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Abstract
This paper investigates a globally coupled map lattice. Rigorous proofs to the
existence of chaos in the sense of both Li–Yorke and Devaney in two controlled
globally coupled map lattices are presented. In addition, the existence of Li–Yorke
chaos and Devaney chaos for a general discrete dynamical system in RN and l∞ is
considered. For illustration, two examples are provided.
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1 Introduction
Chaotification (also called anticontrol of chaos [1]) is a process of making an originally
nonchaotic dynamical system chaotic, or enhancing a chaotic system to show a stronger
or different type of chaos. It has been found that chaos is useful under some circumstances,
such as in human-brain analysis [2], heartbeat regulation [3], and digital communications
[4]. Now, it has attracted increasing attention partially due to its great potential in many
nontraditional applications [5–11].

The Couple Map Lattice (CML) is a classical spatiotemporal chaos proposed by Kaneko,
which spatially divides the system into various lattices and represents a kind of dynamics
evolution both in time and space [6]. There are many types of coupling, e.g., one-way
coupling [7], nearest-neighbor coupling [8], global coupling [9], etc. A globally coupled
map lattice (GCML) is a discrete time dynamical system where elements interact with all
other elements [6, 10].

There are many works on the existence of chaos in CML and GCML. In 2007, the fol-
lowing CML with nearest-neighbor interaction:

xm+1,n = (1 – ε)f (xm,n) + 0.5ε
(
f (xm,n–1) + f (xm,n+1)

)

was studied by Tian and Chen, and it was proved that the CML is Li–Yorke chaotic under
some conditions [8]. In 2011, the following GCML:

xj
k+1 = (1 – ε)f

(
xj

k
)

+
ε

L

L+1∑

i=1,i�=j

f
(
xi

k
)
,
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where f (x) = μx(1 – x) is the logistic map, was studied by Khellat et al. and it was proved
that Li–Yorke chaos and synchronous chaos will appear when it satisfies certain conditions
[9]. In 2019, the following GCML with delays:

xn+1(i) = (1 – ε)f
(
xn(i)

)
+

ε

N

N+1∑

j=1,j �=i

f
(
xn–1(j)

)
,

where f (x) = μx(1 – x), was investigated and it was proved to be chaotic in the sense
of Li–Yorke using modified Marotto’s theorem [11]. Recently, chaotification of the CML
x(n + 1, m) = f (x(n, m), x(n, m + 1)) with general controllers, sawtooth functions, basic ele-
mentary functions, and polynomial maps are investigated and all the systems are proved
to be chaotic in the sense of both Li–Yorke and Devaney by applying coupled-expanding
and snap-back repeller theories [12–18].

To the best of our knowledge, there are few results on designing a controller such that
the controlled GCML is chaotic in the sense of both Li–Yorke and Devaney. This fact
motivates us to explore mathematically the existence of chaos in controlled GCMLs. In
this paper, we consider the following original GCML:

x(n + 1, m) = (1 – ε)f
(
x(n, m)

)
+

ε

N

N+1∑

j=1,j �=m

f
(
x(n, j)

)
, (1)

where ε ∈ (0, 1), n ∈ Z, m = 1, 2, . . . , N + 1, and N + 1 is the number of sites in the GCML,
and the objective here is to design controllers αg(βx(n, m)) and α

N
∑N+1

j=1,j �=m g(βx(n, j)) such
that the output of the following controlled systems:

x(n + 1, m) = (1 – ε)f
(
x(n, m)

)
+

ε

N

N+1∑

j=1,j �=m

f
(
x(n, j)

)
+ αg

(
βx(n, m)

)
, (2)

x(n + 1, m) = (1 – ε)f
(
x(n, m)

)
+

ε

N

N+1∑

j=1,j �=m

f
(
x(n, j)

)
+

α

N

N+1∑

j=1,j �=m

g
(
βx(n, j)

)
, (3)

where g : I ⊂ R → R, α and β are constants, are chaotic in the sense of both Li–Yorke and
Devaney.

The rest of the paper is organized as follows. Section 2 contains a lemma about chaos and
reformulation of (1)–(3). Mathematically rigorous verification of chaos is always prefer-
able, so, in Sect. 3, the existence of chaos in the sense of both Li–Yorke and Devaney in a
general discrete dynamical system is verified by employing the snap-back repeller theory.
Then, the existence of chaos in the sense of both Li–Yorke and Devaney in (2) and (3) is
studied in Sect. 4, and the value of α can be made arbitrarily small if β is large enough.
Two illustrative examples are provided in Sect. 5 with computer simulations.

2 Preliminaries
In this section, we introduce two basic concepts and a lemma about chaos, and then re-
formulate Eqs. (1)–(3).
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Definition 1 ([19]) Let (X, d) be a metric space and F : X → X be a map. A subset S of X
is called a scrambled set of F , if for any two different points x, y ∈ S,

lim inf
n→∞ d

(
Fn(x), Fn(y)

)
= 0, lim sup

n→∞
d
(
Fn(x), Fn(y)

)
> 0.

The map F is said to be chaotic in the sense of Li–Yorke if there exists an uncountable
scrambled set S of F .

Definition 2 ([20]) Let (X, d) be a metric space. A map F : V ⊂ X → V is said to be chaotic
on V in the sense of Devaney if:

(i) F is topologically transitive in V ;
(ii) the periodic points of F in V are dense in V ;

(iii) F has sensitive dependence on the initial conditions in V .

By ‖L‖ denote the norm of a bounded linear operator L on Rn, that is, ‖L‖ := max{‖Lx‖ :
x ∈ Rn with ‖x‖ = 1}. For a linear map L : X → X, where (X,‖ · ‖) is a Banach space, let
‖L‖0 := inf{‖Lx‖ : x ∈ X with ‖x‖ = 1}. If a bounded linear map L : X → X is bijective and
has a bounded linear inverse map, then L is called an invertible linear map. By Br(x) and
B̄r(x) denote the open and closed balls of radius r, centered at x ∈ X, respectively. The
following lemma about chaos is introduced.

Lemma 1 ([12]) Let (X,‖ ·‖) be a Banach space and F : X → X be a map with a fixed point
z ∈ X. Assume that

(i) F is continuously differential in Br0 (z) for some r0 > 0 and DF(z) is an invertible
linear map satisfying ‖DF(z)‖0 > 1, which is equivalent to saying that there exists a
positive constant r ≤ r0 such that z is a regular expanding fixed point of F in Br(z);

(ii) z is a snap-back repeller of F with Fm(x0) = z for some x0 ∈ Br(z), x0 �= z, and for
some positive integer m. Furthermore, F is continuously differentiable in some
neighborhoods of x1, . . . , xm–1, respectively, satisfying that DF(x) is an invertible
linear map for all x ∈ Br(z) and for x = xj, and ‖DF(xj)‖0 > 0 for 1 ≤ j ≤ m – 1,
where xj = F(xj–1).

Then, for any neighborhood U of z, there exist an integer n > m and a Cantor set � ⊂ U such
that Fn : � → � is topologically conjugate to the symbolic dynamical system σ : �+

2 → �+
2 .

Consequently, there exists a compact and perfect invariant set D ⊂ X, containing a Cantor
set, such that xn+1 = F(xn) (n ≥ 0) is chaotic on D in the sense of both Devaney and Li–Yorke,
and has a dense orbit in D.

Next, we reformulate GCMLs (1)–(3) into special discrete systems.
Let x(n) = (x(n, 1), x(n, 2), . . . , x(n, N + 1))T , then GCML (1) can be written as

x(n + 1) =

⎛

⎜
⎜⎜
⎜
⎝

(1 – ε)f (x(n, 1)) + ε
N
∑N+1

j=2 f (x(n, j))
(1 – ε)f (x(n, 2)) + ε

N
∑N+1

j=1,j �=2 f (x(n, j))
...

(1 – ε)f (x(n, N + 1)) + ε
N
∑N

j=1 f (x(n, j))

⎞

⎟
⎟⎟
⎟
⎠

:= F
(
x(n)

)
. (4)
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Thus, the controlled GCMLs (2) and (3) can be written as the following general discrete
dynamical systems:

H
(
ε,α,β , x(n)

)
= F
(
x(n)

)
+ αG

(
βx(n)

)
, (5)

H̃
(
ε,α,β , x(n)

)
= F
(
x(n)

)
+ αG̃

(
βx(n)

)
, (6)

respectively, where

G
(
x(n)

)
=
(
g
(
x(n, 1)

)
, g
(
x(n, 2)

)
, . . . , g

(
x(n, N + 1)

))T ,

G̃
(
x(n)

)
=

1
N

(N+1∑

j=2

g
(
x(n, j)

)
,

N+1∑

j=1,j �=2

g
(
x(n, j)

)
, . . . ,

N+1∑

j=1,j �=N+1

g
(
x(n, j)

)
)T

.

Definition 3 The GCMLs (1)–(3) are said to be chaotic in the sense of Li–Yorke (or De-
vaney) on V ⊂ RN+1 if their induced systems (4)–(6) are chaotic in the sense of Li–Yorke
(or Devaney) on V ⊂ RN+1, respectively.

3 Existence of chaos in a general discrete dynamical system
In this section, a general discrete dynamical system is considered, and the existence of
chaos in the sense of both Li–Yorke and Devaney is investigated by employing the snap-
back repeller theory.

For convenience, denote IN := I × I × · · · × I︸ ︷︷ ︸
N

for I ⊂ R.

Theorem 1 Consider the controlled system

xn+1 = F(xn) + αG(βxn), n ≥ 0, (7)

in RN (N < ∞) or l∞(N = ∞), where the controller is αG(βxn). Assume that
(i) x∗ = 0 is a fixed point of F and there exist positive constants r and L such that F is

continuous in [–r, r]N and continuously differentiable in (–r, r)N , satisfying

∥∥DF(x)
∥∥≤ L, ∀x ∈ (–r, r)N ; (8)

(ii) G satisfies the following conditions:
(iia) G is continuous in [–r, r]N ∪ [a, b]N and continuously differentiable in

(–r, r)N∪ (a, b)N with r < a < b;
(iib) x∗ = 0 is a fixed point of G and there exists a point ξ ∈ (a, b)N such that

G(ξ ) = 0;
(iic) DG(x) is an invertible linear operator for each x ∈ (–r, r)N ∪ (a, b)N and there

exists a constant λ > 0 such that

∥∥G(x) – G(y)
∥∥≥ λ‖x – y‖, ∀x, y ∈ [–r, r]N and ∀x, y ∈ [a, b]N . (9)

Then, for any constants α, β satisfying |β| > b/r and

|αβ| > C0 := max

{
Lr + b

λr
,

Lb
λ(‖ξ‖0 – a)

,
Lb

λ(b – ‖ξ‖)

}
,
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where ‖ξ‖0 = min{|ξi| : 0 ≤ i ≤ N}, system (7) is chaotic in the sense of both Li–Yorke and
Devaney in the neighborhood of the origin.

Proof Lemma 1 is used to prove this theorem. The proof is motivated by some ideas in
the proof of Theorem 3.1 in [12] and Theorem 2.1 in [21].

First, we will prove that the results herein hold in the case of β > b/r and αβ > C0. In this
case, [–β–1r,β–1r]N , [β–1a,β–1b]N ⊂ [–r, r]N . The proof is divided into four parts.

Step 1. x∗ = 0 is an expanding fixed point of Hα,β in [–β–1r,β–1r]N .
By assumptions (i) and (iib), x∗ = 0 is a fixed point of Hα,β . From (8) and Lemma 2.3 in

[12], one has

∥
∥F(x) – F(y)

∥
∥≤ L‖x – y‖, ∀x, y ∈ [–r, r]N . (10)

Then, it follows from (9) and (10) that for all x, y ∈ [–β–1r,β–1r]N ,

∥∥Hα,β (x) – Hα,β (y)
∥∥≥ (αβλ – L)‖x – y‖.

Hence, x∗ = 0 is an expanding fixed point of Hα,β in [–β–1r,β–1r]N due to αβλ – L > 1.
Step 2. x∗ = 0 is a snap-back repeller of Hα,β in [–β–1r,β–1r]N , that is, there exists a

point x0 ∈ (–β–1r,β–1r)N and x0 �= 0 such that H2
α,β(x0) = 0. This part is divided into two

subparts.
Step 2a. There exists a point x1 ∈ (β–1a,β–1b)N such that Hα,β(x1) = 0.
To achieve this, consider the equation

Hα,β (x) = 0, (11)

in [β–1a,β–1b]N , which can be written as

–
(
F(x) + ξ

)
= αG(βx) – ξ := Gα,β (x). (12)

By (9), for all x, y ∈ [β–1a,β–1b]N ,

∥∥Gα,β (x) – Gα,β (y)
∥∥ =
∥∥αG(βx) – αG(βy)

∥∥≥ αβλ‖x – y‖.

Hence, Gα,β : [β–1a,β–1b]N → Gα,β ([β–1a,β–1b]N ) is invertible, and its inverse G–1
α,β :

Gα,β ([β–1a,β–1b]N ) → [β–1a,β–1b]N is continuous and satisfies

∥∥G–1
α,β (x) – G–1

α,β (y)
∥∥≤ (αβλ)–1‖x – y‖, ∀x, y ∈ Gα,β

([
β–1a,β–1b

]N). (13)

Now, it is to show that

–
(
F(x) + ξ

) ∈ Gα,β
([

β–1a,β–1b
]N), ∀x ∈ [β–1a,β–1b

]N , (14)

i.e., to prove that for all x ∈ [β–1a,β–1b]N ,

–F(x) ∈ αG
(
β
[
β–1a,β–1b

]N) :=
{
αG(βx) : x ∈ [β–1a,β–1b

]N}. (15)
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In fact, it follows from (10) that

∥
∥F(x)

∥
∥≤ L‖x‖ ≤ β–1Lb, ∀x ∈ [β–1a,β–1b

]N . (16)

Obviously, β–1ξ ∈ (β–1a,β–1b)N and G(ββ–1ξ ) = 0. Hence, 0 ∈ αG(β[β–1a,β–1b]N ). Con-
sequently, for each x ∈ ∂([β–1a,β–1b]N ), it follows from (9) that

∥∥αG(βx)
∥∥ =
∥∥αG(βx) – αG(ξ )

∥∥≥ αλ‖βx – ξ‖
≥ αλmin

{‖ξ‖0 – a, b – ‖ξ‖} > β–1Lb. (17)

Further, since DG(βx) is invertible at each point x ∈ (β–1a,β–1b)N by assumption (iic),
G(β(β–1a,β–1b)N ) is open due to [22]. This, together with (16) and (17), implies that (15),
i.e., (14) holds. Therefore, (12) can be written as

G–1
α,β
(
–
(
F(x) + ξ

))
= x, ∀x ∈ [β–1a,β–1b

]N . (18)

Let h1(x) := G–1
α,β (–(F(x) + ξ )). By assumption (iib),

Gα,β
(
β–1ξ

)
= αG(ξ ) – ξ = –ξ , (19)

then for each x ∈ [β–1a,β–1b]N ,

h1(x) = G–1
α,β
(
–
(
F(x) + ξ

))
= G–1

α,β
(
–
(
F(x) + ξ

))
– G–1

α,β (–ξ ) + β–1ξ , (20)

which, together with (13) and (16), show that for each x ∈ [β–1a,β–1b]N ,

∥∥h1(x)
∥∥≥ β–1‖ξ‖0 –

∥∥G–1
α,β
(
–
(
F(x) + ξ

))
– G–1

α,β (–ξ )
∥∥

≥ β–1(‖ξ‖0 – (αβλ)–1Lb
)

> β–1a, (21)
∥
∥h1(x)

∥
∥≤ β–1(‖ξ‖ + (αβλ)–1Lb

)
< β–1b. (22)

It follows from (21) and (22) that h1 maps [β–1a,β–1b]N into itself. In addition, from (10),
(13), and (20), we have

∥∥h1(x) – h1(y)
∥∥≤ (αβλ)–1∥∥F(x) – F(y)

∥∥≤ (αβλ)–1L‖x – y‖, ∀x, y ∈ [β–1a,β–1b
]N .

Hence, h1 is contractive on [β–1a,β–1b]N due to (αβλ)–1L < 1. By the Banach contractive
mapping principle, there exists a unique point x1 ∈ [β–1a,β–1b]N such that h1(x1) = x1. It
follows from (21) and (22) that x1 ∈ (β–1a,β–1b)N . Therefore, x1 solves Eq. (11).

Step 2b. There exists a point x0 ∈ (–β–1r,β–1r)N and x0 �= 0 such that Hα,β (x0) = x1.
Consider the following equation:

Hα,β (x) = x1, (23)

in [–β–1r,β–1r]N , which can be written as

–F(x) + x1 = αG(βx) := Ĝα,β (x). (24)



Yu et al. Advances in Continuous and Discrete Models         (2022) 2022:62 Page 7 of 14

Then, it follows from (9) that for all x, y ∈ [–β–1r,β–1r]N ,

∥
∥Ĝα,β (x) – Ĝα,β (y)

∥
∥ =
∥
∥αG(βx) – αG(βy)

∥
∥≥ αβλ‖x – y‖.

By assumption (ii), it can be easily verified that Ĝα,β : [–β–1r,β–1r]N → Ĝα,β ([–β–1r,
β–1r]N ) is invertible, and that its inverse Ĝ–1

α,β : Ĝα,β ([–β–1r,β–1r]N ) → [–β–1r,β–1r]N is
continuous and satisfies

∥∥Ĝ–1
α,β (x) – Ĝ–1

α,β (y)
∥∥≤ (αβλ)–1‖x – y‖, ∀x, y ∈ Ĝ

([
–β–1r,β–1r

]N).

Next, it is to show that

–F(x) + x1 ∈ Ĝα,β
([

–β–1r,β–1r
]N) :=

{
αG(βx) : x ∈ [–β–1r,β–1r

]N}. (25)

In fact, it follows from x1 ∈ (β–1a,β–1b)N and (10) that

∥
∥–F(x) + x1

∥
∥≤ L‖x‖ + ‖x1‖ ≤ β–1Lr + β–1b < αλr, ∀x ∈ [–β–1r,β–1r

]N . (26)

Obviously, 0 ∈ (–β–1r,β–1r)N and αG(β0) = 0. Hence, 0 ∈ αG(β[–β–1r,β–1r]N ). Conse-
quently, for each x ∈ ∂([–β–1r,β–1r]N ), it follows from (9) that

∥∥αG(βx)
∥∥ =
∥∥αG(βx) – αG(β0)

∥∥≥ αλ‖βx‖ = αλr. (27)

Further, since DG(βx) is invertible at each point x ∈ (β–1a,β–1b)N by assumption (iic),
G(β(β–1a,β–1b)N ) is open due to [22]. Hence, it follows from (26) and (27) that (25), i.e.,
(24) holds. Hence, (24) can be written as

Ĝ–1
α,β
(
–F(x) + x1

)
= x, ∀x ∈ [–β–1r,β–1r

]N .

Let

h2(x) := Ĝ–1
α,β
(
–F(x) + x1

)
, ∀x ∈ [–β–1r,β–1r

]N . (28)

It follows from (10) and (13) that for all x, y ∈ [–β–1r,β–1r]N , one has

∥∥h2(x)
∥∥≤ (αβλ)–1(∥∥F(x)

∥∥ + ‖x1‖
)≤ (αβλ)–1(Lβ–1r + β–1b

)
< β–1r,

∥
∥h2(x) – h2(y)

∥
∥≤ (αβλ)–1∥∥F(x) – F(y)

∥
∥≤ (αβλ)–1L‖x – y‖.

Hence, h2 maps [–β–1r,β–1r]N into itself and is contractive in [–β–1r,β–1r]N because
(αβλ)–1L < 1. Again, by the Banach contractive mapping principle, there exists a unique
point x0 ∈ [–β–1r,β–1r]N such that h2(x0) = x0. One can also show that x0 ∈ (–β–1r,β–1r)N .
Hence, it follows from (24) and (28) that x0 solves Eq. (23). Further, it follows from (24)
that x0 �= 0. Otherwise, suppose that x0 = 0, then by (24), –F(0) + x1 = αG(β0), hence, it
follows from assumptions (i) and (iib) that x1 = 0, which contradicts x1 ∈ (–β–1a, –β–1b)N .

Based on the above discussions, there exists x0 ∈ (–β–1r,β–1r)N , x0 �= 0, such that
H2

α,β (x0) = 0. Hence, x∗ = 0 is a snap-back repeller of Hα,β in [–β–1r,β–1r]N .
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Step 3. ‖DHα,β (0)‖0 > 1 and ‖DHα,β (x1)‖0 > 0.
Let �β = (–β–1r,β–1r)N ∪ (β–1a,β–1b)N . Since �β ⊂ [–r, r]N , Hα,β is continuously dif-

ferential in �β . Obviously, DHα,β(x) = DF(x) + αβDG(βx) for all x ∈ �β . It follows from
(9) and Lemma 2.2 in [12] that

∥
∥DG(x)

∥
∥0 ≥ λ, ∀x ∈ (–r, r)N ,∀x ∈ (a, b)N . (29)

Hence, it follows from (8) that for any fixed x ∈ �β and for each y ∈ RN ,

∥∥DHα,β(x)y
∥∥≥ αβ

∥∥DG(βx)y
∥∥ –
∥∥DF(x)y

∥∥

≥ (αβ
∥∥DG(βx)

∥∥0 –
∥∥DF(x)

∥∥)‖y‖ ≥ (αβλ – L)‖y‖. (30)

This implies that for any x ∈ �β , ‖DHα,β(x)‖0 ≥ αβλ – L > 1. Thus, ‖DHα,β(0)‖0 > 1 and
‖DHα,β(x1)‖0 > 0.

Step 4. DHα,β(x) is invertible for each x ∈ �β

It follows from assumption (iic), (8), and (30) that DHα,β(x) is bounded and injective
for each x ∈ �β . Next, we will prove that DHα,β(x) is also surjective. In fact, for any fixed
x ∈ �β and for any z ∈ RN , the equation

DHα,β(x)y = z (31)

can be written as

(αβ)–1(–DF(x)y + z
)

= DG(βx)y. (32)

By assumption (iic), (32) can be rewritten as (αβ)–1(DG(βx))–1(–DF(x)y + z) = y. Let

h3(y) := (αβ)–1(DG(βx)
)–1(–DF(x)y + z

)
, K := ‖z‖(αβλ – L)–1.

Then, it follows from (8) and (29) that for each y, y1, y2 ∈ [–K , K]N ,

∥∥h3(y)
∥∥≤ (αβ)–1∥∥(DG(βx)

)–1∥∥(∥∥DF(x)
∥∥‖y‖ + ‖z‖)≤ (αβλ)–1(L‖y‖ + ‖z‖)≤ K ,

∥∥h3(y1) – h3(y2)
∥∥≤ (αβ)–1∥∥(DG(βx)

)–1∥∥∥∥DF(x)
∥∥‖y1 – y2‖ ≤ (αβλ)–1L‖y1 – y2‖.

Hence, h3 maps [–K , K]N into itself and is contractive on [–K , K]N due to (αβλ)–1L < 1.
Consequently, there exists a unique point y ∈ [–K , K]N such that h3(y) = y. This implies
that DHα,β(x) is surjective. Hence, DHα,β(x) has an inverse (DHα,β(x))–1. Further, it follows
from (30) that (DHα,β(x))–1 is a bounded linear operator. Hence, DHα,β (x) is invertible for
each x ∈ �β and αβ > C0.

By the above discussions and Lemma 1, the theorem holds in the case of β > b/r and
αβ > C0.

Secondly, we will prove that the theorem holds in the other three cases: Case I: β > b/r,
αβ < –C0; Case II: β < –b/r, αβ > C0; and Case III: β < –b/r, αβ < –C0.

The proof is similar to that of β > b/r and αβ > C0. The difference between their proofs
is as follows. In Case I, α and αβ in the above inequalities are replaced by –α and –αβ ,
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respectively. In Case II, α, β in inequalities, [–β–1r,β–1r], and [β–1a,β–1b] are replaced
by –α, –β , [β–1r, –β–1r], and [β–1b,β–1a], respectively. In Case III, β , αβ in inequalities,
[–β–1r,β–1r], and [β–1a,β–1b] are replaced by –β , –αβ , [β–1r, –β–1r], and [β–1b,β–1a],
respectively. The other proofs are similar to that of β > b/r, αβ > C0. Hence, the details are
omitted.

By all the above discussions, the theorem holds. The proof is now complete. �

Remark 1 All the assumptions (i), (iia), (iib), and (iic) in Theorem 1 are necessary condi-
tions of making (7) chaotic.

Remark 2 In [21], the controlled systems xn+1 = f (xn) + g(μxn) and xn+1 = f (xn) + μg(xn)
were considered, and they have been proved to be chaotic in the case of μ > μ0 > 0 and
under some other conditions. First, systems in [21] are special cases of Theorem 1 herein.
Secondly, compared with the range of values of μ, the ranges of α, β become wider, because
they could be positive or negative, and the value of α can be made arbitrarily small if β is
large enough.

4 Existence of chaos in the controlled GCMLs (2) and (3)
Theorem 2 Consider the controlled GCML (2). Assume that

(i) f (0) = 0 and there exists a positive constant r such that f is continuously
differentiable in [–r, r];

(ii) g is continuously differentiable in [–r, r] ∪ [a, b] with r < a < b, g ′(x) �= 0 for all
x ∈ [–r, r] ∪ [a, b], g(0) = 0, and there exists a point ξ ∈ (a, b) such that g(ξ ) = 0.

Then, for any constants α, β satisfying |β| > b/r and

|αβ| > C0 := max

{
Lr + b

λr
,

Lb
λ(ξ – a)

,
Lb

λ(b – ξ )

}
,

where L := max{|f ′(x)| : x ∈ [–r, r]} and λ := min{|g ′(x)| : x ∈ [–r, r] ∪ [a, b]}, (2) is chaotic in
the sense of both Li–Yorke and Devaney in the neighborhood of the origin.

Proof Theorem 1 is used to prove this theorem. The induced system of the controlled
GCML (2) is (5).

It is clear that O := (0, 0, . . . , 0︸ ︷︷ ︸
N+1

)T ∈ RN+1 is a fixed point of F , F is continuously differen-

tiable in [–r, r]N+1, and its Jacobian matrix is

DF(x) =

⎛

⎜⎜
⎜
⎝

(1 – ε)f ′(x(1)) ε
N f ′(x(2)) · · · ε

N f ′(x(N + 1))
ε
N f ′(x(1)) (1 – ε)f ′(x(2)) · · · ε

N f ′(x(N + 1))
· · · · · · · · · · · ·

ε
N f ′(x(1)) ε

N f ′(x(2)) · · · (1 – ε)f ′(x(N + 1))

⎞

⎟⎟
⎟
⎠

.

Hence, one has

DF(x)z =
(

(1 – ε)f ′(x(1)
)
z(1) +

ε

N
f ′(x(2)

)
z(2) + · · · +

ε

N
f ′(x(N + 1)

)
z(N + 1),

· · · ,
ε

N
f ′(x(1)

)
z(1) +

ε

N
f ′(x(2)

)
z(2) + · · · + (1 – ε)f ′(x(N + 1)

)
z(N + 1)

)T

,
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where z = {z(j)}N+1
j=1 ∈ RN+1. Thus,

∥
∥DF(x)

∥
∥≤ L, ∀x ∈ [–r, r]N+1.

It follows from assumption (ii) that G(O) = G(ξ ∗) = 0, where ξ ∗ := (ξ , ξ , . . . , ξ︸ ︷︷ ︸
N+1

)T ∈ (a, b)N+1.

Again by assumption (ii), G(x) is continuously differentiable in [–r, r]N+1 ∪ [a, b]N+1 and
satisfies

DG(x) = diag
{

g ′(x(1)
)
, g ′(x(2)

)
, . . . , g ′(x(N + 1)

)}
.

By assumption (ii), DG(x) is invertible and its inverse matrix is

(
DG(x)

)–1 = diag
{(

g ′(x(1)
))–1,

(
g ′(x(2)

))–1, . . . ,
(
g ′(x(N + 1)

))–1},

which implies that ‖(DG(x))–1‖ ≤ 1/λ for all x ∈ [–r, r]N+1 ∪ [a, b]N+1. Hence, DG(x) is
an invertible linear map. Further, for any x, y ∈ [–r, r]k+1 or [a, b]k+1, by the mean value
theorem, we have that

∥
∥G(x) – G(y)

∥
∥ = max

{∣∣g
(
x(j)
)

– g
(
y(j)
)∣∣ : 1 ≤ j ≤ N + 1

}≥ λ‖x – y‖.

By summarizing the above discussions, F and G satisfy all the assumptions of Theorem 1.
Thus, the theorem herein holds. The proof is complete. �

Theorem 3 Consider the controlled GCML (3). Suppose that f and g satisfy all assump-
tions of Theorem 2, then for any constants α, β satisfying |β| > b/r and

|αβ| > C0 := max

{
(2N – 1)(Lr + b)

λr
,

(2N – 1)Lb
λ(ξ – a)

,
(2N – 1)Lb
λ(b – ξ )

}
,

Equation (3) is chaotic in the sense of both Li–Yorke and Devaney in the neighborhood of
the origin.

Proof Theorem 1 is used to prove this theorem. The induced system of (3) is (6).
Obviously, G̃(x) is continuously differentiable in [–r, r]N+1 ∪ [a, b]N+1, and its Jacobian

matrix is

DG̃(x) =
1
N

⎛

⎜
⎜⎜
⎝

0 g ′(x(2)) · · · g ′(x(N + 1))
g ′(x(1)) 0 · · · g ′(x(N + 1))

· · · · · · · · · · · ·
g ′(x(1)) g ′(x(2)) · · · 0

⎞

⎟
⎟⎟
⎠

.

Thus, for any z = {z(j)}N+1
j=1 ∈ RN+1, one has

DG̃(x)z =
1
N
(
g ′(x(2)

)
z(2) + · · · + g ′(x(N + 1)

)
z(N + 1),

· · · , g ′(x(1)
)
z(1) + · · · + g ′(x(N)

)
z(N)

)T .
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Therefore,

∥
∥DG̃(x)

∥
∥≤ max

{∣∣g ′(x)
∣
∣ : x ∈ [–r, r] ∪ [a, b]

}
.

Further, DG̃(x) is invertible and its inverse is

(
DG̃(x)

)–1

=

⎛

⎜
⎜⎜
⎝

–(N – 1)(g ′(x(1)))–1 (g ′(x(1)))–1 · · · (g ′(x(1)))–1

(g ′(x(2)))–1 –(N – 1)(g ′(x(2)))–1 · · · (g ′(x(2)))–1

· · · · · · · · · · · ·
(g ′(x(N + 1)))–1 (g ′(x(N + 1)))–1 · · · –(N – 1)(g ′(x(N + 1)))–1

⎞

⎟
⎟⎟
⎠

,

which implies that for all x ∈ [–r, r]N+1 ∪ [a, b]N+1 and for any z = {z(j)}N+1
j=1 ∈ RN+1,

(
DG̃(x)

)–1z =
(
–(N – 1)

(
g ′(x(1)

))–1z(1) +
(
g ′(x(1)

))–1z(2) + · · · +
(
g ′(x(1)

))–1z(N + 1),

· · · ,
(
g ′(x(N + 1)

))–1z(1) + · · · – (N – 1)
(
g ′(x(N + 1)

))–1z(N + 1)
)T ,

thus,

∥∥(DG̃(x)
)–1∥∥≤ (2N – 1)/λ.

Hence, DG̃(x) is an invertible linear map. By the compatibility of the matrix norm,

1 =
∥∥DG̃(x)

(
DG̃(x)

)–1∥∥≤ ∥∥DG̃(x)
∥∥∥∥(DG̃(x)

)–1∥∥,

which together with the above inequality implies that for all x ∈ [–r, r]N+1 ∪ [a, b]N+1,

∥∥DG̃(x)
∥∥≥ (∥∥(DG̃(x)

)–1∥∥)–1 ≥ λ/(2N – 1),

which implies that for any x, y ∈ [–r, r]N+1 or [a, b]N+1,

∥∥G̃(x) – G̃(y)
∥∥≥ λ/(2N – 1)‖x – y‖.

Further, G̃(ξ ) = G̃(0) = 0. Hence, G̃(x) satisfies assumption (ii) of Theorem 1. By the above
discussions in Theorem 2, F herein satisfies assumption (i) of Theorem 1.

By summarizing the above discussions, F and G̃ satisfy all the assumptions of Theorem 1.
Thus, all the results herein hold. The proof is complete. �

5 Examples
In this section, two examples with computer simulations are given to illustrate the results
of Theorems 2 and 3.

Example 1 Consider the controlled GCML (2), where

f (x) =
1
2

x sin2 x, x ∈ R,
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Figure 1 Computer simulations for the controlled GCML (2). In 2D graphs, N = 1, the initial value is taken as
x(1) = 0.1, x(2) = –0.1, and n = 0, 1, . . . , 10,000. In 3D graphs, N = 2, the initial value is x(1) = 0.1, x(2) = –0.1,
x(3) = 2, and n = 0, 1, . . . , 5000

and

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2x, x ∈ [–1, 1],

(x – 5
2 )(x + 5

2 ), x ∈ [2, 3],
1

10 cos x, else.

Obviously, f and g satisfy all the assumptions of Theorem 2 with r = 1, a = 2, b = 3,
ξ = 5/2, L < 1, and λ = 2. Thus, by Theorem 1, for any constants |β| > 3 and |αβ| > 3, (2) is
chaotic in the sense of both Li–Yorke and Devaney in the neighborhood of the origin.

For computer simulation, we take N = 1, 2, β = 3.5, α = 3, 6, and ε = 0.2, 0.6, 0.9, re-
spectively. The simulation results in the two-dimensional plane (x(·, 1), x(·, 2)) and three-
dimensional space (x(·, 1), x(·, 2), x(·, 3)) that are shown in Fig. 1, which indicates that the
controlled GCML (2) has very complicated dynamical behaviors.

Example 2 Consider the controlled GCML (3), where f and g are given in Example 1.
Similar to the discussions in Example 1, by Theorem 3, for any constants |β| > 3 and

|αβ| > 3(2N – 1), (3) is chaotic in the sense of both Li–Yorke and Devaney.
In order to compare the dynamical behaviors of the GCMLs (2) and (3) intuitively, we

take all the values of α, β , ε, n, N , and the initial values are the same as those in Example 1.
The simulation results are shown in Fig. 2. Obviously, the dynamical behaviors of (2) and
(3) are similar in the 2D graphs, while they are different in the 3D graphs.
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Figure 2 Computer simulations for the controlled GCML (3). All the values of α , β , ε, n, N, and the initial
values are the same as those in Fig. 1
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