t) =
3∑

j=0

bj(t)pi+j, i = 0, 1, . . . , n – 3, (1)

where 0 ≤ t ≤ 1, pi (i = 0, 1, . . . , n; n ≥ 3) are control points, bj(t) (j = 0, 1, 2, 3) is the basis
which can be expressed by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b0(t) = 1
2 (–t + 2t2 – t3),

b1(t) = 1
2 (2 – 5t2 + 3t3),

b2(t) = 1
2 (t + 4t2 – 3t3),

b3(t) = 1
2 (–t2 + t3).

(2)
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The basis expressed in (2) has the following properties:
(a) Partition of unity, that is,

b0(t) + b1(t) + b2(t) + b3(t) ≡ 1.

(b) Symmetry, that is,

bi(1 – t) = b3–i(t), i = 0, 1, 2, 3.

(c) Properties at endpoints, that is,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b0(0) = b2(0) = b3(0) = 0, b1(0) = 1,

b0(1) = b1(1) = b3(1) = 0, b2(1) = 1,

b′
0(0) = –1/2, b′

1(0) = b′
3(0) = 0, b′

2(0) = 1/2,

b′
0(1) = b′

2(1) = 0, b′
1(1) = –1/2, b′

3(1) = 1/2.

By computing from Eq. (1) we have

ci(0) = pi+1, ci(1) = pi+2. (3)

c′
i(0) =

1
2

(pi+2 – pi), c′
i(1) =

1
2

(pi+3 – pi+1). (4)

Equation (3) shows that cubic Catmull–Rom spline interpolates its control points except
for p0 and pn. From Eqs. (3) and (4) we have c(k)

i+1(0) = c(k)
i (1), k = 0, 1, which show that the

cubic Catmull–Rom spline satisfies C1 continuity. The interpolation and C1 continuity are
the salient features of cubic Catmull–Rom splines.

Due to the interpolation and C1 continuity, the cubic Catmull–Rom spline has been suc-
cessfully used in geometric design [20, 21] and engineering applications [22, 23]. However,
the cubic Catmull–Rom spline would be uniquely determined when all the control points
are fixed. In this case, the spline has no degrees of freedom, which limits its applications
in engineering. To alleviate the shortcoming of the cubic Catmull–Rom spline in shape
adjustment, we need to construct a Catmull–Rom spline that can adjust its shape freely.

3 The quartic Catmull–Rom spline
To construct a Catmull–Rom spline with shape adjustment ability, we raise the spline’s
degree to be quartic and introduce free parameters into the spline. In this section, we
first construct the basis of the quartic Catmull–Rom spline and then define the quartic
Catmull–Rom spline by the proposed basis.

3.1 The basis
The specific construction processes of the basis can be found in the Appendix, we directly
give its definition as follows.
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Definition 1 The basis fi(α; t) (i = 0, 1, 2, 3) of the quartic Catmull–Rom spline is defined
by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0(α; t) = 1
2 (–t + 2(1 + α)t2 – (1 + 4α)t3 + 2αt4),

f1(α; t) = 1
2 (2 – (5 + 2α)t2 + (3 + 4α)t3 – 2αt4),

f2(α; t) = 1
2 (t + 2(2 – α)t2 – (3 – 4α)t3 – 2αt4),

f3(α; t) = 1
2 (–(1 – 2α)t2 + (1 – 4α)t3 + 2αt4),

(5)

where 0 ≤ t ≤ 1, α is an arbitrary real number.

Theorem 1 The basis expressed in Eq. (5) has the following properties:
(a) Partition of unity.
For any α, there is f0(α; t) + f1(α; t) + f2(α; t) + f3(α; t) ≡ 1.
(b) Symmetry.
For any α, there is fi(α; 1 – t) = f3–i(α; t), i = 0, 1, 2, 3.
(c) Properties at endpoints.
For any α, there are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f0(α; 0) = f2(α; 0) = f3(α; 0) = 0, f1(α; 0) = 1,

f0(α; 1) = f1(α; 1) = f3(α; 1) = 0, f2(α; 1) = 1,

f ′
0(α; 0) = –1/2, f ′

1(α; 0) = f ′
3(α; 0) = 0, f ′

2(α; 0) = 1/2,

f ′
0(α; 1) = f ′

2(α; 1) = 0, f ′
1(α; 1) = –1/2, f ′

3(α; 1) = 1/2.

(d) Monotonicity.
For any t ∈ [0, 1], f0(α; t) and f3(α; t) are monotonically increasing about α, while f1(α; t)

and f2(α; t) are monotonically decreasing about α.

Proof By simple calculations, (a), (b), and (c) are not hard to be deduced. We only verify
(d). For any t, from Eq. (16) we have

df0(α; t)
dα

=
df3(α; t)

dα
= t2(1 – t)2 ≥ 0,

df1(α; t)
dα

=
df2(α; t)

dα
= –t2(1 – t)2 ≤ 0.

Thus, the monotonicity has been proved. �

Theorem 1 shows that the proposed basis inherits the features of the basis of the cubic
Catmull–Rom spline. It is not difficult to verify that Eq. (5) becomes Eq. (2) when α = 0,
that means the basis of cubic Catmull–Rom is a special case of the proposed basis. From
the monotonicity, the shape of the proposed basis is dependent on the free parameter α.
Figure 1 shows graphs of the basis with multiple values of α.



Li et al. Advances in Continuous and Discrete Models         (2022) 2022:59 Page 5 of 14

Figure 1 Graphs of the basis with multiple values of α

3.2 The spline
Definition 2 The quartic Catmull–Rom spline Ri(αi; t) (i = 0, 1, . . . , n – 3) is defined by

Ri(αi; t) =
3∑

j=0

fj(αi; t)qi+j, i = 0, 1, . . . , n – 3, (6)

where 0 ≤ t ≤ 1, qi (i = 0, 1, . . . , n; n ≥ 3) are control points, fj(αi; t) (j = 0, 1, 2, 3) is the basis
expressed according to Eq. (5).

We can see from Eq. (6) that each quartic Catmull–Rom spline segment Ri(αi; t) has
a free parameter αi. When αi = 0 (i = 0, 1, . . . , n – 3), the quartic Catmull–Rom spline be-
comes a cubic Catmull–Rom spline, that means the cubic Catmull–Rom spline is a special
case of the quartic Catmull–Rom spline.

Theorem 2 The quartic Catmull–Rom spline expressed in Eq. (6) has salient features as
follows:

(a) Interpolation.
For any αi, the spline interpolates its control points except for q0 and qn.
(b) Continuity.
For any αi, the spline reaches C1 continuity.
(c) Shape flexibility.
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Figure 2 The quartic Catmull–Rom spline with different free parameters, where the solid lines represent the
spline and the solid points represent the control points

The shape of the spline can be freely adjusted while all the control points are kept un-
changed.

Proof For any αi, by the endpoints properties of the quartic basis, we have

Ri(αi; 0) = qi+1, Ri(αi; 1) = qi+2. (7)

dRi(αi; 0)
dt

=
1
2

(qi+2 – qi),
dRi(αi; 1)

dt
=

1
2

(qi+3 – qi+1). (8)

Equation (7) shows that the spline interpolates its control points except for q0 and qn.
From Eqs. (7) and (8) we have dk Ri+1(αi+1;0)

dtk = dk Ri(αi ;1)
dtk , k = 0, 1, which shows that the spline

reaches C1 continuity.
Since the expression of the spline contains free parameters αi, we can easily adjust the

shape of the spline by altering the values of αi when all the control points are fixed. �

Theorem 2 indicates that the quartic Catmull–Rom spline owns shape adjustability
based on inheriting the features of the cubic Catmull–Rom spline. We can change the
free parameter of each spline segment to achieve local adjustment, while we can modify
all the free parameters to be the same to realize global adjustment of the spline. Figure 2
shows the shape adjustability of the quartic Catmull–Rom spline.

We can see from Fig. 2 that the quartic Catmull–Rom spline can easily achieve local
adjustment or global adjustment by modifying the free parameters, which is impossible
for a cubic Catmull–Rom spline.
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Figure 3 The quartic Catmull–Rom spline with inappropriate free parameters, where the solid lines represent
the spline and the solid points represent the control points. In each example, the control points are the same
as in Fig. 2

4 Shape optimization of the spline
Although the quartic Catmull–Rom spline has shape adjustability because of the free pa-
rameters, it should be noted that the shape of the spline can be unsatisfactory if the free
parameters are not appropriately selected; see Fig. 3.

In addition, sometimes people may need to determine the free parameters to make the
shape of the quartic Catmull–Rom spline meet some specific requirements. Hence, we
need to give schemes for optimizing the free parameters according to some objectives.
Since the internal energy, the quadratic oscillation in average, and the derivative oscillation
have been successfully used to optimize the shape of some parametric curves, we adopt
them to optimize the shape of the quartic Catmull–Rom spline and present the schemes
in this section.

4.1 The spline with minimal internal energy
Three types of commonly used internal energy of a curve are stretch energy, strain en-
ergy (also called bending energy), and curvature variation energy (often replaced by Jerk’s
energy). For a parametric curve b(t), its stretch energy, strain energy, and Jerk’s energy
are usually approximately described by

∫ 1
0 ‖b′(t)‖2 dt,

∫ 1
0 ‖b′′(t)‖2 dt, and

∫ 1
0 ‖b′′′(t)‖2 dt,

respectively; see [6, 7]. Because the free parameter of each quartic Catmull–Rom spline
segment is local, we only need to consider the internal energy of each spline segment but
not that of the whole spline. We can approximately express the three internal energies of
each quartic Catmull–Rom spline segment as

Ei,k :=
∫ 1

0

∥∥∥∥
dkRi(αi; t)

dtk

∥∥∥∥
2

dt (9)

for any αi, where k = 1, 2, 3.
From Eqs. (5) and (6) we have

Ri(α; t) = ri(t)αi + si(t), (10)

where

ri(t) :=
1
2
(
–t(1 – t)2qi + (1 – t)

(
2 + 2t – 3t2)qi+1 + t

(
1 + 4t – 3t2)qi+2 – (1 – t)t2qi+3

)
,
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si(t) := t2(1 – t)2(qi – qi+1 – qi+2 + qi+3).

By substituting Eq. (10) into Eq. (9), we have

Ei,k =
∫ 1

0

∥∥r(k)
i (t)αi + s(k)

i (t)
∥∥2 dt

= α2
i

∫ 1

0

∥∥r(k)
i (t)

∥∥2 dt + 2αi

∫ 1

0

(
r(k)

i (t) · s(k)
i (t)

)
dt +

∫ 1

0

∥∥s(k)
i (t)

∥∥2 dt. (11)

It is clear that only αi is a variable to be determined in Eq. (11). Hence, we can get the
following model for constructing the quartic Catmull–Rom spline segment with minimal
internal energy:

min
αi∈R

Ei,k(αi), (12)

where k = 1, 2, 3. Then we can get the following theorem.

Theorem 3 To construct the quartic Catmull–Rom spline segment with minimal internal
energy, the free parameter of each spline segment should be taken as

αi = –
∫ 1

0 (r(k)
i (t) · s(k)

i (t)) dt
∫ 1

0 ‖r(k)
i (t)‖2 dt

. (13)

Proof From Eq. (11) we have

dEi,k(αi)
dαi

= 2αi

∫ 1

0

∥∥r(k)
i (t)

∥∥2 dt + 2
∫ 1

0

(
r(k)

i (t) · s(k)
i (t)

)
dt. (14)

To obtain the quartic Catmull–Rom spline segment with minimal internal energy, there
should be dEi,k (αi)

dαi
= 0. Since the control points are different,

∫ 1
0 ‖r(k)

i (t)‖2 dt �= 0 always
holds. Then we can get Eq. (13) from Eq. (14). Since the solution of dEi,k (αi)

dαi
= 0 is unique,

Eq. (13) must be the global minimum of Eq. (12). �

After determining the free parameter of each spline segment by Eq. (13), we can generate
the whole quartic Catmull–Rom spline with minimal internal energy. However, we find
that

∫ 1
0 (r(k)

i (t) · s(k)
i (t)) dt ≡ 0 (k = 2, 3), then the free parameter calculated by Eq. (13) is

αi = 0. This means the quartic Catmull–Rom spline with minimal strain energy or Jerk’s
energy is exactly the cubic Catmull–Rom spline. Figure 4 shows curves generated by the
quartic Catmull–Rom splines with minimal internal energy.

4.2 The shape-preserving spline
Let L(t) := Li(t) = (1 – t)di + tdi+1, where di (i = 0, 1, . . . , n) are data points in the plane,
then L(t) can be regarded as the simplest shape-preserving interpolation. Based on this,
quadratic oscillation in average minimization has been used to construct shape-preserving
interpolation; see [17, 18]. Here, we adopt the quadratic oscillation in average minimiza-
tion to construct the shape-preserving quartic Catmull–Rom spline.
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Figure 4 The quartic Catmull–Rom spline with minimal internal energy, where the solid lines represent the
spline and the solid points represent the control points. In each example, the control points are the same as in
Fig. 2

Figure 5 A segment of quartic Catmull–Rom spline with different shape parameters, where the solid lines
represent the spline with different shape parameters, the dotted lines represent the control polygon, and the
solid points represent the control points

Recall that the quartic Catmull–Rom spline segment Ri(αi; t) interpolates at qi+1 and
qi+2, and the value of the free parameter αi has an influence on the approximation of
Ri(αi; t) to Qi(t), where Qi(t) := (1 – t)qi+1 + tqi+2; see Fig. 5.

Thereby, we can get the following model:

min
αi∈R

Ii(αi) =
∫ 1

0

∥∥Ri(αi; t) – Qi(t)
∥∥2 dt, (15)
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where Qi(t) := (1 – t)qi+1 + tqi+2, i = 0, 1, . . . , n – 3. Then we can obtain the theorem as
follows.

Theorem 4 To construct the shape-preserving quartic Catmull–Rom spline, the free pa-
rameter of each spline segment should be taken as

αi = –
∫ 1

0 (ri(t) · (si(t) – Qi(t))) dt
∫ 1

0 ‖ri(t)‖2 dt
. (16)

Proof By Eq. (10) we have

Ii(αi) =
∫ 1

0

∥∥ri(t)αi + si(t) – Qi(t)
∥∥2 dt

= α2
i

∫ 1

0

∥∥ri(t)
∥∥2 dt + 2αi

∫ 1

0

(
ri(t) · (si(t) – Qi(t)

))
dt

+
∫ 1

0

∥∥si(t) – Qi(t)
∥∥2 dt. (17)

From Eq. (17) we have

dIi(αi)
dαi

= 2αi

∫ 1

0

∥∥ri(t)
∥∥2 dt + 2

∫ 1

0

(
ri(t) · (si(t) – Qi(t)

))
dt. (18)

To make the quartic Catmull–Rom spline shape-preserving, there should be dIi(αi)
dαi

= 0,
i = 0, 1, . . . , n–3. Since the control points are different,

∫ 1
0 ‖ri(t)‖2 dt �= 0 always holds. Then

we can get Eq. (16) from Eq. (18). Since the solution of dIi(αi)
dαi

= 0 is unique, Eq. (16) must
be the global minimum of Eq. (15). �

After determining the free parameter of each spline segment by Eq. (16), we can gen-
erate the whole shape-preserving quartic Catmull–Rom spline. Figure 6 shows the cubic
Catmull–Rom spline and the shape-preserving quartic Catmull–Rom spline interpolating
the following data:

(a) x = 0.5, 0.5, 3.5, 6.0, 8.5, 11, 14, 17, 20, 20,

y = 93, 93, 104, 120, 98, 86, 102, 81, 90, 90,

(b) x = 0, 0, 0.5, 1.5, 3, 4, 7, 8, 8, y = x sin x.

We can see from Fig. 6 that the shape-preserving quartic Catmull–Rom spline is closer
to the control polygon than the cubic Catmull–Rom spline.

4.3 The monotonicity-preserving spline
Given a set of monotonic data points di (i = 0, 1, . . . , n) in the plane, it can be seen that
L′

i(t) = di+2 – di+1 (i = 0, 1, . . . , n – 3) reflect the monotonicity of data points. Hence, the
derivative oscillation minimization has been considered an effective way to construct
monotonicity-preserving interpolation; see [19]. Here, we use the derivative oscillation
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Figure 6 The shape-preserving quartic Catmull–Rom spline and the cubic Catmull–Rom spline. In each
example, the dotted lines represent the control polygon, the dashed lines represent the cubic Catmull–Rom
spline, the solid lines represent the shape-preserving quartic Catmull–Rom spline, and the solid points
represent the data points

minimization to construct the monotonicity-preserving quartic Catmull–Rom spline.
Then we can get the following model:

min
αi∈R

Ji(αi) =
∫ 1

0

∥∥R′
i(αi; t) – Q′

i(t)
∥∥2 dt, (19)

where Q′
i(t) := qi+2 – qi+1, i = 0, 1, . . . , n – 3, R′

i(αi; t) represents the derivative of Ri(αi; t)
about t. Referring to Theorem 4, we give the following theorem without proof.

Theorem 5 To construct the monotonicity-preserving quartic Catmull–Rom spline, the
free parameter of each spline segment should be taken as

αi = –
∫ 1

0 (r′
i(t) · (s′

i(t) – Q′
i(t))) dt

∫ 1
0 ‖r′

i(t)‖2 dt
. (20)

After determining the free parameter of each spline segment by Eq. (20), we can generate
the whole monotonicity-preserving quartic Catmull–Rom spline. Figure 7 shows the cubic
Catmull–Rom spline and the monotonicity-preserving quartic Catmull–Rom spline inter-
polating the following monotone data:

(a) x = –3, –3, –1, 0, 3, 5, 6, 6, y = –3, –3, –2, 0, 1, 2, 4, 4,

(b) x = 0.1, 0.1, 0.2, 0.6, 1.0, 1.2, 1.4, 1.4, y = 1/x2.

Figure 7 shows that the monotonicity-preserving quartic Catmull–Rom spline is better
than the cubic Catmull–Rom spline when approximating the monotone data.

5 Conclusion
We first proposed a novel quartic Catmull–Rom spline with local free parameters in this
paper. Different from the cubic Catmull–Rom spline, the quartic Catmull–Rom spline
was not only globally adjustable but also locally adjustable. This feature was very con-
ducive to geometric modeling. To construct the quartic Catmull–Rom spline with specific
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Figure 7 The monotonicity-preserving quartic Catmull–Rom spline and the cubic Catmull–Rom spline. In
each example, the dotted lines represent the control polygon, the dashed lines represent the cubic
Catmull–Rom spline, the solid lines represent the monotonicity-preserving quartic Catmull–Rom spline, and
the solid points represent the data points

shapes, three schemes for determining the optimal values of the free parameters were
presented. These schemes could generate the spline with minimal internal energy, the
shape-preserving spline, and the monotonicity-preserving spline. In contrast to the cubic
Catmull–Rom spline, the quartic Catmull–Rom spline was more practical in geometric
modeling.

Appendix: Construction process of the basis
To introduce free parameters into the basis, we raise the degree of basis to be quartic.
Suppose that the new basis fi(t) (i = 0, 1, 2, 3) is expressed as

(
f0(t) f1(t) f2(t) f3(t)

)
=

(
1 t t2 t3 t4

)
M, (A.1)

where M is an undetermined matrix expressed by

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

a40 a41 a42 a43

⎞

⎟⎟⎟⎟⎟⎟⎠
.

By taking derivation calculus to equation (A.1), we have

(
f ′
0(t) f ′

1(t) f ′
2(t) f ′

3(t)
)

=
(

0 1 2t 3t2 4t3
)

M. (A.2)

Firstly, we hope the quartic basis satisfies the same properties at the endpoints as the
basis of the cubic Catmull–Rom spline. From equation (A.1) we have

a00 = 0, a01 = 1, a02 = 0, a03 = 0, (A.3)
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a00 + a10 + a20 + a30 + a40 = 0,

a01 + a11 + a21 + a31 + a41 = 0,

a02 + a12 + a22 + a32 + a42 = 0,

a03 + a13 + a23 + a33 + a43 = 0.

(A.4)

From equation (A.2) we have

a10 = –1/2, a11 = 0, a12 = 1/2, a13 = 0, (A.5)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a10 + 2a20 + 3a30 + 4a40 = 0,

a11 + 2a21 + 3a31 + 4a41 = –1/2,

a12 + 2a22 + 3a32 + 4a42 = 0,

a13 + 2a23 + 3a33 + 4a43 = 1/2.

(A.6)

Then from equations (A.3)–(A.6), we can obtain

a20 = 1 + a40, a21 = –5/2 + a41, a22 = 2 + a42, a23 = –1/2 + a43, (A.7)

a30 = –1/2 – 2a40, a31 = 3/2 – 2a41, a32 = –3/2 – 2a42,

a33 = 1/2 – 2a43.
(A.8)

Secondly, we hope the quartic basis satisfies the partition of unity. From equations (A.7)
and (A.8) we have

a40 + a41 + a42 + a43 = 1. (A.9)

Finally, we hope the quartic basis satisfies the symmetry. By computing from equation
(A.1), we have

a40 = a43, a41 = a42. (A.10)

By setting a40 = α, from equations (A.9) and (A.10) we have a40 = –α, a42 = –α, a43 = α.
Thus, we get

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
–1/2 0 1/2 0
1 + α –5/2 – α 2 – α –1/2 + α

–1/2 – 2α 3/2 + 2α –3/2 + 2α 1/2 – 2α

α –α –α α

⎞

⎟⎟⎟⎟⎟⎟⎠
. (A.11)

By substituting equation (A.11) into equation (A.1), we can obtain the expression of the
quartic basis.
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