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Abstract
In this paper, by using the residue method of complex analysis, we obtain an explicit
partial fraction decomposition for the general rational function xM

(x+1)λn
(M is any

nonnegative integer, λ and n are any positive integers). As applications, we deduce
the corresponding algebraic identities and combinatorial identities which are the
corresponding extensions of Chu’ results. We also give some explicit formulas of
Apostol-type polynomials and harmonic Stirling numbers of the second kind.
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1 Introduction and the main results
The generalized harmonic numbers are defined by

H (r)
0 = 0 and H (r)

n =
n∑

k=1

1
kr for n, r = 1, 2, . . . ,

when r = 1, they reduce to the classical harmonic numbers as Hn = H (1)
n .

For z ∈C, the shifted factorial is defined by

(z)0 = 1 and (z)n = z(z + 1) · · · (z + n – 1) for n = 1, 2, . . .

The complete Bell polynomials Bn(x1, x2, . . . , xn) are defined by [16, pp. 173–174]

exp

( ∞∑

k=1

xk
zk

k!

)
=

∞∑

n=0

Bn(x1, x2, . . . , xn)
zn

n!
, B0 := 1, (1)

which exact expression is

Bn(x1, x2, . . . , xn) =
∑

π (n)

n!
k1!k2! · · ·kn!

(
x1

1!

)k1(x2

2!

)k2

· · ·
(

xn

n!

)kn

, (2)
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where π (n) denotes a partition of n, usually denoted 1k1 2k2 · · ·nkn , with k1 + 2k2 + · · · +
nkn = n.

From (2) we easily obtain

Bn
(
–x1, x2, . . . , (–1)nxn

)
= (–1)nBn(x1, x2, . . . , xn). (3)

For convenience, we define the above sum as equal to zero for n < 0, i.e., Bn(x1, x2, . . . ,
xn) = 0 when n < 0.

The partial fraction decomposition plays an important role in the study of the combi-
natorial identities and related questions (for example, see [14, 15, 17–19, 22–24] and the
references therein). Chu [5] established the partial fraction decompositions of two ratio-
nal functions 1

(x)λn+1
and xM–1

(x+1)λn
, thereby completely resolving the open problem of Driver et

al. [7].
When xM–1

(x+1)λn
is a proper rational fraction, i.e., M – 1 < λn, we can use the method of

the partial fraction decomposition. But when xM–1

(x+1)λn
is an improper rational fraction, i.e.,

M – 1 ≥ λn, how do we decompose xM–1

(x+1)λn
into partial fractions?

In the present paper, by using the contour integral and Cauchy’s residue theorem, we
will answer the above question and give an explicit decomposition for the general rational
function xM

(x+1)λn
. As applications, we deduce the corresponding algebraic and combinatorial

identities which are just some extensions of Chu’s results. We give some explicit formulas
of Apostol-type polynomials and harmonic Stirling numbers of the second kind.

Theorem 1 Suppose M is any nonnegative integer, λ and n are any positive integers such
that N = λn, and x is a complex number such that x ∈ C \ {–1, –2, . . . , –n}. Then the fol-
lowing partial fraction decomposition holds:

xM

(x + 1)λn
=

M–N∑

j=0

Bj(x1, . . . , xj)
j!

xM–N–j

+
n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ+M
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,

(4)

where

xi = λ(–1)i(i – 1)!
n∑

j=1

ji, i = 1, 2, . . . , M – N ,

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki

]
, i = 1, 2, . . . ,λ – 1.

• When M – N ≥ 0 in Theorem 1, i.e., the degree of the numerator polynomial, M, is not
smaller than the degree of the denominator polynomial, N = λn, we say that Theorem 1 is
a more general and new decomposition of the rational function xM

(x+1)λn
. For example, below

we give the first four special cases.
When M – N = 0, we have

xλn

(x + 1)λn
= 1 +

n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ(n+1)
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,
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where

yi = λ(i – 1)!
[(

H (i)
k + (–1)iH (i)

n–k
)

–
n + 1

ki

]
, i = 1, 2, . . . ,λ – 1.

When M – N = 1, we have

xλn+1

(x + 1)λn
= x –

λn(n + 1)
2

+
n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ(n+1)+1
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,

where yi = (i – 1)![λ(H (i)
k + (–1)iH (i)

n–k) – λ(n+1)+1
ki ], i = 1, 2, . . . ,λ – 1.

When M – N = 2,

xλn+2

(x + 1)λn
= x2 –

λn(n + 1)
2

x +
λn(n + 1)[3n(n + 1)λ + 4n + 2]

24

+
n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ(n+1)+2
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,

where yi = (i – 1)![λ(H (i)
k + (–1)iH (i)

n–k) – λ(n+1)+2
ki ], i = 1, 2, . . . ,λ – 1.

When M – N = 3,

xλn+3

(x + 1)λn
= x3 –

λn(n + 1)
2

x2 +
λn(n + 1)[3n(n + 1)λ + 4n + 2]

24
x –

λn2(n + 1)2

8

× [
n(n + 1)λ2 + 2(2n + 1)λ + 4

]

+
n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ(n+1)+3
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,

where yi = (i – 1)![λ(H (i)
k + (–1)iH (i)

n–k) – λ(n+1)+3
ki ], i = 1, 2, . . . ,λ – 1.

Remark 2 When M – N ≥ 0 in Theorem 1, if put aj = Bj(x1,...,xj)
j! and

ak,j =
(–1)λk

j!(n!)λ

(
n
k

)λ

(–k)λ+MBj(y1, y2, . . . , yj),

then Theorem 1 becomes the following explicit form:

xM

(x + 1)λn
=

M–N∑

j=0

aM–N–jxj +
n∑

k=1

λ–1∑

j=0

ak,j(x + k)j

(x + k)λ
,

which is an explicit result when the polynomial xM is divided by polynomial (x + 1)λn, i.e.,
the improper rational fraction xM

(x+1)λn
is decomposed into a polynomial of order M – N plus

a proper rational fraction. Therefore we say that Theorem 1 implies a new and interesting
method for division of two polynomials.

• When M – N < 0, i.e., the degree of the numerator polynomial, M, is smaller than the
degree of the denominator polynomial, N = λn, we obtain the following Chu’s result:
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Corollary 3 ([5, Theorem 5]) Suppose M is any nonnegative integer, λ and n are any
positive integers such that M < N = λn, and x is a complex number such that x ∈ C \
{–1, –2, . . . , –n}. Then the following partial fraction decomposition holds:

xM

(x + 1)λn
=

n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ+M
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,

where

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki

]
, i = 1, 2, . . . ,λ – 1.

Remark 4 If put M = 0 and then let x �−→ x – 1 and n �−→ n + 1 in Theorem 1, noting that
the empty sum is zero, we observe that Theorem 1 reduces to Theorem 2 of Chu [5, p. 44,
(1.5)]:

1
(x)λn+1

=
n∑

k=0

(–1)λk

(n!)λ

(
n
k

)λ λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j ,

where yi = λ(i – 1)!(H (i)
k + (–1)iH (i)

n–k) for i = 1, 2, . . . ,λ – 1.

Remark 5 It is easily seen that Theorem 1 includes Chu’s results, but when M – N ≥ 0
Theorem 1 is a new result. Therefore, we say that Theorem 1 is an interesting extension
of Chu’s results. We also see that Theorem 1 is not obtained using the partial fraction
decomposition.

Setting λ = 1 and letting M �→ m in Theorem 1, we deduce the following result:

Corollary 6 Suppose m is any nonnegative integer, n is any positive integer, and x is a
complex number such that x ∈C \ {–1, –2, . . . , –n}. Then the following partial fraction de-
composition holds:

xm

(x + 1)n
=

m–n∑

j=0

Bj(x1, . . . , xj)
j!

xm–n–j +
n∑

k=1

(–1)k

n!

(
n
k

)
(–k)m+1

x + k
,

where

xi = (–1)i(i – 1)!
n∑

j=1

ji, i = 1, 2, . . . , m – n.

Furthermore, taking m = 0 in Corollary 6, we obtain the following algebraic identity:

1
(x + 1)n

=
n∑

k=1

(–1)k+1

n!

(
n
k

)
k

x + k
,

or, equivalently, the following well-known combinatorial identity (e.g., see [13]):

n∏

k=1

k
x + k

=
n∑

k=0

(–1)k
(

n
k

)
x

x + k
.
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Next we obtain the following combinatorial identities from Theorem 1:
• Setting x = 0, we have

n∑

k=1

(–1)λ(k+1)+M
(

n
k

)λ λ–1∑

j=0

kj+MBj(y1, y2, . . . , yj)
j!

=

⎧
⎪⎪⎨

⎪⎪⎩

0, 1 ≤ M < N ,

(n!)λ, M = 0,

– BM–N (x1,...,xM–N )
(n!)λ(M–N)! , M ≥ N .

• Setting x = 0 and letting M �−→ M + 1, we get

n∑

k=1

(–1)λk
(

n
k

)λ

(–k)M+λ Bλ–1(y1, y2, . . . , yλ–1)
(λ – 1)!

=
BM–N+1(x1, . . . , xM–N+1)

(n!)λ(M – N + 1)!

+
n∑

k=1

(–1)λ(k+1)+M+1
(

n
k

)λ λ–2∑

j=0

kj+M+1Bj(y1, y2, . . . , yj)
j!

, M + 1 ≥ N .

where

xi = λ(–1)i(i – 1)!
n∑

j=1

ji, i = 1, 2, . . . , M – N + 1,

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M + 1
ki

]
, i = 1, 2, . . . ,λ – 1.

We can also get the following special cases of Theorem 1:
• Taking x = 1 gives

n∑

k=1

(–1)λk
(

n
k

)λ

(–k)λ+M
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(k + 1)λ–j =

1
(n + 1)λ

– (n!)λ
M–N∑

j=0

Bj(x1, . . . , xj)
j!

.

• Taking x = i (here i =
√

–1) yields

n∑

k=1

(–1)λk

(n!)λ

(
n
k

)λ

(–k)λ+M
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(i + k)λ–j =

iM

(i + 1)λn
–

M–N∑

j=0

Bj(x1, . . . , xj)
j!

iM–N–j.

2 Proof of Theorem 1
Lemma 7 Suppose M is any nonnegative integer, λ and n are any positive integers such that
N = λn, and x is a complex number such that x ∈ C \ {–1, –2, . . . , –n}. Then the following
algebraic identity holds:

xM

(x + 1)λn
=

BM–N (z1, z2, . . . , zM–N )
(M – N)!

+
n∑

k=0

(–1)λk(–k)λ+M

(n!)λ(x + k)

(
n
k

)λ Bλ–1(w1, w2, . . . , wλ–1)
(λ – 1)!

,
(5)
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where

zi = (i – 1)!

(
(–1)iλ

n∑

j=1

ji + xi

)
, i = 1, 2, . . . , M – N , (6)

wi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki +

1
(x + k)i

]
, i = 1, 2, . . . ,λ – 1. (7)

Proof We first construct two polynomials P(z) and Q(z) of degrees M and N + 1, respec-
tively, which are given by

P(z) = zM and Q(z) = (z – x)
n–1∏

j=0

(z + j + 1)λ

such that x 	= 0, –1, –2, . . . , –n.
We next construct three contour integrals for the rational functions P(z)/Q(z):∮

�

P(z)
Q(z) dz, where � is a simple closed contour which only surrounds the single pole x of

P(z)/Q(z);∮
�1

P(z)
Q(z) dz, where �1 is a simple closed contour which surrounds the poles –1, –2, . . . , –n

of P(z)/Q(z);∮
�2

P(z)
Q(z) dz, where �2 is a simple closed contour which only surrounds the pole ∞ of

P(z)/Q(z).
In the extended complex plane, since the total sum of residues of a rational function at

all finite poles and that at infinity is equal to zero [12, p. 25, Theorem 2], we have

∮

�+�1+�2

P(z)
Q(z)

dz = 0,

or equivalently,

∮

�

P(z)
Q(z)

dz = –
∮

�2

P(z)
Q(z)

dz –
∮

�1

P(z)
Q(z)

dz. (8)

Below we compute the contour integrals
∮
�

P(z)
Q(z) dz,

∮
�1

P(z)
Q(z) dz, and

∮
�2

P(z)
Q(z) dz, respectively.

Applying Cauchy’s residue theorem, we compute the contour integral
∮
�

P(z)
Q(z) dz as fol-

lows:

∮

�

P(z)
Q(z)

dz = 2π i Res
z=x

zM

(z – x)
∏n–1

j=0 (z + j + 1)λ
= 2π i lim

z→x

zM
∏n–1

j=0 (z + j + 1)λ

= 2π i
xM

∏n–1
j=0 (x + j + 1)λ

= 2π i
xM

(x + 1)λn
. (9)

We now compute the contour integral
∮
�1

P(z)
Q(z) dz. By utilizing Cauchy’s residue theorem,

noting that the power series expansion of the logarithmic function is

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
(|z| < 1

)
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and using the definition of complete Bell polynomials, we obtain

∮

�1

P(z)
Q(z)

dz = 2π i
n–1∑

k=0

Res
z=–k–1

zM

(z – x)
∏n–1

j=0 (z + j + 1)λ

= 2π i
n–1∑

k=0

[
(z + k + 1)λ–1] zM

(z – x)
∏n–1

j=0
j 	=k

(z + j + 1)λ

= 2π i
n–1∑

k=0

[
zλ–1] (z – k – 1)M

(z – x – k – 1)
∏n–1

j=0
j 	=k

(z – k + j)λ

= –2π i
n–1∑

k=0

{
(–k – 1)M

(x + k + 1)
∏n–1

j=0
j 	=k

(j – k)λ

× [
zλ–1] exp

[
M log

(
1 –

z
k + 1

)
– log

(
1 –

z
x + k + 1

)

– λ

n–1∑

j=0,j 	=k

log

(
1 +

z
j – k

)]}

= –2π i
n∑

k=1

{
(–1)λk(–k)λ+M

(n!)λ(x + k)

(
n
k

)λ

× [
zλ–1] exp

[ ∞∑

i=1

(i – 1)!
(

λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki +

1
(x + k)i

)]
zi

i!

}

= –2π i
n∑

k=1

(–1)λk(–k)λ+M

(n!)λ(x + k)

(
n
k

)λ Bλ–1(w1, w2, . . . , wλ–1)
(λ – 1)!

. (10)

Calculating the contour integral
∮
�2

P(z)
Q(z) dz, we obtain

∮

�2

P(z)
Q(z)

dz = 2π i Res
z=∞

zM

(z – x)
∏n–1

j=0 (z + j + 1)λ
= –2π i Res

t=0

tN–M–1

(1 – xt)
∏n–1

j=0 (1 + (j + 1)t)λ
.

If M – N < 0, then t = 0 is not a pole, and so we have

∮

�2

P(z)
Q(z)

dz = –2π i Res
t=0

tN–M–1

(1 – xt)
∏n–1

j=0 (1 + (j + 1)t)λ
= 0.

If M – N = 0, then t = 0 is a single pole of order 1, so we have

∮

�2

P(z)
Q(z)

dz = –2π i lim
t→0

1
(1 – xt)

∏n–1
j=0 (1 + (j + 1)t)λ

= –2π i.

If M – N > 0, then t = 0 is a single pole of order M – N + 1, and so we have

∮

�2

P(z)
Q(z)

dz = –2π i Res
t=0

tN–M–1

(1 – xt)
∏n–1

j=0 (1 + (j + 1)t)λ
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= –2π i
[
tM–N] 1

(1 – xt)
∏n–1

j=0 (1 + (j + 1)t)λ

= –2π i
[
tM–N]

exp

{ ∞∑

i=1

[
(i – 1)!

(
(–1)iλ

n∑

j=1

ji + xi

)
ti

i!

]}

= –2π i
[
tM–N] ∞∑

k=0

Bk(z1, z2, . . . , zk)
tk

k!

= –2π i
BM–N (z1, z2, . . . , zM–N )

(M – N)!
. (11)

Therefore, by replacing (9), (10), and (11) into (8), we obtain Lemma 7. This proof is com-
plete. �

Lemma 8 The following recursion formula of complete Bell polynomial holds true:

Bλ–1(w1, . . . , wλ–1)
(λ – 1)!

=
λ–1∑

j=0

Bj(y1, . . . , yj)
j!(x + k)λ–j–1 . (12)

Proof Let

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki

]
.

Write wi = yi + (i–1)!
(x+k)i in (7). By the definition of complete Bell polynomial, we obtain

Bλ–1(w1, . . . , wλ–1)
(λ – 1)!

=
[
tλ–1] exp

( ∞∑

n=1

wn
tn

n!

)

=
[
tλ–1] exp

{ ∞∑

n=1

(
yn +

(n – 1)!
(x + k)n

)
tn

n!

}

=
λ–1∑

j=0

[
tj] exp

{ ∞∑

n=1

yn
tn

n!

}
[
tλ–1–j] exp

{ ∞∑

n=1

1
n

(
t

x + k

)n
}

=
λ–1∑

j=0

Bj(y1, . . . , yj)
j!

[
tλ–1–j] exp

{
– log

(
1 –

t
x + k

)}

=
λ–1∑

j=0

Bj(y1, . . . , yj)
j!

[
tλ–1–j]

∞∑

n=0

(
t

x + k

)n

=
λ–1∑

j=0

Bj(y1, . . . , yj)
j!(x + k)λ–j–1 .

In the above process, we apply the geometric series,

1
1 – z

=
∞∑

n=0

zn,
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and the expansion of the logarithmic function,

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
.

This proof is complete. �

Lemma 9 The following recursion formula of complete Bell polynomial holds true:

BM–N (z1, z2, . . . , zM–N )
(M – N)!

=
M–N∑

j=0

Bj(x1, . . . , xj)
j!

xM–N–j. (13)

Proof Let

xi = (i – 1)!(–1)iλ

n∑

j=1

ji.

Write zi = xi + (i – 1)!xi in (6). By the definition of complete Bell polynomial, we obtain

BM–N (z1, z2, . . . , zM–N )
(M – N)!

=
[
tM–N]

exp

( ∞∑

n=1

zn
tn

n!

)

=
M–N∑

j=0

[
tj] exp

{ ∞∑

n=1

xn
tn

n!

}
[
tM–N–j] exp

{ ∞∑

n=1

xn tn

n

}

=
M–N∑

j=0

Bj(x1, . . . , xj)
j!

[
tM–N–j]

∞∑

n=0

(xt)n

=
M–N∑

j=0

Bj(x1, . . . , xj)
j!

xM–N–j.

This proof is complete. �

From Lemmas 7, 8, and 9, we obtain Theorem 1 immediately. This completes the proof
of Theorem 1.

3 Applications to Apostol-type polynomials
In the present section, using the contour integrals and the main result (Theorem 1), we
first obtain two lemmas, and then we give some explicit formulas for Apostol-type poly-
nomials.

Lemma 10 Let m be a nonnegative integer and n a positive integer, also let Bm(x1, x2, . . . ,
xm) be the complete Bell polynomial. Then

Bm
(
n, n1!, . . . , n(m – 1)!

)
= m!

(
n + m – 1

n – 1

)
, (14)
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Bm
(
–n, –n1!, . . . , –n(m – 1)!

)
= (–1)mm!

(
n
m

)
, (15)

Bm
(
–n, n1!, . . . , (–1)mn(m – 1)!

)
= (–1)mm!

(
n + m – 1

n – 1

)
. (16)

Proof First we construct two polynomials zn+m and (z – 1)n of degrees n + m and n, re-
spectively.

Next, we construct the following contour integrals for the rational functions zn+m

(z–1)n :∮
�

zn+m

(z–1)n dz, where � is a simple closed contour which only surrounds the single pole
z = 1 of order n of zn+m

(z–1)n ;∮
�′ zn+m

(z–1)n dz, where �′ is a simple closed contour which only surrounds the pole z = ∞ of
zn+m

(z–1)n .
By utilizing Cauchy’s residue theorem, we obtain

∮

�

zn+m

(z – 1)n dz = 2π i Res
z=1

zn+m

(z – 1)n = 2π i
[
(z – 1)n–1]zn+m

= 2π i
[
zn–1](z + 1)n+m = 2π i

(
n + m
n – 1

)
. (17)

In the extended complex plane, we calculate the residue of the rational function zn+m

(z–1)n at
z = ∞.

By utilizing the power series expansion of the logarithmic function,

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
(|z| < 1

)
,

and combining the definition of complete Bell polynomial, we obtain

∮

�

zn+m

(z – 1)n dz = –
∮

�′

zn+m

(z – 1)n dz = –2π i Res
z=∞

zn+m

(z – 1)n = 2π i Res
t=0

1
tm+2

1
(1 – t)n

= 2π i
[
tm+1] exp

[
–n log(1 – t)

]
= 2π i

[
tm+1] exp

[ ∞∑

k=1

(
n(k – 1)!

) tk

k!

]

= 2π i
Bm+1(x1, x2, . . . , xm+1)

(m + 1)!
. (18)

Comparing (17) and (18) and letting m �→ m – 1, we obtain the desired formula (14).
Similarly, we can obtain formula (15). By the definition of complete Bell polynomial, we

have

Bm(–n, –n1!, . . . , –n(m – 1)!)
m!

=
[
tm]

exp

[ ∞∑

k=1

(
–n(k – 1)!

) tk

k!

]

=
[
tm]

exp
[
n log(1 – t)

]
=

[
tm]

(1 – t)n = (–1)m
(

n
m

)
.

Applying (3) to (14), we obtain (16) directly. This completes the proof. �
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Lemma 11 The following algebraic identity holds true:

xm

(x + 1)n =
m–n∑

j=0

(–1)j
(

n + j – 1
n – 1

)
xm–n–j +

n–1∑

j=0

(–1)m+j
(

m
j

)
1

(x + 1)n–j . (19)

Proof Putting n = 1 and letting M �→ m and λ �→ n in Theorem 1, noting (3), we get that
xi and yi become

xi = n(i – 1)!, i = 1, 2, . . . , j,

yi = –m(i – 1)!, i = 1, 2, . . . , j,

respectively. Making use of (14) and (15) from Lemma 10, we obtain (19) immediately. �

• The Apostol–Bernoulli polynomials B(α)
n (x;λ) of order α are defined by means of the

generating function (cf. Luo and Srivastava [10]):

(
z

λ exp(z) – 1

)α

exp(xz) =
∞∑

n=0

B(α)
n (x;λ)

zn

n!
(20)

(|z| < 2π when λ = 1; |z| < | logλ| when λ 	= 1
)

with, of course,

B(α)
n (x) = B(α)

n (x; 1) and B(α)
n (λ) := B(α)

n (0;λ), (21)

where B(α)
n (λ) denote the so-called Apostol–Bernoulli numbers of order α.

Let x �→ –λ exp(x) in (19). We have

λm exp(mx)
(λ exp(x) – 1)n =

m–n∑

j=0

λm–n–j
(

n + j – 1
n – 1

)
exp

(
(m – n – j)x

)

+
n–1∑

j=0

(
m
j

)
1

(λ exp(x) – 1)n–j .

(22)

Multiplying both sides of (22) by xn and noting (20), we have

∞∑

k=0

B(n)
k (m;λ)

xk

k!
=

∞∑

k=0

m–n∑

j=0

λ–n–j
(

n + j – 1
n – 1

)
(m – n – j)k xn+k

k!

+
∞∑

k=0

n–1∑

j=0

λ–m
(

m
j

)
B(n–j)

k (λ)
xk+j

k!
.

(23)
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Letting k �→ k – n and k �→ k – j in the first and second terms on the right, respectively, we
obtain

∞∑

k=0

B(n)
k (m;λ)

xk

k!
=

∞∑

k=n

m–n∑

j=0

λ–n–jn!
(

k
n

)(
n + j – 1

n – 1

)
(m – n – j)k–n xk

k!

+
n–1∑

j=0

∞∑

k=j

λ–mj!
(

k
j

)(
m
j

)
B(n–j)

k–j (λ)
xk

k!
. (24)

Comparing the coefficients of xk

k! on both sides of (24), we obtain the following new
formula of Apostol–Bernoulli polynomials B(α)

n (x;λ):

B(n)
k (m;λ) =

m–n∑

j=0

λ–n–jn!
(

k
n

)(
n + j – 1

n – 1

)
(m – n – j)k–n

+
n–1∑

j=0

λ–mj!
(

k
j

)(
m
j

)
B(n–j)

k–j (λ).

(25)

Taking λ = 1 in (25), we obtain the following formula of the generalized Bernoulli poly-
nomials at the nonnegative integers:

B(n)
k (m) =

m–n∑

j=0

n!
(

k
n

)(
n + j – 1

n – 1

)
(m – n – j)k–n +

n–1∑

j=0

j!
(

k
j

)(
m
j

)
B(n–j)

k–j . (26)

Setting k = n in (26), we have

B(n)
n (m) =

m–n∑

j=0

n!
(

n + j – 1
n – 1

)
+

n–1∑

j=0

j!
(

n
j

)(
m
j

)
B(n–j)

n–j . (27)

Further setting m = n in (27), we have

B(n)
n (n) = n! +

n–1∑

j=0

j!
(

n
j

)2

B(n–j)
n–j . (28)

Taking n = 1 in (26), we obtain the following formula of Bernoulli polynomials at the
nonnegative integers:

Bk(m) = Bk + k
m–1∑

j=0

(m – 1 – j)k–1. (29)

• The Apostol–Euler polynomials E (α)
n (x;λ) of order α are defined by means of the gen-

erating function(cf. Luo [9]):

(
2

λ exp(z) + 1

)α

exp(xz) =
∞∑

n=0

E (α)
n (x;λ)

zn

n!
(|z| <

∣∣log(–λ)
∣∣), (30)
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with, of course,

E(α)
n (x) = E (α)

n (x; 1) and E (α)
n (λ) := E (α)

n (0;λ), (31)

where E (α)
n (λ) denote the so-called Apostol–Euler numbers of order α.

Letting x �→ λ exp(x) in (19), we have

λm exp(mx)
(λ exp(x) + 1)n =

m–n∑

j=0

(–1)j
(

n + j – 1
n – 1

)
λm–n–j exp

(
(m – n – j)x

)

+
n–1∑

j=0

(–1)m+j
(

m
j

)
1

(λ exp(x) + 1)n–j .

(32)

Multiplying both sides of (32) by 2n and using (30), we have

∞∑

k=0

E (n)
k (m;λ)

xk

k!
=

∞∑

k=0

2n
m–n∑

j=0

(–1)jλ–n–j
(

n + j – 1
n – 1

)
(m – n – j)k xk

k!

+
∞∑

k=0

n–1∑

j=0

(–1)m+j2jλ–m
(

m
j

)
E (n–j)

k (λ)
xk

k!
. (33)

Comparing the coefficients of xk

k! on both sides of (33), we obtain the following new
formula of Apostol–Euler polynomials E (α)

n (x;λ):

E (n)
k (m;λ) = 2n

m–n∑

j=0

(–1)jλ–n–j
(

n + j – 1
n – 1

)
(m – n – j)k

+
n–1∑

j=0

(–1)m+j2jλ–m
(

m
j

)
E (n–j)

k (λ).

(34)

Taking λ = 1 in (34), we obtain the following formula of the generalized Euler polyno-
mials at the nonnegative integers:

E(n)
k (m) = 2n

m–n∑

j=0

(–1)j
(

n + j – 1
n – 1

)
(m – n – j)k +

n–1∑

j=0

(–1)m+j2j
(

m
j

)
E(n–j)

k . (35)

Taking k = n in (35), we have

E(n)
n (m) = 2n

m–n∑

j=0

(–1)j
(

n + j – 1
n – 1

)
(m – n – j)n +

n–1∑

j=0

(–1)m+j2j
(

m
j

)
E(n–j)

n . (36)

Further setting m = n in (36), we have

E(n)
n (n) =

n–1∑

j=0

(–1)n+j2j
(

n
j

)
E(n–j)

n . (37)
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Taking n = 1 in (35), we obtain the following formula of Euler polynomials at the non-
negative integers:

Ek(m) = (–1)mEk + 2
m–1∑

j=0

(–1)j(m – j – 1)k . (38)

• The Apostol–Genocchi polynomials of higher order are defined by means of the gen-
erating function (cf. Luo and Srivastava [11]):

(
2z

λ exp(z) + 1

)α

exp(xz) =
∞∑

n=0

G(α)
n (x;λ)

zn

n!
(|z| <

∣∣log(–λ)
∣∣), (39)

with, of course,

G(α)
n (x) = G(α)

n (x; 1), G(α)
n (λ) := G(α)

n (0;λ),

Gn(x;λ) := G(1)
n (x;λ) and Gn(λ) := G(1)

n (λ),
(40)

where Gn(λ), G(α)
n (λ), and Gn(x;λ) denote the so-called Apostol–Genocchi numbers,

Apostol–Genocchi numbers of order α, and Apostol–Genocchi polynomials, respectively.
Letting x �→ λ exp(x) in (19), we have

λm exp(mx)
(λ exp(x) + 1)n =

m–n∑

j=0

(–1)jλm–n–j
(

n + j – 1
n – 1

)
exp

(
(m – n – j)x

)

+
n–1∑

j=0

(–1)m+j
(

m
j

)
1

(λ exp(x) + 1)n–j .

(41)

Multiplying both sides of (41) by 2nxn and noting (39), we have

∞∑

k=0

G(n)
k (m;λ)

xk

k!
=

∞∑

k=0

2n
m–n∑

j=0

(–1)jλ–n–j
(

n + j – 1
n – 1

)
(m – n – j)k xn+k

k!

+
∞∑

k=0

n–1∑

j=0

(–1)m+jλ–m2j
(

m
j

)
G(n–j)

k (λ)
xk+j

k!
. (42)

Let k �→ k – n and k �→ k – j in the first and second terms on the right, respectively, we
have

∞∑

k=0

G(n)
k (m;λ)

xk

k!
=

∞∑

k=n

2n
m–n∑

j=0

(–1)jλ–n–jn!
(

k
n

)(
n + j – 1

n – 1

)
(m – n – j)k–n xk

k!

+
n–1∑

j=0

∞∑

k=j

(–1)m+j2jλ–mj!
(

k
j

)(
m
j

)
G(n–j)

k–j (λ)
xk

k!
. (43)
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Comparing the coefficients of xk

k! on both sides of (43), we obtain the following new for-
mula of Apostol–Genocchi polynomials G(α)

n (x;λ):

G(n)
k (m;λ) = 2nn!

m–n∑

j=0

(–1)jλ–n–j
(

k
n

)(
n + j – 1

n – 1

)
(m – n – j)k–n

+
n–1∑

j=0

(–1)m+j2jλ–mj!
(

k
j

)(
m
j

)
G(n–j)

k–j (λ). (44)

Taking λ = 1 in (44), we obtain the following formula of the generalized Genocchi poly-
nomials at the nonnegative integers:

G(n)
k (m) = 2nn!

m–n∑

j=0

(–1)j
(

k
n

)(
n + j – 1

n – 1

)
(m – n – j)k–n

+
n–1∑

j=0

(–1)m+j2jj!
(

k
j

)(
m
j

)
G(n–j)

k–j .

(45)

Taking k = n in (45), we have

G(n)
n (m) = 2nn!

m–n∑

j=0

(–1)j
(

n + j – 1
n – 1

)
+

n–1∑

j=0

(–1)m+j2jj!
(

n
j

)(
m
j

)
G(n–j)

n–j . (46)

Further setting m = n in (46), we have

G(n)
n (n) = 2nn! +

n–1∑

j=0

(–1)n+j2jj!
(

n
j

)2

G(n–j)
n–j . (47)

Taking n = 1 in (45), we obtain the following formula of Genocchi polynomials at the
nonnegative integers:

Gk(m) = (–1)mGk + 2k
m–1∑

j=0

(–1)j(m – j – 1)k–1. (48)

• The generalized Apostol-type polynomials

F (α)
n (x;λ;μ;ν) (α,λ,μ,ν ∈C)

of (real or complex) order α are defined by means of the following generating function (cf.
Luo and Srivastava [11]):

(
2μzν

λ exp(z) + 1

)α

exp(xz) =
∞∑

n=0

F (α)
n (x;λ;μ;ν)

zn

n!
(|z| <

∣∣log(–λ)
∣∣; 1α := 1

)
, (49)

with, of course, we have

B(α)
n (x;λ) = (–1)αF (α)

n (x; –λ; 0; 1), (50)
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E (α)
n (x;λ) = F (α)

n (x;λ; 1; 0) (51)

and

G(α)
n (x;λ) = F (α)

n (x;λ; 1; 1). (52)

Letting x �→ λ exp(x) in (19), we have

λm exp(mx)
(λ exp(x) + 1)n =

m–n∑

j=0

(–1)jλm–n–j
(

n + j – 1
n – 1

)
exp

(
(m – n – j)x

)

+
n–1∑

j=0

(–1)m+j
(

m
j

)
1

(λ exp(x) + 1)n–j .

(53)

Multiplying both sides of (53) by 2nμxnν and noting (49), we get

∞∑

k=0

F (n)
k (m;λ;μ;ν)

xk

k!
=

∞∑

k=0

2nμ

m–n∑

j=0

(–1)jλ–n–j
(

n + j – 1
n – 1

)
(m – n – j)k xk+nν

k!

+
∞∑

k=0

n–1∑

j=0

(–1)m+jλ–m
(

m
j

)
2jμF (n–j)

k (λ;μ;ν)
xk+jν

k!
. (54)

Letting k �→ k –nν and k �→ k – jν in the first and second terms on the right, respectively,
we have

∞∑

k=0

F (n)
k (m;λ;μ;ν)

xk

k!
=

∞∑

k=nν

2nμ

m–n∑

j=0

(–1)jλ–n–j(nν)!
(

k
nν

)(
n + j – 1

n – 1

)
(m – n – j)k–nν xk

k!

+
n–1∑

j=0

∞∑

k=jν

(–1)m+j(jμ)!λ–m2jμ
(

k
jμ

)(
m
j

)
F (n–j)

k–jν (λ;μ;ν)
xk

k!
. (55)

Comparing the coefficients of xk

k! on both sides of (55), we obtain the following new
formula of Apostol-type polynomials F (n)

k (m;λ;μ;ν):

F (n)
k (m;λ;μ;ν) = 2nμ

m–n∑

j=0

(–1)jλ–n–j(nν)!
(

k
nν

)(
n + j – 1

n – 1

)
(m – n – j)k–nν

+
n–1∑

j=0

(–1)m+j(jμ)!λ–m2jμ
(

k
jμ

)(
m
j

)
F (n–j)

k–jν (λ;μ;ν). (56)

Taking λ = 1 in (56), we obtain the following formula of Apostol-type polynomials at the
nonnegative integers;

F (n)
k (m;μ;ν) = 2nμ

m–n∑

j=0

(–1)j(nν)!
(

k
nν

)(
n + j – 1

n – 1

)
(m – n – j)k–nν

+
n–1∑

j=0

(–1)m+j(jμ)!2jμ
(

k
jμ

)(
m
j

)
F (n–j)

k–jν (μ;ν). (57)
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Taking n = 1 in (57), we obtain the following formula of the Apostol-type polynomials at
the nonnegative integers:

Fk(m;μ;ν) = (–1)mFk(μ;ν) + 2μν!
(

k
ν

) m–1∑

j=0

(–1)j(m – j – 1)k–ν . (58)

4 Applications to the harmonic Stirling numbers of the second kind
The number S(n, k) of k-partitions is called a Stirling number of the second kind. Hence
S(n, k) > 0 for 1 ≤ k ≤ n and

S(n, k) = 0 if 1 ≤ n < k.

We put S(0, 0) = 1 and S(0, k) = 0 for k ≥ 1.

Theorem 12 ([6, p. 204, Theorem A]) The following explicit representation formulas hold
true:

S(n, k) =
1
k!

k∑

j=0

(–1)k–j
(

k
j

)
jn (59)

and

S(n, k) =
1
k!

k∑

j=0

(–1)j
(

k
j

)
(k – j)n. (60)

Theorem 13 ([6, p. 207, [2d], Theorem C]) The rational generating function for the Stirling
numbers of the second kind is

∞∑

n=0

S(n, k)un =
uk

(1 – u)(1 – 2u)(1 – 3u) · · · (1 – ku)
, k ≥ 1. (61)

Below we further generalize the above classical Stirling numbers of the second kind and
obtain some new formulas using our main result Theorem 1.

Definition 14 The harmonic Stirling numbers of the second kind are defined by means
of the following generating function:

∞∑

n=0

HS(n, k)un =
uk

(1 – u)(2 – u) · · · (k – u)
, k ≥ 1. (62)

Definition 15 The harmonic Stirling numbers of the second kind of higher order are
defined by means of the following generating function:

∞∑

n=0

HS(r)(n, k)un =
uk

[(1 – u)(2 – u) · · · (k – u)]r , k, r ≥ 1. (63)
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Definition 16 The generalized harmonic Stirling numbers of the second kind are defined
by means of the following generating function:

∞∑

n=0

HS(n, k; m)un =
um

(1 – u)(2 – u) · · · (k – u)
, m ≥ 0, k ≥ 1. (64)

Definition 17 The generalized harmonic Stirling numbers of the second kind of higher
order are defined by means of the following generating function:

∞∑

n=0

HS(r)(n, k; m)un =
um

[(1 – u)(2 – u) · · · (k – u)]r , m ≥ 0, k, r ≥ 1. (65)

For other generalized Stirling numbers of the second kind, we refer to [1–4] and the
references therein.

Letting M �→ m, n �→ k, λ �→ r, x �→ –x in Theorem 1 and using (3), we obtain

xm

[(x – 1)(x – 2) · · · (x – k)]r =
m–rk∑

n=0

Bm–rk–n(x1, . . . , xm–rk–n)
(m – rk – n)!

xn

+
k∑

j=1

(–1)r(k–j)

k!r

(
k
j

)r

jm+r
r–1∑

l=0

(–1)lBl(y1, y2, . . . , yl)
l!(x – j)r–l ,

(66)

where

xs = r(s – 1)!
k∑

j=1

js, s = 1, 2, . . . , m – rk, (67)

ys = (s – 1)!
[

r
(
H (s)

j + (–1)sH (s)
k–j

)
–

m + r
js

]
, s = 1, 2, . . . , r – 1. (68)

By (65) and the binomial theorem,

(1 – z)–r =
∞∑

n=0

(
r + n – 1

r – 1

)
zn (|z| < 1

)
,

we have

∞∑

n=0

(–1)rkHS(r)(n, k; m)xn

=
∞∑

n=0

Bm–rk–n(x1, . . . , xm–rk–n)
(m – rk – n)!

xn

+
∞∑

n=0

k∑

j=1

(–1)r(k–j+1)

k!r

(
k
j

)r

jm–n
r–1∑

l=0

jl
(

n + r – l – 1
r – l – 1

)
Bl(y1, y2, . . . , yl)

l!
xn. (69)
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Comparing the coefficients of xn on both sides of (69), we obtain the formula of the
generalized harmonic Stirling numbers of the second kind of higher order HS(r)(n, k; m):

HS(r)(n, k; m)

= (–1)rk Bm–rk–n(x1, . . . , xm–rk–n)
(m – rk – n)!

+
1

k!r

k∑

j=1

(–1)r(j–1)
(

k
j

)r

jm–n
r–1∑

l=0

jl
(

n + r – l – 1
r – l – 1

)
Bl(y1, y2, . . . , yl)

l!
,

(70)

where xs and ys are given by (67) and (68), respectively.
When m – rk – n < 0 in (70),

HS(r)(n, k; m) =
1

k!r

k∑

j=1

(–1)r(j+1)
(

k
j

)r

jm–n
r–1∑

l=0

jl
(

n + r – l – 1
r – l – 1

)
Bl(y1, y2, . . . , yl)

l!
. (71)

When m – rk – n = 0 in (70),

HS(r)(n, k; m)

= (–1)rk +
1

k!r

k∑

j=1

(–1)r(j+1)
(

k
j

)r

jrk
r–1∑

l=0

jl
(

n + r – l – 1
r – l – 1

)
Bl(y1, y2, . . . , yl)

l!
,

(72)

where ys is given by (68).
Taking r = 1, m = k in (70), we obtain a formula of the harmonic Stirling numbers of the

second kind HS(n, k):

HS(n, k) =
1
k!

k∑

j=1

(–1)j–1
(

k
j

)
jk–n. (73)

Taking m = k in (70), we obtain a formula of the harmonic Stirling numbers of the second
kind of higher order HS(r)(n, k):

HS(r)(n, k) =
1

k!r

k∑

j=1

(–1)r(j–1)
(

k
j

)r

jk–n
r–1∑

l=0

jl
(

n + r – l – 1
r – l – 1

)
Bl(y1, y2, . . . , yl)

l!
, (74)

where ys is given by (68).
Taking r = 1 in (70), we obtain a formula of the generalized harmonic Stirling numbers

of the second kind HS(n, k; m):

HS(n, k; m) = (–1)k Bm–k–n(x1, . . . , xm–k–n)
(m – k – n)!

+
1
k!

k∑

j=1

(–1)j–1
(

k
j

)
jm–n, (75)

where

xs = (s – 1)!
k∑

j=1

js, s = 1, 2, . . . , m – k.
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When m – k < n in (75),

HS(n, k; m) =
1
k!

k∑

j=1

(–1)j–1
(

k
j

)
jm–n = (–1)k–1S(m – n, k) ≡ 0. (76)

When m – k = n in (75),

HS(n, k) = (–1)k +
1
k!

k∑

j=1

(–1)j+1
(

k
j

)
jk = (–1)k + (–1)k–1S(k, k) ≡ 0. (77)

When m – k > n in (75),

HS(n, k; m) = (–1)k–1S(m – n, k) + (–1)k Bm–k–n(x1, . . . , xm–k–n)
(m – k – n)!

. (78)

Definition 18 (Knuth, [8, p. 264, (7)]) The generalized Stirling numbers of the second
kind S(–n, k) are defined by means of the following sum:

S(–n, k) :=
1
k!

k∑

j=1

(–1)k–j
(

k
j

)
j–n (n, k ∈N). (79)

When m = 0 in (75),

HS(n, k; 0) =
1
k!

k∑

j=1

(–1)j–1
(

k
j

)
j–n = (–1)k–1S(–n, k). (80)

When m < n in (75),

HS(n, k; m) =
1
k!

k∑

j=1

(–1)j–1
(

k
j

)
jm–n = (–1)k–1S(m – n, k). (81)

5 Conclusions
We change the form of (62) as follows:

∞∑

n=0

HS(n, k)un =
1
k!

uk

(1 – u
1 )(1 – u

2 ) · · · (1 – u
k )

, k ≥ 1.

Comparing the above form and the definition of the classical Stirling numbers of the sec-
ond kind (61), we call the coefficients in (62) the harmonic Stirling numbers of the second
kind.

As is well known, the basic (or q-) series and basic (or q-) polynomials, especially the
basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, are
known to have widespread applications, particularly in several areas of number theory and
combinatorial analysis, in particular the theory of partitions.

Recently, Srivastava [19–21] published a survey-cum-expository article on the q-
calculus and the fractional q-calculus in geometric function theory of complex analysis,
and gave a survey of some recent developments on higher transcendental functions of
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analytic number theory and applied mathematics, as well as some operators of fractional
calculus, related special functions, and integral transformations. In [19, p. 340], professor
Srivastava pointed out an important demonstrated observation that any (p, q)-variation of
the proposed q-results would be trivially inconsequential, because the additional parame-
ter p is obviously redundant. Hence we suggest the corresponding basic (or q-) extensions
of the results of this paper.

In this concluding section, we mention that for a general improper rational function,
with m and n being the degrees of the numerator and denominator polynomials, p(z) and
q(z), of this improper rational function, respectively, decomposing such a function into a
polynomial plus a proper rational fraction is usually very difficult. However, can we de-
compose a general improper rational function p(z)/q(z) into partial fractions?
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12. Mitrinović, D.S., Kečkić, J.D.: The Cauchy Method of Residues. Theory and Applications. Translated from Serbian by

Kečkić. Mathematics and Its Applications (East European Series), vol. 9. Reidel, Dordrecht (1984)
13. Peterson, J.: A probabilistic proof of a binomial identity. Am. Math. Mon. 120, 558–562 (2013)



Zhu and Luo Advances in Continuous and Discrete Models          (2023) 2023:1 Page 22 of 22

14. Prodinger, H.: Mortenson’s identities and partial fraction decomposition. Util. Math. 103, 175–179 (2017)
15. Rassias, T.M., Srivastava, H.M.: Some classes of infinite series associated with the Riemann zeta and polygamma

functions and generalized harmonic numbers. Appl. Math. Comput. 131, 593–605 (2002)
16. Riordan, J.: Combinatorial Identities. Wiley, New York (1968)
17. Sofo, A., Srivastava, H.M.: Identities for the harmonic numbers and binomial coefficients. Ramanujan J. 25, 93–113

(2011)
18. Sofo, A., Srivastava, H.M.: A family of shifted harmonic sums. Ramanujan J. 37, 89–108 (2015)
19. Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric

function theory of complex analysis. Iran. J. Sci. Technol. Trans. A, Sci. 44, 327–344 (2020)
20. Srivastava, H.M.: A survey of some recent developments on higher transcendental functions of analytic number

theory and applied mathematics. Symmetry 13, 1–22 (2021)
21. Srivastava, H.M.: Some parametric and argument variations of the operators of fractional calculus and related special

functions and integral transformations. J. Nonlinear Convex Anal. 22, 1501–1520 (2021)
22. Srivastava, H.M., Raina, R.K.: Some combinatorial series identities. Math. Proc. Camb. Philos. Soc. 96, 9–13 (1984)
23. Xi, G.-W., Luo, Q.-M.: Some extensions for the several combinatorial identities. Adv. Differ. Equ. 2021, 38 (2021)
24. Zhu, J.-M., Luo, Q.-M.: A novel proof of two partial fraction decompositions. Adv. Differ. Equ. 2021, 274 (2021)


	Partial-fraction decomposition of a rational function and its application
	Abstract
	MSC
	Keywords

	Introduction and the main results
	Proof of Theorem 1
	Applications to Apostol-type polynomials
	Applications to the harmonic Stirling numbers of the second kind
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contribution
	Author details
	Publisher's Note
	References


