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Abstract
The Rabinovich system can describe different physical interactions, including waves
in plasmas, a convective fluid flow inside a rotating ellipsoid, and Kolmogorov’s flow
interactions. This study considers the Rabinovich system through Caputo and
Atangana–Baleanu fractional derivatives to detect its chaotic nature. First, the
existence and uniqueness of the solutions of the fractional-order systems are proved
using the combination of the Picard–Lindelöf theorem and the Banach contraction
principle. Then, a numerical approximation of the fractional systems is developed. The
fractional Rabinovich system is found to exhibit a chaotic behavior verified via
Lyapunov exponents. However, the fractional-order models do not enter into chaotic
behavior at the same fractional-derivative order. Bifurcation diagrams referring to
variation of the fractional-order derivatives are provided. Chaotic attractors for both
cases of the fractional-derivative representation of the system are depicted. The two
fractional-order models of the system show sensitivity to initial conditions.
A master–response synchronization was developed in the context of the
Atangana–Baleanu fractional derivative. The master and the response systems
showed a strong correlation, proving the system’s applicability in solving real
problems, including secure communications.

Keywords: Rabinovich system; Atangana–Baleanu fractional derivative; Caputo
fractional derivative; Chaos; Lyapunov exponents; Kaplan–Yorke dimension;
Bifurcation diagram; Synchronization

1 Introduction
Fractional calculus was introduced as a branch of mathematical analysis in 1965, about the
same time as the introduction of integral calculus. However, fractional calculus has started
to gain much attention among researchers relatively recently in the last few decades. Since
then, fractional calculus has been applied in different areas, including mathematical epi-
demiology [1], chaotic and hyperchaotic systems [2, 3], diffusion models, circuits [4], and
so on.
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There are several concepts of fractional derivatives in the literature, including Caputo
fractional derivatives, Reimann–Liouville fractional derivatives, Caputo–Fabrizo frac-
tional derivatives, and Atangana–Baleanu fractional derivatives, and so on.

Fractional derivatives can be grouped as singular kernels fractional derivatives, includ-
ing Caputo fractional derivatives and Reimann–Liouville fractional derivatives, and non-
singular kernels fractional derivatives, including Atangana–Baleanu–Caputo (ABC) and
Caputo–Fabrizo fractional derivatives. Moreover, some of the fractional derivatives allow
the inclusion of classical initial conditions (Caputo and ABC fractional derivatives), but
Caputo–Fabrizo does not allow the inclusion of initial conditions in the usual sense [2, 3].
There are several advantages of using fractional derivatives compared to integer deriva-
tives to analyze different dynamical systems; see [2, 3] and the references therein.

Chaos is a dynamic property that can be exhibited by nonlinear dynamic system charac-
terized by sensitivity to initial conditions and parameter changes, bifurcation and period
doubling, fraction Kaplan–Yorke dimension, dense orbits and transitivity, and expansivity
[5, 6]. Many researchers are attracted to chaos theory and its applications in different areas,
including secure communications [7], synchronization [8], image encryption [9], psychol-
ogy [10], modeling financial and circuit systems [2], and so on. As a result, several research
studies have been conducted on analyzing chaotic systems using different concepts of frac-
tional derivatives: A Lorenz-like chaotic system is developed and analyzed via the Caputo
fractional-derivative concept by Alam et al. [11]. The Caputo fractional-derivative con-
cept is applied to study a chaotic nature and bifurcation of a simplified Lorenz system in
[12]. Kumar et al. [13] used a bifurcation diagram and Lyapunov exponents to justify the
chaotic nature of the 3D Rabinovich–Fabrikant system and a sliding mode control strategy
to establish synchronization between two identical copies of the system. Hidden attrac-
tors and finite-time Lyapunov dimensions of the Rabinovich system are considered using
integer derivatives [14]. The ABC and Caputo fractional derivatives are used to analyze
different dynamic systems including systems of partial differential equations in [15–17].

To the best of the author’s knowledge, the Rabinovich system is not investigated via
ABC and Caputo fractional-derivative concepts. Motivated by this and the potential of
fractional derivatives in revealing hidden properties of a dynamic system, this study fo-
cuses on the qualitative analysis of the Rabinovich system through the Caputo and ABC
fractional-derivative concepts.

The fractional Rabinovich system is considered to detect its chaotic nature via the
memory-effect properties of the system. The memory effect of the system can be ac-
counted for by applying different concepts of the fractional derivatives mentioned above.
Accordingly, the integer-order Rabinovich system is represented by the ABC and Caputo
fractional derivatives. The choice of these two fractional-derivative concepts is attributed
to the possibility of including initial conditions in the system dynamics. Moreover, in the
case of the Caputo fractional derivative, there is a Matlab code for generating bifurcation
diagrams, Lyapunov exponents, and phase-portrait plots.

The existence and uniqueness of the solution of the fractional-order Rabinovich sys-
tem are addressed using the concept of the Banach contraction principle. The predictor–
corrector and Toufik–Atangana numerical approximations for the Rabinovich system’s
Caputo and ABC fractional representations are used. The Matignon criterion for local
stability analysis of systems of fractional derivatives is used [18].
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The Lyapunov exponents, bifurcation diagrams, and different phase portraits of the Ra-
binovich system through Caputo and ABC fractional-derivative representations are ob-
tained to confirm the impact of variation of the derivative orders and different parameter
values. The sensitivity to initial conditions is also examined for Caputo and ABC repre-
sentations of the Rabinovich system. A computer software Matlab 2018a is used for all
the simulation results obtained in this study. Finally, a master–response synchronization
through ABC representation of the Rabinovich system is established.

This report is organized as follows: The second section recaps the study’s basic def-
initions and fractional-derivative concepts. Then, the Caputo fractional-derivative and
the ABC fractional-derivative representation of the Rabinovich system is accomplished
in the paper’s third section. The fourth section details the existence and uniqueness of
the fractional-derivative model of the system. Numerical approximation of the fractional-
order systems is performed in the paper’s fifth section. In the sixth section, the dynamic
analysis of the fractional-derivative representations of the Rabinovich system is com-
pleted. Moreover, the local stability analysis, Lyapunov exponents, Kaplan–Yorke dimen-
sion, bifurcation diagrams, time-series solutions, attractors, and sensitivity to initial con-
ditions are well thought out. The seventh section of the report is devoted to establishing a
master–response synchronization process of the ABC fractional-order representation of
the Rabinovich system. Finally, the conclusion is given, followed by a list of references.

2 Basic definitions and theorems
This section summarizes the definitions of fractional-derivative operators used in the
study: The Atangana–Baleanu–Caputo (ABC), the Caputo fractional derivatives (C), and
the Riemann–Liouville fractional derivative.

Definition 1 ([1, 19]) For a fractional-derivative order μ ∈ (0, 1], and a function, g ∈
C1(0, T), 0 < T , the Atangana–Baleanu fractional derivative in the sense of the Caputo
(ABC) fractional derivative is defined as:

ABC
0 Dμ

t g(t) =
F(μ)
1 – μ

∫ t

0
Eμ

[
–

μ

1 – μ
(t – τ )μ

]
dg
dτ

(τ ) dτ , (1)

where F(μ) = 1 – μ + η/�(μ) is the normal operator, Eμ(·) represents the Mittag–Leffler
function, and �(·) denotes the Euler Gamma function.

Theorem 1 ([1, 19]) The time-fractional ordinary differential equation:

ABC
0 Dμ

t g(t) = x(t), (2)

has a unique solution given by

g(t) =
1 – μ

F(μ)
x(t) +

μ

F(μ)�(μ)

∫ t

0
x(ρ)(t – ρ)μ–1 dρ.

Definition 2 ([1, 19]) The ABC fractional-integral associate of the ABC fractional deriva-
tive is given by:

ABC
0 Iμ

t
{

g(t)
}

=
1 – μ

F(μ)
g(t) +

μ

F(μ)�(μ)

∫ t

0
g(ρ)(t – ρ)μ–1 dρ. (3)
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Definition 3 ([20, 21]) For a fractional-derivative order μ ∈ (0, 1], and a function g ∈
C1(0, T), 0 < T , the Caputo fractional derivative is defined as:

C
0 Dη

t g(t) =
1

�(1 – η)

∫ t

0
(t – τ )–η d

dτ
g(τ ) dτ , η ∈ (0, 1), t > 0. (4)

Definition 4 ([1, 19]) For a fractional-derivative order μ ∈ (0, 1], and a function g ∈
C1(0, T), 0 < T , the Riemann–Liouville fractional-integral operator is defined as

RL
0 Iμ

t f (t) =
1

�(μ)

∫ t

0
(t – τ )μ–1g(τ ) dτ . (5)

Definition 5 ([1, 19]) For a fractional-derivative order μ ∈ (0, 1], and a function g ∈
C1(0, T), 0 < T , the Riemann–Liouville fractional derivative is defined as

RL
0 Dμ

t g(t) =
1

�(1 – μ)
d
dt

∫ t

0
(t – τ )–μg(τ ) dτ . (6)

3 ABC and Caputo fractional-derivative representations of the Rabinovich
system

In 1978 Rabinovich studied a system named after him that is given in Eq. (7), [14]

⎧⎪⎪⎨
⎪⎪⎩

ẋ = ay – bx – yz,

ẏ = ax – cy + xz,

ż = –z + xy,

(7)

where a, b, and c are positive parameters. The application of the Rabinovich system and
the physical meaning of the parameters are described in [14]. More importantly, it can be
used to describe several physical interactions, including waves in plasma interactions, the
interaction of a convective fluid flow inside a rotating ellipsoid, and Kolmogorov’s flow, to
list just a few. A linear transformation and time scaling of (7) using x → bcy/a, y → bx, z →
bcz/a, t → t/a, leads to the system shown in (8)

⎧⎪⎪⎨
⎪⎪⎩

ẋ = β(y – x) – δyz,

ẏ = αx – y – xz,

ż = –γ z + xy,

(8)

where β = c/b,γ = 1/b, δ = –c2/a2,α = a2/bc, and β = –δα.
It must be noted that three of the parameters in the system (8) are positive and δ is

negative. The 3D system in (8) for δ = 0 is the well-known Lorenz system.
In this study, the objective is to qualitatively analyze system (8) in the context of Caputo

and ABC fractional derivatives. Accordingly, the ABC fractional-derivative representa-
tion and the Caputo fractional-derivative representation of the Rabinovich system (8) are,
respectively, given in Eqs. (9) and (10).

Let

H1(x, y, z, t) = β(y – x) – δyz,
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H2(x, y, z, t) = αx – y – xz,

H3(x, y, z, t) = –γ z + xy,
⎧⎪⎪⎨
⎪⎪⎩

ABC
0 Dμ

t x(t) = H1(x, y, z, t),
ABC
0 Dμ

t y(t) = H2(x, y, z, t),
ABC
0 Dμ

t z(t) = H3(x, y, z, t),

(9)

⎧⎪⎪⎨
⎪⎪⎩

C
0 Dμ

t x(t) = H1(x, y, z, t),
C
0 Dμ

t y(t) = H2(x, y, z, t),
C
0 Dμ

t z(t) = H3(x, y, z, t),

(10)

with initial conditions X(0) = (x(0), y(0), z(0)).

4 Existence and uniqueness of solutions of the fractional-derivative order
Rabinovich system

This section proves the existence and uniqueness of a solution of the system (9) via the
Banach fixed-point theorem and the Banach contraction principle [2, 3, 22].

Note that since H 1, H 2, and H 3 defined in (9) are all continuous everywhere in R
3, the

existence of at least one solution for system (9) is guaranteed. We now show the uniqueness
of the solution for the given initial condition shown in (9) by defining Picard’s operator and
the principle of contraction mapping. Since, Lipschitz continuity is the main condition
for Picard–Lindelöf ’s theorem that guarantees the existence and uniqueness of system of
differential equations such as (9), we show whether each of the equations in (9) satisfies
Lipschitz continuity followed by defining Picard’s operator.

First, it is shown that the first equation of (9) satisfies the condition of Lipschitz conti-
nuity; demonstrated in the following procedure:

∥∥H1(x1, y, z, t) – H1(x2, y, z, t)
∥∥ =

∥∥β(y – x1) – δyz – β(y – x2) + δyz
∥∥

≤ β‖x2 – x1‖. (11)

Hence, the Lipschitz continuity is satisfied with the Lipschitz constant β . This result
assures that the first equation of (9) has at least one solution.

Secondly, Picard’s operator is set up as follows: Applying the fundamental theorem of
calculus to the first equation of (9), ABC

0 Dμ
t x(t) = H1(x, y, z, t), we obtain

x(t) – x(0) = ABC
0 Iμ

t
{

H1(x, y, z, t)
}

.

Assuming that P is Picard’s operator, we have

Px(t) – x(0) = ABC
0 Iμ

t
{

H1(x, y, z, t)
}

.

The boundedness of Picard’s operator P, is shown as follows:

∥∥Px(t) – x(0)
∥∥ =

∥∥ABC
0 Iμ

t
{

H1(x, y, z, t)
}∥∥≤ ABC

0 Iμ
t
∥∥{H1(x, y, z, t)

}∥∥. (12)
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Since it is proved that H1(x, y, z, t) is Lipschitz continuous, we have H1(x, y, z, t) is
bounded, and thus there is a constant k1 such that ‖{H1(x, y, z, t)}‖ ≤ k1. Consequently,
Eq. (12) becomes

∥∥Px(t) – x(0)
∥∥ =

∥∥ABC
0 Iμ

t
{

H1(x, y, z, t)
}∥∥≤ ABC

0 Iμ
t
∥∥{H1(x, y, z, t)

}∥∥
≤ k1

(ABC
0 Iμ

t (1)
)

≤ k1

(
1 – μ

F(μ)
+

Tμ

F(μ)�(μ)

)
, ∃T , t ≤ T .

The boundedness of the operator P is thus proved.
Thirdly, a condition for the operator P to be a contraction mapping is developed as fol-

lows:

∥∥Px1(t) – Px2(t)
∥∥ =

∥∥ABC
0 Iμ

t
{

H1(x1, y, z, t) – H1(x2, y, z, t)
}∥∥

≤ ∥∥{H1(x1, y, z, t)
}

–
{

H1(x2, y, z, t)
}∥∥ABC

0 Iμ
t (1)

≤ β
∥∥x1(t) – x2(t)

∥∥(ABC
0 Iμ

t (1)
)

≤ β

(
1 – μ

F(μ)
+

Tμ

F(μ)�(μ)

)∥∥x1(t) – x2(t)
∥∥, ∃T , t ≤ T .

Thus, the operator P is a contraction mapping if the following condition is satisfied:

(
1 – μ

F(μ)
+

Tμ

F(μ)�(μ)

)
≤ 1

β
. (13)

The uniqueness of the solution is proved as follows:
Let us assume that x1(t) and x2(t) are two solutions to the first equation in (9). Then, we

have

x1(t) – x1(0) = ABC
0 Iμ

t
{

H1(x1, y, z, t)
}

,

x2(t) – x2(0) = ABC
0 Iμ

t
{

H1(x2, y, z, t)
}

.
(14)

Considering the difference between the two solutions, assuming the two solutions have
the same initial point, and taking the Euclidian norm, we obtain

∥∥x1(t) – x2(t)
∥∥ =

∥∥ABC
0 Iμ

t
{

H1(x1, y, z, t) – H1(x2, y, z, t)
}∥∥

≤ ABC
0 Iμ

t
∥∥{H1(x1, y, z, t) – H1(x2, y, z, t)

}∥∥

≤ β

(
1 – μ

F(μ)
+

Tμ

F(μ)�(μ)

)∥∥x1(t) – x2(t)
∥∥.

Thus, we have the following relation:

∥∥x1(t) – x2(t)
∥∥
[

1 – β

(
1 – μ

F(μ)
+

Tμ

F(μ)�(μ)

)]
≤ 0. (15)

It then follows that ‖x1(t) – x2(t)‖ ≤ 0 and hence that x1(t) = x2(t).
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We continue the process of demonstrating the existence and uniqueness of the solution
of (9) with the second equation.

Secondly, it is shown that the second equation of (9) satisfies the condition of Lipschitz
continuity; demonstrated in the following procedure:

∥∥H2(x, y1, z, t) – H2(x, y2, z, t)
∥∥ = ‖αx – y1 – xz – αx + y2 + xz‖ ≤ ‖y2 – y1‖.

Hence, the Lipschitz continuity is satisfied with the Lipschitz constant of 1 and Picard’s
operator is set up as follows: From the second equation of (9) we have

y(t) – y(0) = ABC
0 Iμ

t
{

H2(x, y, z, t)
}

.

Assuming that Q is Picard’s operator, we obtain

Qy(t) – y(0) = ABC
0 Iμ

t
{

H2(x, y, z, t)
}

.

The boundedness of Picard’s operator Q, is shown as follows:

∥∥Qy(t) – y(0)
∥∥ =

∥∥ABC
0 Iμ

t
{

H2(x, y, z, t)
}∥∥≤ ABC

0 Iμ
t
∥∥{H2(x, y, z, t)

}∥∥. (16)

Since it is proved that H2(x, y, z, t) is Lipschitz continuous, we have H2(x, y, z, t) is
bounded, and thus there is a constant k such that ‖{H2(x, y, z, t)}‖ ≤ k. Consequently,
Eq. (16) becomes

∥∥Qx(t) – x(0)
∥∥ =

∥∥ABC
0 Iμ

t
{

H2(x, y, z, t)
}∥∥≤ ABC

0 Iμ
t
∥∥{H2(x, y, z, t)

}∥∥
≤ k

(ABC
0 Iμ

t (1)
)

≤ k
(

1 – μ

F(μ)
+

Tμ

F(μ)�(μ)

)
, ∃T ∈R, t ≤ T .

Thus, the boundedness of the operator Q is proved.
We developed a condition for the operator Q to be a contraction mapping as follows:

∥∥Qy1(t) – Qy2(t)
∥∥ =

∥∥ABC
0 Iμ

t
{

H2(x, y1, z, t) – H2(x, y2, z, t)
}∥∥

≤ ∥∥{H2(x, y1, z, t)
}

–
{

H2(x, y2, z, t)
}∥∥ABC

0 Iμ
t (1)

≤ ∥∥y1(t) – y2(t)
∥∥(ABC

0 Iμ
t (1)

)

≤
(

1 – μ

F(μ)
+

hμ

F(μ)�(μ)

)∥∥y1(t) – y2(t)
∥∥, ∃h ∈R and t ≤ h.

Thus, Picard’s operator Q is a contraction mapping if the following condition is satisfied:

1 – μ

F(μ)
+

hμ

F(μ)�(μ)
≤ 1. (17)

Lastly, the uniqueness of the solution is proved as follows:
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Let us assume that y1(t) and y2(t) are two solutions to the first equation in (9). Then, we
have

y1(t) – y1(0) = ABC
0 Iμ

t
{

H2(x, y1, z, t)
}

,

y2(t) – y2(0) = ABC
0 Iμ

t
{

H2(x, y2, z, t)
}

.
(18)

Considering the difference between the two solutions, assuming the two solutions have
the same initial point, and taking the Euclidian norm, we obtain

∥∥y1(t) – y2(t)
∥∥ =

∥∥ABC
0 Iμ

t
{

H2(x, y1, z, t) – H2(x, y2, z, t)
}∥∥

≤ ABC
0 Iμ

t
∥∥{H2(x, y1, z, t) – H2(x, y2, z, t)

}∥∥

≤
(

1 – μ

F(μ)
+

hμ

F(μ)�(μ)

)∥∥y1(t) – y2(t)
∥∥.

Thus, we have the following relation:

∥∥y1(t) – y2(t)
∥∥
[

1 –
(

1 – μ

F(μ)
+

hμ

F(μ)�(μ)

)]
≤ 0.

It then follows that ‖y1(t) – y2(t)‖ ≤ 0 and y1(t) = y2(t).
Thirdly, it is shown that the third equation of (9) satisfies the condition of Lipschitz

continuity demonstrated in the following procedure:

∥∥H3(x, y, z1, t) – H3(x, y2, z2, t)
∥∥ = ‖ – γ z1 + xy + γ z2 – xy‖ ≤ γ ‖z2 – z1‖.

Hence, the Lipschitz continuity is satisfied with the Lipschitz constant of γ . We set up
Picard’s operator as follows: From the third equation we have

z(t) – z(0) = ABC
0 Iμ

t
{

H3(x, y, z, t)
}

.

Assuming that R is a Picard’s operator, we obtain

Ry(t) – y(0) = ABC
0 Iμ

t
{

H3(x, y, z, t)
}

.

The boundedness of Picard’s operator R is shown as follows:

∥∥Rz(t) – z(0)
∥∥ =

∥∥ABC
0 Iμ

t
{

H3(x, y, z, t)
}∥∥≤ ABC

0 Iμ
t
∥∥{H3(x, y, z, t)

}∥∥. (19)

Since it is proved that H3(x, y, z, t) is Lipschitz continuous, we have H3(x, y, z, t) bounded,
and thus there is a constant r such that ‖{H3(x, y, z, t)}‖ ≤ r. Consequently, Eq. (19) be-
comes

∥∥Rx(t) – x(0)
∥∥ =

∥∥ABC
0 Iμ

t
{

H3(x, y, z, t)
}∥∥≤ ABC

0 Iμ
t
∥∥{H3(x, y, z, t)

}∥∥
≤ r
(ABC

0 Iμ
t (1)

)

≤ r
(

1 – μ

F(μ)
+

pμ

F(μ)�(μ)

)
, ∃p ∈R, t ≤ p.
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The boundedness of the operator R is then proved.
Next, a condition for the operator R to be a contraction mapping is developed as follows:

∥∥Rz1(t) – Rz2(t)
∥∥ =

∥∥ABC
0 Iμ

t
{

H3(x, y, z1, t) – H3(x, y, z2, t)
}∥∥

≤ ∥∥{H3(x, y, z1, t)
}

–
{

H3(x, y, z2, t)
}∥∥ABC

0 Iμ
t (1)

≤ ∥∥z1(t) – z2(t)
∥∥(ABC

0 Iμ
t (1)

)

≤ r
(

1 – μ

F(μ)
+

pμ

F(μ)�(μ)

)∥∥z1(t) – z2(t)
∥∥, ∃p ∈R and t ≤ p.

Thus, Picard’s operator R is a contraction mapping if the following condition is satisfied:

(
1 – μ

F(μ)
+

pμ

F(μ)�(μ)

)
≤ 1

r
. (20)

Lastly, the uniqueness of the solution is proved as follows:
Let us assume that z1(t) and z2(t) are two solutions to the first equation in (9). Then, we

have

z1(t) – z1(0) = ABC
0 Iμ

t
{

H3(x, y, z1, t)
}

,

z2(t) – z2(0) = ABC
0 Iμ

t
{

H3(x, y, z2, t)
}

.
(21)

Considering the difference between the two solutions, assuming the two solutions have
the same initial point, and taking the Euclidian norm, we obtain

∥∥z1(t) – z2(t)
∥∥ =

∥∥ABC
0 Iμ

t
{

H3(x, y, z1, t) – H3(x, y, z2, t)
}∥∥

≤ ABC
0 Iμ

t
∥∥{H3(x, y, z1, t) – H3(x, y, z2, t)

}∥∥

≤ r
(

1 – μ

F(μ)
+

pμ

F(μ)�(μ)

)∥∥z1(t) – z2(t)
∥∥.

Thus, we have the following relation:

∥∥z1(t) – z2(t)
∥∥
[

1 – r
(

1 – μ

F(μ)
+

pμ

F(μ)�(μ)

)]
≤ 0.

It then follows that ‖z1(t) – z2(t)‖ ≤ 0 and z1(t) = z2(t).
We proved that all the operators P, Q, and R are well defined and contraction mappings.

Thus, the system (9) in the context of the Atangana–Baleanu fractional derivative has a
unique solution for a given initial condition. The case of the system (10) in the context of
the Caputo fractional derivative can be proved similarly.

5 Numerical approximation of the fractional-order Rabinovich system
5.1 Numerical approximation of the ABC fractional-derivative representation of

the Rabinovich system
The Toufik–Atangana numerical scheme [23] is applied to the ABC representation of the
Rabinovich system as follows:
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Referring to Theorem 1 and the first equation of (9), we have the solution of (22) given
in (23)

ABC
0 Dα

t x(t) = H1
(
x(t), y(t), z(t), t

)
, x0 = x(0), (22)

x(t) = x(0) +
1 – μ

F(μ)
H1
(
x(t), y(t), z(t), t

)

+
μ

F(μ)�(μ)

∫ t

0
H1
(
ρ, x(ρ), y(ρ), z(ρ)

)
(t – ρ)μ–1 dρ. (23)

The integral part in (23) is approximated by Lagrange’s interpolation polynomial in
[tk , tk+1] to

H1(x, y, z, t) = β(y – x) – δyz,

which leads to

xk ≈ 1
h
[
(s – tk–1)H1

(
x(tk), y(tk), z(tk)

)
– (s – tk)H1

(
x(tk–1), y(tk–1), z(tk–1)

)]
, (24)

where h = tk – tk–1.
After substituting (24) into (23), we obtain the expression in (25)

x(tn+1)

= x(0) +
1 – μ

F(μ)
H1
(
x(tk), y(tk), y(tk)

)

+
μ

F(μ)�(μ)

n∑
j=1

(
H1(x(tj), y(tj), z(tj))

h

j–1 –

H1(x(tj–1), y(tj–1), z(tj–1))
h


j

)
, (25)

where


j–1 =
∫ tj+1

tj

(s – tj–1)(tn+1 – s)μ–1 ds

= –
1
μ

[
(tj+1 – tj–1)(tn+1 – tj+1)μ – (tj – tj–1)(tn+1 – tj)μ

]

–
1

μ(μ + 1)
[
(tn+1 – tj+1)μ+1(tn+1 – tj+1)μ – (tn+1 – tj)μ+1], (26)


j =
∫ tj+1

tj

(y – tj–1)(tn+1 – s)μ–1 ds

= –
1
μ

[
(tj+1 – tj–1)(tn+1 – tj+1)μ

]

–
1

μ(μ + 1)
[
(tn+1 – tj+1)μ+1 – (tn+1 – tj)μ+1]. (27)

If we substitute tj = jh into (26) and (27), we obtain


j–1 =
hμ+1

μ(μ + 1)
[
(n + 1 – j)μ(n – j + 2 + μ) – (n – j)μ(n – j + 2 + 2μ)

]
, (28)
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j =
hμ+1

μ(μ + 1)
[
(n + 1 – j)μ+1 – (n – j)μ(n – j + 1 + μ)

]
. (29)

Finally, Eq. (25) is expressed in terms of Eqs. (28) and (29) by Eq. (30):

x(tn+1)

= x(0) +
1 – μ

F(μ)
H1
(
x(tn), y(tn), z(tn)

)

+
μ

F(μ)�(μ)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

( H1(x(tj),y(tj),z(tj))
�(μ+2) )

× hμ[(n + 1 – j)μ(n – j + 2 + μ) – (n – j)μ(n – j + 2 + 2μ)]
– ( H1(x(tj–1),y(tj–1),z(tj–1))

�(μ+2) )
× hμ[(n + 1 – j)μ+1 – (n – j)μ(n – j + 1 + μ)]

⎞
⎟⎟⎟⎟⎠ . (30)

Similarly, we have the following numerical approximations for the remaining equations
of (9):

y(tn+1) = y(0) +
1 – μ

F(μ)
H2
(
x(tn), y(tn), z(tn)

)

+
μ

F(μ)�(μ)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

H2(x(tj),y(tj),z(tj))
�(μ+2)

× hμ[(n + 1 – j)μ(n – j + 2 + μ) – (n – j)μ(n – j + 2 + 2μ)]
– H2(x(tj–1),y(tj–1),z(tj–1))

�(μ+2)
× hμ[(n + 1 – j)μ+1 – (n – j)μ(n – j + 1 + μ)]

⎞
⎟⎟⎟⎟⎠ , (31)

z(tn+1) = z(0) +
1 – μ

F(μ)
H3
(
x(tn), y(tn), z(tn)

)

+
μ

F(μ)�(μ)

×
n∑

j=1

⎛
⎜⎜⎜⎜⎝

H3(x(tj),y(tj),z(tj))
�(μ+2)

× hμ[(n + 1 – j)μ(n – j + 2 + μ) – (n – j)μ(n – j + 2 + 2μ)]
– H3(x(tj–1),y(tj–1),z(tj–1))

�(μ+2)
× hμ[(n + 1 – j)μ+1 – (n – j)μ(n – j + 1 + μ)]

⎞
⎟⎟⎟⎟⎠ . (32)

The numerical approximation of the ABC representation of the Rabinovich system is
given by Eqs. (30)–(32). Moreover, the stability and convergence of the formulation of the
numerical approximation for ABC fractional derivatives are proved by Toufik and Atan-
gana [23].

5.2 Predictor–corrector numerical approximation of the Caputo
fractional-derivative representation of the Rabinovich system

This subsection explains the numerical approximation applied to the Caputo fractional-
derivative representation of the Rabinovich system (10). The predicator-corrector method
is used because it has a Matlab code to obtain phase portraits and time-series solutions.



Deressa Advances in Continuous and Discrete Models         (2022) 2022:66 Page 12 of 30

Moreover, the method is proved stable and convergent and was first reported by Garrappa
[24].

The numerical approximation by Garrappa [24] used the Reimann–Liouville fractional
integral operator (5) for discretization. In the same manner, starting from the first equation
of (10) and applying the Reimann–Liouville fractional integral operator for developing the
approximation for model (10); as demonstrated as follows:

It is evident that the solutions of (10) are given by

⎧⎪⎪⎨
⎪⎪⎩

x(t) = x(0) + RL
0 Iμ

t H1(x, y, z, t),

y(t) = y(0) + RL
0 Iμ

t H2(x, y, z, t),

z(t) = z(0) + RL
0 Iμ

t H3(x, y, z, t).

(33)

The integral part of (33) is approximated by applying the predictor–corrector method
that leads to

⎧⎪⎪⎨
⎪⎪⎩

x(t) = x(0) + hμ[κμ
mH1(0) +

∑m–1
j=1 ψ

μ
m–jH1(xj, yj, zj, tj) + ψ

μ
0 H1(xp

m, yp
m, zp

m, tj)],

y(t) = y(0) + hμ[κμ
mH2(0) +

∑m–1
j=1 ψ

μ
m–jH2(xj, yj, zj, tj) + ψ

μ
0 H2(xp

m, yp
m, zp

m, tj)],

z(t) = z(0) + hμ[κμ
mH3(0) +

∑m–1
j=1 ψ

η

m–jH3(xj, yj, zj, tj) + ψ
η
0 H3(xp

m, yp
m, zp

m, tj)],

(34)

where,

κμ
m =

(m – 1)μ – mμ(m – μ – 1)
�(2 + μ)

,

ψμ
m =

(m – 1)μ+1 – 2mμ+1 + mμ(m + 1)
�(2 + μ)

, m = 1, 2, 3, . . . ,

ψ
μ
0 =

1
�(2 + μ)

.

Moreover, the predictors are given as follows:

⎧⎪⎪⎨
⎪⎪⎩

xp(tm) = x(0) + hμ
∑m–1

j=1 ψ
μ
m–j–1H1(xj, yj, zj, tj),

yp(tm) = y(0) + hμ
∑m–1

j=1 ψ
μ
m–j–1H2(xj, yj, zj, tj),

zp(tm) = z(0) + hμ
∑m–1

j=1 ψ
μ
m–j–1H3(xj, yj, zj, tj).

(35)

The predictor–corrector method is applied to obtain the attractor and time-series so-
lutions of (10). In addition, the Danca algorithm [25] is used to obtain the Lyapunov
exponents of (10). ‘The code is developed to determine all Lyapunov exponents of a
class fractional-order system modeled by the Caputo fractional derivative. The predictor–
corrector Adams–Bashforth–Moulton numerical method is the underlying numerical
method used in the code’.

6 Dynamic analysis of the fractional-order Rabinovich system
6.1 Local stability analysis of the fractional Rabinovich system
This section is devoted to the local stability analysis of the Rabinovich model in the context
of fractional derivatives (9) and (10). The Matignon criterion is used for the local stabil-
ity analysis of the system. According to the criterion, a fractional-order system is said to
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be locally asymptotically stable if all the eigenvalues of the Jacobian matrix of system (9)
satisfy the condition given in (36)

∣∣argσ (J)
∣∣ > μ

π

2
. (36)

In the Matignon criterion (36), the matrix J is the Jacobian matrix of the system (9), σ (J)
is the set of all eigenvalues of J , and 0 < μ ≤ 1, is the derivative order of (9).

Let us now fix the parameter values of the system as follows: Choose b = 1, c = 4,α =
a2/bc = 50, and obtain the values of the remaining parameters based on the relation de-
fined in (8). Consequently, the parameter values are selected as shown in (37):

α = a2/bc = 50, γ = 1/b = 1, δ = –c2/a2 = –0.08, β = –δα. (37)

The equilibrium points of (9) are given as follows:
i. If α < 1, the system (9) has a unique equilibrium point: E0 = (0,0,0);

ii. If α > 1, the system (9) has three different equilibrium points given by E0 = (0, 0, 0),

E1,2 =
(

± βγ
√

ξ

βγ + δξ
,±√ξ ,

βξ

βγ + δξ

)
, ξ =

βγ

2δ2

(
δ(α – 2) – β +

√
(β – δα)2 – 4δβ

)
.

The Jacobian matrix of the system (9) is given by:

J =

⎛
⎜⎝

–β β – δz –δy
α – z –1 –x

y x –γ

⎞
⎟⎠ and J0 = J(0, 0, 0) =

⎛
⎜⎝

–β β 0
α –1 0
0 0 –γ

⎞
⎟⎠ .

The eigenvalues of J0 are given by:

λ1 = –γ ,λ2,3 =
–(β + 1)

2
±
√

4αβ + (β – 1)2

2
.

It is evident that the eigenvalues λ1 and λ3 are negative and thus satisfy the Matignon
criterion (36). Moreover, λ2 = –(β + 1)/2 +

√
4αβ + (β – 1)2/2, meets the Matignon crite-

rion for α < 1. Thus, the equilibrium point E0 = (0, 0, 0) is locally asymptotically stable for
α < 1.

Moreover, the eigenvalues of J0 for the parameter values shown in (37) are λ1 =
11.7215,λ2 = –16.7215,λ3 = –1. Since λ2,3 satisfies the Matignon criterion for stability,
we must check the case for λ1 = 11.7215, The argument of arg(λ1) = 0 and according to
the Matignon criterion, 0 is outside the region of stability since 0 < μπ/2, for 0 < μ ≤ 1.
Therefore, the equilibrium point E0 = (0, 0, 0) is locally unstable for the choice of the pa-
rameter values (37).

Likewise, the eigenvalues corresponding to the nontrivial equilibrium points E1,2

are λ1 = 11.7213,λ2 = –16.7214,λ3 = –1. Therefore, it is evident that λ2,3 satisfies the
Matignon criterion for stability and the argument of arg(λ1) = 0 and according to the
Matignon criterion, 0 is outside of the region of stability since 0 < μπ/2, for 0 < μ ≤ 1.
Therefore, the equilibrium points E1,2 = (±0.0554,±0.0554, 0.0031) are locally unstable
for the choice of the parameter values (37).
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Table 1 Lyapunov exponents of the Rabinovich system for t ∈ [0, 300], integration step of h = 0.01,
normalization step of h-norm = 0.005

Mu (fractional derivative
order)

LE1 LE2 LE3 Remark

0.90 0.4259 0.0058 –10.4098 Chaos
0.91 0.0055 –0.0903 –9.3963 Chaos
0.92 –0.0003 –0.1707 –8.8394 Stable fixed point
0.93 0.0305 –1.2642 –7.3293 Chaos
0.94 –0.0012 –0.3615 –7.7753 Stable fixed point
0.95 0.0030 –0.0224 –7.7143 Chaos
0.96 0.0294 –0.1121 –7.2666 Chaos
0.97 0.0013 –0.2441 –6.7415 Chaos
0.98 0.0032 –0.3599 –6.2808 Chaos
0.99 0.0022 –0.4941 –5.8159 Chaos
1.00 0.0220 –0.6391 –5.3775 Chaos

Summing up, the equilibrium points of the Rabinovich dynamic system (9) are locally
unstable for the parameter values (37). In addition, the existence of one positive eigenvalue
for each of the equilibrium points is a sufficient condition for a route to chaos.

6.2 Lyapunov exponents and Kaplan–Yorke dimension of the fractional-order
Rabinovich system

This subsection describes Lyapunov exponents (LE) of the fractional Rabinovich dy-
namic system (10). The LEs are calculated using the Danca algorithm [25]. As mentioned
above, the Matlab code developed by Danca obtains Lyapunov exponents of the fractional-
order system in the Caputo fractional derivative using the predictor–corrector Adams–
Bashforth–Moulton numerical scheme. The parameter values used are shown in (37), and
the LEs for different values of the derivative order (Mu) are shown in Table 1.

It is evident from Table 1 that the sum of the LEs in each row of the table is negative, and
thus, the Rabinovich system (10) is dissipative. Moreover, for t ∈ [0, 300], and the fractional
derivative μ ∈ (0.94, 1], one of the LEs being positive indicates that the Rabinovich system
exhibits chaotic behavior for the parameter values.

The Kaplan–Yorke dimension for some of the fractional derivatives considered in Ta-
ble 1 is calculated as follows:

For the fractional-derivative order of 0.90,

dim(LE) = 2 +
0.4259 + 0.0058

| – 10.4098| = 2.0415.

For the fractional-derivative order of 0.93,

dim(LE) = 1 +
0.0305

| – 1.2642| = 1.0241.

For the fractional-derivative order of 0.96,

dim(LE) = 1 +
0.0294

| – 0.1121| = 1.2623.

For the fractional-derivative order of 0.99,

dim(LE) = 1 +
0.0022

| – 0.4941| = 1.0045.
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Figure 1 Bifurcation plot of the Rabinovich system (10) with μ ∈ [0.9.1], α = 50,δ = –0.08,γ = 1,β = 4

As can be seen, all the Kaplan–Yorke dimensions calculated above are fractions, and this
result is an additional indication of the system’s route to chaos.

6.3 Bifurcation for fractional-derivative orders
This section describes the bifurcation diagram of the Rabinovich system with its
fractional-derivative order supplemented by time-series trajectories and chaotic attrac-
tors with Caputo and ABC fractional derivatives. The bifurcation diagram for μ ∈ [0.9.1]
and α = 50, δ = –0.08,γ = 1,β = 4 of the Rabinovich system is shown in Fig. 1. It is ev-
ident from Fig. 1 that the Rabinovich system undergoes chaos for the parameter values
and the derivative orders of (0.940, 1], with an integration step of h = 0.001. On the other
hand, the system exhibits oscillation with stability for derivative-order values in the range
[0.9, 0.940].

Figures 2–11 verify the conclusion drawn from Fig. 1 for both the ABC and the Caputo
context Rabinovich fractional-order system shown in (9) and (10). As seen from Fig. 2,
time-series trajectory (a) and phase-space portrait (b), the system (10), in the sense of the
Caputo fractional derivative, exhibits short time oscillation followed by stability for the
fractional-derivative order 0.93 and the given parameter values.

It can be inferred from Fig. 3 that the ABC and the Caputo fractional-derivative repre-
sentations of the system undergo oscillation with stability. However, it must be noted that
the ABC representation’s oscillation time is shorter than the Caputo fractional-order rep-
resentation of the Rabinovich system for the fractional-derivative order of μ = 0.93; this
result agrees with the conclusion made from the bifurcation diagram.

It is evident from Fig. 4 that the Caputo Fractional-derivative representation of the sys-
tem (10) exhibits an increasing number of periods, which is a clear route to chaos. Thus,
the fractional representation of the Rabinovich system (10) is chaotic for a fractional-
derivative order of 0.98 that agreed with the bifurcation diagram shown in Fig. 1. In ad-
dition, the chaotic nature of the system (10) is observed in the phase-space plot projected
on different planes as shown in Fig. 5.
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Figure 2 Time-series trajectories (a) and phase portraits (b) of the Rabinovich system (10) for
α = 50,δ = –0.08,γ = 1,β = 4 and derivative order μ = 0.93

The time-series trajectories of the Rabinovich system in Caputo and ABC fractional-
derivative representations for fractional-derivative order 0.994 shown in Fig. 6 display the
system’s chaotic nature in the context of both fractional derivatives. However, there is an
observable difference in the significance of chaos between the two representations (9) and
(10) of the Rabinovich system; the quantity of the chaos is remarkably different in each
case. This difference is depicted in the attractors shown in Fig. 7 (via ABC) and Fig. 8 (via
Caputo) for a derivative order of 0.994.

From Figs. 9 and 10, we see that both the fractional-order representations undergo
chaotic behavior. However, it seems that the Caputo context chaotic nature (Figs. 9(a),
(b), (c), and (g)) is more significant than the ABC case chaotic nature (Figs. 9(d), (e), (f ),
and h) for a fractional-derivative order of 0.998.

Figure 11 depicts the time-series trajectories ((a) and (b)) and attractors (b and (c)) of the
fractional Rabinovich system for a fractional order of 1. In this case, it seems that the ABC
and Caputo context representations of the Rabinovich system exhibit significant chaotic
nature.
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Figure 3 Time-series trajectories of the Rabinovich system (9) and (10) for α = 50,δ = –0.08,γ = 1,β = 4 and
derivative order μ = 0.96

Figure 4 Rabinovich system’s (9) and (10) time-series trajectories for α = 50,δ = –0.08,γ = 1,β = 4 and
derivative order μ = 0.98

6.4 On the sensitivity to initial conditions of the fractional-order Rabinovich
system

In this section of the study, the impact of different initial conditions on the dynamics of the
chaotic Rabinovich system through the Caputo and ABC fractional derivatives is exam-
ined. Chaotic attractors are described by sensitivity to small changes of the system’s initial
and parameter values, strong harmonics among the trajectories, fractional Kaplan–Yorke
dimension, and at least one positive Lyapunov exponent showing a stretching direction of
the system. Thus, it is appropriate to examine the sensitivity to initial values of systems (9)
and (10). To explore the sensitivity to initial conditions of the systems (9) and (10), three
different initial conditions were used: X0 = (5; 5; 5), (5.01; 5.01, 5.01), and (4.55; 4.55; 4.55)
for simulation graphs. The corresponding time-series trajectories are depicted in Fig. 12
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Figure 5 Chaotic attractors of the Rabinovich system (10) for α = 50,δ = –0.08,γ = 1,β = 4 and derivative
order μ = 0.98

Figure 6 Time-series trajectories of the Rabinovich system (9) and (10) for α = 50,δ = –0.08,γ = 1,β = 4 and
derivative order μ = 0.994

(via the Caputo fractional derivative) and Fig. 13 (via the ABC fractional derivative). It
is evident from the figures that the systems are strongly dependent on initial conditions.
However, the degree of sensitivity is different between the two fractional derivatives.

The ABC context Rabinovich system time-series trajectories started divergence before
the Caputo context Rabinovich system trajectories, as seen in Figs. 12 and 13. From Fig. 12,
the x (t) and y (t) seem to overlap over the first 20-second simulation, and that is not the
case for Fig. 13 a; they seem to overlap only for the first 8 seconds. The same difference
exists between Figs. 12b and 13b.
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Figure 7 Attractors of the Rabinovich system (9) in the context of the ABC fractional derivative for
α = 50,δ = –0.08,γ = 1,β = 4 and derivative order μ = 0.994

Figure 8 Attractors of the Rabinovich system (10) in the context of the Caputo fractional derivative for
α = 50,δ = –0.08,γ = 1,β = 4 and derivative order μ = 0.994

7 Synchronization of the Rabinovich system via ABC fractional derivatives
In this part of the study, a master–response system of the Rabinovich system given in
(9) through the ABC fractional derivative is designed. First, a coupling function is devel-
oped to associate two identical copies of the Rabinovich system (9). Secondly, the two
systems are simulated using two different initial conditions. The simulation resulted in
time-series trajectories and phase-space plots of the master and the response systems,
showing a strong correlation. Moreover, the error dynamics resulted in a linear system
whose coefficient matrix has negative eigenvalues, demonstrating the error’s asymptotic
stability.

The following concept is used for developing the master–response relationship between
identical copies of the Rabinovich system (9).
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Figure 9 Attractors of the Rabinovich systems in the context of ABC fractional derivatives (9) (a), (b), (c), (g)
and Caputo fractional derivatives (10) (d), (e), (f), (h) for α = 50,δ = –0.08,γ = 1,β = 4 and derivative order
0.998

Let the master and the response systems be given by Eqs. (38) and (39)

Ẋ = f (X), (38)

Ẋs = F(Xs) + C +
(

∂F
∂X

– H
)

(X – Xs), (39)

where H is an arbitrary Hermitian matrix of appropriate size, ∂F/∂X is the Jacobian
matrix of the master system, C + (∂F/∂X – H)(X – Xs) is the coupling function, and
C = (c1, c2, c3), X = (x, y, z), Xs = (xs, ys, zs).

The error is defined as ζ = (e1, e2, e3) = X – Xs = (x – xs, y – ys, z – zs). Now, to verify if
the error dynamics of the synchronization process is asymptotically stable, we proceed as
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Figure 10 Time-series trajectories of the Rabinovich system via Caputo (10) and ABC fractional derivatives (9)
for α = 50,δ = –0.08,γ = 1,β = 4 and derivative order 0.998
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Figure 11 Time-series trajectories of the Rabinovich system via Caputo (10) and ABC fractional derivatives (9)
for α = 50,δ = –0.08,γ = 1,β = 4 and derivative order 1



Deressa Advances in Continuous and Discrete Models         (2022) 2022:66 Page 23 of 30

Figure 11 Continued

follows.

ζ̇ = Ẋ – Ẋs = F(X) – F(Xs) –
(

∂F
∂X

– H
)

(X – Xs) – C

= F(X) –
(

F(Xs) +
∂F
∂X

(X – Xs)
)

–
∂F
∂X

(X – Xs) + H(X – Xs) – C.

By making an appropriate choice for the matrix C, we can reduce the error dynamics to
the equality (40)

ζ̇ = Hζ => ζ (t) = eHt . (40)

Since the eigenvalues of the Hermitian matrix H have a negative real part, the error
dynamics of the synchronization is globally asymptotically stable.

Based on the above-explained synchronization process, let the master Rabinovich sys-
tem be as in (41)

ABC
0 Dμ

t x(t) = β(y – x) – δyz,

ABC
0 Dμ

t y(t) = αx – y – xz, (41)

ABC
0 Dμ

t z(t) = –γ z + xy.

Define the response system as in (42)

⎧⎪⎪⎨
⎪⎪⎩

ABC
0 Dμ

t xs(t) = β(ys – xs) – δyszs + c1,
ABC
0 Dμ

t ys(t) = αxs – ys – xszs + c2,
ABC
0 Dμ

t zs(t) = –γ zs + xsys + c3,

+
(

∂F
∂X

– H
)

(X – Xs), (42)
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Figure 12 Time series trajectories plots of the Rabinovich system (9), for different initial conditions,
α = 50,δ = –0.08,γ = 1,β = 4 and a fractional order of 0.998

where the coupling function is given by

(
∂F
∂X

– H
)

(X – Xs) =

⎛
⎜⎝

c1

c2

c3

⎞
⎟⎠ +

⎛
⎜⎝

–1 – β –2 + β – δz –δy
27 + α – z 26 –x

y x 2 – γ

⎞
⎟⎠
⎡
⎢⎣

x – xs

y – ys

z – zs

⎤
⎥⎦ .

The Hermitian matrix H is chosen to be

H =

⎡
⎢⎣

1 2 0
–27 –27 0

0 0 –2

⎤
⎥⎦ .

The eigenvalues of the Hermitian matrix H are given by λ1 = –1.0836,λ2 = –24.9164,
λ3 = –2. Since all the eigenvalues of the matrix H are negative, and the Matignon criterion
is met, H is a Hermitian matrix.
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Figure 13 Time series trajectories plots of the Rabinovich system (10) for different initial conditions
α = 50,δ = –0.08,γ = 1,β = 4 and a fractional order of 0.998

Adding the coupling function to the system (42), the response system now evolves to
Eq. (43)

⎧⎪⎪⎨
⎪⎪⎩

ABC
0 Dμ

t xs(t) = (xs – x) + β(y – x) – (δz + 2)(y – ys) – δy(z – zs) – δyszs + c1,
ABC
0 Dμ

t ys(t) = 27(x – xs) + x(zs – 2z) + xs(z – zs) + αx + 26y – 27ys + c2,
AbC
0 Dμ

t zs(t) = –y(xs – x) – x(ys – y) – 2(zs – z) – γ z + xsys + c3.

(43)

Based on Eqs. (41), (43), and the definition of the error dynamics (40), we have the error
dynamics given by (44)

ABC
0 Dμ

t e1 = e1 + 2e2 + δe2e3 – c1,
ABC
0 Dμ

t e2 = –27e1 – 27e2 + e1e3 – c2, (44)
ABC
0 Dμ

t e3 = –2e3 – e1e2 – c3.
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Let us choose ci, i = 1, 2, 3 from (44) as follows:

⎛
⎜⎝

c1

c2

c3

⎞
⎟⎠ =

⎛
⎜⎝

δe2e3

e3e1

–e1e2

⎞
⎟⎠ . (45)

The error dynamics reduces to the system (46)

⎛
⎜⎝

ABC
0 Dμ

t e1
ABC
0 Dμ

t e2
ABC
0 Dμ

t e3

⎞
⎟⎠ =

⎛
⎜⎝

1 2 0
–27 –27 0

0 0 –2

⎞
⎟⎠
⎛
⎜⎝

e1

e2

e3

⎞
⎟⎠ . (46)

Finally, the response system (42) becomes

⎧⎪⎪⎨
⎪⎪⎩

ABC
0 Dμ

t xs(t) = β(y – x) – δzy + (xs – x) – 2(y – ys),
ABC
0 Dμ

t ys(t) = 27(x – xs) – xz + αx + 26y – 27ys,
AbC
0 Dμ

t zs(t) = xy + 2(z – zs) – γ z.

(47)

The following section depicts the phase portraits of the master system (41) and response
systems (47). The parameter values used for the simulation are α = 50,γ = 1, δ = –0.08,β =
4, and the fractional derivative is μ = 0.998. The initial condition for the master system,
and the response systems are, respectively, X0 = (5, 5, 5) and Xs0 = (–10, –10, –10). The
Toufik–Atangana numerical scheme is used for approximating the solutions of the sys-
tems.

As can be seen from time-series trajectories in Figs. 14(a)–(c) and the phase-space plots
in Figs. 15(a) and (b) and their respective zooming in, shown in Figures 15(a1) and (b1), the
master system (41) and the response system (47) have an excellent correlation. As shown
in Fig. 14, the trajectories come close to each other after about 3 seconds of the simula-
tion time. The zooming in of Figures 15(a1) and (b1) vividly shows the strong relationship
between the two systems.

8 Conclusion
In this report, a qualitative analysis of the 3D fractional-order Rabinovich dynamical sys-
tem is accomplished in the context of ABC and Caputo fractional-order derivatives. The
Lyapunov exponents for fractional derivative (9) discovered that the fractional Rabinovich
system exhibits a chaotic behavior for fractional-derivative orders in the interval [0.9, 1].
In the ABC context, the Rabinovich system shows a chaotic behavior for fractional-order
derivatives in the interval [0.994, 1] for the parameter values given in (37); see Figs. 2–10.
The overall conclusion is that the ABC case becomes chaotic slower than the Caputo case
of the system. As the fractional derivative gets close to 1, the significance of the chaos for
the ABC case increases and becomes as significant as that of the Caputo representation of
the system. At the fractional-derivative order of 1, the Rabinovich system’s fractional mod-
els (9) and (10) show approximately the same behavior; see Fig. 11. It must be clear that the
Lyapunov exponents, the bifurcation diagrams, time-series trajectories, and phase-space
plots related to the Caputo fractional-derivative representation of the Rabinovich system
were carried out using the Danca algorithm [25] and numerical method of Garrappa [24].
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Figure 14 Time-series trajectories of the master and the response systems of (41) and (47)
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Figure 15 Phase-space plots of the master (41) and the response (47) systems with their corresponding
zooming in (a1) and (b1) of (a) and (b), respectively

In this case, the Adams–Bashforth–Moulton numerical scheme is applied to develop the
Matlab code. On the other hand, all simulation results in this report related to the ABC
fractional-derivative representation of the Rabinovich system are carried out using the
Toufik–Atangana numerical scheme for fractional derivatives [23].

The master–response synchronization process developed in this report showed the
applicability of the fractional Rabinovich system for secure communications and other
related practical applications. Furthermore, the author believes that this study exposed
hidden behaviors of the Rabinovich system using the two fractional-derivative concepts,
which is not possible in the integer-derivative case. Moreover, although this research’s
objective was not to compare the two fractional-derivative concepts and the correspond-
ing numerical schemes applied, a significant difference is observed in using the ABC and
Caputo fractional derivatives for the Rabinovich system, as explained above. Therefore,
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Figure 15 Continued

future work could compare the effects of applying different fractional-derivative concepts
to the same dynamic system.
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