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Abstract
In a Hilbert setting, we study the convergence properties of the second order in time
dynamical system combining viscous and Hessian-driven damping with time scaling
in relation to the minimization of a nonsmooth and convex function. The system is
formulated in terms of the gradient of the Moreau envelope of the objective function
with a time-dependent parameter. We show fast convergence rates for the Moreau
envelope, its gradient along the trajectory, and also for the system velocity. From here,
we derive fast convergence rates for the objective function along a path which is the
image of the trajectory of the system through the proximal operator of the first.
Moreover, we prove the weak convergence of the trajectory of the system to a global
minimizer of the objective function. Finally, we provide multiple numerical examples
illustrating the theoretical results.
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1 Introduction
Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖x‖ =

√〈x, x〉
for x ∈ H . In connection with the minimization problem

min
x∈H

�(x),

we will study the asymptotic behavior of the second order in time evolution equation

ẍ(t) +
α

t
ẋ(t) + β(t)

d
dt

∇�λ(t)
(
x(t)

)
+ b(t)∇�λ(t)

(
x(t)

)
= 0, (1)

with initial conditions x(t0) = x0 ∈ H , ẋ(t0) = u0 ∈ H , where α ≥ 1, t0 > 0, and β :
[t0, +∞) −→ [0, +∞) and b,λ : [t0, +∞) −→ (0, +∞) are differentiable functions.

We assume that � : H −→ R = R∪ {±∞} is a proper, convex and lower semicontinuous
function and denote by �λ : H −→ R its Moreau envelope of parameter λ > 0. In addition,
we assume that argmin�, the set of global minimizers of �, is not empty and denote by
�∗ the optimal objective value of �.
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Our aim is to derive rates of convergence for the Moreau envelope of the objective func-
tion and the objective function itself to �∗, as well as for the gradient of the Moreau en-
velope of the objective function and the velocity of the trajectory to zero in terms of the
Moreau parameter function λ and the time scaling function b. In addition, we will provide
a setting that also guarantees the weak convergence of the trajectory of the dynamical sys-
tem to a minimizer of �. The theoretical results will be illustrated by multiple numerical
experiments.

1.1 Historical remarks
Inertial dynamics were introduced by Polyak in [23] in the form of the so-called heavy ball
with friction method

ẍ(t) + αẋ(t) + ∇�
(
x(t)

)
= 0,

with fixed viscous coefficient α > 0, to accelerate the gradient method for the minimiza-
tion of a continuous differentiable function � : H → R. This system was later studied by
Alvarez–Attouch [3, 4] and by Attouch–Goudou–Redont [11]. In these works, for a con-
vex function �, an asymptotic convergence rate of �(x(t)) to �∗ of order O( 1

t ) as t → +∞,
as well as an improvement for a strongly convex function � to an exponential rate of con-
vergence, was proved. The weak convergence of the trajectories to a minimizer of � was
also established.

A major step to obtain faster asymptotic convergence in the convex regime was done by
Su–Boyd–Candes [24], by considering in the second order dynamical system an asymp-
totic vanishing damping coefficient

ẍ(t) +
α

t
ẋ(t) + ∇�

(
x(t)

)
= 0, (2)

for t ≥ t0 and α ≥ 3. Second order dynamical systems with variable and vanishing damp-
ing coefficients for optimization were studied, for instance, in [17–19]. The system (2)
corresponds to a continuous version of Nesterov’s accelerated gradient method [21]. For
the function values, rates of convergence of

�
(
x(t)

)
– �∗ = O

(
1
t2

)
as t → +∞

were obtained. For α > 3, in [9], it was shown that the trajectory of (2) converges weakly to
an element of argmin�, and in [13, 20], the asymptotic convergence rate of the function
values was improved to o( 1

t2 ) as t → +∞.
The following system, combining asymptotic vanishing damping with the Hessian-

driven damping, was proposed by Attouch–Peypouquet–Redont in [15]

ẍ(t) +
α

t
ẋ(t) + β∇2�

(
x(t)

)
ẋ(t) + ∇�

(
x(t)

)
= 0 (3)

for t ≥ t0, where � : H −→ R twice continuously differentiable and convex, α ≥ 3 and
β ≥ 0. The Hessian-driven damping has a natural link with Newton’s method and gives
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rise to dynamical inertial Newton systems [1]. The system (3) preserves the convergence
properties of (2), while having for β > 0 other important features, namely,

lim
t→+∞

∥
∥∇�

(
x(t)

)∥∥ = 0 and
∫ +∞

t0

t2∥∥∇�
(
x(t)

)∥∥2 dt < +∞.

In addition, possible oscillations exhibited by the solutions of (2) are neutralized by (3).

1.2 Time scaling
Time scaling of the dynamical system (2) was used to accelerate the rate of convergence
of the values of the function � along the trajectory. The system (2) becomes through time
scaling a dynamical system of the form

ẍ(t) +
α

t
ẋ(t) + b(t)∇�

(
x(t)

)
= 0, (4)

where α ≥ 3, and b : [t0, +∞) −→ (0, +∞) is a continuous scalar function, as it was intro-
duced and studied by Attouch–Chbani–Riahi in [10]. For (4), it was shown that

�
(
x(t)

)
– �∗ = O

(
1

t2b(t)

)
as t → +∞,

and a convergence rate can be improved to o( 1
t2b(t) ) as t → +∞, if α > 3.

In [7, 8] (see also [5]), the dynamical system

ẍ(t) +
α

t
ẋ(t) + β(t)∇2�

(
x(t)

)
ẋ(t) + b(t)∇�

(
x(t)

)
= 0, (5)

which combines viscous and Hessian-driven damping with time scaling, where α ≥ 1 and
β , b : [t0, +∞) −→ (0, +∞) are functions with appropriate differentiability properties, was
investigated. A quite general setting formulated in terms of the dynamical system param-
eter functions was identified in which the properties of (5) concerning the convergence
of the function values are preserved, while the gradient of � strongly converges along
the trajectory to zero, and the trajectory converges weakly to a minimizer of the objec-
tive function. In [7, 8], a numerical algorithm obtained via time discretization of (5) was
studied, exhibiting analogous convergence properties to the dynamical system.

1.3 Nonsmooth optimization
The Moreau envelope of a proper, convex and lower semicontinuous function � : H →R

has played a significant role in the literature when designing continuous-time approaches
and numerical algorithms for the minimization of �. This is defined as

�λ : H →R, �λ(x) = inf
y∈H

{
�(y) +

1
2λ

‖x – y‖2
}

,

where λ > 0 is called the parameter of the Moreau envelope (see, for instance, [16]). For
every λ > 0, the functions � and �λ share the same optimal objective value and the same
set of minimizers. In addition, �λ is convex and continuously differentiable with

∇�λ(x) =
1
λ

(
x – proxλ�(x)

) ∀x ∈ H , (6)
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and ∇�λ is 1
λ

-Lipschitz continuous. Here,

proxλ� : H → H , proxλ�(x) = argmin
y∈H

{
�(y) +

1
2λ

‖x – y‖2
}

denotes the proximal operator of � of parameter λ. For every x ∈ H and λ,μ > 0, we have

∥
∥proxλ�(x) – proxμ�(x)

∥
∥ ≤ |λ – μ|∥∥∇�λ(x)

∥
∥. (7)

On the other hand, for every x ∈ H , the function λ ∈ (0, +∞) → �λ(x) is nonincreasing
and differentiable (see, for instance, [6, Lemma A.1]), namely,

d
dλ

�λ(x) = –
1
2
∥
∥∇�λ(x)

∥
∥2 ∀λ > 0.

Attouch–Cabot considered in [6] (see also [14] for a more general approach for monotone
inclusions) in connection with the minimization of the proper, convex and lower semicon-
tinuous function � : H →R the following second order differential equation

ẍ(t) +
α

t
ẋ(t) + ∇�λ(t)

(
x(t)

)
= 0 (8)

for t ≥ t0, where α ≥ 1, and λ : [t0, +∞) −→ (0, +∞) is continuously differentiable and
nondecreasing. Convergence rates for the values of the Moreau envelope, as well as for
the velocity of the system, were obtained

�λ(t)
(
x(t)

)
– �∗ = o

(
1
t2

)
and

∥
∥ẋ(t)

∥
∥ = o

(
1
t

)
as t → +∞,

from where convergence rates for the � along x(t) were deduced

�
(
proxλ(t)�

(
x(t)

))
– �∗ = o

(
1
t2

)
and

∥∥proxλ(t)�
(
x(t)

)
– x(t)

∥∥ = o
(√

λ(t)
t

)
as t → +∞.

In addition, the weak convergence of the trajectories x(t) to a minimizer of � as t → +∞
was established.

Attouch–László considered in [12] in the same context the dynamical system

ẍ(t) +
α

t
ẋ(t) + β

d
dt

∇�λ(t)
(
x(t)

)
+ ∇�λ(t)

(
x(t)

)
= 0, (9)

where α > 1 and β > 0, and the term d
dt ∇�λ(t)(x(t)) is inspired by the Hessian-driven damp-

ing, and its existence is justified almost everywhere since the mapping t → ∇�λ(t)(x(t))
is locally absolutely continuous (see, for example, [12, Lemma 1]). It was shown that for
λ(t) = λt2, where λ > 0, the system (9) inherits all major convergence properties of (8),
and, in addition, the following convergence rates for the gradient of the Moreau envelope
of parameter λ(t) and its time derivative along x(t) were established

∥
∥∇�λ(t)

(
x(t)

)∥∥ = o
(

1
t2

)
and

∥∥
∥∥

d
dt

∇�λ(t)
(
x(t)

)
∥∥
∥∥ = o

(
1
t2

)
as t → +∞.
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1.4 Our contribution
In this paper, we derive a setting formulated in terms of α ≥ 1 and the parameter functions
β , b and λ of the dynamical system (1) associated with the minimization of the proper,
convex and lower semicontinuous function � : H →R, which allow us to prove

• convergence rates for the Moreau envelope, its gradient, and the velocity of the
trajectory

�λ(t)
(
x(t)

)
– �∗ = o

(
1

t2b(t)

)
,

∥∥∇�λ(t)
(
x(t)

)∥∥ = o
(

1
t
√

b(t)λ(t)

)
and

∥∥ẋ(t)
∥∥ = o

(
1
t

)

as t → +∞, respectively;
• convergence rates for the objective function

�
(
proxλ(t)�

(
x(t)

))
– �∗ = o

(
1

t2b(t)

)
and

∥
∥proxλ(t)�

(
x(t)

)
– x(t)

∥
∥ = o

( √
λ(t)

t
√

b(t)

)

as t → +∞;
• the weak convergence of the trajectory x(t) to a minimizer of � as t → +∞.
In addition, we provide a particular formulation of the derived general setting for the

case when the parameter functions are chosen to be polynomials and illustrate the in-
fluence of the latter on the convergence behavior of the dynamical system by multiple
numerical experiments.

1.5 Existence and uniqueness of strong global solution
This section is devoted to the topic of the existence and uniqueness of a strong global
solution of the system of our interest. To this aim, we will rewrite (1) as a system of the
first order in time equations in the product space H × H .

First, we assume that β : [t0, +∞) −→ [0, +∞) is twice continuously differentiable with
β(t) > 0 for every t ≥ t0. We integrate (1) from t0 to t to obtain

ẋ(t) + β(t)∇�λ(t)
(
x(t)

)
+

∫ t

t0

(
α

s
ẋ(s) + b(s)∇�λ(s)

(
x(s)

)
)

ds –
∫ t

t0

∇�λ(s)
(
x(s)

)
β̇(s) ds

–
(
ẋ(t0) + β(t0)∇�λ(t0)

(
x(t0)

))
= 0.

We denote z(t) :=
∫ t

t0
( α

s ẋ(s) + (b(s) – β̇(s))∇�λ(s)(x(s))) ds – (u0 + β(t0)∇�λ(t0)(x0))) for
every t ≥ t0. Since ż(t) = α

t ẋ(t) + (b(t) – β̇(t))∇�λ(t)(x(t)), we notice that (1) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) + β(t)∇�λ(t)(x(t)) + z(t) = 0,

ż(t) – α
t ẋ(t) – (b(t) – β̇(t))∇�λ(t)(x(t)) = 0,

x(t0) = x0, z(t0) = –(u0 + β(t0)∇�λ(t0)(x0)).
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After multiplying the first line by b(t) – β̇(t) and the second one by β(t) and then summing
them, we get rid of the gradient of the Moreau envelope in the second equation

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) + β(t)∇�λ(t)(x(t)) + z(t) = 0,

β(t)ż(t) + (b(t) – β̇(t) – αβ(t)
t )ẋ(t) + (b(t) – β̇(t))z(t) = 0,

x(t0) = x0, z(t0) = –(u0 + β(t0)∇�λ(t0)(x0)).

We denote y(t) = β(t)z(t) + (b(t) – β̇(t) – αβ(t)
t )x(t), and after simplification, we obtain for

the dynamical system the following equivalent formulation

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) + β(t)∇�λ(t)(x(t)) + ( β̇(t)–b(t)
β(t) + α

t )x(t) + 1
β(t) y(t) = 0,

ẏ(t) + (β̈(t) + 3b(t)β̇(t)–2β̇2(t)–b2(t)
β(t) + α

t (b(t) – β̇(t) – β(t)
t ) – ḃ(t))x(t) + b(t)–2β̇(t)

β(t) y(t) = 0,

x(t0) = x0, y(t0) = –β(t0)(u0 + β(t0)∇�λ(t0)(x0)) + (b(t0) – β̇(t0) – αβ(t0)
t0

)x0.

In case β(t) = 0 for every t ≥ t0, (1) can be equivalently written as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) – y(t) = 0,

ẏ(t) + α
t y(t) + b(t)∇�λ(t)(x(t)) = 0,

x(t0) = x0, y(t0) = u0.

Based on the two reformulations of the dynamical system (1), we can formulate the fol-
lowing existence and uniqueness result, which is a consequence of the Cauchy–Lipschitz
theorem for strong global solutions. The result can be proved in the lines of the proofs of
Theorem 1 in [12] or of Theorem 1.1 in [15] with some small adjustments.

Theorem 1 Suppose that β : [t0, +∞) −→ [0, +∞) is twice continuously differentiable such
that either β(t) > 0 for every t ≥ t0 or β(t) = 0 for every t ≥ t0, and there exists λ0 > 0 such
that λ(t) ≥ λ0 for all t ≥ t0. Then, for every (x0, u0) ∈ H × H , there exists a unique strong
global solution x : [t0, +∞) �→ H of the continuous dynamics (1), satisfying the Cauchy ini-
tial conditions x(t0) = x0 and ẋ(t0) = u0.

2 Energy function and rates of convergence for function values
In this section, we will define an energy function for the dynamical system (1) and inves-
tigate its dissipativity properties. These will play a crucial role in the derivation of rates of
convergence for the Moreau envelope of � and the objective function itself.

To shorten the calculations, we introduce the auxiliary function (see also [7, 8])

w : [t0, +∞) →R, w(t) = b(t) – β̇(t) –
β(t)

t
.

For z ∈ argmin� and

0 ≤ c ≤ α – 1, (10)
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consider the energy function Ec : [t0, +∞) → [0, +∞),

Ec(t) =
(
t2w(t) + (α – 1 – c)tβ(t)

)(
�λ(t)

(
x(t)

)
– �∗)

+
1
2
∥∥c

(
x(t) – z

)
+ tẋ(t) + tβ(t)∇�λ(t)

(
x(t)

)∥∥2

+
c(α – 1 – c)

2
∥
∥x(t) – z

∥
∥2.

In the following theorem, we formulate sufficient conditions that guarantee the decay
of the energy of the the dynamical system (1) and discuss some of its consequences.

Theorem 2 Suppose that α ≥ 1, λ is nondecreasing on [t0, +∞) and the following condi-
tions

b(t) > β̇(t) +
β(t)

t
for every t ≥ t0 (11)

and

(α – 3)w(t) – tẇ(t) ≥ 0 for every t ≥ t0 (12)

are satisfied. Then, for a solution x : [t0, +∞) → H to (1), the following statements are true:
(i) Ėc(t) ≤ 0 for every t ≥ t0;

(ii) �λ(t)(x(t)) – �∗ ≤ Eα–1(t0)
t2w(t) for every t ≥ t0;

(iii)
∫ +∞

t0
(t2w(t) λ̇(t)

2 + t2β(t)w(t))‖∇�λ(t)(x(t))‖2 dt < +∞;
(iv)

∫ +∞
t0

((α – 3)tw(t) – t2ẇ(t))(�λ(t)(x(t)) – �∗) dt < +∞.
Moreover, assuming that α > 1 and that

there exists ε ∈ (0,α – 1) such that (α – 3)w(t) – tẇ(t) ≥ εb(t) ∀t ≥ t0, (13)

it holds;
(v)

∫ +∞
t0

t‖ẋ(t)‖2 dt < +∞;
(vi) the trajectory x is bounded and
(vii)

∫ +∞
t0

tb(t)(�λ(t)(x(t)) – �∗) dt < +∞.

Proof For every t ≥ t0, we obtain

Ėc(t) =
(
2tw(t) + t2ẇ(t) + β(t)(α – 1 – c) + (α – 1 – c)tβ̇(t)

)(
�λ(t)

(
x(t)

)
– �∗)

+
(
t2w(t) + β(t)t(α – 1 – c)

)
(

〈∇�λ(t)
(
x(t)

)
, ẋ(t)

〉
–

λ̇(t)
2

∥∥∇�λ(t)
(
x(t)

)∥∥2
)

+
〈
c
(
x(t) – z

)
+ tẋ(t) + tβ(t)∇�λ(t)

(
x(t)

)
, (c + 1)ẋ(t) + tẍ(t)

+ +tβ(t)
d
dt

(∇�λ(t)
(
x(t)

))(
β(t) + tβ̇(t)

)∇�λ(t)
(
x(t)

)〉

+ c(α – 1 – c)
〈
x(t) – z, ẋ(t)

〉
,
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where we used that

d
dt

(
�λ(t)

(
x(t)

)
– �∗) =

〈∇�λ(t)
(
x(t)

)
, ẋ(t)

〉
–

λ̇(t)
2

∥∥∇�λ(t)x(t)
∥∥2. (14)

Using (1) to replace ẍ(t), we may write the third summand in the formulation of Ėc(t) for
every t ≥ t0 as

〈
c
(
x(t) – z

)
+ tẋ(t) + tβ(t)∇�λ(t)

(
x(t)

)
,

(c + 1 – α)ẋ(t) +
(
β(t) + tβ̇(t) – tb(t)

)∇�λ(t)
(
x(t)

)〉

= c(c + 1 – α)
〈
x(t) – z, ẋ(t)

〉
+ c

(
β(t) + tβ̇(t) – tb(t)

)〈
x(t) – z,∇�λ(t)

(
x(t)

)〉

+ (c + 1 – α)t
∥∥ẋ(t)

∥∥2 +
(
β(t) + tβ̇(t) – tb(t)

)
t
〈
ẋ(t),∇�λ(t)

(
x(t)

)〉

+ tβ(t)(c + 1 – α)
〈
ẋ(t),∇�λ(t)

(
x(t)

)〉
+ tβ(t)

(
β(t) + tβ̇(t) – tb(t)

)∥∥∇�λ(t)
(
x(t)

)∥∥2.

Overall, since β(t) + tβ̇(t) – tb(t) = –tw(t), we obtain for every t ≥ t0

Ėc(t) =
(
2tw(t) + t2ẇ(t) –

(
β(t) + tβ̇(t)

)
(c + 1 – α)

)(
�λ(t)

(
x(t)

)
– �∗)

+
(
t2w(t) – tβ(t)(c + 1 – α)

)(〈∇�λ(t)
(
x(t)

)
, ẋ(t)

〉
–

λ̇(t)
2

∥∥∇�λ(t)
(
x(t)

)∥∥2
)

– ctw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉
+ (c + 1 – α)t

∥
∥ẋ(t)

∥
∥2 – t2w(t)

〈
ẋ(t),∇�λ(t)

(
x(t)

)〉

+ tβ(t)(c + 1 – α)
〈
ẋ(t),∇�λ(t)

(
x(t)

)〉
– t2β(t)w(t)

∥
∥∇�λ(t)

(
x(t)

)∥∥2.

Notice that the terms with 〈∇�λ(t)(x(t)), ẋ(t)〉 cancel each other; thus, after simplification,
we obtain for every t ≥ t0

Ėc(t) =
(
2tw(t) + t2ẇ(t) +

(
β(t) + tβ̇(t)

)
(α – 1 – c)

)(
�λ(t)

(
x(t)

)
– �∗)

–
(
t2w(t) + tβ(t)(α – 1 – c)

) λ̇(t)
2

∥∥∇�λ(t)
(
x(t)

)∥∥2

– ctw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉

– (α – 1 – c)t
∥
∥ẋ(t)

∥
∥2 – t2β(t)w(t)

∥
∥∇�λ(t)

(
x(t)

)∥∥2.

(15)

Thanks to (11), w(t) is positive for every t ≥ t0, thus

–ctw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉 ≤ –ctw(t)
(
�λ(t)

(
x(t)

)
– �∗),

which leads to

Ėc(t) ≤ (
(2 – c)tw(t) + t2ẇ(t) +

(
β(t) + tβ̇(t)

)
(α – 1 – c)

)(
�λ(t)

(
x(t)

)
– �∗)

–
((

t2w(t) + tβ(t)(α – 1 – c)
) λ̇(t)

2
+ t2β(t)w(t)

)∥
∥∇�λ(t)

(
x(t)

)∥∥2

– (α – c – 1)t
∥∥ẋ(t)

∥∥2.

(16)
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By (10) and the fact that λ is nondecreasing, we deduce that

(
t2w(t) + tβ(t)(α – 1 – c)

) λ̇(t)
2

+ t2β(t)w(t) ≥ 0,

so we obtain for every t ≥ t0

Ėc(t) ≤ (
(2 – c)tw(t) + t2ẇ(t) +

(
β(t) + tβ̇(t)

)
(α – 1 – c)

)(
�λ(t)

(
x(t)

)
– �∗)

–
((

t2w(t) + tβ(t)(α – c – 1)
) λ̇(t)

2
+ t2β(t)w(t)

)∥∥∇�λ(t)
(
x(t)

)∥∥2.
(17)

Let us choose c := α –1. According to (12), we obtain for the coefficient of �λ(t)(x(t))–�∗

in (17)

(2 – c)tw(t) + t2ẇ(t) +
(
β(t) + tβ̇(t)

)
(α – 1 – c) = –t

(
(α – 3)w(t) – tẇ(t)

) ≤ 0.

Therefore, (17) allows us to deduce for every t ≥ t0

Ėα–1(t) ≤ –
(
(α – 3)tw(t) – t2ẇ(t)

)(
�λ(t)

(
x(t)

)
– �∗)

–
(

t2w(t)
λ̇(t)

2
+ t2β(t)w(t)

)∥∥∇�λ(t)
(
x(t)

)∥∥2

≤ 0.

We have just established that Eα–1 is nonincreasing, which for every t ≥ t0 leads to

Eα–1(t) = t2w(t)
(
�λ(t)

(
x(t)

)
– �∗) +

1
2
∥
∥(α – 1)

(
x(t) – z

)
+ tẋ(t) + tβ(t)∇�λ(t)

(
x(t)

)∥∥2

≤ Eα–1(t0).

From here, we obtain for every t ≥ t0

�λ(t)
(
x(t)

)
– �∗ ≤ Eα–1(t0)

t2w(t)
, (18)

which proves (ii). Moreover, by integration, we obtain

∫ +∞

t0

(
t2w(t)

λ̇(t)
2

+ t2β(t)w(t)
)∥

∥∇�λ(t)
(
x(t)

)∥∥2 dt ≤ Eα–1(t0) < +∞ (19)

and

∫ +∞

t0

(
(α – 3)tw(t) – t2ẇ(t)

)(
�λ(t)

(
x(t)

)
– �∗)dt ≤ Eα–1(t0) < +∞, (20)

which are the claims (iii) and (iv).
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From now on, we assume that α > 1 and choose c := α – 1 – ε, where ε is given by (13).
In this setting, (16) reads for every t ≥ t0,

Ėα–1–ε(t) ≤ (
(3 – α + ε)tw(t) + t2ẇ(t) + ε

(
β(t) + tβ̇(t)

))(
�λ(t)

(
x(t)

)
– �∗)

–
((

t2w(t) + εtβ(t)
) λ̇(t)

2
+ t2β(t)w(t)

)∥
∥∇�λ(t)

(
x(t)

)∥∥2 – εt
∥
∥ẋ(t)

∥
∥2

= –t
(
(α – 3)w(t) – tẇ(t) – εb(t)

)(
�λ(t)

(
x(t)

)
– �∗)

–
(

(
t2w(t) + εtβ(t)

) λ̇(t)
2

+ t2β(t)w(t)
)∥∥∇�λ(t)

(
x(t)

)∥∥2 – εt
∥∥ẋ(t)

∥∥2.

(21)

So, under the condition (13), Ėα–1–ε(t) ≤ 0 for every t ≥ t0. Integrating (21), we obtain

∫ +∞

t0

t
∥
∥ẋ(t)

∥
∥2 dt < +∞, (22)

which gives the claim (v). From the fact that the energy function

Eα–1–ε(t) =
(
t2w(t) + εtβ(t)

)(
�λ(t)

(
x(t)

)
– �∗)

+
1
2
∥
∥(α – 1 – ε)

(
x(t) – z

)
+ tẋ(t) + tβ(t)∇�λ(t)

(
x(t)

)∥∥2

+
(α – 1 – ε)ε

2
∥
∥x(t) – z

∥
∥2

is bounded from above, and it is nonnegative on [t0, +∞), it follows that the trajectory x
is bounded, which is item (vi). Finally, from (13) and (20), we deduce the claim (vii)

∫ +∞

t0

εtb(t)
(
�λ(t)

(
x(t)

)
– �∗)dt

≤
∫ +∞

t0

(
(α – 3)tw(t) – t2ẇ(t)

)(
�λ(t)

(
x(t)

)
– �∗)dt < +∞,

(23)

which finishes the proof. �

The following auxiliary result will be needed later.

Lemma 3 Suppose that α > 1 and (13) holds, that λ and β are nondecreasing on [t0, +∞),
and that (11) holds. Then, for a solution x : [t0, +∞) → H to (1), it holds

∫ +∞

t0

tw(t)
〈∇�λ(t)

(
x(t)

)
, x(t) – z

〉
dt < +∞. (24)

Proof Recall that according to (15), we have for every t ≥ t0

Ėc(t) =
(
2tw(t) + t2ẇ(t) +

(
β(t) + tβ̇(t)

)
(α – 1 – c)

)(
�λ(t)

(
x(t)

)
– �∗)

–
(
t2w(t) + tβ(t)(α – 1 – c)

) λ̇(t)
2

∥∥∇�λ(t)
(
x(t)

)∥∥2
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– ctw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉
– (α – 1 – c)t

∥∥ẋ(t)
∥∥2

– t2β(t)w(t)
∥∥∇�λ(t)

(
x(t)

)∥∥2.

We choose again c := α – 1 and split the term (α – 1)tw(t)〈x(t) – z,∇�λ(t)(x(t))〉 into the
sum of two expressed in terms of ε given by (13). For every t ≥ t0, we have

Ėα–1(t) ≤ (
2tw(t) + t2ẇ(t)

)(
�λ(t)

(
x(t)

)
– �∗)

– (α – 1 – ε)tw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉
– εtw(t)

〈
x(t) – z,∇�λ(t)

(
x(t)

)〉
.

By applying the convex subdifferential inequality, we obtain for every t ≥ t0

Ėα–1(t) ≤ (
2tw(t) + t2ẇ(t) – (α – 1 – ε)tw(t)

)(
�λ(t)

(
x(t)

)
– �∗)

– εtw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉

=
(
t2ẇ(t) – (α – 3 – ε)tw(t)

)(
�λ(t)

(
x(t)

)
– �∗)

– εtw(t)
〈
x(t) – z,∇�λ(t)

(
x(t)

)〉
.

(25)

Since β is nondecreasing, for every t ≥ t0, it holds

b(t) = w(t) + β̇(t) +
β(t)

t
≥ w(t),

thus, (13) leads to t2ẇ(t) – (α – 3 – ε)tw(t) ≤ 0. Consequently, we obtain from (25) by
integration

∫ +∞

t0

tw(t)
〈∇�λ(t)

(
x(t)

)
, x(t) – z

〉
dt ≤ Eα–1(t0)

ε
< +∞. �

Now, we are in a position to improve the convergence rates we obtained previously in
(18) and derive from here convergence rates for �.

Theorem 4 Suppose that α > 1 and (13) holds, that λ and β are nondecreasing on [t0, +∞),
and that (11) holds. In addition, assume that

∫ +∞

t0

[
(λ̇(t))2t3β2(t)

λ4(t)
–

λ̇(t)t2b(t)
2λ2(t)

]

+
dt < +∞, (26)

where [·]+ denotes the positive part of the expression inside the brackets, and that there
exists C > 0 such that

d
dt

(
t2b(t)

) ≤ Ctb(t) for every t ≥ t0. (27)

Then, for a solution x : [t0, +∞) → H to (1), it holds

�λ(t)
(
x(t)

)
– �∗ = o

(
1

t2b(t)

)
and

∥
∥ẋ(t)

∥
∥ = o

(
1
t

)
as t → +∞. (28)
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Moreover,

∥∥∇�λ(t)
(
x(t)

)∥∥ = o
(

1
t
√

b(t)λ(t)

)
as t → +∞, (29)

and

�
(
proxλ(t)�

(
x(t)

))
– �∗ = o

(
1

t2b(t)

)
and

∥
∥proxλ(t)�

(
x(t)

)
– x(t)

∥
∥ = o

( √
λ(t)

t
√

b(t)

)
as t → +∞.

(30)

Proof First, we notice that for every t ≥ t0, it holds

〈
d
dt

(∇�λ(t)
(
x(t)

))
, ẋ(t)

〉
=

〈
lim
h→0

∇�λ(t+h)(x(t + h)) – ∇�λ(t)(x(t))
h

, ẋ(t)
〉

=
〈

lim
h→0

∇�λ(t+h)(x(t + h)) – ∇�λ(t+h)(x(t))
h

, ẋ(t)
〉

+
〈

lim
h→0

∇�λ(t+h)(x(t)) – ∇�λ(t)(x(t))
h

, ẋ(t)
〉
.

For every h > 0, by the monotonicity of the gradient of a convex function, we have

〈∇�λ(t+h)(x(t + h)) – ∇�λ(t+h)(x(t))
h

,
x(t + h) – x(t)

h

〉
≥ 0,

so letting h tend to zero, we obtain

〈
lim
h→0

∇�λ(t+h)(x(t + h)) – ∇�λ(t+h)(x(t))
h

, ẋ(t)
〉
≥ 0.

Consequently, for every t ≥ t0, it holds

〈
d
dt

(∇�λ(t)
(
x(t)

))
, ẋ(t)

〉

≥
〈

lim
h→0

∇�λ(t+h)(x(t)) – ∇�λ(t)(x(t))
h

, ẋ(t)
〉

= lim
h→0

〈 (λ(t + h)) proxλ(t)�(x(t)) – λ(t) prox(λ(t+h))�(x(t)) – (λ(t + h) – λ(t))x(t)
λ(t)λ(t + h)h

, ẋ(t)
〉

= lim
h→0

〈 (λ(t + h) – λ(t))(proxλ(t)�(x(t)) – x(t))
λ(t)λ(t + h)h

, ẋ(t)
〉

– lim
h→0

〈
prox(λ(t+h))�(x(t)) – proxλ(t)�(x(t))

λ(t + h)h
, ẋ(t)

〉

≥ λ̇(t)
λ2(t)

〈
proxλ(t)�

(
x(t)

)
– x(t), ẋ(t)

〉
– lim

h→0

(λ(t + h) – λ(t))‖∇�λ(t)(x(t))‖‖ẋ(t)‖
λ(t + h)h
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=
λ̇(t)
λ2(t)

〈
proxλ(t)�

(
x(t)

)
– x(t), ẋ(t)

〉
–

λ̇(t)‖∇�λ(t)(x(t))‖‖ẋ(t)‖
λ(t)

= –
λ̇(t)
λ(t)

〈∇�λ(t)
(
x(t)

)
, ẋ(t)

〉
–

λ̇(t)‖∇�λ(t)(x(t))‖‖ẋ(t)‖
λ(t)

≥ –
2λ̇(t)‖∇�λ(t)(x(t))‖‖ẋ(t)‖

λ(t)
,

where we used (6), (7), and the Cauchy–Schwarz inequality. Now, we multiply (1) by t2ẋ(t)
to deduce, using the inequality above and (14), for every t ≥ t0

0 = t2〈ẍ(t), ẋ(t)
〉
+ αt

∥
∥ẋ(t)

∥
∥2 + t2β(t)

〈
d
dt

(∇�λ(t)
(
x(t)

))
, ẋ(t)

〉

+ t2b(t)
〈∇�λ(t)

(
x(t)

)
, ẋ(t)

〉

≥ t2 d
dt

(
1
2
∥∥ẋ(t)

∥∥2
)

+ αt
∥∥ẋ(t)

∥∥2 + t2b(t)
d
dt

(
�λ(t)

(
x(t)

)
– �∗)

+
λ̇(t)t2b(t)

2
∥
∥∇�λ(t)x(t)

∥
∥2 –

2t2β(t)λ̇(t)
λ(t)

∥
∥∇�λ(t)

(
x(t)

)∥∥
∥
∥ẋ(t)

∥
∥

≥ d
dt

(
t2

2
∥
∥ẋ(t)

∥
∥2 + t2b(t)

(
�λ(t)

(
x(t)

)
– �∗)

)
+ (α – 1)t

∥
∥ẋ(t)

∥
∥2

–
(
�λ(t)

(
x(t)

)
– �∗) d

dt
(
t2b(t)

)

–
{[(

λ̇(t)
λ(t)

)2

t3β2(t) –
λ̇(t)t2b(t)

2

]∥
∥∇�λ(t)

(
x(t)

)∥∥2 + t
∥
∥ẋ(t)

∥
∥2

}
.

Using (27), we obtain for every t ≥ t0

d
dt

(
t2

2
∥
∥ẋ(t)

∥
∥2 + t2b(t)

(
�λ(t)

(
x(t)

)
– �∗)

)

≤ [2 – α]+t
∥∥ẋ(t)

∥∥2 +
(
�λ(t)

(
x(t)

)
– �∗)Ctb(t)

+
[(

λ̇(t)
λ(t)

)2

t3β2(t) –
λ̇(t)t2b(t)

2

]

+

∥
∥∇�λ(t)

(
x(t)

)∥∥2.

Next, we show the integrability of the right-hand side of the expression above. The first
term is integrable according to Theorem 2 (v), and the second one is integrable according
to Theorem 2 (vii). Further, since

∥∥∇�λ(t)
(
x(t)

)
– ∇�λ(t)(z)

∥∥ ≤ 1
λ(t)

∥∥x(t) – z
∥∥ ∀t ≥ t0,

and taking into the account the boundedness of the trajectory x established in Theorem 2
(vi) and that z ∈ argmin�, we deduce

∥
∥∇�λ(t)

(
x(t)

)∥∥ = O
(

1
λ(t)

)
as t → +∞.
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So, under the assumption (26), we obtain that there exists C̃ > 0 such that for every t ≥ t0

∫ t

t0

[(
λ̇(s)
λ(s)

)2

s3β2(s) –
λ̇(s)s2b(s)

2

]

+

∥∥∇�λ(s)
(
x(s)

)∥∥2 ds

≤ C̃
∫ t

t0

[
(λ̇(s))2s3β2(s)

λ4(s)
–

λ̇(s)s2b(s)
2λ2(s)

]

+
ds

< +∞.

Applying Lemma 6 in the Appendix, we conclude that the following limit

L := lim
t→+∞

(
t2

2
∥
∥ẋ(t)

∥
∥2 + t2b(t)

(
�λ(t)

(
x(t)

)
– �∗)

)
≥ 0

exists. We will show that L = 0. Supposing that L > 0, we deduce that there exists t∗ ≥ t0

such that for every t ≥ t∗

t
2
∥∥ẋ(t)

∥∥2 + tb(t)
(
�λ(t)

(
x(t)

)
– �∗) ≥ L

2t
.

Integrating the last inequality on [t∗, +∞), we arrive at the contradiction with the integra-
bility of the left-hand side as proved in Theorem 2 (v) and (vii). Therefore, L = 0, and we
obtain

�λ(t)
(
x(t)

)
– �∗ = o

(
1

t2b(t)

)
and

∥
∥ẋ(t)

∥
∥ = o

(
1
t

)
as t → +∞.

Using the definition of the proximal mapping, we derive

�λ(t)
(
x(t)

)
– �∗

= �
(
proxλ(t)�

(
x(t)

))
– �∗ +

1
2λ(t)

∥∥proxλ(t)�
(
x(t)

)
– x(t)

∥∥2 ∀t ≥ t0,
(31)

which yields

�
(
proxλ(t)�

(
x(t)

))
– �∗ = o

(
1

t2b(t)

)
and

∥∥proxλ(t)�
(
x(t)

)
– x(t)

∥∥ = o
( √

λ(t)
t
√

b(t)

)
as t → +∞.

According to (6), we obtain from here

∥∥∇�λ(t)
(
x(t)

)∥∥ = o
(

1
t
√

b(t)λ(t)

)
as t → +∞. �

3 Convergence of the trajectories
In this section, we will investigate the weak convergence of the trajectory x to a minimizer
of �.
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Theorem 5 Suppose that α > 1, (11) and (13) hold, and λ and β are nondecreasing on
[t0, +∞). In addition, assume that

lim
t→+∞

β(t)
tw(t)

= 0 (32)

and

sup
t≥t0

λ(t)
t

< +∞. (33)

If x : [t0, +∞) → H is a solution to (1), then x(t) converges weakly to a minimizer of � as
t → +∞.

Proof Let z ∈ argmin�. Previously, in Theorem 2, we established the existence of the limit
of Ec(t) as t → +∞ for c = α – 1 and c = α – 1 – ε, where ε ∈ (0,α – 1) is given by (13). Thus,
computing the difference

Eα–1–ε(t) – Eα–1(t) = εtβ(t)
(
�λ(t)

(
x(t)

)
– �∗) +

ε(α – 1)
2

∥∥x(t) – z
∥∥2

– ε
〈
(α – 1)

(
x(t) – z

)
+ t(ẋ(t) + β(t)∇�λ(t)

(
x(t)

)
, x(t) – z

〉

= εtβ(t)
(
�λ(t)

(
x(t)

)
– �∗) –

ε(α – 1)
2

∥
∥x(t) – z

∥
∥2

– εt
〈
ẋ(t) + β(t)∇�λ(t)

(
x(t)

)
, x(t) – z

〉
,

we deduce that the limit of the right-hand side exists. Thanks to (18), we derive for every
t ≥ t0

tβ(t)
(
�λ(t)

(
x(t)

)
– �∗) ≤ tβ(t)

Eα–1(t0)
t2w(t)

= Eα–1(t0)
β(t)
tw(t)

and from here, based on the assumption (32), we obtain

lim
t→+∞ tβ(t)

(
�λ(t)

(
x(t)

)
– �∗) = 0. (34)

Hereby, we derived that the limit of the quantity

p(t) :=
α – 1

2
∥∥x(t) – z

∥∥2 + t
〈
ẋ(t), x(t) – z

〉
+ tβ(t)

〈∇�λ(t)
(
x(t)

)
, x(t) – z

〉

exists as t → +∞. Now, we are ready to prove the existence of the limit of ‖x(t) – z‖ as
t → +∞. Denote

q(t) :=
α – 1

2
∥∥x(t) – z

∥∥2 + (α – 1)
∫ t

t0

β(s)
〈∇�λ(s)

(
x(s)

)
, x(s) – z

〉
ds ∀t ≥ t0.

For every t ≥ t0, it holds that

p(t) = q(t) +
t

α – 1
q̇(t) – (α – 1)

∫ t

t0

β(s)
〈∇�λ(s)

(
x(s)

)
, x(s) – z

〉
ds,
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since

q̇(t) = (α – 1)
〈
x(t) – z, ẋ(t)

〉
+ (α – 1)

(
β(s)

〈∇�λ(s)
(
x(s)

)
, x(s) – z

〉)

and

q(t) +
t

α – 1
q̇(t) =

α – 1
2

∥
∥x(t) – z

∥
∥2 + (α – 1)

∫ t

t0

β(s)
〈∇�λ(s)

(
x(s)

)
, x(s) – z

〉
ds

+ t
〈
x(t) – z, ẋ(t)

〉
+ t

(
β(s)

〈∇�λ(s)
(
x(s)

)
, x(s) – z

〉)
.

By Lemma 3, we established that
∫ +∞

t0
sw(s)〈∇�λ(s)(x(s)), x(s) – z〉ds < +∞. In turn, (32)

yields that

lim
t→+∞

∫ t

t0

β(s)
〈∇�λ(s)

(
x(s)

)
, x(s) – z

〉
ds exists. (35)

Finally,

lim
t→+∞

(
q(t) +

t
α – 1

q̇(t)
)

also exists.

Applying now Lemma 7 in the Appendix, we immediately get the existence of the limit of
q(t) as t → +∞. By the definition of q and (35), we establish the first statement of Opial’s
Lemma (see Lemma 8 in the Appendix), namely, that, for any z ∈ argmin�,

lim
t→+∞

∥∥x(t) – z
∥∥ exists.

To establish the second term of Opial’s Lemma, first note that from (31) and (34), we have
by denoting ξ (t) := proxλ(t)�(x(t)), limt→+∞ tβ(t)(�(ξ (t))–�∗) = 0 and limt→+∞ tβ(t)

λ(t) ‖ξ (t)–
x(t)‖2 = 0. Using that β is nondecreasing and assumption (33), we deduce

lim
t→+∞�

(
ξ (t)

)
= �∗ and lim

t→+∞
∥
∥ξ (t) – x(t)

∥
∥ = 0.

Considering a sequence {tk}k∈N such that {x(tk)}k∈N converges weakly to an element z ∈ H
as k → +∞, we notice that {ξ (tk)}k∈N converges weakly to z as k → +∞. Now, the function
� being convex and lower semicontinuous in the weak topology allows us to write

�(z) ≤ lim inf
k→+∞

�
(
ξ (tk)

)
= lim

t→+∞�
(
ξ (t)

)
= �∗.

Hence, z ∈ argmin�, and the second statement of Opial’s Lemma is shown. This gives the
weak convergence of the trajectory x(t) to a minimizer of � as t → +∞. �

Remark 1 In the hypotheses of Theorem 4, to obtain the convergence of the trajectories,
besides (33), it is enough to assume that

sup
t≥t0

β(t)
tw(t)

< +∞
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to guarantee (35). Indeed, in this case, (34) follows from the conclusion of Theorem 4

lim
t→+∞ tβ(t)

(
�λ(t)

(
x(t)

)
– �∗) ≤ lim

t→+∞ t2b(t)
(
�λ(t)

(
x(t)

)
– �∗) β(t)

tw(t)
= 0.

Remark 2 (Implicit discretization) Implicit discretization of the dynamical system (1) with
fixed step size h > 0 leads to the numerical scheme that reads for every k ≥ 1 (see also [7, 8])

xk+1 – 2xk + xk–1

h2 +
α(xk+1 – xk)

kh2 +
βk(∇�λk+1 (xk+1) – ∇�λk (xk))

h
+ bk∇�λk+1 (xk+1) = 0,

where xk , λk , βk , and bk denote x(kh), λ(kh), β(kh), and b(kh), respectively. Rearranging
the terms, one obtains for every k ≥ 1

xk+1 +
kh(βk + hbk)∇�λk+1 (xk+1)

α + k
= xk +

k(xk – xk–1)
α + k

+
khβk∇�λk (xk)

α + k

or, equivalently,

(∀k ≥ 1)

⎧
⎨

⎩

yk := xk + k
α+k (xk – xk–1) + khβk

α+k ∇�λk (xk),

xk+1 := prox kh(βk +hbk )
α+k �λk

(yk).

Relation (6), namely,

∇�λ(x) =
1
λ

(
x – proxλ�(x)

) ∀x ∈ H ,

and the property of the proximal mapping (see, for instance, [16])

proxμ�λ
(x) =

λ

λ + μ
x +

μ

λ + μ
prox(λ+μ)�(x) ∀x ∈ H ,∀μ,λ > 0,

lead to the following formulation of the implicit numerical algorithm

(∀k ≥ 1)

⎧
⎨

⎩

yk := xk + k
α+k (xk – xk–1) + khβk

λk (α+k) (xk – proxλk�(xk)),

xk+1 := λk (α+k)
λk (α+k)+kh(βk+hbk ) yk + kh(βk +hbk )

λk (α+k)+kh(βk+hbk ) prox λk (α+k)+kh(βk +hbk )
α+k �

(yk),

where x0, x1 ∈ H are given starting points.

4 Polynomial choices for the system parameter functions
According to the previous two sections, to guarantee both the fast convergence rates in
Theorem 4 and the convergence of the trajectory to a minimizer of � in Theorem 5, also
by taking into account Remark 1, it is enough to make the following assumptions on the
system parameter functions

(I) α > 1, and there exists ε ∈ (0,α – 1) such that (α – 3)w(t) – tẇ(t) ≥ εb(t) for every
t ≥ t0;

(II) β and λ are nondecreasing on [t0, +∞);
(III) b(t) > β̇(t) + β(t)

t for every t ≥ t0;
(IV)

∫ +∞
t0

[ β2(t)(λ̇(t))2t3

λ4(t) – λ̇(t)t2b(t)
2λ2(t) ]+ dt < +∞;
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(V) there exists C > 0 such that d
dt (t2b(t)) ≤ Ctb(t) for every t ≥ t0;

(VI) supt≥t0
β(t)
tw(t) < +∞;

(VII) supt≥t0
λ(t)

t < +∞.
In this section, we will investigate the fulfillment of these conditions for

b(t) = btn, β(t) = βtm and λ(t) = λtl,

where n, m, l ∈R, b,λ > 0 and β ≥ 0.
For this choice of b, condition (V) is fulfilled.
First, we assume that β = 0. Then the conditions (III), (IV), and (VI) are fulfilled, while

the conditions (II) and (VI) are nothing else than 0 ≤ l ≤ 1. Condition (I) asks for α > 1
and for the existence of ε ∈ (0,α – 1) such that for every t ≥ t0

(α – 3 – n – ε)btn ≥ 0

or, equivalently, α – 3 – n ≥ ε. To this end, it is enough to have that α – 3 > n.
In case β > 0, conditions (II) and (VII) are nothing else than m ≥ 0 and 0 ≤ l ≤ 1. Con-

dition (III) reads for every t ≥ t0

btn > mβtm–1 + βtm–1 = (m + 1)βtm–1,

or, equivalently,

tn–m+1 >
(m + 1)β

b
.

From here, we get

0 ≤ m ≤ n + 1,

and b > (m + 1)βtm–1–n
0 .

Condition (VI) requires that

sup
t≥t0

βtm

t(btn – βmtm–1 – βtm–1)
= sup

t≥t0

βtm

btn+1 – βtm(m + 1)
< +∞,

and it is obviously fulfilled.
Condition (I) asks for α > 1 and for the existence of ε ∈ (0,α – 1) such that for every

t ≥ t0

(α – 3)
(
btn – βmtm–1 – βtm–1) – t

(
bntn–1 – βm(m – 1)tm–2 – β(m – 1)tm–2) ≥ εbtn.

After simplification, we obtain that for every t ≥ t0

(α – 3 – n – ε)btn + β(m + 1)(m + 2 – α)tm–1 ≥ 0

or, equivalently,

(α – 3 – n – ε)btn–m+1 ≥ β(m + 1)(α – m – 2).
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On the one hand, we have m = n + 1 and (α – 3 – n)(1 – β(n+2)
b ) > ε, which requires that

α – 3 – n > 0. On the other hand, we have m < n + 1, which also requires that α – 3 – n > 0.
Consequently, we have to assume that

α – 3 > n and b >
β(m + 1)(α – m – 2)

(α – 3 – n)tn–m+1
0

.

In this case, there will be always an ε ∈ (0,α – 1) such that α – 3 – n – ε > 0 and

b >
β(m + 1)(α – m – 2)
(α – 3 – n – ε)tn–m+1

0
>

β(m + 1)(α – m – 2)
(α – 3 – n)tn–m+1

0
,

in other words, which satisfies condition (I).
Finally, let us have a closer look at condition (V). This reads as

∫ +∞

t0

[
β2t2m(lλ)2t2l–2t3

λ4t4l –
lλtl–1t2btn

2λ2t2l

]

+
dt < +∞

or, equivalently,

∫ +∞

t0

[(
βl
λ

)2

t2m–2l+1 –
lb
2λ

tn–l+1
]

+
dt =

∫ +∞

t0

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt < +∞.

1. In case

n + l > 2m,

there exists t1 ≥ t0 such that for every t ≥ t1

(
βl
λ

)2

–
lb
2λ

tn+l–2m ≤ 0.

Therefore, we obtain

∫ +∞

t0

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt

=
∫ t1

t0

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt +

∫ +∞

t1

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt

=
∫ t1

t0

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt < +∞,

thus (V) is fulfilled.
2. In case

n + l < 2m,

there exist δ > 0 and t2 ≥ t0 such that for all t ≥ t2

(
βl
λ

)2

–
lb
2λ

tn+l–2m > δ.
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Taking into account that 2m – 2l + 1 > n + 1 – l ≥ –1, we have

∫ +∞

t0

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt

≥
∫ t2

t0

[(
βl
λ

)2

–
lb
2λ

tn+l–2m
]

+
t2m–2l+1 dt + δ

∫ +∞

t2

t2m–2l+1 dt = +∞,

thus, (V) is not fulfilled.
3. It is only left to consider the case

n + l = 2m.

Condition (V) becomes

∫ +∞

t0

[(
βl
λ

)2

–
lb
2λ

]

+
t2m–2l+1 dt < +∞.

If b ≥ 2β2l
λ

, then it is fulfilled. Otherwise, since 2m – 2l + 1 = n – l + 1 ≥ –1, it is not fulfilled.
Summarising, all convergence statements in Theorem 4 and Theorem 5 hold in the two

settings
1. α > 1, β = 0, α – 3 > n, 0 ≤ l ≤ 1, and b,λ > 0;
2. α > 1, β > 0, α – 3 > n, 0 ≤ l ≤ 1, 0 ≤ m ≤ n + 1, b > (m+1)(α–m–2)β

(α–3–n)tn–m+1
0

, λ > 0, and either

2m < n + l, or 2m = n + l and b ≥ 2lβ2

λ
.

Remark 3 Theorem 4 is providing for the choices b(t) = btn and λ(t) = λtl the following
convergence rates

�
(
proxλ(t)�

(
x(t)

))
– �∗ = o

(
1

tn+2

)
,

∥∥proxλ(t)�
(
x(t)

)
– x(t)

∥∥ = o
(

1

t n
2 +1– l

2

)

and

∥
∥∇�λ(t)

(
x(t)

)∥∥ = o
(

1

t n
2 +1+ l

2

)
,

as t → +∞. Clearly, the bigger the n is, the faster the convergence is. On the other hand,
concerning the exponent l, things are a bit more complicated: we may gain in one case
but inevitably lose in the other. An interesting case is when l = 0, which corresponds to
λ being a constant function. In this case, one can notice a balance between accelerating
the convergence of ‖∇�λ(t)(x(t))‖ and slowing the latter for ‖proxλ(t)�(x(t)) – x(t)‖, since
none of them are affected by l anymore.

5 Numerical experiments
In this section, we will conduct series of experiments to investigate the influence of the sys-
tem parameters λ, β , and b on the convergence behavior of dynamical system. We will suc-
cessively fix two of them and vary the last one for this. For the numerical experiments, we
will restrict ourselves to the polynomial choices addressed in the previous section λ(t) = tl ,
β(t) = tm, b(t) = btn with b = (m+1)(α–m–2)β

(α–3–n)tn–m+1
0

+ 1, as well as x(t0) = x0 = 10, ẋ(t0) = 0, and t0 = 1.
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5.1 The influence of b on the dynamical behaviour
First, let us choose as objective function � : R →R+, �(x) = |x|, fix m = 0, α = 9 and l = 1,
and vary n.

In Fig. 1, we clearly see that the faster the exponent of the function b grows the faster the
convergence of the function values of the Moreau envelope and its gradient are, starting
with the slowest pace for n = 0 and accelerating until n = 4.99, confirming the theoretical
convergence rates. In addition, the increase in the exponent of b also seems to improve
the convergence behavior of the trajectory. Fast growing exponents for b will improve the
convergence greatly; however, as seen in the previous section, they are limited by the upper
bound value α – 3.

5.2 The influence of λ on the dynamical behaviour
For the same objective function as in the previous subsection, we study the behavior of
the dynamics when varying the exponent l to investigate the influence of the function λ.
To this end, we fix m = 0, α = 9 and n = 5 < α – 3, and take for l three different values from
0 to 1. We also choose the starting point x0 = 1 to provide a better illustration.

One can notice in Fig. 2 that the convergence behavior of the function values of the
Moreau envelope and its gradient is better, the higher l is, whereas, interestingly enough,
for the convergence of the trajectories, an opposite phenomenon takes place.

5.3 The influence of β on the dynamical behaviour
Let � : R → R+, �(x) = |x| + x2

2 , α = 13, n = 9 < α – 3 and l = 1. We vary the exponent m
such that 2m < n + l to study the influence of the function β on the convergence behavior
of the system. In Fig. 3, we see that, even though m does not explicitly appear in the theo-
retical convergence rates for the gradient of the Moreau envelope and the trajectory of the
system, it influences the convergence behavior of both of them as well as of the function
values of the Moreau envelope, in the sense that these are faster, the higher the values of
m are.

Figure 1 m = 0, α = 9 and l = 1

Figure 2 m = 0, α = 9 and n = 5
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Figure 3 n = 9, α = 13 and l = 1

Figure 4 Divergence of the trajectories

Finally, we consider two parameter choices, which lie outside the convergence setting
derived in the previous section, and notice that these fundamentally affect the convergence
of the trajectory. In Fig. 4(a), we choose m such that the condition 2m < n + l is violated,
and in Fig. 4(b), we choose α and n such that the condition α – 3 > n is also violated. One
can see that in both settings, the trajectories diverge.

Appendix
In this appendix, we collect some lemmas that play an important role in the proof of the
main results of the paper. For the proof of the following lemma, we refer to [2].

Lemma 6 Suppose that f : [t0, +∞) → R is locally absolutely continuous and bounded
from below and there exists g ∈ L1([t0, +∞),R) such that for almost all t ≥ t0

d
dt

f (t) ≤ g(t).

Then, there exists limt→+∞ f (t) ∈R.

For the proof of the following lemma, we refer to [15].

Lemma 7 Let H be a real Hilbert space and x : [t0, +∞) −→H a continuously differentiable
function satisfying x(t) + t

α
ẋ(t) → L as t → +∞, with α > 0 and L ∈ H. Then x(t) → L as

t → +∞.

Finally, we state a continuous version of Opial’s Lemma (see [22]), which is used in the
proof of the convergence of the trajectory.

Lemma 8 Let S be a non-empty subset of a real Hilbert space H and x : [0, +∞) �→ H a
given map. Assume that
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• for every z ∈ S, limt→+∞ ‖x(t) – z‖ exists;
• every weak sequential cluster point of the map x belongs to S.

Then, x(t) converges weakly to some element of S as t → +∞.
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