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1 Introduction
A mixed nonlinear Schrédinger equation

q: +iqe: —ia(|91’q), - 26%191°g =0, o, BER (1)

can be viewed as a modification of the celebrated nonlinear Schrédinger equation (NLS)
equation. For @ = 0 and $ # 0, the mixed NLS equation leads to the classical defocusing
NLS equation. On the other hand, if « #0 and 8 =0, it is reduced to the derivative NLS
equation. The NLS equation is fundamental to the study of nonlinear wave phenomena
in fluid flow, nonlinear optics, plasma physics, and various applied mathematics prob-
lems [1-6]. In the event that Alfvén waves are considered in plasma physics, the polarized
nonlinear Alfvén wave propagation along the magnetic field is governed by the deriva-
tive NLS equation [7]. The mixed NLS and derivative NLS equations also describe the
nonlinear self-steepening of ultrashort light pulse propagation in optical fibers [8, 9]. In
addition to a variety of applications in physical settings, these NLS-type equations display
a particularly rich mathematical structure, known as integrability, and subsequently, they
can be solved by the inverse scattering transform (IST). For example, the IST was used to
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solve the NLS and derivative NLS equations under the rapid vanishing condition (¢ — 0
asx — £00), as well as the nonvanishing condition [1, 10, 11]. In a similar fashion, the IST
has been applied to analyze initial value problems for the mixed NLS equation [12, 13].
Furthermore, the bright and dark soliton solutions have been investigated by using Dar-
boux transformation [14, 15], and the long-time asymptotics for the solution has been
determined by using the Deift-Zhou steepest descent method [16].

In this paper, we study the initial-boundary value problem (IBVP) for the mixed NLS
equation (1) formulated on the half-line, that is, in the domain

{xt)eR*|0<x0<t<T} )
with the initial and boundary conditions, denoted by

qx%,0)=qo(x),  q0,8)=g(8),  4x(0,2) = gi(2), 3)

where the function go(x) is assumed to be sufficiently smooth for x > 0 and to rapidly decay
as x — oo and the functions g;(¢) (j = 0, 1) are assumed to be sufficiently smooth for £ > 0
(and to decay fast as ¢ — oo if T = 00). We use the unified transform method proposed
in [17, 18], also known as the Fokas method (see also the monograph [19] and references
therein), for solving Eq. (1) formulated on the half-line. The Fokas method, which is a sig-
nificant extension of the IST for boundary value problems, is based on the simultaneous
spectral analysis of both parts of the Lax pair. The Fokas method can be summarized as
the following steps. (i) Assuming that a smooth solution g(x, t) exists, it can be represented
by the solution of a matrix Riemann—Hilbert problem with the jump matrix defined by the
spectral functions of a spectral parameter 1, denoted by {a(%), b(%), A(}), B(1)}. The spec-
tral functions are defined by the initial and boundary values and importantly, they satisfy
a certain relation, the so-called global relation which involves all initial and boundary val-
ues. (i) Define the spectral functions in terms of the given smooth functions go(x) and
gi(t) (j = 0,1) as the initial and boundary conditions. It can be shown that if these spectral
functions satisfy the global relation given in the first step, then the function g(x, ) defined
from the unique solution of the Riemann—Hilbert problem solves the mixed NLS equation
and satisfies the initial and boundary conditions.

The Fokas method has several important advantages in analyzing boundary value prob-
lems. First, the jump matrix of the Riemann—Hilbert problem defined by the spectral func-
tions has an explicit exponential (x, £)-dependence. Thus, it makes it possible to study the
long-time asymptotic behavior of the solution by using the nonlinear steepest descent
method presented in [20]. The steepest descent method with the Fokas method has been
studied to determine the long-time asymptotics of the solutions for boundary values prob-
lems of integrable systems, such as the modified Korteweg—de Vries equation [21], the
NLS equation [22], the derivative NLS equation [23], and Kundu—Eckhaus equation [24].
Next, the spectral functions satisfy the global relation, which can be used to establish the
existence theorem for the unique solution of IBVPs. In addition, the global relation pro-
vides a constraint on the initial and boundary values, so that we can characterize unknown
boundary values [25-27].

The outline of the paper is as follows. In Sect. 2, we analyze the Lax pair for the mixed
NLS equation and we then define the appropriate eigenfunctions and the spectral func-
tions that will be used to formulate a matrix Riemann—Hilbert problem for the mixed NLS
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equation posed on the half-line. We derive the global relation in terms of the spectral func-
tions. In Sect. 3, the spectral functions defined by the given initial and boundary values
are investigated with the corresponding Riemann—Hilbert problems as inverse problems.
In Sect. 4, we establish the existence theorem for the solution of the mixed NLS equation
posed on the half-line under the assumption that the spectral functions satisfy the global
relation. We end with concluding remarks in Sect. 5.

2 Spectral analysis
2.1 Lax pair and eigenfunctions
The mixed NLS equation admits an overdetermined linear system, known as the Lax pair
(16]
Vs + iAoz = Uiy, (4a)
Ve + (Mo = U, (4b)

where X € C is a spectral parameter, ¥ (x, £, k) is a 2 x 2 matrix-valued eigenfunction and

fiG)=Mar=2p),  fr(a)=24"(ar-2p)%, (52)

1 0 0 ¢g
= , U = (ah— , = , 5b
o3 (O _1> 1= (a2 - B)Q Q (é 0) (5b)

Uy = —i(a®A* = 2aBA + B*) Q03 + (20%A% — 6aBA* + 4B°1)Q
+i(ah — B)Quo3 + (A —aB) Q. (5¢)
Throughout the paper, we consider the case of af # 0. Letting W = 1ei(*¥+2()003 e
find the modified Lax pair

\Ijx + m(k)[037 lIJ] = ullpr (63)
U +ifa(M)[o3, W] = Up . (6b)

Let &3 denote the matrix commutator and then % can be easily computed as
634 = [03,A] = 03A — Aos, €BA =A™,

where A is a 2 x 2 matrix. We seek solutions of the Lax pair which are bounded and ap-
proach the 2 x 2 identity matrix as A — oo. In this respect, we expand W as

v (x, 1)

W(x, 1) = WO, 1) + +0(1/2%) (A — o0). 7)

Substituting Eq. (7) into Eqs. (6a)—(6b), one can find [16]
(%,t)

. et
@ (x,t) = el/(xo:io) Aog

with the closed differential one-form defined by

1 3 ]
A, ) = Avdx + Ay dt = §a|q|2dx + |:L—Lozz|q|4 - %(?]qx - Z]xq)i| dt (8)
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and the off-diagonal part of ¥V, denoted by W©), as
aoy_ 1 o)
WO -~ osQu. )
i

For a simple calculation, we take (x, f) = (0,0). As a result, the asymptotic behavior for
the eigenfunction W given in Eq. (7) suggests introducing a new eigenfunction u(x, ¢, 1),

W £, 1) = €409 292 1 0 1 AYWO (s, 1), (10)
We then have

wx, t,A) =1+ 0O(1/A) (A — 00).
Defining a closed differential one-form W given by

W (x, £,1) = eNAROIGE Y (3 1)1 (x, 2, 1), (11)
equations (6a)—(6b) can be written as

d(eNW=LO0%s (51, 3)) = Wi(x, 8, 1), (12)
where

Vit 4) = Vil b, ) dx + Vol £, 0) de = ¢ 00 SP (U de + Uy dt — ino).

More precisely,
i [0 A i 2
Vilx, 5, 1) =e 700 u, - §a|q| o3 ), (13a)
LD s 3 i
Va(x, ) = ¢ o A% [Uz - i(z—chzlqr‘ - 5(51% - Elxq))03]- (13b)
We note that Eq. (12) is equivalent to the following modified Lax pair:

s+ ifi(M)[oz, ul = Vi, (14a)
we + ifr(M)[o3, 1] = Vau. (14b)
We define the Jost eigenfunction as the simultaneous solution for the both parts of the
Lax pair (14a)—(14b) as
(t) .
wilx, 6, 0) =1+ / e~ i xt(M)DG3 W&, T, 1), (15)

(xj:7)

where W is the differential one-form defined by Eq. (11) with ;. Since the one-form W is
exact, the function y; defined by Eq. (15) is independent of the path of integration. Hence,
we choose three distinct normalization points (cf. Fig. 1)

(xb tl) = (O: T)r (x2¢ t2) = (Or 0)¢ (xS: t3) = (OO,)f).
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Figure 1 The eigenfunctions w1, (2, and s for the Lax t
pair (14a)-(14b)

Hi

e B (c0)

More specifically, we define the Jost eigenfunctions that satisfy the integral equations

X
i tn) =1+ / SNPEDT Y, (£ 8, 3) dE

0
T
_ e—if1()»)xf73 / eifz()»)(f—t)?fs Voui(0,7,1) dr, (16a)
t
x . A
ol 6, 0) =1 + / N1 ()(E-x)d3 Vi (€, 8 L) dE
0
t
+ e W03 / W03 y,,,.(0,7,1) dr, (16b)
0
0 . A~
palwt ) =1 [ BOEIVi e, 10) ds. (160)
X

Note that the off-diagonal components of the matrix-valued eigenfunctions y; (j = 1,2, 3)
involve the explicit exponential terms. Thus, we partition the complex A-plane into the
domains D; (j = 1,...,4) depending on the signs of the imaginary parts of the functions
fi(x) and fo(A) (cf. Fig. 2)

Dy = {k € C|Imfi(A) > 0and Imfr()) >0},

D,

{x €C|Imfi(2) >0and Imf (1) <0},
D3 ={xeC|Imfi(2) <0and Imf(%) >0},

Dy ={1€C|Imf;(1) <0and Imf>(1) < 0}.
Letting & = & +in (&, € R), we find

Imfi(A) =2n(eé - B),  ImfH(A) =4Imf(W)[e(E* - n*) - 2B£],

and the boundaries of D; are depicted in Fig. 2 for the case of &8 > 0. We denote by 1) and
1® the columns of 2 x 2 matrix w(x,z,1) = (1Y, 1®). We can determine regions where
the eigenfunctions are analytic and bounded as follows:
« (1 is an entire function of A if T < oc; /,L(ll) is bounded for A € D5, while /L(lz) is
bounded for A € D3, where D is the closure of D. If T = 00, pc(ll) is defined for A € Dy
and /ng) is defined for A € D;.
o [y is an entire function of A; ,u(21) is bounded for A € Dy, while ;L(f) is bounded for
A € Dy.
. ,ugl) is analytic for A € D3 U D, and bounded for A € D3 U Dy; M(SZ) is analytic for

* € Dy UD,, and bounded for A € D; U Ds.

Page 5 of 21
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ImA ImA

Bla Rea Bla \2B/a  ReA

Figure 2 (Left) The regions (shaded) of the complex A-plane, where Im f; (&) > 0 with a8 > 0. (Right) The

regions (shaded) of the A-plane, where Imf>(X) > 0 with a8 > 0 (see text for details)

Note that the potential functions V; and V; have the following symmetries:
o, Vj(x, 8,0, = Vi(wx, t, 1), —o_Vix,t,2B/a — No_ = Vi, t,2), j=1,2,
where
0 1 0 1
oy = , o_= .
10 -1 0

As a consequence, the Jost solutions 1; defined by Egs. (16a)-(16c¢) (j = 1,2, 3) satisfy the
symmetry relations

o i (% £, )0y = (%, £, 1), —o_ (%, £,2Blor — Mo = (%, 8, 1. (18)

Moreover, the asymptotic behavior of the eigenfunction as 1 — oo leads to the recon-
struction formula for the solution of the mixed NLS equation on the half-line. It follows
from Eq. (9) that the reconstruction formula for the solution is given by

. rlxt)
qlx, t) = 2im(x, t)e? Joo 2, (19)
where
m(x, t) = lim )L/.le(x, t, )L) (20)
A—>00

We note that |g| = 2|m| and
. . 2\ 2i [@8) A
(%, 8) = 2i(m + diem|m|*)e™ /00 2,
which implies that
49x — 4xq = 40mm, — miny) + 32ia |m|*.

Thus the differential one-form A(x, ¢) is given in terms of m as

Ax,t) = 20|m|? dx + [120%|m|* - 2i(rm, — min,) + 16a|m|*] dt. (21)

Page 6 of 21
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Thus the inverse problem can be solved in the following steps. (i) Use any of the eigen-
functions u; (j = 1,2,3) to find m given in Eq. (20). (ii) Determine A(x, ¢) given in Eq. (21).
(iii) The solution for the mixed NLS equation on the half-line can be determined from
Eq. (19).

Any two solutions of Eq. (15) are related by the so-called scattering matrices s(1) and
S(*), also known as the spectral matrices, as follows:

3(x,, 1) = pa(x, £, A)e iAo (22a)

w15, 0) = o, 8, A)e 1M g (3 ) (22b)
Using 12(0,0,) = I, Eq. (22a) implies that

s(A) = u3(0,0,2). (23)
Thus, the spectral matrix s(1) can be expressed in terms of the eigenfunction u3 as

s\ =1- fo ” I3y 110 (%, 0, 1) di.
On the other hand, noting that £1(0, T, 1) = I, Eq. (22b) yields

S() = (€297 1y (0, T, 1)) (24)

and hence the spectral matrix S(1) can be expressed in terms of the eigenfunction i, as
T . A
STy =1+ / WY, 15(0, 8, 1) dt.
0

We also remark that 1,(0,0, 1) = I implies that S(1) = £1(0,0, 1) and the spectral matrices
inherit the symmetries given in Eq. (18), namely

o), =s(0),  0.S(A)o, = S(h), (25a)

—o_s(2B/a — N)o_ = s(1), —0_S(2Bla — X)o_ = S(). (25b)

Thus, we write the spectral matrices as

s(h) = (@ b(k)) , S(A) = (@ B(A)) .
b(x) a() B(A) A(})
We summarize the properties of the spectral functions s(1) and S(1) as

« sW(1) is analytic for A € D3 U Dy, and bounded for A € D3 U Dy, while s? (1) is
analytic for A € D; U Dy, and bounded for X € D; U Dy. Moreover,

a(A) =aBla —A), b(\) = -b(2Bla — A). (26)

« dets(1) = 1 and hence a(k)m - b(k)m =1.8(A) =1+ O(1/1) as A — o¢ in the
respective domains of boundedness of the columns.

Page 7 of 21



Hwang Advances in Continuous and Discrete Models (2022) 2022:67 Page 8 of 21

« S(1) is an entire function of A if T < 0o0; SV (1) is bounded for A € Dy U Dy, and S@ (1)
is bounded for A € D; U Ds. If T = 00, the spectral functions S(1) and S (1) are
defined for A € D, U Dy and A € Dy U D, respectively. Moreover,

AAN) =AQ2BIa - 1), B(A) =-B(2B/oc — ). (27)

« detS(%) = 1 and hence A(L)A(L) — B(A)B(X) = 1. S(A) =1 + O(1/1) as A — oo in the
respective domains of boundedness of the columns.

Furthermore, using Eq. (22a), we find
2%, 1) = i3 (x, £, 1) 1 Peh 005 =15,
Substituting the above equation into Eq. (22b), we obtain the relation
11 (%8, 4) = p3(x, £, 1) RN (571 (3)5(3)), (28)

where the first column is defined for A € D3 U D, and the second column holds for A €
D; U D,. Evaluating Eq. (28) at (x,t) = (0, T), the spectral functions satisfy the following

relation, called the global relation:

S71()s(h) = W13 .0, T, 1), A € (D3 UDs, Dy UDy). (29)
The (1,2)-entry of Eq. (29) yields

AMW)DBO) —a(M)B() = PVTe()), A eDyUD,, (30)

where c¢(A) = - [ €™ (V, pu3)15(x, T, 1) dx. Note that c(1) is analytic for A € D; UD, and

is bounded for A € D; U D, with ¢(1) = O(1/1) as A — oo. If T = 0o, Eq. (30) becomes
AM)b(A) —a(A)B(A) =0, i e€D;UD,. (31)

2.2 Riemann-Hilbert problem
We will formulate the matrix Riemann—Hilbert problem for the mixed NLS equation on

the half-line. For later reference, we introduce the quantities

b(x)
a(r)’

B(x)
a()d(r)’

O(x,t, 1) = fi(M)x + ()L, ri(x) =

d() = a)AR) - b(A)BR),  T()=-

r(A) =ri(A) + T(A).

Theorem 2.1 Assume that q(x,t,)) is a sufficiently smooth function. Then ;(x,t,A) (j =
1,2,3) given by Egs. (16a)—(16c) define the following Riemann—Hilbert problem

M, (x,t, M) =M_(x,t, )] (x,t,1), A€L, (33)
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D D
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Figure 3 (Left) The regions Dy, ..., Da4 of the complex A-plane for the case of a8 > 0. (Right) The contours
L,..., L4 that define the Riemann-Hilbert problem for the case of ¢f8 > 0

where the sectionally meromorphic functions M. are defined by

(1)
Gth) (2
M ( . )\l) (/}'2“(7;) ;H/j(;)(x)tr)\-))! )‘-EDlr
x’ b =
' 1,0, ") e p
3 sy )y 200 ) 3
1Peer) @
M ( ¢ }L) ( a0 1/'1“3 (xr t;)"))r A S DZ’
-, =
a 1@ (x0)
(Mg (xr t; )")’ T)» )" € D4-;

and the jump matrix is given by

1 0 1 _e—2i9 (o,2,1) r ()_\)
= . , A€l = , A€lLs,
]1 <e210(x,t,)n)r()\) 1> 1 ]3 (O 1 3

1 g-2i0(x8,) " ()‘\)
Jo= | o0 . hels,
_eZiH (x,2,1) rl ()\‘) 1

1 _ezie(x,t,x)@)
) 2

— -1 = ()
J=]1y s <e2i(~)(x,t,)n)r()\') 1-r(A)r(x)

with the oriented contour L (see Fig. 3)
L, =D;ND,, L, =D,ND;, Ly =D3N Dy, Ly,=D;ND,.

Proof We can write Egs. (22a) and (22b) as

1P, 6,0) = a1, 1) + 2 Pb)u (v, 1, 1),
1, 6,0) = € 2P b (x,2,2) + a3, 1, 1),
1D, 1,0) = A £, 1) + PP BRYUD (x, 8, 1),

1P, t,0) = e 0P BOY P (x, 1, 1) + AM) S (x, £, 1)

(34a)

(34b)

(35a)

(35b)

(35¢)

(36)

(372)
(37b)
(37¢)
(37d)

From Egs. (37a)—(37d), it is straightforward to define the Riemann-Hilbert problem
(33) with the sectionally meromorphic functions M. and the the jump matrix given in

Eqgs. (34a)—(34b) and (35a)—(35c¢).

O

Page 9 of 21
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We note that the function M(x, t, 1) is sectionally meromorphic. The possible poles oc-
cur at the zeros of a(1) and d(}). If A; € D, is a zero of a(}), then )1, € D, is a zero of m.
Moreover, since a(X) = a(2f/a — 1), A = 2B/« — A, is also a zero of a(A). Similar facts also
hold for zeros of d()). Thus, we assume that

(i) a(X) has 2n simple zeros A; in D; such that A; lie in D; N {Im A > 0} and
Anej=2Blo = ;liein Dy N{ImA <0} (j=1,2,...,n).
(ii) d(x) has 2N simple zeros z; in D, such that z; lie in D, N {Im A > 0} and
Znej = 2Bl — zj lie in Do N {ImA < 0} (j=1,2,...,N).
(iii) None of the zeros of a(A) coincides with the zeros of d()).

We then find the residue conditions

" 2i0(x,,1)) o
ResM/(x,t,\) = ——— M7 (x,t, 1)), 38a
a=hy T ( ) a(r)b() " ( 2 (382)
e 2i0(xbh) _
RQSMEZ)(W, t, )\.) = :M(})(x, t, )\.1), (38b)
Py a(x)b(x;)
2i0(x,t,2)) B( 5.\
e 7' B(z;
ResMW(x,£,1) = .7(1)M(_2)(x, t,z)), (38¢)
=z d(z))a(z))

—2i0(x,t,Z) p(=
e 7 B(z;
Res M (x, 1, 1) = eTIBE)

P8 01,7, (384)
r=5 d(z))a(z)

where the overdot denotes differentiation with respect to A. Indeed, from Eq. (37b), we

can compute the residue

(1) (2)
Ry (%8, 1) _ i) M3 (x, 2, 1))

ResMil)(x, t,A) = - ; )
P a()) a(r)b(x;)

which yields Eq. (38a). For Eq. (38c), we use M, = M_J,, that is,

AW, ,0) = 1V, ,0) + 9D d)r) P (x, 1, 1),

Thus, we find
(1) o=y, (2
Res MY (x,2,1) = M hhz) '(x, b3) = 20tz B—(z,- .)MS (,%,2)
A=z d(z) d(zj)a(z))

which yields Eq. (38c). Similarly, we can derive Egs. (38b) and (38d).

We note that det My = 1 and My (x, £, 1) =1+ O(1/)1) as L — oo in the respective domains
of boundedness of their columns. The solution for the mixed NLS equation can be found
from the solution of the Riemann—Hilbert problem. In this respect, we expand the solution
M(x,t, A) of the Riemann—Hilbert problem as

Ml(xr t) MZ(x) t)
+ +

M(x, t,0) =1
(e, t,A) =1+ - 2

O(I/AS) (A — 00).
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Letting M, - M_ = M_], where J = J — I, the Riemann—Hilbert problem can be solved by
the Cauchy-type integral equation

1 [ MJxtl
Mooty =14 L [MI®ED
2 Jp  [-A

which implies that

1 ~
Ml(x, t) = —E fM_](x,t,k)dA
L

Thus, we can find the reconstruction formula for the solution of the mixed NLS equation
on the half-line in terms of the solution of the Riemann—Hilbert problem as

g, e o A _% /L (M_J(x,, 1)), d. (39)

3 Spectral functions
In this section, we define the spectral functions from the initial and boundary values.

Definition 3.1 Given gy(x) € S(R"), we define the map

St{gqo®)} — {a(r),b()} (40)
by

@3) = u§0,2), (41)
where

sty =1 [ RNV 2 sl 1) e (422)
with

Vi(x, 1) = 73 Jo elaol” dsds [(ax -B)Qo - £a|QO|2031|f Qo(x) = (.0 ”"’). (42b)
2 90 0

Proposition 3.1 The spectral functions a(A) and b(L) have the following properties:
(i) a(r) and b()) are analytic for D; U Dy and bounded on D; U D.
(ii) (203) = () +O(1/2) as A — oo for € Dy UD;.
(iii) a(A)a@) —b()b() =1 for » €Ly ULy,
(iv) a(r) =a2B/a —A) and b(A) = —-b(2B/a — 1) for A € Dy U D,.
(v) The inverse map S7*: {a()L), b(A)} — {qo(x)} to the map S is defined by

qo(x) = 2imy (x)eJo a0l & (43)
where

mi(x) = kli)n;o AMg’;)(x,)L)

Page 11 of 21
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and MY (x, 1) is the unique solution of the following Riemann—Hilbert problem:

.

(%)
MP(x,2), »eD;UD,,

M(x)(x,k): +( ) 1 2 (44)
M (x,1), reDsUD,

is a meromorphic function for » € C\(Ly U Ly).

MD(x, 1) = MP (06, )] (x, 1), A€ LyULy, (45)

where the jump matrix J® is given by

1_ 21 (A)xrl(i)
](x)(x’ A) = fz(k)a(k) (46)
_eZZfl()\)xrl()\') 1
with
b(%)
A)=——:.
r(d) an)

o The first column ofMi’” has 2n simple zeros A € D1 U Dy such that
Aj e (D1 UDy)N{ImA >0} and Ay, =28/ — Aj € (D1 UD;) N {ImA < 0}
(j=1,2,...,n). The second column ofMSX) has 2n simple zeros 5\,« € D3 U Dy such
that A; € (D3 UDy) N {Im A < 0} and hysj = 2B/ — &; € (D3 U Dy) N {ImA > 0}
(j=1,2,...,n). Then

1) PR )
Res M (x, 1) = ———M¥(x, 1)), (47a)
pary a(r)b(x;) /

~2ifi (0j)x B
Res M® (x,1) = ——=M"D(x, 1)), (47b)
.y a(rj)b(x;)

where M®Y and M®?) are the first column and the second column of the matrix

MW, respectively.

Proof The derivations of (i)—(iv) are given from the discussion in Sect. 2.2. Regarding the
proof of (v), we consider the x-part of the Lax pair (14a) evaluated at ¢ = 0. We define two

Jost solutions o and w3 as

oo r) =1+ / O Y (6 )0 (6,0) d (48)
0

and p3(x, A) given in Eq. (42a). From Eq. (22a) evaluated at £ = 0, it follows that

3, A) = pa(x, A)e i osg(n), (49)
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Since po(0, 1) =1, s(A) = u3(0, 1). Moreover, letting

o
9 _ (M2 % A)
Mi) = <261(7)\‘)ng2)(9€!)\))1 )\.EDlUDz, (503)
@
A
M® = </L(31)(x,k), M) )€ D3 U Dy, (50b)
a(})

Eq. (49) can be written as the Riemann—Hilbert problem defined by Eq. (45) with the
jump matrix given in Eq. (46). Equation (49) yields the residue conditions given by
Egs. (47a)—(47b). Moreover, expanding M™ (x, 1) as

mi(x)  ma(x)

M () =1 +
(e, A) =1+ i 2

+0(1/2%) (- ),
we can derive Eq. (43). |

Definition 3.2 Given smooth functions g;(£) (j = 0, 1), we define the map

Q:{g®,a(®} — {AM), BN} (51)

by
B

( Aa))) = u(0,1), (52)

where
T . ~
w(t, x) =1—f ePNE053 Y, (2,0 g (z, ) dt (53)
t

with

Valt, 1) = o 22043 [ [, A, (1)), (54a)

U(t, 2) = i(@®A? - 2B + B*) Qios + (20223 — 6apA” +4B%1) Qo

+i(ar - B)Qios + (A — af)Q;, (54b)

and

3

~ 0 0 3 i _ _
Q=" %), =[] &),  mm0O=ctlol' - @ -g8). (54)
£ 0 a 0 4 2

Proposition 3.2 The spectral functions A(\) and B(A) have the following properties:
(i) A() and B()) are entire functions of A if T < 0o and are bounded for ). € D, U Ds. If
T = 00, A()) and B(\) are defined in D, U Ds.
(i) (f&\;) = (?) +O(1/1) as A — oo for A € Dy U Ds.
(i) AQWAR) —BA)BR)=1forreC (if T =00, eL).
(iv) A(L) = AQ2B/a — 1) and B(\) = —B(2B/a — 1) for A € Dy U Dj.
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(v) The inverse map Q71 : {A(L), BL)} — {g0(2),g1(2)} to the map Q is defined by

2t = 2iM§12)(t)e2if0z Ax(r)dr (55a)
@) = (~4aM) + 8pMEY) P o 220
~ 2iagoMS; + 2ipgoMs; + 5-aleol’, (55b)
where
Ao(t) = 1202 |MB[* - 2Re[ MY (~4aM) + 88M7)]
~8|M)|* (eRe M) — pRe MY + | M%) (56)

and the matrix functions MW (t), M (t), and M®)(t) are determined by the

asymptotic expansion of M®

M(l)(t) N M(z)(t) M(S)(t)

MO, =1+ 5t o3

+0(1/2%) (= )

where MY (t, 1) is the unique solution of the following Riemann—Hilbert problem:

.

®
MP(t,1), *»eDiUDs,

MO0 = + (53) Lo (57)
MO(t,1), reD,UD,

is a meromorphic function for . € C\L.

MO, 1) = MO, )9, 1), rel, (58)

where the jump matrix J© is given by

L_ 200, (3)
SO0 = | AW (59)
—eZI'fZ(’\)tRl()L) 1
with
B())
Ri(A) = —.
1(2) e

o The first column of M(f) has 2N simple zeros zj € Dy U D3 such that
zj € (D1 UD3) N{ImA > 0} and z,.; = 2B/a — zj € (D1 U D3) N {ImA < 0}
(7=1,2,...,N). The second column ofM(f) has 2N simple zeros zj € Dy U D,
such that z; € (Dy U Dy) N {ImA < 0} and z,.; = 2B/ac —zj € (D, UDy) N
{Imr >0} (j=1,2,...,N). Then

iR
ResM®V (¢, 1) =

(t,2) )
P A(z,»)B(z;)M “5) (602

Page 14 of 21
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e 2ihE)t
RQSM(t'Z)(t, )\,) = :M(t'l)(t, 2]), (60b)
A=z A(Z/)B(Zj)

where MY and M®? are the first column and the second column of the matrix
MY, respectively.

Proof 1t is enough to prove (v). We define two eigenfunctions p; and u, from the ¢-part
of the Lax pair (6b) evaluated at x = 0 as

t
wat,N) =1+ / P03y (2 3V o (T, M) dT (61)
0

and (¢, A) given in Eq. (53). From Eq. (22b) evaluated at x = 0, it follows that

ity ) = ua(t, \)e P S(). (62)

Since p,(0, 1) = I, we find S(A) = £1(0, A). Letting

(1)
£
® - (% ,ﬁl”(t,x)), A €D, UDs, (63a)
(2)
£
MO = (M(ll)(t,k), g) A €D, UDy, (63b)
AL

Eq. (62) can be written as the Riemann—Hilbert problem defined by Eq. (58) with the
jump matrix given in Eq. (59). Moreover, Eq. (62) yields the residue conditions given by
Eqgs. (60a)—(60Db).

Regarding the inverse map for g (¢), we consider Eq. (6b),

U, +ify(M)[o3, W] = LW, (64)
Substituting the expansion of W given in Eq. (7) into Eq. (64), we find

0(»%): ifos, wM]=Qu®, (65a)

O(x%): 2ia[os, W] -8ip[0o3, V] = —iaQ*o3 W + 20QU™W - 68QW . (65b)

From the off-diagonal entries of Eqs. (65a)—(65b), it follows that

1
W= e e, (662)
l

2i0oz WO — g QWD) = gQw©), (66b)

where W09 and W0P) denote the off-diagonal part and the diagonal part of W, respec-
tively. At O(1), we have
2ia®[03, W] - 8iop[03, WP + 8if*[03, ¥ V]
= 22”QW®? — (ie? Q%03 + 6apQ) WY

+ (2ieBQ%03 + 4> QY + in Q.03 + 0*Q*) W,
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Collecting the off-diagonal part of the above equation, we find

4i0? o3 W3O —16iaBos WO + 16iB205 w10

= —io> Qo3 WY + 20> QU P — 6apQUW ) + (482Q + i Qo3 + *Q*) WO, (67)
Using Egs. (66a)—(66b) and simplifying the resulting equation, Eq. (67) can be written as
Q030 = 4005w — 885, WO 4 2ia QUAP) — 2;QWP) — %Qg'\ll(o). (68)
i
. PfSD Ass o) 0 _ [ Acs .
Recalling ¥ = ¢'/00 2% W@ with W© = /0.0 27 the (1,2)-entry yields
. rxt)

q.(x,8) = (—4am(132) + Sﬂm%))emf(o,w A Ziaqm%) + Ziﬁqmgzz) + %qzé, (69)

where the functions m" (j = 1,2, 3) are given from the asymptotic expansion of

mV(x, ) mPt) m®(xt)
+ +

wlx,t,A) =1+ 2 3

+ O(l/)f*), A — 00.

. rlxt)
We note that g(x, £) = 2im(112)ezlf<°v°> 2 and lq] = 2|m(112)|. Then, we obtain

4 — 3 = —4iRe[m) (~dam) + 8pmD)]

_ 16i|m(112)|2(aRem(222) — BRem) + a|m(112)|2).
Thus, we find

A(x, ) = Zaim(llz) |2dx + [12a2|m(112) |4 - 2Re[m(112) (—4ozm—(132) + S,Bm—(lzz))]

_8|m(112) 2(aRem(222)—ﬂRem(212)+a|m(112)}2)]dt. (70)
Finally, evaluating Egs. (69) and (70) at x = 0, Eqs. (55b) and (56) can be derived. (|

4 The Riemann-Hilbert problem
In this section, we establish the existence theorem for the solution of the mixed NLS equa-

tion posed on the half-line.

Theorem 4.1 Let qo(x) € S(R*). Assume that functions go(t) and g, (t) are compatible with
qo(x) atx =t = 0. Let functions {a(r), b(A), A(L), B(A)} be given by Egs. (40) and (52) in Def-
initions 3.1 and 3.2, respectively. Suppose that the functions {a(A), b(1), A(L), B(L)} satisfy
the global relation given in Eq. (30) (if T = oo, the global relation is replaced by Eq. (31)),
where c()) is analytic function for A € Dy U D, and is bounded for . € Dy U Dy with O(1/1.)
as A — oo.

Let M(x,t, ) be the solution of the following 2 x 2 matrix Riemann—Hilbert problem:

o M is sectionally meromorphic for .. € C\L, where the oriented contour L is defined by

Eq. (36).
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o The first column of M has simple zeros at .. = A; (j = 1,2,...,2n) and at A = z;
(i=1,2,...,2N). The second column of M has simple zeros at . = 1; (j = 1,2,...,2n)
andat =z (j=1,2,...,2N).

o M satisfies the jump condition

M, (x,t,1) =M_(x,t, )] (x,t,1), A€L, (71)

where M, and M_ are defined for A € D1 U D3, and for . € Dy U Dy, respectively, and
the jump matrix is defined by Egs. (35a)—(35c).

o M(x,t,1) =1+ O(1/1) as .. — oo.

Then the Riemann—Hilbert problem is uniquely solvable and the function q(x,t) defined

by
. 21 [0 A .
q(x, t) = 2im(x, £)e” /00 7, m(x, t) = kllm AM(x, t,A)12, (72)
—00
where
A, t) = 2a|m|* dx + [120{2|m|4 — 2i(mm, — mm,) + 16oz|m|4] dt, (73)

solves the mixed NLS equation satisfying

q(x’ 0) = q()(x)r 61(0: t) = gO(t): qx(01 t) = gl(t)' (74')

Proof In the absence of poles, the unique solvability of the Riemann—Hilbert problem
follows from the vanishing lemma. g

Lemma 4.2 The Riemann—Hilbert problem in Theorem 4.1 with M = O(1/)) as . — o0

has only the zero solution.

Proof Let AT denote the complex conjugate transpose of a matrix A and A =2Bla - 1.

Define
H.(x,6,A) = M, (x, 6, )M (x,t,4), e D;UDs, (75a)
H_(x,t,A) = M_(x,t, )M’ (x,2,4), A €Dy UD,. (75b)

Note that H, and H_ are analytic in D; U D3 and D, U D,, respectively. Hereafter, we
suppress the x and ¢ dependence for simplicity. From Egs. (26) and (27), it follows that

L) =JiR), R =RG), T =Ji().
By the definitions of H., we find
H.\) =M_)J0M G),  HQ) =M M @R), rel,

which implies that H, (A) = H_() for A € L. Thus H, (A) and H_(A) define an entire function
vanishing at infinity and hence H4 (1) = 0. Since the line Re A = 8/« is invariant under the
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transformation A — A, the matrix Jo(B/a +ix) is Hermitian for k € R. As aresult, /,(8/a +
i) is positive definite. Furthermore, note that H, (8/« + ix) = 0 and M_(B/a + ix)»(B/o +
iK)MT (B/a + ik) = 0 for k € R. Thus, M_(B/a + ix) = 0 for k € R, which concludes that
M (x,t,1) =0. O

Proof of Theorem 4.1 In the presence of poles, M(x,t, 1) is a meromorphic function of
A. In this case, this singular matrix Riemann—Hilbert problem can be mapped to a regu-
lar Riemann—Hilbert problem [18]. By using the dressing method presented in [18, 28],
one can prove that if M solves the Riemann—Hilbert problem, then g(x,t) defined by
Eq. (72) solves the mixed NLS equation and satisfies that g(x,0) = go(x), g(0,£) = go(¢)
and ¢,(0,t) = g1(¢) (cf. Propositions 3.1 and 3.2). In what follows, we will show that the
Riemann—Hilbert problem given in Eq. (71) is related with the Riemann—Hilbert prob-
lems defined by Eqgs. (45) and (58), respectively.

We define M™ (x, 1) in terms of M(x, 0, 1) by

M(x,O,A), A €D1 UD4,,
M (x,) = | M(x,0,A)/1(x,0,1), X €Dy, (76)
M(x,0,1)/5 (x,0,1), A€ Ds.

Let M;(x,0,4) and M (x, 1) denote M(x,0,1) and M®(x,2) for . € D; (j = 1,...,4). Then

Ml (x; 01)") :MZ(xr O; )")]l(x’ 0: )\), M?)(x’ 0:)\) :MZ(x; 0,)\.)]2(?(3, 0,)"); (773)

Ml(x: Ov)h) =M4(x) 0, )\)]4(96» 0, )\)1 M3(x¢ O')‘) =M4(x7 0,)\)]3(96, 01)")) (77b)
and

MP@,2) = M(x,0,0), M (1) = Ma(x,0,1)]1(x,0,2), (782)

M (6,0) = Ma(x, 0, 1))5 (15,0,0), M (w, 1) = Ma(x, 0, ). (78b)

Using the above equations, we find

M(lx) (x; )‘-) = M(zx) (x’ )‘-)r Méx) (xr )\) = Mz(Lx) (?C, )"),
MPx20) = MP 6, W)a(,0,2), MY (x,2) = M (x,2) (55 1) (6,0, 2).
Note that no jumps occurs along the contours L; and L3 and that J5/; 7 = Ju and
Ja(x,0,1) = J¥(x,1), where J® is given in Eq. (46). Thus, if we define M® = M(f) for
A € D;UD, and M® = M® for A € D3 U D, Eqgs. (78a)—(78b) yields Eq. (46).
On the other hand, let M;(0,t, 1) denote M(0,¢,1) for A € D; (j=1,...,4). Then

Ml(oy t¢)\') =M2(0¢ ty)")]l(O’ t:)")r MB(Oy t¢)\') =M2(0¢ L, )")]2(0’ t))")’ (803)

Ml (Or t,)\,) = M4(0! t, )")]4(0! t, )“)r M3(O’ t,)\,) = M4(0! t, )")]3(01 t, )“) (80b)
Let M(¢, 1) be defined by

M;”(t, A) = M;(0,6, \)Ej(t, 1), AeD; (81)
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where F; (j = 1,...,4) are analytic and bounded in the domains of their definition and
Fj(t,A) =1+ O(1/1) as A — o0o. Moreover, they must satisfy

J1(0, 6, ME (8,1) = Bt TP, 1), (0,6, M)F3(8, 1) = Fa(t, A)TO(t, A), (82a)

J3(0, 6, M)Fs(t,1) = Fa(t, T8, 1), Ja(0, 6, M)Fy (8, 1) = Falt, A)]O(t, 1), (82b)

where J®(t, 1) is given in Eq. (59). The functions Fj can be determined by

. b(\) —2i
Fie) - (? C(A)ezlf(;()k)(T—t)>’ ) (d(ox) _ﬁfm»)’ 50
a(i) d(r)
L 0 4G 0
Bey=| " |, Ren=|_ ¥ _ (83b)
_%e%fzwt d(n) c(h)e2h0NT1) %

We can show that the F; given in Eqs. (83a)—(83b) satisfy Eqs. (82a)—(82b) if and only if
the global relation given in Eq. (30) (Eq. (31) if T = 00) is valid for the spectral functions
{a(r),b(A),A(A), B(A)}, where we have used the fact that the global relation yields

() = @ + @eZifg(k)Tc 2) = @ _ @e—Zéfz(k)Tﬁ.

A(A) A a(}) m O

5 Concluding remarks

In this work, we have studied the initial-boundary value problem for the mixed NLS equa-
tion posed on the half-line by using the Fokas method. Specifically, we have investigated
the spectral functions defined from the initial and boundary values and we have derived
the global relation in terms of the spectral functions. It has been shown that if the spectral
functions satisfy the global relation, there exists the solution for the mixed NLS equation
on the half-line in terms of the unique solution of the matrix Riemann—Hilbert problem
with the jump matrix defined by the spectral functions. It should be remarked that the
mixed NLS equation can be viewed as a modification of the classical NLS equation. More-
over, the mixed NLS equation can be analogous to the derivative NLS equation under a
certain change of variables [28]. Thus, the present analysis is similar to what has been
addressed in the NLS equation. Nevertheless, we have demonstrated directly the Fokas
method in solving the mixed NLS equation on the half-line so that the result of the present
work can cover the NLS-type equations including the derivative NLS and modified NLS
equations. Furthermore, the present result in this paper will help lead us toward further
analysis. For example, it can be applied to determine the long-time asymptotics for the
solution of the mixed NLS equation on the half-line by employing the nonlinear steepest
descent method in the associated Riemann—Hilbert problem [23, 24]. It can be also used
to characterize the long-time asymptotics for the unknown boundary values as discussed
in [29, 30].
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