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Abstract
It is widely accepted that financial data exhibit a long-memory property or a
long-range dependence. In a continuous-time situation, the geometric fractional
Brownian motion is an important model to characterize the long-memory property in
finance. This paper thus considers the problem to estimate all unknown parameters
in geometric fractional Brownian processes based on discrete observations. The
estimation procedure is built upon the marriage between the bipower variation and
the least-squares estimation. However, unlike the commonly used approximation of
the likelihood and transition density methods, we do not require a small sampling
interval. The strong consistency of these proposed estimators can be established as
the sample size increases to infinity in a chosen sampling interval. A simulation study
is also conducted to assess the performance of the derived method by comparing
with two existing approaches proposed by Misiran et al. (International Conference on
Optimization and Control 2010, pp. 573–586, 2010) and Xiao et al. (J. Stat. Comput.
Simul. 85(2):269–283, 2015), respectively. Finally, we apply the proposed estimation
approach in the analysis of Chinese financial markets to show the potential
applications in realistic contexts.

JEL Classification: C15; C22; C32

Keywords: Geometric fractional Brownian motion; Bipower variation; Least-squares
estimation; Asymptotic behavior; Discrete observations

1 Introduction
Long-memory phenomena have been observed in numerous scientific fields such as hy-
drology, geophysics, economics, finance, climatology, physics, biology, medicine, music,
and telecommunications engineering among others (see Hurst [23], Hosking [20], Lo [28],
Willinger et al. [40], Baillie [1], Lai et al. [26], Hu and Øksendal [22], Granger and Hyung
[19], Fleming and Kirby [18], Chronopoulou and Viens [11], Rossi and Fantazzini [35],
Nguyen et al. [32] and the references therein). A time series with a long-memory behav-
ior has a slow and hyperbolically declining autocorrelation function or, equivalently, an
infinite spectrum at zero frequency. In fact, the best-known and widely used stochastic
model that exhibits a long-memory property in a continuous-time situation, is of course
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the fractional Brownian motion (hereafter fBm), which is a suitable generalization of
the standard Brownian motion. Consequently, the fBm and stochastic processes driven
by it have found many applications in diverse fields including economics, finance, geo-
physics, biology, oceanography, meteorology, telecommunication engineering, physics,
chemistry, medicine, and environmental studies (see, e.g., Doukhan et al. [14], Çağlar [8],
Chronopoulou and Viens [10], Chronopoulou and Viens [11], Comte et al. [13] and the
references therein). In particular, the well-known geometric fractional Brownian motion
(hereafter gfBm) has been extensively used for capturing the fluctuations of stock prices
(see Duncan et al. [15], Elliott and Chan [16], Elliott and Van Der Hoek [17], Hu and Øk-
sendal [22], Mishura [30], Rostek [36]).

The development of gfBm naturally leads to studies in statistical inference, which has
attracted great practical and theoretical interest. In fact, proper estimation of unknown
parameters in stochastic models is of the utmost importance, since these estimators sig-
nificantly affect risk management, derivatives pricing, and portfolio optimization. In par-
ticular, applications in finance often require both speed and accuracy in parameter estima-
tion for small samples in order to facilitate dynamic decision making and risk management
(see, e.g., Phillips and Yu [34]). As a consequence, parameter estimation for gfBm as a chal-
lenging theoretical problem has been of great interest in the past decade. For example, the
problem of parameter estimation in a simple linear model driven by a fBm was investi-
gated in Bertin et al. [5], Bertin et al. [6], Hu et al. [21], Xiao et al. [41], Brouste and Iacus
[7], Liu and Song [27], Xiao et al. [42], Cheng et al. [9], Xiao et al. [46], Sun et al. [37]. In
ground-breaking works, Xiao et al. [44], Xiao et al. [45], Tanaka et al. [38], Wang et al. [39]
established the asymptotic theory for the estimators of fractional Ornstein–Uhlenbeck
processes. In addition, for statistical inference in gfBm at discrete intervals, to the best
of our knowledge, Kukush et al. [25] first developed an incomplete maximum-likelihood
estimation for the drift parameter, which is separated from the estimation of the long-
memory parameter, showing advances to some estimation methods specially designed
only for the Hurst parameter, such as the R/S analysis, variation analysis, etc. Moreover,
in the study of Misiran et al. [31], in which a general discrete-data complete maximum-
likelihood-type procedure has been designed for estimating all the unknown parameters
in gfBm, including the drift parameter, the diffusion coefficient and Hurst index, with-
out the proof of asymptotic behavior. For the ground-breaking work of Xiao et al. [43],
all the unknown parameters of gfBm from discrete observations based on the quadratic
variation and the maximum-likelihood approach have been well estimated, in particu-
lar, the asymptotic properties of the estimators have been provided in Xiao et al. [43] as
well. In addition, we also refer to a recent monograph, Kubilius et al. [24], for a complete
exposition on different approaches used in statistical inference for fractional diffusions.
However, both the complete maximum-likelihood estimators proposed in Misiran et al.
[31] and the incomplete maximum-likelihood estimators introduced in Xiao et al. [43]
are very time consuming. This is because the complete maximum-likelihood estimation
involves numerically solving the profile-likelihood function and the implementation of the
incomplete maximum-likelihood estimation need to compute the inverse and determinant
of the autocovariance matrix of the fBm, which requires excessive computational time and
computer memory. For example, a simple Monte Carlo sample takes a little less than 20
minutes on a desktop Intel i7 computer, while a more realistic empirical study will take a
much longer time to run. Hence, both methods are not well suited for the case with an
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increased data size. Consequently, finding some less time-consuming estimators for dis-
cretely observed gfBm becomes a challenging problem and is of great interest for practical
purposes.

Therefore, this paper will mainly focus on the demand for less time-consuming esti-
mators for gfBm based on discrete-time data from practical applications, concretely, the
three parameters of the drift, the volatility, and the Hurst parameter involved in gfBm.
Based on discrete-time observations, we study the problem of estimating all the unknown
parameters, including the drift, the diffusion, and the Hurst for gfBm in the setting of
0 < H < 1. The main contribution of this paper is to construct the estimators and to derive
the asymptotic theory for these proposed estimators. While our framework in this paper
is applicable to a wide range of Gaussian processes (e.g., subfractional Brownian motion,
bifractional Brownian motion, weighted-fractional Brownian motion), we focus here on
the case of fBm, which is widely used in physics, electrical engineering, biophysics, and
finance.

The remainder of this paper proceeds as follows. Section 2 introduces the model and ad-
dresses the estimators of gfBm, which is observed at discrete points of time. This section
proposes the least-squares-type estimators for both the drift and diffusion coefficients
and presents the bipower variation estimator for the Hurst parameter. The asymptotic
properties of these proposed estimators are also discussed in Sect. 2. Section 3 presents
two existing estimation procedures for gfBm. In Sect. 4, we give some simulation exam-
ples to show the finite-sample performance of these estimators. The computational tests
show favorable results for our proposed estimator even with relatively small sample sizes.
The simulation results also demonstrate that our method is computationally simple and
asymptotically unbiased. To show how to apply our approach in realistic contexts, Sect. 5
is devoted to presenting our empirical results of four major financial indices in China:
the Shanghai Composite index (SHCI), the Shenzhen Component index (SZCI), the CSI
Smallcap 500 index (CSI 500), and the CSI 300 index (CSI 300). Concluding remarks are
discussed in the final section. All the proofs are collected in the Appendix.

2 Parameter estimation
Since the pioneering work of Mandelbrot and Van Ness [29], fBm has been extensively
used to capture long-range dependence, self-similarity, non-Markovianity, or subdiffu-
sivity and su- perdiffusivity. A crucial problem with the applications of these stochastic
models driven by fBm in practice is how to estimate the unknown values of the param-
eters involved in these models. In this paper, we consider the problem of estimating all
unknown parameters in gfBm, which is widely used for option pricing and is able to cap-
ture the memory dependency. In fact, there is a key challenge for estimating parameters in
gfBm: the discretely observed data are not Markovian. This means that state-space mod-
els and Kalman-filter estimators can not be applied to estimate the parameters in gfBm.
In this paper, the bipower variation and the least-squares estimation are thus employed
to estimate the unknown parameters in gfBm. In what follows, we first introduce some
notations, and then present the estimators for gfBm.

2.1 Model simplification
To capture the long-range dependence in financial asset returns, Duncan et al. [15], Elliott
and Chan [16], Hu and Øksendal [22] used gfBm to capture the dynamics of stock prices.



Sun et al. Advances in Continuous and Discrete Models         (2022) 2022:69 Page 4 of 22

Thus, the stock price, St , can be written as

dSt = μSt dt + σSt dBH
t , t ≥ 0, S0 = 1, (2.1)

where μ is the rate of return, σ is the volatility, and (BH
t , t ≥ 0) is a fBm with Hurst param-

eter H ∈ ( 1
2 , 1).

Using the Wick integration, Hu and Øksendal [22] stated that the solution of (2.1) can
be written as (see Eq. (5.2.6) of Mishura [30]):

St = exp

(
μt –

1
2
σ 2t2H + σBH

t

)
= exp(Yt), t ≥ 0, (2.2)

where Yt = μt – 1
2σ 2t2H + σBH

t .
Comparing (2.1) with (2.2), it loses no information to transform the observation St

into Yt . Hence, estimating the parameters from (2.1) is equivalent to estimating the un-
known parameters from Yt . Now, we assume that the process, Yt , is observed at discrete-
time instants (t1, t2, . . . , tN ). Consequently, for H ∈ (0, 1), the observation vector is Y =
(Yt1 , Yt2 , . . . , YtN )′, where the prime (′) is used to denote the vector transposition and all the
nonprimed vectors are row vectors. In particular, to simplify notations we assume tk = kh,
k = 1, 2, . . . , N for a fixed-step size h > 0. Consequently, for H ∈ (0, 1), the discrete-time
observation can be expressed in the form of vectors as

Y = μt + σBH
t –

1
2
σ 2t2H , (2.3)

where Y = (Yh, Y2h, . . . , YNh)′, t = (h, 2h, . . . , Nh)′, t2H = (h2H , (2h)2H , . . . , (Nh)2H)′, and BH
t =

(BH
h , . . . , BH

Nh)′. Our aim is to estimate the unknown parameters H , σ , and μ from obser-
vations Yti = Yih, 0 ≤ i ≤ N for a fixed interval h and study their asymptotic properties as
N → ∞. In consequence, we will use the notation C for a generic constant, which may
change from line to line.

2.2 Estimation procedures
Based on the situation of discrete observations mentioned in Sect. 2.1, we now proceed to
estimate the unknown parameters of gfBm based on discrete-time observations.

First, we consider the problem of estimating the Hurst parameter of gfBm. From (2.3),
we have

Yh = μh + σBH
h –

1
2
σ 2h2H ,

Y2h = μ2h + σBH
2h –

1
2
σ 2(2h)2H ,

... =
...

YNh = μNh + σBH
Nh –

1
2
σ 2(Nh)2H .

Now, let

Zih = Yih – Y(i–1)h
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= μh + σ
(
BH

ih – BH
(i–1)h

)
–

1
2
σ 2[(ih)2H –

(
(i – 1)h

)2H]

= μh + σUih –
1
2
σ 2Vih,

where Uih = BH
ih – BH

(i–1)h and Vih = (ih)2H – ((i – 1)h)2H .
Not surprisingly, Uih (i = 1, . . . , N ) are normal distributions. Using the result of the ex-

pected absolute value of a bivariate normal distribution, we obtain

E|UihU(i–1)h| =
2h2H

π

(
ρ1 arcsinρ1 +

√
1 – ρ2

1

)
, (2.4)

where ρ1 = (22H–1 – 1)h2H .
Similarly, a standard calculation yields

E|UihU(i–2)h| =
2h2H

π

(
ρ2 arcsinρ2 +

√
1 – ρ2

2

)
, (2.5)

where ρ2 = h2H

2 (32H + 1 – 22H+1).
Then, using the bipower variation (see, Barndorff-Nielsen and Shephard [4]), we define

the ratio function as follows:

R(H) =
1

N–1
∑N

i=2 |Zih||Z(i–1)h|
1

N–2
∑N

i=3 |Zih||Z(i–2)h|

=
E[|Zih||Z(i–1)h|]
E[|Zih||Z(i–2)h|]

=
E[|μh + σUih – 1

2σ 2Vih||μh + σU(i–1)h – 1
2σ 2V(i–1)h|]

E[|μh + σUih – 1
2σ 2Vih||μh + σU(i–2)h – 1

2σ 2V(i–2)h|]

=
σ 2

E|UihU(i–1)h| + o(h2H )
σ 2E|UihU(i–2)h| + o(h2H )

∼ E|UihU(i–1)h|
E|UihU(i–2)h| , (2.6)

where “∼” means that the ratio of the left- and right-hand sides converges to one as N
tends to infinite.

By combining (2.4) and (2.5) with (2.6), we obtain the following nonlinear function

(N – 2)
∑N

i=2 |Zih||Z(i–1)h|
(N – 1)

∑N
i=3 |Zih||Z(i–2)h|

=
ρ1 arcsinρ1 +

√
1 – ρ2

1

ρ2 arcsinρ2 +
√

1 – ρ2
2

. (2.7)

Finally, we can obtain the estimate Ĥ of the Hurst index H , by solving the nonlinear
function of (2.7).

Remark 2.1 We can construct other estimators for the Hurst parameter using the real-
ized variation ratio method or change-of-frequency approach. Both methods are based
on multipower variations of the higher-order difference of gfBm. We refer to the excellent
work of Barndorff-Nielsen et al. [3] or Bardet and Surgailis [2] for details.
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In practice, it is impossible to obtain an analytical expression for H from (2.7). We use
a numerical procedure to obtain it by solving (2.7). In what follows, we are in a position
to estimate the drift μ and the volatility σ . The technique of the plug-in least-squares
estimation has been employed due to the timesaving property. Now, from (2.3), we have

Yih = μih + σBH
ih –

1
2
σ 2(ih)2H .

The least-squares estimators aim to minimize the following function

N∑
i=1

∣∣∣∣Yih – μih +
1
2
σ 2(ih)2H

∣∣∣∣
2

.

This implies that

⎧⎨
⎩

∑N
i=1 ihYih – μ

∑N
i=1(ih)2 + 1

2σ 2 ∑
(ih)2H+1 = 0,∑N

i=1(ih)2HYih – μ
∑N

i=1(ih)2H+1 + 1
2σ 2 ∑N

i=1(ih)4H = 0.

Let a =
∑N

i=1(ih)2, b =
∑N

i=1(ih)2H+1, c =
∑N

i=1(ih)4H . Then, we have

⎧⎨
⎩

∑N
i=1 ihYih – aμ + 1

2σ 2b = 0,∑N
i=1(ih)2HYih – bμ + 1

2σ 2c = 0.
(2.8)

As a consequence, we can obtain the estimators of μ̂ and σ̂ 2 by solving (2.8):

μ̂ =
b̂
∑N

i=1(ih)2ĤYih – ĉ
∑N

i=1 ihYih

b̂2 – âĉ
, (2.9)

σ̂ 2 =
2(â

∑N
i=1(ih)2ĤYih – b̂

∑N
i=1 ihYih)

b̂2 – âĉ
, (2.10)

where â =
∑N

i=1(ih)2, b̂ =
∑N

i=1(ih)2Ĥ+1, c =
∑N

i=1(ih)4Ĥ .
The estimators of μ and σ 2 proposed in this paper do not involve any computational

problem and we do not rely on numerical solution. Hence, the estimators proposed in
(2.9) and (2.10) are efficient.

Remark 2.2 The parameter-estimation procedure for the gfBm proposed in this paper will
proceed as follows:

(i) Obtain the estimator of the Hurst parameter by solving the nonlinear function (2.7);
(ii) Compute the estimator of μ by (2.9);

(iii) Calculate the estimator of σ 2 by (2.10).

2.3 Asymptotic properties
In what follows, we turn to study the asymptotic behavior of these estimators defined by
(2.7), (2.9), and (2.10), respectively. First, we state the strong consistency of Ĥ .

Theorem 2.3 The estimator Ĥ obtained by solving (2.7) converges to H almost surely as
N goes to infinite.
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Proof See the Appendix. �

Now, we consider the strong consistency for both μ̂ and σ̂ 2.

Theorem 2.4 The estimators μ̂ and σ̂ 2 defined by (2.9) and (2.10), respectively, show strong
consistency, that is,

μ̂ → μ a.s. as N → ∞, (2.11)

σ̂ 2 → σ 2 a.s. as N → ∞. (2.12)

Proof See the Appendix. �

Remark 2.5 The estimators proposed in this paper can be easily extended for all H ∈ (0, 1).
Using the same arguments as Theorem 2.3 and Theorem 2.4, we can obtain the strong
consistency of Ĥ , μ̂ and σ̂ 2 for all H ∈ (0, 1).

3 Two alternative procedures
In order to examine the performance of the proposed estimators mentioned above, in this
section, we introduce two existing estimation procedures for the sake of comparison. The
first one is the complete maximum-likelihood approach proposed in Misiran et al. [31]
and the other is the incomplete maximum likelihood method provided in Xiao et al. [43].

3.1 The complete maximum-likelihood estimation
As stated in Misiran et al. [31], the Gaussian property of the gfBm makes the process a
perfect candidate for the use of the maximum likelihood method to estimate all the un-
known parameters, simultaneously. Thus, from Misiran et al. [31], we obtain the complete
maximum-likelihood estimators for μ and σ 2 from the observation Y = (Yh, Y2h, . . . , YNh)
as

σ̃ 2
M =

2Z′ ∑–1
1 Z√

N2 + X′
H

∑
1 XH Z′ ∑

1 Z + N
, (3.1)

μ̃M =
1

1′ ∑–1
0 1

(
1′

–1∑
0

Z +
σ̃ 2

M
2

1′
–1∑
0

XH

)
, (3.2)

where Z = (Zh, Z2h, . . . , ZNh)′, XH = (h2H , (2h)2H – h2H , . . . , (Nh)2H – (Nh – h)2H )′, Zih = Yih –
Y(i–1)h,

∑
1 =

∑–1
0 (I – 11′ ∑–1

0
1′ ∑–1

0 1
), I is an N × N identity matrix and

∑
0

=
1
2

h2H(|i – j + 1|2H – 2|i – j|2H + |i – j – 1|2H)
i,j=1,2,...,N .

Observe that the estimators μ̃M and σ̃ 2
M depend on H , which should also be estimated.

Actually, Misiran et al. [31] stated that the estimator ĤM of H can be obtained by mini-
mizing the following profile-likelihood function

(
N ln σ̂ 2

M + ln

∣∣∣∣
∑

0

∣∣∣∣
)

+
1

σ̂ 2
M

(
Z – μ̂M1 +

σ̂ 2
M
2

XH

)′ –1∑
0

(
Z – μ̂M1 +

σ̂ 2
M
2

XH

)
. (3.3)
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For solving the optimization problem (3.3) we have to rely on a numerical solution. The
function fminsearch, which is a standard part of MATLAB, is a candidate tool.

Remark 3.1 The estimation procedure for the gfBm proposed by Misiran et al. [31] will
proceed as follows:

(i) Maximize (3.3) numerically to obtain the estimator Ĥ of H ;
(ii) Compute σ̃ 2

M by replacing H with ĤM in (3.1);
(iii) Calculate μ̃M by replacing H with ĤM in (3.2);
(iv) Calculate the estimator σ̂ 2

M of σ 2 using the relationship σ̂ 2
M = h–Ĥ σ̃ 2

M ;
(v) Calculate the estimator μ̂M of μ using the relationship μ̂M = h–1μ̃M .

Remark 3.2 It should be noted that the accuracies of μ̂M and σ̂ 2
M depend crucially on the

estimator Ĥ of the Hurst parameter H . As a consquence, replacing H with Ĥ in (3.1) and
(3.2) could impact the asymptotic behavior of μ̂M and σ̂ 2

M . Intuitively speaking, the more
accurate the Ĥ , the more accurate are μ̂M and σ̂ 2

M . Hence, we should use some optimiza-
tion methods to obtain the optimum value of Ĥ from (3.3).

Remark 3.3 Computationally, the algorithm proposed in this paper is very fast. The ma-
jor advantage of our method is that the computational cost is markedly lower than the ap-
proach presented by Misiran et al. [31]. This is because the approach presented by Misiran
et al. [31] involves the numerical computation of the covariance matrix and the logarithm
of its determinant. However, our method just relies on a simple result obtained via the
variation method.

3.2 The incomplete maximum-likelihood estimation
By contrast, from Xiao et al. [43], we obtain the incomplete maximum-likelihood estima-
tors for μ and σ 2 from the observation Y = (Yh, Y2h, . . . , YNh) as

ĤX =
1
2

–
1

2 ln 2
ln

∑N–1
i=1 [exp(Y(i+1)h) – exp(Yih)]2

∑	 N
2 
–1

i=1 [exp(Y2(i+1)h) – exp(Y2ih)]2
, (3.4)

σ̂ 2
X =

∑N–1
i=0 (Y(i+1)h – Yih)2

Nh2H , (3.5)

μ̂X =
σ 2t′�–1

H t2H + 2Y′�–1
H t

2t′�–1
H t

, (3.6)

where

�H =
[
Cov

[
BH

ih, BH
jh
]]

i,j=1,2,...,N =
h2H

2
(
i2H + j2H – |i – j|2H)

i,j=1,2,...,N .

Obviously, the maximum-likelihood estimator μ̂X involves the numerical computation
of the inverse and the determinant of the covariance matrix, which induces open compu-
tational problems. However, the development of computer technologies made it possible
to obtain this estimator effectively and efficiently.

Remark 3.4 We would like to mention that the parameter-estimation procedure for the
gfBm presented in Xiao et al. [43] always proceeded as follows:
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(i) Calculate the estimator of the Hurst parameter by (3.4);
(ii) Compute the estimator of σ 2 using (3.5) with replacing H with ĤX ;

(iii) Obtain the estimator of μ, by replacing H with ĤX and σ 2 with σ̂ 2
X , in (3.6).

Remark 3.5 Let us mention also that the computation time costed by obtaining μ̂X is high
since this estimator involves the inverse of the covariance matrix.

4 Simulation study
For the sake of reproducibility, in this section, we study the finite-sample properties of
the proposed estimators. As addressed in the previous sections, the estimators of μ, σ 2,
and H have several desirable properties for sufficiently large truncation points, such as
consistency and asymptotic normality. In other words, if the observed time series is rel-
atively long, statistical inference could be performed on the estimate. However, in some
other cases, the observations are irregular and relatively short. Hence, it would be inter-
esting to analyze the performance of μ̂, σ̂ 2, and Ĥ in small samples, which is needed to
justify the application of asymptotic results. The information in small samples may also
affect the choice of sampling interval. In what follows, we conduct Monte Carlo studies
for different values of μ, σ 2, and H to numerically investigate the efficiency of our estima-
tors. Moreover, we compare the finite-sample properties of our method with two existing
approaches, which are proposed in Sect. 3 for details.

Actually, the main obstacle of Monte Carlo simulation is the difficulty to obtain fBm,
in contrast to Brownian motion. In the literature, there are some methods to solve the
problem of simulating fBm (see Coeurjolly [12]). In this paper, we apply Paxson’s algorithm
(see Paxson [33]). This means that we first generate the fractional Gaussian noise based on
Paxson’s method by fast Fourier transformation. Then, we can obtain the fBm using the
result that the fBm is defined as a partial sum of the fractional Gaussian noise. Finally, we
obtain gfBm of Eq. (2.3). For a better understanding of our method, we describe the steps
for the simulation of the gfBm together with the calculation of the estimators proposed in
this paper. Therefore, the estimation procedure of this paper by Monte Carlo simulation
method is summarized as follows:

(i) Set the sampling interval h and the sampling size N ;
(ii) Set the values for the three variables μ, H , and σ ;

(iii) Generate fractional Gaussian noise based on Paxson’s method;
(iv) Construct the path of the gfBm;
(v) Obtain the estimator of the Hurst parameter by solving the nonlinear function

(2.7);
(vi) Calculate the drift estimator μ̂ using (2.9);

(vii) Calculate the estimator σ̂ 2 by (2.10).
In the case of an empirical study, we just need to proceed from (v) to (vii). For compari-

son, we should replace steps (v) to (vii) with Remark 3.1 or Remark 3.4, respectively. Now,
we sum up the estimation procedures by Monte Carlo simulation method, which is shown
in Fig. 1.

In addition, for some fixed sampling intervals, we carry out a simulation study to com-
pare the estimators of our method (mentioned above), with the complete maximum-
likelihood estimation proposed in Misiran et al. [31] (see Remark 3.1) and the incomplete
maximum-likelihood estimation presented Xiao et al. [43] (see Remark 3.4) by using some
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Figure 1 Flow chart of the proposed estimation procedures based on the Monte Carlo simulation method

generating datasets with different sampling size N and different sampling interval h. For
each case, replications involving 1000 samples are simulated from the true model. All the
procedures are coded in Matlab and the results obtained using a 3.60 GHz Intel Core i7-
4790 CPU with 8 GB of RAM and running Windows 10. For a fixed sampling interval
h = 1/12 (e.g., data is collected by monthly observations), Table 1 reports the mean and
standard deviation (standard deviation (S.Dev.)) of these estimators proposed in this pa-
per for different sample sizes, where the true value denotes the parameter value used in
the Monte Carlo simulation. Moreover, to show the efficiency of our method, the results
from the approach provided by Misiran et al. [31] and Xiao et al. [43] are also presented
in Table 1. The average CPU time (in seconds) is also documented in Table 1. Further-
more, in order to test the effect of sampling interval, Table 2 reports simulation results for
sampling intervals of h = 1/52 (e.g., data collected by weekly observations).

From numerical computations, we can see that the biases and the standard deviations
in the estimators of μ, H , and σ decrease as the sample size increases. Hence, we can
conclude that the estimators of these three methods perform well for the Hurst parame-
ters H ∈ (0, 1). As expected, the simulated means of these estimators converge to the true
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Table 1 Estimation results of the sampling interval h = 1/12 with different sample size

The first group The second group The third group

μ H σ μ H σ μ H σ

True value 0.2000 0.3500 0.3000 0.5000 0.5500 0.4000 0.8000 0.7500 0.5000

Panel A. Sample size N = 100
Panel A.1 The results of the method proposed in this paper
Mean 0.1811 0.3610 0.3234 0.5269 0.5685 0.3828 0.8241 0.7391 0.4833
S.Dev. 0.4025 0.2248 0.2816 0.3576 0.2962 0.3012 0.3044 0.3189 0.3217
CPU time 3 3 3

Panel A.2 The results of the method proposed in Xiao et al. [43]
Mean 0.1797 0.3207 0.3374 0.5303 0.5724 0.4261 0.7737 0.7799 0.5379
S.Dev. 0.4026 0.3918 0.4216 0.4060 0.3685 0.4012 0.3299 0.4042 0.3865
CPU time 19 21 22

Panel A.3 The results of the method proposed in Misiran et al. [31]
Mean 0.2359 0.3189 0.3467 0.5326 0.5809 0.4342 0.8594 0.7127 0.5785
S.Dev. 0.5277 0.5581 0.4242 0.5237 0.5366 0.5987 0.4055 0.4357 0.4087
CPU time 792 795 801

Panel B. Sample size N = 200
Panel B.1 The results of the method proposed in this paper
Mean 0.1947 0.3544 0.3135 0.4936 0.5540 0.4012 0.8118 0.7451 0.5055
S.Dev. 0.1178 0.1985 0.2076 0.1090 0.1377 0.1678 0.1624 0.1735 0.1887
CPU time 6 5 5

Panel B.2 The results of the method proposed in Xiao et al. [43]
Mean 0.1904 0.3559 0.3186 0.5140 0.5445 0.4196 0.8201 0.7591 0.5195
S.Dev. 0.2125 0.2199 0.2686 0.2810 0.2761 0.3225 0.2215 0.2541 0.2210
CPU time 35 36 40

Panel B.3 The results of the method proposed in Misiran et al. [31]
Mean 0.2153 0.3385 0.3201 0.5191 0.5389 0.4225 0.8291 0.7614 0.5236
S.Dev. 0.2615 0.3088 0.3190 0.3022 0.2911 0.3611 0.3196 0.3088 0.3257
CPU time 1687 1765 1973

value rapidly and the simulated standard deviations decrease to zero with a slight positive
bias as the number of observations increases. The results given in Tables 1 and 2 clearly
show that all the three methods are numerically nearly equivalent. However, we can see
from the results obtained in Tables 1 and 2 that our methodology performs considerably
better than the other two. Most of the biases and variances obtained by using our method
are within an acceptable tolerance. It is observed in most cases that our estimates for the
Hurst parameter are obviously quite stable and less biased. The performance on estima-
tors of μ and σ are also fairly satisfactory. We can also see that the larger the sample size
N , the better the estimation performs. It is clear from Tables 1 and 2 that both the com-
plete maximum-likelihood estimation of Misiran et al. [31] and the complete maximum-
likelihood estimation of Xiao et al. [43] provide almost precise estimators, in particular,
the biases and the standard deviations are greater than those from the estimators based
on this paper. Moreover, the most important finding is that the computation time costed
by the estimation procedure provided in this paper is significantly lower than those of the
approaches proposed in Misiran et al. [31] and Xiao et al. [43]. This is mainly due to the
proposed fast algorithm in this paper, by contrast, the approach proposed in Misiran et al.
[31] requires a one-dimensional search and needs to compute the inverse of the covari-
ance matrix and the logarithm of its determinant, but the method provided in Xiao et al.
[43] needs to calculate the inverse of the covariance matrix. The method provided in this
paper is also very convenient since it relies on a simple result obtained via the variation
method. The performance of the approach proposed in this paper is comparable to that of
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Table 2 Estimation results of the sampling interval h = 1/52 with different sample size

The first group The second group The third group

μ H σ μ H σ μ H σ

True value 0.2000 0.3500 0.3000 0.5000 0.5500 0.4000 0.8000 0.7500 0.5000

Panel A. Sample size N = 100
Panel A.1 The results of the method proposed in this paper
Mean 0.1893 0.3588 0.3204 0.5260 0.5667 0.3803 0.8209 0.7407 0.4817
S.Dev. 0.3213 0.2048 0.2804 0.3420 0.2795 0.2966 0.2980 0.3152 0.3213
CPU time 3 3 3

Panel A.2 The results of the method proposed in Xiao et al. [43]
Mean 0.1769 0.3306 0.3279 0.5291 0.5684 0.4217 0.7723 0.7529 0.5306
S.Dev. 0.3915 0.3862 0.4176 0.3974 0.3681 0.3944 0.3231 0.3858 0.3847
CPU time 20 19 21

Panel A.3 The results of the method proposed in Misiran et al. [31]
Mean 0.2306 0.3203 0.3408 0.5320 0.5781 0.4296 0.8404 0.7567 0.5492
S.Dev. 0.4139 0.4520 0.4301 0.4467 0.4521 0.4536 0.3935 0.3665 0.3844
CPU time 781 796 793

Panel B. Sample size N = 200
Panel B.1 The results of the method proposed in this paper
Mean 0.2046 0.3489 0.3103 0.5019 0.5485 0.3991 0.8101 0.7498 0.5043
S.Dev. 0.1121 0.1724 0.1679 0.0997 0.1104 0.1175 0.1335 0.1173 0.1272
CPU time 6 5 6

Panel B.2 The results of the method proposed in Xiao et al. [43]
Mean 0.1923 0.3521 0.3175 0.5113 0.5407 0.4162 0.8157 0.7562 0.5164
S.Dev. 0.2012 0.2016 0.2413 0.2788 0.2538 0.3192 0.1518 0.2381 0.2101
CPU time 37 40 42

Panel B.3 The results of the method proposed in Misiran et al. [31]
Mean 0.2122 0.3294 0.3179 0.5137 0.5340 0.4112 0.8128 0.7610 0.5223
S.Dev. 0.2255 0.2176 0.2651 0.2976 0.2578 0.3513 0.2965 0.2611 0.2156
CPU time 1809 1796 1806

the estimation procedure proposed in Xiao et al. [43] with a lower computation cost. The
method proposed in this paper gives the smallest error among the three approaches and
all the estimators we propose are independent of the sampling interval h, suggesting the
advantages of our proposed method compared to the approaches by Xiao et al. [43] and
Misiran et al. [31] in more scenarios.

5 Empirical applications
To better illustrate our proposed method, we apply our method to real data. The data
utilized in our empirical investigation are extracted from the GTA Research Service Center
including four major market indexes in China, SHCI, SZCI, CSI 500, and CSI 300 spanning
from 01/04/2010 through 12/31/2019. After excluding those days for which the records are
not complete (e.g., for holidays or stock exchange anticipated closures), the whole dataset
includes M = 2431 trading days. The index prices are observed at a time interval of h =
1/250 (e.g., data collected once a day) and the returns are calculated using the logarithmic
differenced data

rih = Yih = ln S(i+1)h – ln Sih, i = 1, 2, . . . , M.

Basic descriptive plots for the financial data in the log-return format are presented in the
following figures. In particular, Fig. 2 provides some empirical data of SHCI with sampling
frequency of every day: Fig. 2(a) shows the daily closing values of SHCI in the sample pe-
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Figure 2 Some statistical figures of daily returns for SHCI from January 4th 2010 to December 31st 2019

riod. In the original trace, we note that there appears to be no long-run average level. This
is the evidence of a nonstationary time series. However, after difference operation, the
differenced trace appears to be quite stable over time, and the differenced operation has
produced a stationary time series. Figure 2(b) illustrates the continuously compounded re-
turns (the log returns) associated with the price series in Fig. 2(a). In contrast to the price
series in Fig. 2(a), the log returns appear to be quite stable over time, and the transforma-
tion from prices to returns has produced a stationary time series. The quantile–quantile
(Q–Q) figure during the sample period is presented in Fig. 2(c). If the empirical returns
are normally distributed, we expect to observe a straight line in this figure. However, this
is not the case. Contrarily, in the previous Q–Q plot, for low and high values (tails of the
distribution) there exists a clear departure of the plot from the reference line that cor-
responds to a normal distribution. This means that the SHCI log return doesn’t follow
a normal distribution. In Fig. 2(d) an example of the probability density function of the
SHCI is given. Similarly, the statistical figures of SZCI, CSI 500 and CSI 300 are presented
in Figs. 3–5.

To give a brief insight into the properties of the data, Table 3 tabulates the basic de-
scriptive statistics of SHCI, SZCI, CSI 500, and CSI 300 in the full sample period. Names
are given in the first column. The second, third, fourth, and fifth columns contain the ba-
sic descriptive statistics for four indices. Moreover, both skewness and kurtosis are also
presented in Table 3. As is known, the skewness of a symmetric distribution, such as the
normal distribution, is zero. However, none of the series seems to be symmetric. As shown
in Table 3, four series have negative skewness, which implies that the distributions have a
long left tail. Also, from Table 3 we can see that both series have a kurtosis that exceeds
a value of three, which is the kurtosis of the normal distribution. This means that the
distributions are peaked (leptokurtic) relative to the normal distribution. As both of the
descriptive statistics (i.e., skewness and kurtosis) indicate deviations from normal values,
we can expect that the observed distributions are not normally distributed. These results
are also confirmed by the quantile–quantile (Q–Q) plots (from Fig. 2(c) to Fig. 5(c)). It is
well known that if we plot the quantiles of the chosen series against the quantiles of the
normal distribution, we can detect strong deviations, especially at the tails. From Fig. 2(c)
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Figure 3 Some statistical figures of daily returns for SZCI from January 4th 2010 to December 31st 2019

Figure 4 Some statistical figures of daily returns for CSI 500 from January 4th 2010 to December 31st 2019

to Fig. 5(c), the plots indicate an S-shape curve, which is a typical sign of a nonnormal
distribution in a financial time series.

After examining the basic statistical properties of the selected time series, we turn now
to present an investigation of whether these four indices have long-range dependence.
Generally speaking, there are a number of procedures accessible in the literature for test-
ing for the presence of long memory in time series of stock returns (see, for example, the
Geweke–Porter–Hudak procedure, the R/S method, the aggregated variance approach,
the aggregated absolute value method, and the Whittle approach). We use the ACF plot
method, which seems to be the simplest one for us. Figure 6 plots the sample autocorre-
lation functions of the daily returns of SHCI, SZCI, CSI 500, and CSI 300 in the sample
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Figure 5 Some statistical figures of daily returns for CSI 300 from January 4th 2010 to December 31st 2019

Table 3 Summary statistics of daily returns for four indices

Index Minimum Maximum Mean S.Dev. Skewness Kurtosis Jarque–Bera

SHCI –0.088732 0.056036 –0.000025 0.013620 –0.913674 9.039052 4030.7
SZCI –0.086035 0.062542 –0.000107 0.016297 –0.676958 6.693712 1567.0
CSI 500 –0.089262 0.063926 0.000064 0.017035 –0.905588 6.647535 1679.2
CSI 300 –0.091542 0.064989 0.000061 0.014632 –0.665707 7.871448 2582.2

Figure 6 Upper-left: Sample ACF for the SHCI log-returns. Here and in what follows, the horizontal lines in
graphs displaying sample ACFs are set as the 95% confidence bands corresponding to the ACF of iid Gaussian
white noise. Upper-right: Sample ACF for the SZCI log-returns. Lower-left: Sample ACF for the CSI 500
log-returns. Lower-right: Sample ACF for the CSI 300 log-returns

period. From Fig. 6, we observe that the decays of autocorrelation functions are very weak
in both. Therefore, we may say that two indices have long-range dependence.

Finally, we are in a position to estimate the unknown parameters μ, H , and σ from the
selected financial series by (2.7), (2.9), and (2.10). Using Eq. (2.2) and the real data, we es-
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Table 4 Empirical results for SHCI, SZCI, CSI 500 and CSI 300

Index Ĥ μ̂ σ̂

SHCI 0.682513 4.178546% 23.791706%
SZCI 0.628433 6.364651% 27.959811%
CSI 500 0.648147 8.231270% 29.632420%
CSI 300 0.669058 7.913422% 24.097578%

timate the desired parameters based on the estimation procedures proposed in this paper
(see Remark 2.2). All the estimation results are presented in Table 4. When compared to
the real data of SHCI, SZCI, CSI 500, and CSI 300, these estimated parameter values seem
reasonable.

6 Conclusion
The long-memory feature has evolved into an important part of the time-series analy-
sis during the last decades, as researchers in empirical studies have sought to use “ideal”
models in practical applications of net traffic, economics, finance, biology, physics, chem-
istry, and medicine. One of the fascinations with long-memory processes is their inher-
ent ability to bridge both persistent stationary and nonstationary time series. fBm is the
best-known long-memory stochastic model in the continuous-time situation. As a conse-
quence, stochastic models driven by fBm are used by statisticians, econometricians, and
researchers in many of the physical sciences who have become aware of the very strong
persistence in the autocorrelations and other measures of the temporal dependence of
some time series. However, a crucial problem with applications of fBm in practice is how
to estimate the unknown values of the parameters in stochastic processes driven by fBm.
In this paper, we extend the notion of fBm into the discrete-time domain and then pro-
posed the estimation methodology for gfBm. Employing the bipower variation and the
least-squares method, we have constructed a procedure for estimating all unknown pa-
rameters in gfBm. The strong consistency of these proposed estimators has been also
provided in this paper. To compare the estimators from our method with the complete
maximum-likelihood estimation method proposed in Misiran et al. [31] and the incom-
plete maximum-likelihood estimation provided in Xiao et al. [43], we perform a simulation
study to illustrate the effectiveness and the efficiency of our methodology. The simulation
exercise also shows that our proposed estimators work well in practice, even with small
sizes. Furthermore, to show how our approach can be used in realistic contexts, an empir-
ical study is given based on SHCI, SZCI, CSI 500, and CSI 300 of Chinese stock markets,
demonstrating that our method is easy to implement and has a smaller computational cost
than the complete maximum-likelihood estimators proposed by Misiran et al. [31] and
the incomplete maximum-likelihood estimators provided in Xiao et al. [43]. Certainly, for
future study, it is required to use different schemes of estimation with a higher order of
convergence for the improvement of the methodology. We also expect the needs for these
methods and for improvements in the statistical machinery that is available to practition-
ers to grow further as the financial industry continues to expand and data sets become
richer. The field is therefore of growing importance for both theorists and practitioners.

This study also suggests several directions for future research. The first one is to ex-
tend the underlying asset-price processes into more general processes such as the mixed-
exponential jump diffusion model, or the stochastic volatility, which might provide insight
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into the robustness of the results obtained herein. Another direction for future research
is to estimate unknown parameters in gfBm with microstructure noises. For the final one,
it can be considered that the problem of estimating parameters for gfBm with jumps pro-
cesses using some statistical methods, such as the constrained expectation-maximization
or the majorization-minimization algorithm.

Appendix
A.1 Proof of Theorem 2.3

Proof Using the ergodic theorem, we can easily obtain the desired result by a straightfor-
ward argument. �

A.2 Proof of Theorem 2.4

Proof Let’s prove the convergence of μ̂ first. For the sake of convenience, we define

μ̃ =
b
∑N

i=1(ih)2HYih – c
∑N

i=1 ihYih

b2 – ac
, (A.1)

σ̃ 2 =
2(a

∑N
i=1(ih)2HYih – b

∑N
i=1 ihYih)

b2 – ac
, (A.2)

where a =
∑N

i=1(ih)2, b =
∑N

i=1(ih)2H+1, c =
∑N

i=1(ih)4H . For technical reasons, we now deal
with the strong convergence of μ̃. Substituting Yih by Yih = μih + σBH

ih – 1
2σ 2(ih)2H into

(A.1), we have

μ̃ =
b
∑N

i=1(μih + σBH
ih – 1

2σ 2(ih)2H )(ih)2H – c
∑N

i=1(μih + σBH
ih – 1

2σ 2(ih)2H)ih
b2 – ac

= μ +
bσ

∑N
i=1(ih)2HBH

ih – cσ
∑N

i=1 ihBH
ih

b2 – ac
. (A.3)

Thus, E[μ̂] = μ and hence μ̂ is unbiased. On the other hand, we have

Var[μ̃ – μ] = E[μ̃ – μ]2

= E

[
bσ

∑N
i=1(ih)2HBH

ih – cσ
∑N

i=1 ihBH
ih

b2 – ac

]2

=
σ 2

(b2 – ac)2 E

[
b

N∑
i=1

(ih)2HBH
ih – c

N∑
i=1

ihBH
ih

]2

=
σ 2

(b2 – ac)2 E

[
b2

( N∑
i=1

(ih)2HBH
ih

)2

+ c2

( N∑
i=1

ihBH
ih

)2

– 2bc
N∑

i=1

(ih)2HBH
ih

N∑
i=1

ihBH
ih

]

≤ σ 2

(b2 – ac)2

[
b2
E

( N∑
i=1

(ih)2HBH
ih

)2

+ c2
E

( N∑
i=1

ihBH
ih

)2
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+ 2bcE

( N∑
i=1

(ih)2HBH
ih

N∑
i=1

ihBH
ih

)]

≤ σ 2

(b2 – ac)2

(
b2I1 + c2I2 + 2bcI1I2

)
, (A.4)

where I1 = E(
∑N

i=1(ih)2HBH
ih)2, I2 = E(

∑N
i=1 ihBH

ih)2.
A standard calculation yields

I1 = E

[ N∑
i=1

(ih)2HBH
ih

]2

= E
[
h2HBH

h + (2h)2HBH
2h + (3h)2HBH

3h + · · · (Nh)2HBH
Nh

]2

= E

[ N∑
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(ih)4H(
BH

ih
)2 + 2

∑
l>k

(kh)2H(lh)2HBH
khBH

lh

]

= E

[ N∑
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(ih)4H(
BH

ih
)2 + 2

∑
l≥k

(kh)2H(lh)2HBH
khBH
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N∑
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(ih)4H(
BH

ih
)2

]

= 2
∑
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E
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BH

khBH
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)

–
N∑
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ih6H

≤ C
∑
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(kh)2H(lh)2Hkh(lh)2H–1 –
N∑

i=1
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= C
∑
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N∑

i=1
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∼ Ch6H+2N6H+2, (A.5)

where C is a generic constant, which may change from line to line.
With almost no extra effort, we can obtain
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≤ C
∑
l≥k

(kh)2(lh)2H –
N∑

i=1

(ih)2+2H

∼ Ch2H+4N2H+4, (A.6)

where C is a constant.
Moreover, we can easily obtain that

a =
N∑

i=1

(ih)2 ∼ (Nh)3, b =
N∑

i=1

(ih)2H+1 ∼ (Nh)2H+2,

c =
N∑

i=1

(ih)4H ∼ (Nh)4H+1.

(A.7)

Inserting these convergency results of (A.5), (A.6), and (A.7) together into (A.4), as N
goes to infinity and for H ∈ (0, 1), we obtain

Var[μ̃] ∼ C
N2–2H , (A.8)

which converges to zero for fixed h.
Next, we will use the Borel–Cantelli lemma to prove the strong convergence of μ̃. To

this end, we will show that

∑
N≥1

P

(
|μ̃ – μ| >

1
Nε

)
< ∞ (A.9)

for some ε > 0.
Take 0 < ε < 1 – H . Then, from Chebyshev’s inequality, the property of the central abso-

lute moments of Gaussian random variables and (A.8), we have

P

(
|μ̃ – μ| >

1
Nε

)
≤ Nqε

E
[|μ̃ – μ|q]

= CNqε
(
E

[|μ̃ – μ|2])q/2

∼ CNqε+(H–1)q.

For sufficiently large q, we have qε + (H – 1)q < –1. Thus, (A.9) is proved, which implies

μ̃
a.s.→ μ, (A.10)

as N → ∞.
Consequently, using the continuous mapping theorem, the strong consistency of Ĥ and

(A.10), we can obtain

μ̂ – μ = (μ̂ – μ̃) + (μ̃ – μ) a.s.→ 0,

which implies (2.11).
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Next, we are interested in the strong consistency of σ̂ 2. Substituting Yih by Yih = μih +
σBH

ih – 1
2σ 2(ih)2H in (A.2), we have

σ̃ 2 =
2(a

∑N
i=1(μih + σBH

ih – 1
2σ 2(ih)2H)(ih)2H – b

∑N
i=1(μih + σBH

ih – 1
2σ 2(ih)2H )ih)

b2 – ac

= σ 2 +
2aσ

∑N
i=1(ih)2HBH

ih – 2bσ
∑N

i=1 ihBH
ih

b2 – ac
. (A.11)

Thus, E[̃σ 2] = σ 2 and hence σ̃ 2 is unbiased. On the other hand, we can easily obtain

Var
[
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=
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– 2ab
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]

≤ 4σ 2
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(
a2I1 + b2I2 + 2ab

√
I1I2

)
,

where I1 = E(
∑N

i=1(ih)2HBH
ih)2 and I2 = E(

∑N
i=1 ihBH

ih)2.
Using the same argument as (A.8), we obtain

Var
[
σ̃ 2] ∼ C

N2H , (A.12)

which converges to zero as N goes to infinity.
Using the similar argument as (A.10), we obtain

σ̃ 2 a.s.→ σ 2, (A.13)

as N → ∞.
Consequently, using the continuous mapping theorem, the strong consistency of Ĥ and

(A.13), we can obtain

σ̂ 2 – σ 2 =
(
σ̂ 2 – σ̃ 2) +

(
σ̃ 2 – σ 2) a.s.→ 0,

which implies (2.12). �
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