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Abstract
This paper investigates the quasiconsensus problem of fractional-order
heterogeneous multiagent systems, the distributed impulsive control protocol is
designed for the multiagent system. In contrast to some existing results, the
impulsive moments are determined by preset events, i.e., the event-triggered
mechanism is used. Based on the fractional-order Lyapunov stability theory and
fractional-order differential inequality, the quasiconsensus criteria are derived;
furthermore, the prescribed error bound is given. Then, Zeno behavior for the
considered event-triggered control method is excluded. Finally, numerical examples
are given to shown the effectiveness of the proposed method.
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multiagent systems; Heterogeneous

1 Introduction
Multiagent systems have been a hot topic in the past decades, due to their wide appli-
cations in many different fields, such as unmanned aerial vehicles, multirobot forma-
tions, distributed optimization, etc. There are some results reflecting that modeling by
fractional-order differential equations would produce more accurate descriptions, for ex-
ample, underwater robots that work on the ocean floor where microbes and sticky matter
abound. Li has studied the consensus behavior of fractional-order multiagent systems in
[1] and [2]. Since then, many results have focused on consensus of fractional-order mul-
tiagent systems (FOMASs), see for example [3–7] and references therein.

In a networked environment, communications among agents often block the channel
under a continuous-transmission mechanism. Thus, discontinuous transmission mech-
anisms of information of agents have attracted much attention, in which, both time-
triggered and event-triggered methods have produced many significant results [8–10].
There are several kinds of time-triggered methods, such as impulsive control, intermittent
control, sampled-data control, etc. All of them have been widely applied in the fractional-
order multiagent systems. See, for example [11–13] and references therein. The event-
triggered control method has been proposed by Tabuada in [14], and was first used for
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fractional-order multiagent systems in [15]. Many outstanding results have been pub-
lished recently [16–18].

Impulsive control makes the controlled systems convert their orbits just in some discrete
instants and has extremely low cost. Noting that most of the existing results about impul-
sive control are time triggered, i.e., agents will change their states at some determined
moments (periodic or aperiodic). A natural question is can we design the impulsive con-
trollers based on an event-triggered mechanism? In other words, agents will change their
states at some moments when the preset events occur. The so-called “Event-Triggered Im-
pulsive Control (ETIC)” has aroused more and more attention in the last few years [19–21].
However, there is little research about ETIC for fractional-order systems [22, 23].

In networked systems, the mismatched parameters for the subsystems are difficult to
avoid. This phenomenon caused the heterogeneous multiagent systems to be widely inves-
tigated by researchers. For the fractional-order multiagent systems, there are also a num-
ber of papers about heterogeneous models [24–26]. According to the discussion above,
this paper will consider the quasiconsensus problem of fractional-order heterogeneous
multiagent systems via the ETIC method. The main contributions of this manuscript can
be summarized as follows:

(1) This manuscript studies the consensus problem of fractional-order heterogeneous
multiagent systems using event-triggered impulsive control, while most existing works
about cooperative control for fractional-order multiagent systems did not consider that
the multiagent systems are heterogeneous.

(2) For the controllers given in this paper, the impulsive controllers based on an event-
triggered mechanism are provided, which can avoid the situation that impulsive instants
for all agents should be always identical. Furthermore, Zeno behavior is successfully ex-
cluded.

(3) Distributed impulsive controllers are used, which can reduce channel blocking, un-
der which, the bounded consensus criteria are given by some lower-dimensional matrix
inequalities and scalar inequalities and a prescribed error bound is given.

The remainder of this paper is organized as follows. The preliminaries of fractional-
order calculus and problem formulation are introduced in Sect. 2. The quasiconsensus
criteria for the considered fractional-order multiagent systems are derived in Sect. 3. In
Sect. 4, the effectiveness and feasibility of the developed methods are shown by two nu-
merical examples. A concise discussion is given in Sect. 5.

Notations Throughout this paper, In denotes an n-dimensional identity matrix. Rn de-
notes the n-dimensional Euclidean space. Rm×n is the set of m × n real matrices. ∗ stands
for the symmetrical part in a matrix. diag{. . .} stands for a diagonal matrix. |x| denotes the
absolute value of x. ‖ · ‖ denotes the Euclidean norm of the vector. λmax(P) and λmin(P)
stand for the largest eigenvalue and smallest eigenvalue of matrix P, respectively. σmax(P)
stands for the maximum singular value of matrix P.

2 Preliminaries and problem formulation
2.1 The Caputo fractional operator and Mittag–Leffler function
Definition 1 ([27]) The α > 0 order integral is defined as:

�D–α
t f (t) =

1
�(α)

∫ t

�

f (s)
(t – s)1–α

ds.
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Definition 2 ([27]) Caputo’s α > 0 order derivative is defined as:

C
�Dα

t f (t) =
1

�(n – α)

∫ t

�

f (n)(s)
(t – s)1+α–n ds,

where n – 1 < α ≤ n, n ∈N.

In the following, we will consider Caputo’s operation, by simply denoting:

�Dαf (t) = C
�Dα

t f (t).

We just consider the case that 0 < α < 1, then, one has:

�Dαf (t) =
1

�(1 – α)

∫ t

�

f ′(s)
(t – s)α

ds.

Noting that, for any constant C, one has �DαC = 0. The Mittag–Leffler function is the
basis function of fractional calculus, as the exponential function is to the integer-order
calculus, which is defined as follows.

Definition 3 ([27]) The two-parameter Mittag–Leffler function is defined as:

Eα,β (z) =
∞∑
i=0

zi

�(αi + β)
,

where α > 0, β > 0, �(.) is the Gamma function.

Definition 4 ([27]) The one-parameter Mittag–Leffler function is defined as:

Eα(z) = Eα,1(z) =
∞∑
i=0

zi

�(αi + 1)
.

In the particular case when α = 1, one has E1(z) = exp(z).

Lemma 1 ([28]) Let x(t) ∈ Rn be a vector of differentiable functions. Then, for any time
instant t ≥ �, the following relationship holds

�Dα
(
xT (t)Px(t)

) ≤ 2xT (t)P�Dαx(t), ∀α ∈ (0, 1),∀t ≥ �,

where P ∈R
n×n is a constant, square, symmetric, and positive-definite matrix.

Lemma 2 ([29]) Suppose that V (t) is a continuous function satisfying tkDα
t V (t) ≤ θV (t)

for t > tk , then,

V (t) ≤ V (tk)Eα

(
θ (t – tk)α

)
, t ≥ tk ,

where 0 < α < 1 and θ is a constant.
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2.2 Model formulation
Consider the nonlinear FOMASs consisting of N followers (labeled by 1, 2, . . . , N ), which
are described by

tkDαxi(t) = Aixi(t) + Big
(
xi(t)

)
+ ui(t), i = 1, 2, . . . , N , (1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]T ∈ R
n denotes the state of the ith follower, Ai and Bi

are constant matrices, g(xi(t)) = [g1(xi(t)), g2(xi(t)), . . . , gn(xi(t))]T is a vector value function
with gk(·) : Rn →R, and ui(t) is the communication protocol, which will be designed later.
The dynamics of the leader (labeled by 0) is described by

tkDαx0(t) = A0x0(t) + B0f
(
x0(t)

)
, (2)

where x0(t) = [x01(t), x02(t), . . . , x0n(t)]T ∈ R
n denotes the state of the leader, x0(t) may be

an equilibrium point, a periodic orbit or event a chaotic orbit.
The distributed impulsive control protocol is designed as

ui(t) =
∞∑

k=1

[
–cγk

N∑
j=1

lijxj(t) – cdiγk
(
xi(t) – x0(t)

)]
δ(t – tk), (3)

where c is the coupling strength, di ≥ 0 are the gain between leader and the ith follower,
i = 1, 2, . . . , N , when di = 0, there is no directed path from the leader to the ith follower.
Consequently, it can be seen as a pinning control method. δ(·) is the Dirac delta function,
and δ(t) = limr→0 χ (t) with χ (t) = 1

r when 0 ≤ t < r, and χ (t) = 0 otherwise. γk is the impul-
sive gain in the kth impulsive moment; more information about the impulsive sequence
{tk} and impulsive gain γk will be given later.

Let ei(t) = xi(t) – x0(t), e(t) = [e1(t), e2(t), . . . , eN (t)]T , then, the error dynamics can be
described by

tkDαei(t) = Aiei(t) + Bif
(
ei(t), x0(t)

)
+ ϕi

(
x0(t)

)
+ ui(t), (4)

where f (ei(t), x0(t)) = g(ei(t) + x0(t)) – g(x0(t)) and ϕi(x0(t)) = (Ai – A)x0(t) + (Bi – B)g(x0(t)).
Meanwhile, the control protocol can be rewritten as

ui(t) =
∞∑

k=1

[
–cγk

N∑
j=1

lijej(t) – cdiγ (k)ei(t)

]
δ(t – tk).

According to [30], let 
ei(tk) = ei(t+
k ) – ei(t–

k ), and ei(tk) = ei(t–
k ) = limh→0+ ei(tk – h), one can

obtain the following error system:

⎧⎨
⎩

tkDαei(t) = Aiei(t) + Bif (ei(t), x0(t)) + ϕi(x0(t)), t ∈ (tk–1, tk],


ei(tk) = – γ (k)
�(1+α) [c

∑N
j=1 lijej(tk) + cdiei(tk)].

(5)

Throughout this paper, the nonlinear FOMASs are assumed to satisfy the following as-
sumptions.
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Assumption 1 There are nonnegative constants qij (i, j = 1, 2, . . . , n) such that, for any x =
[x1, x2, . . . , xn] ∈R

n and y = [y1, y2, . . . , yn] ∈R
n, |gi(x) – gi(y)| ≤ ∑n

j=1 qij|xj – yj|.

Assumption 2 x0(t) is bounded, that is, for any initial value x0(0), there is T̂(x0(0)) such
that for any t ≥ T̂(x0(0)), ‖x0(t)‖ ≤ �, where � is a positive constant.

Assumption 3 There is a directed spanning tree with the leader as the root in the com-
munication topology of the FOMAS, that is, the leader has a path to every follower.

Remark 1 Let Q = (qij)n×n. Then, for any diagonal matrices �g > 0, Assumption 1 implies
that (x – y)T QT�gQ(x – y) ≥ (g(x) – g(y))T�g(g(x) – g(y)). Also, note that there are many
systems that can be satisfied, such as Chua’s circuit, and some chaotic neural networks. In
addition, according to Assumption 1 and Assumption 2, ϕi(x0(t)) is also bounded, that is,
maxt≥T̂ ‖ϕi(x0(t))‖ = �i, where �i ≥ 0, i = 1, 2, . . . , N , are constants.

2.3 The design of the event-triggered impulsive controller (EIFC)
In this subsection, we will design the event-triggered impulsive controller. In the impulsive
control method, the states of the system will be jumped at some determined moment
tk , however, when the states are converging at some impulsive moment, the states are
unnecessary to jump. Therefore, the event-triggered mechanism will be adopted in this
paper, which is related with the states of the system.

Let T > 0 be the check period and 0 = t0, V (t) =
∑N

i=1 eT
i (t)Pei(t) and P ∈ R

n×n is a
positive-definite matrix, θ1 > 1 and θ2 < 1. Then, the kth jumped moment and impulsive
gain γ (k) are determined by the following algorithm (k = 1, 2, . . .):

Under the above EIFC, let D = diag{d1, d2, . . . , dN } be the pinning control matrix, one
can rewrite the error dynamics in a matrix form when t = tk :

e
(
t+
k
)

=
(

IN –
cμν

�(1 + α)
(L + D) ⊗ In

)
e(tk), ν = 1, 2, 3. (6)

3 Main results
In this section, we will prove that there is no Zeno behavior for the considered FOMAS
with the EIFC. Then, some impulsive quasiconsensus criteria are established for FOMAS
(1).

Theorem 1 Consider the FOMAS (1) with the checked period T > 0, impulsive instants
tk for k = 1, 2, . . . determined by the Algorithm 1. If Assumptions 1–3 hold, and there are

Algorithm 1 Algorithm to determine tk , k = 1, 2, . . .
1: if ∃t ∈ (tk–1, tk–1 + T] such that V (t) ≥ θ1V (t+

k–1) then
2: tk = inf{t ∈ (tk–1, tk–1 + T]|V (t) ≥ θ1V (t+

k–1)} and γ (k) = μ1

3: else if ∃t ∈ (tk–1, tk–1 + T] such that V (t) ≥ θ2V (t+
k–1) then

4: tk = tk–1 + T and γ (k) = μ2

5: else
6: tk = tk–1 + T and γ (k) = μ3 = 0
7: end if
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positive matrices P, �1i, �2i, �1i, �2i and constants ai, positive constants ξi, i = 1, 2, . . . , N ,
such that

�1i ≤ �2i, (7)

�1i – �2i ≤ ξiIn. (8)

Then, there is no Zeno behavior for the concerned FOMAS, that is, there is a constant τ > 0
such that inf{tk – tk–1} ≥ τ > 0, where

�1i =

⎛
⎜⎝

PAi + AT
i P + QT�gQ PBi P

∗ –�g 0
∗ ∗ –�1i

⎞
⎟⎠ ,

�2i =

⎛
⎜⎝

aiP 0 0
∗ 0 0
∗ ∗ –�2i

⎞
⎟⎠ ,

and a = max1≤i≤N {ai}, Q and �g are defined in Remark 1.

Proof Choose a Lyapunov function as V (t) =
∑N

i=1 eT
i (t)Pei(t), according to Lemma 1 and

Remark 1 for any t ∈ (tk–1, tk], k = 1, 2, . . . , one has

tkDαV (t)|(5) ≤ 2
N∑

i=1

eT
i (t)P

[
Aiei(t) + Bif

(
ei(t)

)
+ ϕi

(
x0(t)

)]

×
N∑

i=1

[
ηi(t)T�1iηi(t) + ϕT

i
(
x0(t)

)
�1iϕi

(
x0(t)

)]
,

(9)

where ηi(t) = [eT
i (t), f T (ei(t)),ϕT

i (x0(t))]T , according to (7) and (8), one has

tkDαV (t) ≤ aV (t) +
N∑

i=1

ξi�
2
i . (10)

Noting that, tkDαC = 0 for any constant C, then, we have

tkDα

(
V (t) +

∑N
i=1 ξi�

2
i

a

)
≤ a

(
V (t) +

∑N
i=1 ξi�

2
i

a

)
.

According to Lemma 2, one has

V (t) ≤ –
∑N

i=1 ξi�
2
i

a
+

(
V

(
t+
k–1

)
+

∑N
i=1 ξi�

2
i

a

)
Eα

(
a(t – tk–1)α

)
, t ∈ (tk–1, tk]. (11)

Taking any (tk–1, tk], let us consider the event at t = tk . Based on Algorithm 1, if the first
condition “∃t ∈ (tk–1, tk–1 + T] such that V (t) ≥ θ1V (t+

k–1)” is not met, then tk – tk–1 = T > 0,
it is obvious that there is no Zeno behavior. Consequently, we should investigate the case
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that “∃t ∈ (tk–1, tk–1 + T] such that V (t) ≥ θ1V (t+
k–1)”, if this event occurs at tk , we have

V (tk) = θ1V (t+
k–1), combined with θ1 > 1 and (11), we have

V
(
t+
k–1

)
+

∑N
i=1 ξi�

2
i

a
< θ1V

(
t+
k–1

)
+

∑N
i=1 ξi�

2
i

a

≤
(

V
(
t+
k–1

)
+

∑N
i=1 ξi�

2
i

a

)
Eα

(
a(tk – tk–1)α

)
.

Thus, we have Eα(a(tk – tk–1)α) > 1, then, we obtain tk – tk–1 > 0. That is, Zeno behavior is
excluded for the system. The proof is completed. �

Theorem 2 Consider the FOMAS (1) with the checked period T > 0, impulsive instants tk

for k = 1, 2, . . . determined by Algorithm 1. If Assumptions 1–3, (7), (8) hold, and parameters
of the FOMAS are satisfied by

σ 2
max

(
IN –

cμν

�(α + 1)
(L + D)T

)
≤ ρ, ν = 1, 2, (12)

ρθ1 ≤ θ2, (13)

then, the trajectory of the error system (5) can exponentially converge into a ball M with a

convergence rate ln(θ2)
2T , where M = {e(t)|‖e(t)‖ ≤

√
(η–1)

∑N
i=1 ξi�

2
i

aλmin(P) }, in which,

η =

⎧⎨
⎩

Eα(aτα) a ≤ 0,

Eα(aTα) a > 0.

Proof Choose a Lyapunov function as V (t) =
∑N

i=1 eT
i (t)Pei(t). If “∃t ∈ (tk–1, tk–1 + T] such

that V (t) ≥ θ1V (t+
k–1)”, according to (12) and definition of tk , we have

V
(
t+
k
)

= eT(
t+
k
)
(IN ⊗ P)e

(
t+
k
)

= eT (tk)
((

IN –
cμ1

�(α + 1)
(L + D)

)
⊗ In

)T

(IN ⊗ P)

×
((

IN –
cμ1

�(α + 1)
(L + D)

)
⊗ In

)
e(tk)

= ρeT (tk)
(((

IN –
cμ1

�(α + 1)
(L + D)T

)

×
(

IN –
cμ1

�(α + 1)
(L + D)

))
⊗ P

)
e(tk)

≤ σ 2
max

(
IN –

cμ1

�(α + 1)
(L + D)T

)
eT (tk)(IN ⊗ P)e(tk)

≤ ρV (tk) ≤ ρθ1V
(
t+
k–1

) ≤ θ2V
(
t+
k–1

)
.

If “∃t ∈ (tk–1, tk–1 + T] such that V (t) ≥ θ1V (t+
k–1)” is not met, but “∃t ∈ (tk–1, tk–1 + T] such

that V (t) ≥ θ2V (t+
k–1)”, similarly, we have

V
(
t+
k
) ≤ θ2V

(
t+
k–1

)
.
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If “∃t ∈ (tk–1, tk–1 + T] such that V (t) ≥ θ1V (t+
k–1)” is not met, and “∃t ∈ (tk–1, tk–1 + T] such

that V (t) ≥ θ2V (t+
k–1)” is also not met, one can conclude that

V
(
t+
k
)

= V (tk) ≤ θ2V
(
t+
k–1

)
.

According to (11), one has

⎧⎨
⎩

V (t) ≤ ηV (t+
k–1) + ζ , t ∈ (tk–1, tk],

V (t+
k ) ≤ θ2V (t+

k–1),
(14)

where ζ = ε(η – 1), ε =
∑N

i=1 ξi�
2
i

a . By mathematical induction, we can derive that

V (t) ≤ ηθ k
2 V (0) + ζ , t ∈ (tk–1, tk].

Noting that τ ≤ tk – tk–1 ≤ T and for any t, there must be k such that t ∈ (tk–1, tk], one has
t
T ≤ k ≤ t

τ
, which implies that

V (t) ≤ ηV (0)e
ln θ2

T t + ζ .

Therefore, one can conclude that

∥∥e(t)
∥∥ ≤

√
ηV (0)
λmin(P)

e
ln(θ2)

2T t +

√
ζ

λmin(P)
.

Then, as t → +∞, the error e(t) converges exponentially into the ball M = {e(t)|‖e(t)‖ ≤√
(η–1)

∑N
i=1 ξi�

2
i

aλmin(P) } at a convergence rate ln(θ2)
2T . The proof is completed. �

Remark 2 Note that conditions in Theorem 1 are independent of the order α; however,
α effects the value of Eα(a(tk – tk–1)α), which implies that α will impact the time interval
of two successive triggers. In addition, Eα(aτα) is also related with α, which is significant
in Theorem 2. Consequently, the consensus results in this paper are closely related to the
order α.

Remark 3 In the above, the topology structure of the network is considered as a directed
graph. When the topology is undirected, one has a symmetric Laplacian matrix L, then, the
condition (12) can be replaced as λ2

max(IN – c
�(α+1) (L + D)T ) ≤ ρ . In addition, if the FOMAS

is homogeneous, which means that all nodes are identical, then it is easy to obtain �i = 0,
i = 1, 2, . . . , N , according to the above, one can obtain the complete exponential consensus.

Remark 4 More detailed results about error estimation, optimization for quasiconsensus
of heterogeneous dynamic networks via distributed impulsive control have been discussed
in [31], in which, the pinning strategy also has been investigated. Some similar results also
can be derived in this paper, therefore, we omit them here.

Remark 5 Compared with some existing results about impulsive control or the distributed
impulsive control method, this paper has considered the event-triggered mechanism.
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Conditions in this manuscript are unrelated to the checked period T , which is impor-
tant, the checked period T just effects the converge rate. Furthermore, due to the event-
triggered mechanism, some unnecessary impulsive jumping can be avoided, which would
be verified in the simulation part.

Remark 6 There are some results about impulsive control with an event-triggered mech-
anism. In [32–35], the event-based impulsive control method has been investigated, in
which, the impulsive instants are determined by a certain event. However, the feedback
controllers are also used in the systems, which is different from this paper. Distributed im-
pulsive control for heterogeneous multiagent systems based on an event-triggered scheme
has been studied in [36], compared with which, events and impulsive controllers are sim-
pler. Furthermore, this paper has discussed a FOMAS with fractional-order dynamics. Of
course, letting α = 1, the corresponding results about consensus of integer-order multia-
gent system can be obtained.

Remark 7 The consensus problem has been analyzed in this paper, results about synchro-
nization of a coupled dynamical network or master–slave system can be derived easily.
For example, if there is only one follower, then the consensus problem converts to the
synchronization problem of a master–slave system directly, an example will be given in
the simulation part.

4 Numerical simulations
In this section, three examples will be given to show the effectiveness of the above theoret-
ical results. A master–slave system with mismatched parameters and a heterogeneous FO-
MAS will be studied in two examples. The predictor–corrector algorithm has been used
to simulate the fractional-order dynamical networks in this paper [37] with step 0.001.

Example 1 Consider N = 1, then, the consensus problem of a leader-following FOMAS
(1) becomes a synchronization problem between x1(t) and x0(t). Let n = 3, for any z ∈R

3,

gi(z) =
|zi + 1| – |zi – 1|

2
,

A0 = –I3, A1 = I3,

B0 =

⎛
⎜⎝

1.25 –3.2 –3.2
–3.2 1.1 –4.4
–3.2 4.4 1

⎞
⎟⎠ ,

B1 =

⎛
⎜⎝

1 –3 –3
–3 1 4
–3 4 0

⎞
⎟⎠ .

Without any control, the chaotic behavior of the leader x0(t) and the error response are
shown in Fig. 1 and Fig. 2, respectively. In which, the initial values are selected as x0(0) =
[0.1, 0.2, 0.3]T and x1(0) = [–1, 3, –4]T .

Consider the event-triggered impulsive controllers that have been designed in this paper,
one can let T = 1, θ1 = 25, θ2 = 0.9, P = I3, μ1 = 0.8, μ2 = 0.5, then, the consensus states
are shown in Fig. 3. Furthermore, the errors are shown in Fig. 4, and the event-triggered
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Figure 1 Chaotic behavior of the leader x0(t)

Figure 2 Consensus error ‖e(t)‖ without any control

instants and the interval between this triggered moment and the next triggered moment
is shown in Fig. 5.

Example 2 Let us consider N = 4, n = 3 in this example, for any

z ∈R
3, gi(z) =

[ |zi + 1| – |zi – 1|
2

, 0, 0
]T

.

Also,

A0 =

⎛
⎜⎝

–2.5 10 0
1 –1 1
0 –18 0

⎞
⎟⎠ , B0 =

⎛
⎜⎝

6 0 0
0 0 0
0 0 0

⎞
⎟⎠ ,
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Figure 3 Consensus states with control

Figure 4 Consensus error ‖e(t)‖ with control

A1 =

⎛
⎜⎝

–2.5 10 1
1 –1 1
0 –18 0.1

⎞
⎟⎠ , B1 =

⎛
⎜⎝

8 0 0
0 0 0
0 0 0

⎞
⎟⎠ ,

A2 =

⎛
⎜⎝

–2.5 5 0
1 –0.5 1
0 –17 0

⎞
⎟⎠ , B2 =

⎛
⎜⎝

6 0 0
0 0 0
0 0 0

⎞
⎟⎠ ,

A3 =

⎛
⎜⎝

–2.5 10 0
1 –1 1
0 –18 0

⎞
⎟⎠ , B3 =

⎛
⎜⎝

5.5 0 0
0 0 0
0 0 0

⎞
⎟⎠ ,
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Figure 5 The release instants and release interval

Figure 6 Chaotic behavior of the leader x0(t)

A4 =

⎛
⎜⎝

–2.5 10 1
1 –1 1
1 –18 –1

⎞
⎟⎠ , B4 =

⎛
⎜⎝

6 0 0
0 0 0
0 0 0

⎞
⎟⎠ .

Without any control, the chaotic behavior of the leader x0(t) is shown in Fig. 6, and the
phase spaces of the followers can be seen in Fig. 7. One can see that the chaotic, stable,
unstable or periodic behaviors have been shown for the followers. Obviously, without any
control, the consensus can not be achieved, the error response is shown in Fig. 8.

The topology of the multiagent system is shown in Fig. 9, obviously, just the 1st and
2nd agents have been selected to be controlled. Let d1 = d2 = 1, d3 = d4 = 0, T = 1,
θ1 = 1.2, θ2 = 0.9, P = I3, μ1 = 0.95, μ2 = 0.8, then, the consensus states are shown in
Fig. 10. Furthermore, the errors are shown in Fig. 11, and the event-triggered instants
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Figure 7 Phase spaces of followers without control

Figure 8 Consensus error ‖e(t)‖ without any control

and the interval between this triggered moment and the next triggered moment is shown
in Fig. 12.

5 Conclusion
The quasiconsensus problem of a fractional-order multiagent system has been studied in
this paper, the heterogeneous case is considered for the multiagent system. By using the
designed event-triggered impulsive control protocol, the quasiconsensus can be reached
under some conditions that are formulated by a number of lower-dimensional matrix in-
equalities and scalar inequalities. The upper bound of the consensus error was estimated
precisely. Furthermore, Zeno behavior was excluded successfully. Numerical simulation
examples have been given to check the validity of the theoretical results. Noting that the
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Figure 9 Topology of FOMAs in this example

Figure 10 Consensus states with control

Figure 11 Consensus error ‖e(t)‖ with control
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Figure 12 The release instants and release interval

centralized control method has been used in this paper, however, the distributed strategy
will be more robust, thus, we will pay more attention to the distributed control methods in
our future works. As is known, time delays are difficult to avoid in real-world networked
systems, thus, the fractional-order multiagent system with time delays based on the con-
trol method in this manuscript will be researched in our future works.

Acknowledgements
The authors are highly grateful to the anonymous reviewers for their careful reading of this paper and their insightful
comments and suggestions.

Funding
This work was jointly supported by the high-end research and training project of professional leaders of teachers in
vocational colleges in Jiangsu Province (Sugao Peihan [2022] No. 11), the China Postdoctoral Science Foundation No.
2020M672027, the Natural Science Foundation of Shandong Province of China under Grant No. ZR2022QF075,
ZR2019MA034, the Youth Creative Team Sci-Tech Program of Shandong Universities (grant no. 2019KJI007), and the
National Natural Science Foundation of China under Grant 61973183.

Abbreviations
ETIC, Event-Triggered Impulsive Control; FOMAs, fractional-order multiagent systems.

Availability of data and materials
All data generated or analyzed during this study are included in this article.

Declarations

Consent for publication
This article has not been published previously; it is not under consideration for publication elsewhere.

Competing interests
The authors declare that they have no competing interests.

Author contribution
All authors contributed equally to this article. They read and approved the final manuscript.

Author details
1School of Control Technology, Wuxi Institute of Technology, Gaolang Road, 214121 Wuxi, Jiangsu, China. 2School of
Mathematical Sciences, Qufu Normal University, Jingxuan Road, 273165 Qufu, Shandong, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Huang et al. Advances in Continuous and Discrete Models         (2022) 2022:63 Page 16 of 17

Received: 13 May 2022 Accepted: 16 November 2022

References
1. Cao, Y., Li, Y., Ren, W., Chen, Y.: Distributed coordination of networked fractional-order systems. IEEE Trans. Syst. Man

Cybern., Part B, Cybern. 40(2), 362–370 (2009)
2. Cao, Y., Ren, W.: Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative

damping. Syst. Control Lett. 59(3–4), 233–240 (2010)
3. Yang, H., Zhu, X., Cao, K.: Distributed coordination of fractional order multi-agent systems with communication

delays. Fract. Calc. Appl. Anal. 17(1), 23–37 (2014)
4. Bai, J., Wen, G., Rahmani, A., Chu, X., Yu, Y.: Consensus with a reference state for fractional-order multi-agent systems.

Int. J. Syst. Sci. 47(1), 222–234 (2016)
5. Shahvali, M., Azarbahram, A., Naghibi-Sistani, M., Askari, J.: Bipartite consensus control for fractional-order nonlinear

multi-agent systems: an output constraint approach. Neurocomputing 397, 212–223 (2020)
6. Liu, J., Lam, J., Kwok, K.: Positive consensus of fractional-order multiagent systems over directed graphs. IEEE Trans.

Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3152939
7. Yang, J., Feckan, M., Wang, J.: Consensus of linear conformable fractional order multi-agent systems with impulsive

control protocols. Asian J. Control (2022). https://doi.org/10.1002/asjc.2775
8. Jiang, D., Wen, G., Peng, Z., Wang, J., Huang, T.: Fully distributed pull-based event-triggered bipartite fixed-time output

control of heterogeneous systems with an active leader. IEEE Trans. Cybern. (2022).
https://doi.org/10.1109/TCYB.2022.3160014

9. Jiang, D., Wen, G., Peng, Z., Huang, T., Rahmani, A.: Fully distributed dual-terminal event-triggered bipartite output
containment control of heterogeneous systems under actuator faults. IEEE Trans. Syst. Man Cybern. Syst. (2021).
https://doi.org/10.1109/TSMC.2021.3129799

10. Xiong, G., Wen, G., Peng, Z., Huang, T.: Pull-based event-triggered containment control for multiagent systems with
active leaders via aperiodic sampled-data transmission. IEEE Trans. Syst. Man Cybern. Syst. (2020).
https://doi.org/10.1109/TSMC.2020.2997246

11. Wang, F., Yang, Y.: Leader-following exponential consensus of fractional order nonlinear multi-agents system with
hybrid time-varying delay: a heterogeneous impulsive method. Phys. A, Stat. Mech. Appl. 482, 158–172 (2017)

12. Ye, Y., Su, H.: Consensus of delayed fractional-order multiagent systems with intermittent sampled data. IEEE Trans.
Ind. Inform. 16(6), 3828–3837 (2019)

13. Li, X., Wen, C., Liu, X.: Sampled-data control based consensus of fractional-order multi-agent systems. IEEE Control
Syst. Lett. 5(1), 133–138 (2020)

14. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9),
1680–1685 (2007)

15. Xu, G., Chi, M., He, D., Guan, Z., Zhang, D., Wu, Y.: Fractional-order consensus of multi-agent systems with
event-triggered control. In: 11th IEEE International Conference on Control & Automation (ICCA), pp. 619–624 (2014)

16. Wang, F., Yang, Y.: On leaderless consensus of fractional-order nonlinear multi-agent systems via event-triggered
control. Nonlinear Anal., Model. Control 24(3), 353–367 (2019)

17. Xiao, P., Gu, Z.: Adaptive event-triggered consensus of fractional-order nonlinear multi-agent systems. IEEE Access 10,
213–220 (2021)

18. Wang, L., Zhang, G.: Event-triggered iterative learning control for perfect consensus tracking of non-identical
fractional order multi-agent systems. Int. J. Control. Autom. Syst. 19(3), 1426–1442 (2021)

19. Tan, X., Cao, J., Li, X.: Consensus of leader-following multiagent systems: a distributed event-triggered impulsive
control strategy. IEEE Trans. Cybern. 49(3), 792–801 (2018)

20. Li, X., Peng, D., Cao, J.: Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Trans.
Autom. Control 65(11), 4908–4913 (2020)

21. Li, X., Yang, X., Cao, J.: Event-triggered impulsive control for nonlinear delay systems. Automatica 117, 108981 (2020)
22. Yu, N., Zhu, W.: Event-triggered impulsive chaotic synchronization of fractional-order differential systems. Appl. Math.

Comput. 388, 125554 (2021)
23. Zhao, D., Li, Y., Li, S., Cao, Z., Zhang, C.: Distributed event-triggered impulsive tracking control for fractional-order

multiagent networks. IEEE Trans. Syst. Man Cybern. Syst. (2022). https://doi.org/10.1109/TSMC.2021.3096975
24. Wang, F., Yang, Y.: Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes.

Appl. Math. Comput. 339, 1–14 (2018)
25. Wen, G., Zhang, Y., Peng, Z., Yu, Y., Rahmani, A.: Observer-based output consensus of leader-following fractional-order

heterogeneous nonlinear multi-agent systems. Int. J. Control 93(10), 2516–2524 (2020)
26. Cai, S., Hou, M.: Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic

intermittent pinning control. Chaos Solitons Fractals 146, 110901 (2021)
27. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
28. Duarte-Mermoud, M., Aguila-Camacho, N., Gallegos, J., Castro-Linaresc, R.: Using general quadratic Lyapunov

functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul.
22(1), 650–659 (2015)

29. Liu, P., Zeng, Z., Wang, J.: Global synchronization of coupled fractional-order recurrent neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 30(8), 2358–2368 (2018)

30. Yang, S., Hu, C., Yu, J., Jiang, H.: Exponential stability of fractional-order impulsive control systems with applications in
synchronization. IEEE Trans. Cybern. 50(7), 3157–3168 (2019)

31. He, W., Qian, F., Lam, J., Chen, G., Han, Q., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via
distributed impulsive control: error estimation, optimization and design. Automatica 62, 249–262 (2015)

32. Zhou, Y., Zeng, Z.: Event-triggered impulsive control on quasisynchronization of memristive neural networks with
time-varying delays. Neural Netw. 110, 55–65 (2019)

33. Han, Y., Li, C., Zeng, Z.: Asynchronous event-based sampling data for impulsive protocol on consensus of non-linear
multi-agent systems. Neural Netw. 115, 90–99 (2019)

34. Zhu, W., Wang, D.: Leader-following consensus of multi-agent systems via event-based impulsive control. Meas.
Control 52, 91–99 (2019)

https://doi.org/10.1109/TNNLS.2022.3152939
https://doi.org/10.1002/asjc.2775
https://doi.org/10.1109/TCYB.2022.3160014
https://doi.org/10.1109/TSMC.2021.3129799
https://doi.org/10.1109/TSMC.2020.2997246
https://doi.org/10.1109/TSMC.2021.3096975


Huang et al. Advances in Continuous and Discrete Models         (2022) 2022:63 Page 17 of 17

35. Zhu, W., Wang, D., Liu, L., Feng, G.: Event-based impulsive control of continuous-time dynamic systems and its
application to synchronization of memristive neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3599–3609
(2017)

36. Han, J., Zhang, H., Liang, X., Wang, R.: Distributed impulsive control for heterogeneous multi-agent systems based on
event-triggered scheme. J. Franklin Inst. 356(16), 9972–9991 (2019)

37. Bhalekar, S., Daftardar, V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional
order. J. Fract. Calc. Appl. 1, 1–9 (2011)


	Quasiconsensus of fractional-order heterogeneous multiagent systems under event-triggered impulsive control method
	Abstract
	Keywords

	Introduction
	Preliminaries and problem formulation
	The Caputo fractional operator and Mittag-Lefﬂer function
	Model formulation
	The design of the event-triggered impulsive controller (EIFC)

	Main results
	Numerical simulations
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Consent for publication
	Competing interests
	Author contribution
	Author details
	Publisher's Note
	References


