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1 Introduction
A mixed nonlinear Schrédinger equation
G +igex -4 lal’a,...2%a’a=0, , R (1)

can be viewed as a modi“cation of the celebrated nonlinear Schrédinger equation (NLS)
equation. For =0 and =0, the mixed NLS equation leads to the classical defocusing
NLS equation. On the other hand, if =0and =0, itis reduced to the derivative NLS
equation. The NLS equation is fundamental to the study of nonlinear wave phenomena
in "uid "ow, nonlinear optics, plasma physics, and various applied mathematics prob-
lems [1..6]. In the event that Alfvén waves are considered in plasma physics, the polarized
nonlinear Alfvén wave propagation along the magnetic “eld is governed by the deriva-
tive NLS equation [f]. The mixed NLS and derivative NLS equations also describe the
nonlinear self-steepening of ultrashort light pulse propagation in optical “ber8[9]. In
addition to a variety of applications in physical settings, these NLS-type equations display
a particularly rich mathematical structure, known as integrability, and subsequently, they
can be solved by the inverse scattering transform (IST). For example, the IST was used to

© The Author(s) 202@pen AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the articless Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the articless Creative Commons licence and your intended use is not

L]
@ Sprlnger permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, Vigtp://creativecommons.org/licenses/by/4.0/



HwangAdvances in Continuous and Discrete Models (2022) 2022:67 Page 2 of 21

solve the NLS and derivative NLS equations under the rapid vanishing conditian ( O
asx * ), as well as the nonvanishing conditiorl] 10, 11]. In a similar fashion, the IST
has been applied to analyze initial value problems for the mixed NLS equatid?,[13].
Furthermore, the bright and dark soliton solutions have been investigated by using Dar-
boux transformation [14, 15], and the long-time asymptotics for the solution has been
determined by using the Deift...Zhou steepest descent metha6]|]

In this paper, we study the initial-boundary value problem (IBVP) for the mixed NLS
equation (1) formulated on the half-line, that is, in the domain

(xt) R*|0 x0 t T 2)
with the initial and boundary conditions, denoted by

a(x,0)=c(),  a0.)=g(t),  &(O0.,1)=a(), 3

where the functiongy(x) is assumed to be su ciently smooth forx > 0 and to rapidly decay
asx and the functionsg(t) (j = 0, 1) are assumed to be su ciently smooth fot >0
(and to decay fast as if T= ). We use the uni“ed transform method proposed
in [17, 18], also known as the Fokas method (see also the monograp8] and references
therein), for solving Eq. {) formulated on the half-line. The Fokas method, which is a sig-
ni“‘cant extension of the IST for boundary value problems, is based on the simultaneous
spectral analysis of both parts of the Lax pair. The Fokas method can be summarized as
the following steps. (i) Assuming that a smooth solutiog(x, t) exists, it can be represented
by the solution of a matrix Riemann...Hilbert problem with the jump matrix de“ned by the
spectral functions of a spectral parameter, denoted by{a( ),b( ),A( ),B( )}. The spec-
tral functions are de“ned by the initial and boundary values and importantly, they satisfy
a certain relation, the so-called global relation which involves all initial and boundary val-
ues. (ii) De"ne the spectral functions in terms of the given smooth functiongy(x) and
g(t) ( =0, 1) as the initial and boundary conditions. It can be shown that if these spectral
functions satisfy the global relation given in the “rst step, then the functiog(x,t) de“ned
from the unique solution of the Riemann...Hilbert problem solves the mixed NLS equation
and satis“es the initial and boundary conditions.

The Fokas method has several important advantages in analyzing boundary value prob-
lems. First, the jump matrix of the Riemann...Hilbert problem de“ned by the spectral func-
tions has an explicit exponentialX,t)-dependence. Thus, it makes it possible to study the
long-time asymptotic behavior of the solution by using the nonlinear steepest descent
method presented in 0]. The steepest descent method with the Fokas method has been
studied to determine the long-time asymptotics of the solutions for boundary values prob-
lems of integrable systems, such as the modi“ed Korteweg...de Vries equafdh fhe
NLS equation 2], the derivative NLS equation23], and Kundu...Eckhaus equatio24].
Next, the spectral functions satisfy the global relation, which can be used to establish the
existence theorem for the unique solution of IBVPs. In addition, the global relation pro-
vides a constraint on the initial and boundary values, so that we can characterize unknown
boundary values25..27].

The outline of the paper is as follows. In Sec2, we analyze the Lax pair for the mixed
NLS equation and we then de“ne the appropriate eigenfunctions and the spectral func-
tions that will be used to formulate a matrix Riemann...Hilbert problem for the mixed NLS
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equation posed on the half-line. We derive the global relation in terms of the spectral func-
tions. In Sect.3, the spectral functions de“ned by the given initial and boundary values
are investigated with the corresponding Riemann...Hilbert problems as inverse problems.
In Sect.4, we establish the existence theorem for the solution of the mixed NLS equation
posed on the half-line under the assumption that the spectral functions satisfy the global
relation. We end with concluding remarks in Secb.

2 Spectral analysis
2.1 Lax pair and eigenfunctions
The mixed NLS equation admits an overdetermined linear system, known as the Lax pair

[16]

x+ifi( ) 3 =Ug , (4a)
t+ifo(() 3 =Up (4b)

where  Cis aspectral parameter, (x,t,k) is a 2x 2 matrix-valued eigenfunction and
fi()= ( ..2), f()=27% .20, (5a)

3= ' Ulz( )Qi Q: ) (5b)

q
0

o o

Up=.i 22..2 + 2Q?;+223%3 .6 2442 Q
+i( .. )Q st 2 ... Q% (5¢)

Throughout the paper, we consider the case of =0. Letting = m()x*20)0 3 we
“nd the modi“ed Lax pair

t+ifa( ) 3 ]=Uz . (6b)
Let 3 denote the matrix commutator and there 3 can be easily computed as
3A:[ 3,A]: 3AA 3, e3A:e3Ae.,,3,

whereA is a 2x 2 matrix. We seek solutions of the Lax pair which are bounded and ap-
proach the 2x 2 identity matrix as . In this respect, we expand as

(1)(x,t)

xt )= Ot)+ +01/ 2 ( ). (7

Substituting Eq. ¥) into Egs. 6d)...6b), one can “nd [16]
i (x.t)
O, t)=e ol 3
with the closed di erential one-form de“ned by

1 3 i
0= 1dx+ pdt=3 lgl? dx + y 2|Q|4---§(qQ<--QXQ) dt (8)
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and the o -diagonal partof @), denoted by ®©), as
1
(1,0) = 5 Q ©), 9)

For a simple calculation, we takexf,tg) = (0, 0). As a result, the asymptotic behavior for
the eigenfunction given in Eq. ¥) suggests introducing a new eigenfunctign(x,t, ),

xt, )=d 69 3ut, ) Otb). (10)

We then have

ux,t, )=1+01/ ) ( ).
De"ning a closed di erential one-form W given by

W (x,t, )=emOxRO0 sy xt, Juxt, ), (11)
equations 6a)...6b) can be written as

d OO0 syt ) =W(xt, ), (12)
where

V(Xt, )=Vixt, )dx+Va(xt, )dt:e“'L ((Oxf% |[Urdx+Usdt..i 3.

More precisely,

i (xt) 3 | 2

Vilct, )=et 09 * Ur.o o s (13a)
;t (xt) 3 . 3 2 4 | — —

Vo(x,t, )=€" 00 = U, .. 2 |al ---E(qqx--qxq) 3 - (13b)

We note that Eq. (2) is equivalent to the following modi“ed Lax pair:

Wy +if1( ) 3,1]=Vil, (14a)
Wy +if2( [ 3, 1] = Vol (14b)

We de“ne the Jost eigenfunction as the simultaneous solution for the both parts of the
Lax pair (149...14b) as

xn
Bt )=1+ ( )e--L(fl( x+2( )t) Wi, , ) (15)
Xj,tj

whereW; is the di erential one-form de“ned by Eq. (L1) with ;. Since the one-form\W is
exact, the functiony; de“ned by Eq. (L5) is independent of the path of integration. Hence,
we choose three distinct normalization points (cf. Fid)

(Xl:tl):(O!T)r (X2:t2):(010)! 6(311:3):( !t)
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Figure 1 The eigenfunctiongly, [l2, and|l 3 for the Lax t
pair (L43..14b)

Hi

e B (c0)

More speci“cally, we de“ne the Jost eigenfunctions that satisfy the integral equations
X .
Llj_(X,t, ):| + éfl( )C-x) 3V1u1( Wi, )d
0

T
Leifll)xs df2()( 1) 3Voua(0, , )d

(16a)
t
X .
Ha(xt, ) =1+ @O0 3V, 0t )d
0
t
+eifi(x s df2()( 1) 3\V,uo(0, , )d (16b)
0
Haxt, )=1.. OCN3yv .t )d . (16c)

X

Note that the o -diagonal components of the matrix-valued eigenfunctiong; (j =1, 2, 3)
involve the explicit exponential terms. Thus, we partition the complex-plane into the
domainsD; (j =1,...,4) depending on the signs of the imaginary parts of the functions
f1( ) andfy( ) (cf. Fig.2)

Di=  C|Imfy( )>0andImfy( )>0,
D=  C|Imfy( )>0andImfy( ) <0,
Ds=  C|Imfy( )<OandImfy( )>0,
Ds=  C|Imfy( )<OandImfy( )<0.

Letting = +i (, R),we“nd

Imfi( )=2( ...), Imfy( ) =4Imfy( ) 2.2 .2,

and the boundaries oD; are depicted in Fig2 for the case of > 0. We denote by @ and
1@ the columns of 2x 2 matrix p(x,t, )= (Y, u?). We can determine regions where
the eigenfunctions are analytic and bounded as follows:

o Wy isan entire functionof if T< ;puMisboundedfor Dy, while p{? is

Page 5 of 21

bounded for
and u(lz) is defined for ~ Ds.
« M2 is an entire function of ; u(zl) is bounded for
D.
. ugl) is analytic for D3 Dy, and bounded for
D; Dy, and bounded for 51 52.

53, where D is the closure of D. If T =

, u(ll) is defined for D
D;, while p(zz) is bounded for

Ds D p(32) is analytic for
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ImA ImA

Bla Rea Bla \2B/a  ReA

Figure 2 (Left) The regions (shaded) of the compleplane, where Imy( ) >0with  >0. (Right) The
regions (shaded) of the-plane, where Inp( ) >0with >0 (see text for details)

Note that the potential functionsV; andV, have the following symmetries:

Mt ) 2=Vt ), L Vit 2 1 ) =Vt ), (21,2,
where

01 0 1

10 10

As a consequence, the Jost solutiops de“ned by Egs. 64)...160) (j = 1, 2, 3) satisfy the
symmetry relations

06 ) s =t ), MGt 2 1) =it ). (18)

Moreover, the asymptotic behavior of the eigenfunction as leads to the recon-
struction formula for the solution of the mixed NLS equation on the half-line. It follows
from Eq. Q) that the reconstruction formula for the solution is given by

q(x.t) = 2im(x, t)e” 6o | (19)
where
m(x,t) = lim P 12(X,t, ). (20)

We note that|g| = 2|m| and
i . 2 2 (xt)
Ox(X,t)=2i my+4i m|m|° € 00 |
which implies that
0k .. Oxg = 4(Mmy ..mmy) +32i |m|*.
Thus the di erential one-form  (x,t) is given in terms ofm as

(x,t)=2 |m|?dx+ 12 ?/m|*... @mm, ..mm,) +16 |m|* dt. (21)
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Thus the inverse problem can be solved in the following steps. (i) Use any of the eigen-
functions y; (j = 1,2, 3) to “nd m given in Eq. @0). (i) Determine  (x,t) given in Eq. @1).
(i) The solution for the mixed NLS equation on the half-line can be determined from

Eq. @9).
Any two solutions of Eq. (5) are related by the so-called scattering matrica§ ) and
S ), also known as the spectral matrices, as follows:

“3(X1t7 ): l,lz(X,t, )e“-l(fl( P2 3d )1 (22a)
Ul(X-t: ): HZ(th! )e”i.(fl( Prt2( ) 3& ) (22b)

Using2(0,0, ) =1, Eqg. 23 implies that
S )=us3(0,0, ). (23)

Thus, the spectral matrixs( ) can be expressed in terms of the eigenfunctiqr as
9)=1... . X3y u5(x,0, )dx.

On the other hand, noting thatu1(0,T, ) =1, Eqg. @2b) yields
S()= €207 3p,0,1, ) ! (24)

and hence the spectral matriX§( ) can be expressed in terms of the eigenfunctiqry as
T .
S{)=1+ 20 svun0t, )dt.
0

We also remark thatu»(0,0, ) =1 impliesthatS( ) =un1(0,0, ) and the spectral matrices
inherit the symmetries given in Eq.18), namely

A) =), S0 =), (25a)

L2 ) =), 82 ) =Y. (25b)

Thus, we write the spectral matrices as

(
(

>

Q

~

(

)= (

o )=

b( ) B( )
a( ) A()

o
0

~
~—

We summarize the properties of the spectral functior® ) and §( ) as
« §Y( ) is analytic for D3 Dy, and bounded for Ds Dy, while §9( ) is
analytic for D; Doy, and bounded for D; D,. Moreover,

a()=a@ / ..), b()=.b@2 /! ..). (26)

. dets )=1and hencea( )a( )..b( )o()=1.§ )=1+0O(1/ )as in the
respective domains of boundedness of the columns.
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« §( )is an entire function of if T < ;SY( )isbounded for D, D, and SA()
is bounded for Di Ds.IfT= ,the spectral functions SY( ) and S?( ) are
defined for 52 64 and 61 53, respectively. Moreover,

A()=A2 / ...), B()=.B2/ ..). (27)

o detY )=1and hence A( )A( )..B()B()=1 Y )=1+0(1/ )as in the
respective domains of boundedness of the columns.

Furthermore, using Eq.223), we “nd

MZ(Xltv ): US(XaL )e”i.(fl( r2()0 38“3( )

Substituting the above equation into Eq2@b), we obtain the relation

Lll(X,t, ):P-3(Xat' )e”i.(fl( P20 3 S“:t )S( ) il (28)
where the “rst column is de“ned for D; D4 and the second column holds for
D, D,. Evaluating Eq.Z28) at (x,t) = (0,T), the spectral functions satisfy the following
relation, called the global relation:

S ) =0T 3p5(0,T, ), (Ds D4,D1 Dy). (29)

The (1, 2)-entry of Eq. 29) yields

A()b( )..a( )B( )=eTg( ), D1 D, (30)
wherec( ) =..., €10X(Viug)1o(x, T, )dx. Notethatc( )isanalyticfor Di Dpand
isbounded for D; D, with ¢( )=0O(1/ ) as JfT =, Eq. B0 becomes

A()b( ) ..a( )B()=0, D; D.. (31)

2.2 Riemann...Hilbert problem
We will formulate the matrix Riemann...Hilbert problem for the mixed NLS equation on
the half-line. For later reference, we introduce the quantities

0ot )=h(Ox+R(L, ):%,
0220R0 - OR0 ():“%’ r()=rC)+ ()

Theorem 2.1 Assume that x,t, ) is a su ciently smooth function Thenp;(x,t, ) (j =
1,2, 3)given by Eqs(169)..(16¢) de“ne the following Riemann...Hilbert problem

Mi(xt, )=M_(x,t, )Ixt, ), L, (33)
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L1,...,L4 that de“ne the Riemann...Hilbert problem for the case of 0

ImA ImA
D D
D, 3 2 D, L; L, L
ReA Ly Ly ReA
D D. L
1 D, | D 4 L L 3

Figure 3 (Left) The regionSs,. . .,D4 of the complex -plane for the case of > 0. (Right) The contours

where the sectionally meromorphic functions.Mare de“ned by

t,
MLt )= (L8 1P, ), Dy
+ 1 4y -

MPt, )ty py

d()

1)

M (xt, )= Hartufet ) Dy

AN - 2)
(w%xnxﬁf%%, Da,

and the jump matrix is given by

_ 1 0 _ 1 e ()
‘]_L - e2| (xt, ) ( ) 1 1 Lll ‘JS - 0
1 L2t )r S
= 0 () L
L& () 1
1 ..e2 0t p(%)

&)y 1.r()r()
with the oriented contour L(see Fig3)
Li=D; Dy, L,=D, D Ls=Ds; Da,
Proof We can write Egs. 228 and (22b) as

uPxt ) =a(OpPxt, )+ ObOuPxt, ),
uot, )=e 2 Ob( e, ) +a( P, ),
uPxt, )= APt )+ OBOUP(xt, ),
uPet, )=e 2 OBOuSxt, )+AORP K, ).

L4: 51

Ls,

(34a)

(34b)

(35a)

(35h)

(35¢)

(36)

(37a)
(37h)
(37¢)
(37d)

Page 9 of 21

From Eqgs. 879...87d), it is straightforward to de“ne the Riemann...Hilbert problem
(33) with the sectionally meromorphic functionsM. and the the jump matrix given in

Eqgs. 849...84b) and (359...850).

O
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We note that the functionM (x,t, ) is sectionally meromorphic. The possible poles oc-
cur at the zeros ofa( ) andd( ). If ; Djisazeroofa( ), then_j D4 is a zero ofﬁ.
Moreover, sincea( )=a(2 / ...), =2/ ...jisalsoazeroof( ). Similar facts also
hold for zeros ofd( ). Thus, we assume that

(i) a( ) has 2n simple zeros jin Dj suchthat jlieinD; { Im >0} and
=2 1 ..jlieinD; {Im <0} (=1,2,...n).
(ii) d( ) has 2N simple zeros zj in D such that zj liein D, { Im >0} and
Zwj=2 1 ..zlieinDy, {Im <0} (j=1,2,...N).
(iii) None of the zeros of a( ) coincides with the zeros of d( ).
We then “nd the residue conditions

RwMP@L):EEiim9mLQ, (38a)
= a( jb( )
R@M@@m):giﬁ;iMPWL7) (38b)
= a( j)b( )

i XULZ)R(5)
ResMW(x,t, :f——fﬁﬂM@mnm, (38c)
5 d(3)a(2)

L2 XL p(5
ResMP(x t, )= S BBy ¢ 7. (38d)
=4 d(z)a(z)

where the overdot denotes di erentiation with respect to . Indeed, from Eq. 87b), we
can compute the residue

pgl)(x,t, i) — & j)“gz)()@tv i)

@ = PYZRYY2RY
R:eJSM+ (xt )= a( ;) a( jb( j)

which yields Eq. 889. For Eq. 880, we useM .. =M _J, that is,

dOuPxt, ) =pPt, )+ OdOr(pPxt, ).

Thus, we “nd
1 =, (2
ResMB(x,t, )= Ll )(X’t’zj) =& (X't~zi)—B(Zj)“(3 )(X't’zj)
=z d(z) d(z)a(z)

which yields Eqg. 889). Similarly, we can derive Eqs38b) and (38d).

We note thatdetM. =1andM. (x,t, )=1+0O(1/ )as inthe respective domains
of boundedness of their columns. The solution for the mixed NLS equation can be found
from the solution of the Riemann...Hilbert problem. In this respect, we expand the solution
M(x,t, ) of the Riemann...Hilbert problem as

M1(x,t) . Ma(x,t)
2

M(xt, )=1+ +01/ % ( ).
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Letting M. ..M =M _J whereJ=J..l, the Riemann...Hilbert problem can be solved by
the Cauchy-type integral equation

Mect, y=1+ = MAXUD g
2 L

which implies that

MiD = s Mkt )d

Thus, we can “nd the reconstruction formula for the solution of the mixed NLS equation
on the half-line in terms of the solution of the Riemann...Hilbert problem as

(x.t) 1
q(x,t)e-200 == } M_Jx.t, ) ,d . (39)

3 Spectral functions
In this section, we de“ne the spectral functions from the initial and boundary values.

Definition 3.1 Givengo(x) S(R*), we de“ne the map

St () a().b() (40)
by

) o

o) =ufo) (1)
where

Mok, )= 1o dOCD 3L gl )d (42a)
with

Vi, Jme 8 9P s (oDl s = o © L (a2n)

o O

Proposition 3.1 The spectral functions @) and b( ) have the following properties
(i) a( )andb( ) are analytic for Dy D3 and bounded on D: D,
(i) o) = 2 +O(/ )as for Dy Do
(i) a( Ja( )..b( )b( )=1for Ly La. o
(v) a( )=a@ / ...)andb( )=.b2 /| ..)for D; D
(v) The inverse map S~:{a( ),b( )} { do(X)} to the map Sis defined by

Qo(x) = 2imy(x)é o lool*d (43)
where

mi(X) = lim M%(x, )
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and MW(x, ) is the unique solution of the following Riemann—Hilbert problem:

.

MP(x, ), D1 Dy,
M(X)(X, ): + ( ) 1 2 (44)
M(X)(Xa )! D3 D4

is a meromorphic function for ~ C\(Lz Lg).

MP(x, )=M¥(x, YI(x, ), L, Ly, (45)

where the jump matrix I is given by

1L e B (T
M, )= a0 1) (46)
Xy () 1
with
b()
r =7
o The first column ofMS,X) has 2n simple zeros ;| Dy Dy such that
j (Dl DZ) {Im >O}and n+j:2 / e (D1 D2) {Im <0}

(=1,2,...n). The second column ofMS,X) has 2n simple zeros _J D3 Dgsuch
that | (D3 D) {Im <Oand nj=2/ ..; (D3 D) {Im >0}

(j=1,2,...n). Then

Res M (X,l)(x )= ﬂM (X,Z)(X ) (47a)
= "7 oal jb( ) P

Res M (x,2)(x )= ﬂM (x,1)(x _.) (47b)
7 a()h( ) 7

where M®Y and M2 are the first column and the second column of the matrix

M®), respectively.
Proof The derivations of (i)...(iv) are given from the discussion in Se2 Regarding the

proof of (v), we consider thex-part of the Lax pair (L48 evaluated at = 0. We de“ne two
Jost solutiongt, and sz as

X .
Ma(x, )=1+  €O00svi(, uy(, )d (48)
0
andu3(x, ) givenin Eq. 828. From Eq. 229 evaluated at = 0, it follows that

Max, )=Ha(x, Jex sy ). (49)
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Sincep2(0, )=1,9 )=u3(0, ). Moreover, letting

Wy
M%) = %,u(z’(x, ) D: Dy, (50a)
(2)
MO= P, ) 2% ) g p, (50b)

~ [

a(

Eq. @9 can be written as the Riemann...Hilbert problem de“ned by Ed5{ with the
jump matrix given in Eq. @6). Equation @9) yields the residue conditions given by
Eqgs. 479...47b). Moreover, expandingM®(x, ) as

L M) | ma()
2

M®(x, )=1 +01 % ( ),
we can derive Eq.43). O

Definition 3.2 Given smooth functionsg(t) (j = 0, 1), we de“ne the map

Q: om(t),;(t) A( ),B() (51)
by
B() _
A() =u;7(0, ), (52)
where
T .
Ha(t, )=1... 200D 3y, g, )d (53)
with
Vo, )=eto 209 3 U, i () 5, (54a)

Us(t, )=i 22..2 + 2@ 3+223%.6 2+42 Q

+i( L )Quat 2. Q@ (54b)

and

3 P -
Qo= %0 . Qu= % : 2t)=7 2|90|4---|§(9091--9091)- (54c)

L o
Ll o

Proposition 3.2 The spectral functions A ) and B( ) have the following properties
(i) A( ) and B( ) are entire functions of if T <  and are bounded for D1 Ds.If
T= ,A()andB( )aredefinedinD; Ds.

(i) p) = § +O/ )as for D1 Da.
(i) AC)AC)..B()B()=1for CGfT= , L)

(iv) A()=A@ / ...)andB()=.B@2 /| ..)for D; Da.
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(v) The inverse map Q1 {A( ),B( )} { o(t),n(t)} to the map Q is defined by

o(t) = 2iM B(t)e? o 209 | (55a)
at)= ..4aMP+8 M & o 200

L2 M@ +2i gDM§12)+Z§b|Qb|27 (55b)

where

1)=12 2ME* . Re MY _amP+8 M@
v ? ReM@ ... ReM@P+ MY ? (56)

and the matrix functions MA(t), MA(t), and MCt) are determined by the

asymptotic expansion of M®

@ &) ©)]
M0 MO | MO

MO, =1 +01 4 | )

where MO(t, ) is the unique solution of the following Riemann—Hilbert problem:

.

MO, ), D: Dg,
MO, )= o (57)
MY, ), D, D4

is a meromorphic function for ~ C\L.

MO, )=mMO¢, )X, ), L, (58)

where the jump matrix JV is given by

1 ) Bl
P )= A0 © HUR() (59)
Le22ORy (1) 1
with
Ri( )= %

+ The first column ofMgf) has 2N simple zerosz; D1 Ds such that
Z (D]_ D3) { Im >0} andzn+j =2/ - Z (Dl D3) { Im <O}
(1=1,2,...N). The second column of M S,t) has 2N simple zeros ZJ D, Dy
suchthatzy (Dz Da) {Im <Otandz,.j=2 / ..zz (D2 Da)
{Im >0}(j=1,2,...N). Then
if2(z))t

Res M&Dt, )= ATZTB(Z])M(I’Z)(I,ZJ), (60a)
] i i
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-6

e Fa4)t _
ResM®2(t, )= ——MUD(t,Z), (60b)

A A(7)B(z)

where MY and M2 are the first column and the second column of the matrix
MO, respectively.

Proof It is enough to prove (v). We de“ne two eigenfunctiong; and i, from the t-part
of the Lax pair @b) evaluated atx =0 as

Ha(t, ) =1+ OtéfZ( D 3v5(, g, )d (61)
andp(t, ) givenin Eqg. 63). From Eq. @2b) evaluated ai = 0, it follows that

Ma(t, )=Ha(t, e 35(). (62)
Sincep2(0, )=1,we“nd § ) =p1(0, ). Letting

MO = U(zl)(t, )

( 8 MU D, Ds, (63a)
2
MO = pP, ),% , D, Da, (63b)

Eq. 62) can be written as the Riemann...Hilbert problem de“ned by E&8[ with the
jump matrix given in Eq. 69). Moreover, Eq. 62) yields the residue conditions given by
Egs. 60g)...60b).

Regarding the inverse map fagy (t), we consider Eq.gb),

e+ifa( ) 3 1=U2 . (64)
Substituting the expansion of given in Eq. ) into Eq. (64), we “nd

205 W=Q O (65a)
O 2: 2 45 @ .8 5 W=i; O+20 ®..6Q @ (650

From the o -diagonal entries of Eqs.§53)...65b), it follows that

1
(1,0>:Z Q0 © (66a)
2 3 @9 ... Q D= g O (66b)

where 09 and (D) denote the o -diagonal part and the diagonal part of @, respec-
tively. At O( ), we have
202 53 @ 8 5 @ +g 2 5 O
=2°%Q @..i Q" 3+6 Q @
+ 2 QP 3+42Q O+ Q s+ Q0 O
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Collecting the o -diagonal part of the above equation, we “nd

4 25 GO 18 5 @9+16 25 1O

=i 2Q2 3 (l,O)+2 ZQ (2,D)“.6 Q (1.D) 4 4 2Q+i QX 3+ 2Q3 (0) (67)
Using Egs. 669)...66b) and simplifying the resulting equation, Eq6(7) can be written as
Qs P=4 5 G985 @042 Q @D 2Q P @ O (68)
2i
) x)
Recaling =€ 00 3p Owith ©= (00) 3 the (1, 2)-entry yields
P o)
o) = ..4mP+8 m2 & 0o .. 2 gm@+2i gmd+ —q a, (69)
where the functionsm?@ (j = 1, 2, 3) are given from the asymptotic expansion pf

@ (@) )
(., ):|+m (x,t)+m (2x,t)+m (3x,t)+01/ a

xt)
We note thatq(x,t) = 2|m(1) A (00) and|q| = 2|m(1)| Then, we obtain

g0 --Oxq = ...4Re m(l) . 4m(13'2)+8 m(z)

1Bm(112)2 Rem(z) " Rem(212)+ m(112)2_

Thus, we “nd

=2 mB%dx+ 12 2mP* . Re mY ..4amT+8 m?2

Lan®? Rem@ .. Rem®+ m®? dt. (70)
Finally, evaluating Eqs 60) and (70) at x = 0, Egs. $5b) and (56) can be derived. O

4 The Riemann...Hilbert problem
In this section, we establish the existence theorem for the solution of the mixed NLS equa-
tion posed on the half-line.

Theorem 4.1 Letp(x) S(R*).Assume thatfunctionsgft) and g (t) are compatible with
Qo(X) at x =t = 0. Let functions{a( ),b( ),A( ),B( )} be given by Eq$40) and (52) in Def-
initions 3.1and 3.2, respectivelySuppose that the functionga( ),b( ),A( ),B( )} satisfy
the global relation given in Eq(30) (if T = , the global relation is replaced by E¢31)),
where ¢ ) is analytic functionfor ~ D; Djandisboundedfor D; D,with O(1/ )
as .

Let M(x,t, ) be the solution of the following x 2 matrix Riemann...Hilbert problem

o M is sectionally meromorphic for ~ C\L, where the oriented contour L is defined by

Eq. (36).
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« The first column of M has simple zerosat = ;(j=1,2,...,B)andat =z
(1=1,2,...,}). The second column of M has simple zeros at = _J (=1,2,...,2)
andat =7 (j=1,2,..., ).

+ M satisfies the jump condition

M+(t, ) =M (xt, )Xt ), L, (71)
where My and M _ are defined for Di1 Dg, and for D, Dy, respectively, and
the jump matrix is defined by Egs. (35a)—(35c).

e M(x,t, )=1+0O(1/ )as

Then the Riemann...Hilbert problem is uniquely solvable and the functi¢a ) de“ned
by

GO = 2mx e 69, met)= lim Mt )i (72)
where
(x,t)=2 |m]?dx+ 12 2|m|*... ¥mm, ..mm,) +16 |m|* dt, (73)
solves the mixed NLS equation satisfying
q(x,0)=qo(),  a(O.)=g(t),  &(O0,t)=al(t). (74)

Proof In the absence of poles, the unique solvability of the Riemann...Hilbert problem
follows from the vanishing lemma. O

Lemma 4.2 The Riemann...Hilbert problem in Theorehlwith M = O(1/ ) as
has only the zero solution

Proof Let A" denote the complex conjugate transpose of a matrixand =2 /

De“ne
Hi(x,t, )=Mi(x,t, IMT(x,t, ), D, Ds, (75a)
H (xt, )=M_(x,t, IMi(xt, ), D, Da. (75b)

Note that H, and H _are analytic inD; Dz and D, Dg4, respectively. Hereafter, we
suppress thex andt dependence for simplicity. From Eqs26) and 27), it follows that

IO)=30)  3O)=3()  B)=Z().
By the de“nitions of H. , we “nd
He( )=M ()IOMI(),  H.()=M ()T M(), L,

whichimpliesthatH.( )=H_( )for L. ThusH+( )andH ( ) de“ne anentire function
vanishing at in“nity and henceH. ( ) =0. Since the lineRe = / isinvariant underthe
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transformation ,the matrix%( / +i )is Hermitian for R.Asaresulth( / +
i )is positive de“nite. Furthermore, notethaH,( / +i )=0andM ( / +i )&( / +
i YMT(/ +i)=0for R. Thus,M ( / +i )=0 for R, which concludes that
M: (x,t, )=0. O

Proof of Theoremd.1 In the presence of polesM(x,t, ) is a meromorphic function of

. In this case, this singular matrix Riemann...Hilbert problem can be mapped to a regu-
lar Riemann...Hilbert problemJ8]. By using the dressing method presented ii$, 28],
one can prove that ifM solves the Riemann...Hilbert problem, theg(x,t) de“ned by
Eq. (72) solves the mixed NLS equation and satis“es tha{x, 0) = go(x), q(0,t) = g(t)
and gx(0,t) = g1 (t) (cf. Propositions3.1and 3.2). In what follows, we will show that the
Riemann...Hilbert problem given in Eq7Q) is related with the Riemann...Hilbert prob-
lems de“ned by Egs.45) and (568), respectively.

We de“ne M®(x, )interms of M(x,0, ) by

M(X101 )1 Dl D4,
M®(x, Y= M(x,0, )&(x,0, ), D,, (76)
M(x,0, )%-¥x,0, ), Ds.

Let M;(x, 0, )ande(X)(x, ) denoteM(x,0, )andM®(x, Yfor  Dj(=1,...,4). Then

M1(x,0, )=Mz(x,0, )A(x,0, ), M3(x,0, )=Ma(x,0, )h(x,0, ), (77a)

Ml(X,O, ):M4(X’Ov )\L(X,O, )! M3(X!01 ):M4(X10’ )‘]3()(10! )1 (77b)
and

MP(x, )=M1(x,0, ), MU )=My(x,0, )&(x,0, ), (78a)

MOX )=Ms(x,0, )E1x0, ),  MP(x, )=Ma(x,0, ). (78b)

Using the above equations, we “nd

MPx, )=MPx ), MPx )=MPx, ),
MPx, )=MPx, U0, ),  MPx )=MPx ) 1L (x,0,).

Note that no jumps occurs along the contourd; and L3 and that \b\]é”]{]_]_ = J and
J(%,0, ) = IV, ), where J¥ is given in Eq. 46). Thus, if we de*neM® = M¥ for
D; DyandM®=M®for D3 Dy, Egs. 789...{8b) yields Eq. 46).
On the other hand, letM;(0,t, ) denoteM(0,t, ) for Dj(i=1,...,4). Then

Ml(oit! ):MZ(Oltv )J_L(O,t, )1 M3(Ovt! ):Mz(o,t, )JZ(O!t’ )i (80&)
Ml(ovt! ):M4(O,t, )\ll(o,t, )1 MS(Ovt! ):M4(01t1 )J\:,(O,t, ) (80b)

LetM®O(t, ) be de“ned by

MO, ) =m0t RE ), Dy (81)
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whereF (j =1,...,4) are analytic and bounded in the domains of their de*nition and

R, )=1+0(1/ )as . Moreover, they must satisfy
\]J.(O!tv )Fl(tv )=F2(t1 )‘](t)(t1 )1 \]Z(Oitv )F3(tv ):FZ(tv )‘J(t)(ti )1 (823)
BO.t, IFa(t, )=Falt, )0, ), B0, IFa(t, )=Fat, ), ), (82b)

whereJV(t, ) is given in Eq. 69). The functionsF; can be determined by

a() Aif2( )(T.1) d PO e ()
it )= ") < AQ) o Rt )= Ry 1 , (83a)
0 a0 0 )
% 0 Q 0
Rt )= O Re)= __ O __ (83b)
__ueZifz( )t d(_) C(_)e,..ﬂ‘z( . 20

(

-

We can show that theF; given in Egs. 39)...83b) satisfy Eqs.§24)...82b) if and only if
the global relation given in Eq.30) (Eq. @1) if T = ) is valid for the spectral functions
{a( ),b( ),A( ),B( )}, where we have used the fact that the global relation yields

_a0) , BO) ., _
0280 RO 0=

P4

O,
a( )

LE() T~
o). .

QD
—~
~

5 Concluding remarks

In this work, we have studied the initial-boundary value problem for the mixed NLS equa-
tion posed on the half-line by using the Fokas method. Speci“cally, we have investigated
the spectral functions de“ned from the initial and boundary values and we have derived
the global relation in terms of the spectral functions. It has been shown that if the spectral
functions satisfy the global relation, there exists the solution for the mixed NLS equation
on the half-line in terms of the unique solution of the matrix Riemann...Hilbert problem
with the jump matrix de“ned by the spectral functions. It should be remarked that the
mixed NLS equation can be viewed as a modi“cation of the classical NLS equation. More-
over, the mixed NLS equation can be analogous to the derivative NLS equation under a
certain change of variables2B]. Thus, the present analysis is similar to what has been
addressed in the NLS equation. Nevertheless, we have demonstrated directly the Fokas
method in solving the mixed NLS equation on the half-line so that the result of the present
work can cover the NLS-type equations including the derivative NLS and modi“ed NLS
equations. Furthermore, the present result in this paper will help lead us toward further
analysis. For example, it can be applied to determine the long-time asymptotics for the
solution of the mixed NLS equation on the half-line by employing the nonlinear steepest
descent method in the associated Riemann...Hilbert problea3,[24]. It can be also used

to characterize the long-time asymptotics for the unknown boundary values as discussed
in [29, 30].
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