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Abstract
In this paper, we consider the stochastic optimal control problem for jump-diffusion
models with state constraints. In general, the value function of such problems is the
discontinuous viscosity solution of the associated Hamilton-Jacobi-Bellman (HJB)
equation since the regularity cannot be guaranteed at the boundary of the state
constraint. By adapting the stochastic target theory, we obtain an equivalent
representation of the original value function by means of the backward reachable set.
We then show that this backward reachable can be characterized by the zero-level set
of the auxiliary value function for the unconstrained stochastic control problem,
which includes two additional unbounded controls as a consequence of the
martingale representation theorem. We prove that the auxiliary value function is the
unique continuous viscosity solution of the associated HJB equation, which is the
second-order nonlinear partial integro-differential equation (PIDE). Our paper
provides an explicit way to characterize the original (possibly discontinuous) value
function as a zero-level set of the continuous solution of the auxiliary HJB equation.
The proof of the existence and uniqueness requires a new technique due to the
unbounded control sets and the presence of the singularity of the corresponding
Lévy measure in the nonlocal operator of the HJB equation.
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1 Introduction
Let B and Ñ be a standard Brownian motion and an E-marked compensated Poisson ran-
dom process, respectively, which are mutually independent of each other. The problem
studied in this paper is to minimize the following objective functional over u ∈ Ut,T

J(t, a; u) = E

[∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)]

, (1.1)

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-022-03747-z
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-022-03747-z&domain=pdf
https://orcid.org/0000-0002-8877-9519
mailto:junmoon@hanyang.ac.kr
http://creativecommons.org/licenses/by/4.0/


Moon Advances in Continuous and Discrete Models         (2022) 2022:68 Page 2 of 38

subject to the R
n-dimensional stochastic differential equation (SDE)

⎧⎪⎪⎨
⎪⎪⎩

dxt,a;u
s = f (s, xt,a;u

s , us) ds + σ (s, xt,a;u
s , us) dBs

+
∫

E χ (s, xt,a;u
s– , us, e)Ñ(de, ds),

xt,a;u
t = a,

(1.2)

and the state constraint (� is a non-empty closed subset of Rn)

xt,a;u
s ∈ �, ∀s ∈ [t, T],P-a.s. (1.3)

The precise problem formulation is given in Sect. 2.2. The associated value function for
(1.1) is defined by

V (t, a) := inf
u∈Ut,T

{
J(t, a; u)|xt,a;u

s ∈ �,P-a.s.,∀s ∈ [t, T]
}

. (1.4)

The problem in (1.4) can then be referred to as the stochastic optimal control problem for
jump-diffusion systems with state constraints.

The main results of the paper can be summarized as follows:
• The first main result is that the value function in (1.4) can be equivalently represented

by the zero-level set of W (see Theorems 3.1 and 3.2), i.e.,

V (t, a) = inf
{

b ≥ 0 |(a, b) ∈R�
t
}

= inf
{

b ≥ 0|W (t, a, b) = 0
}

, (1.5)

where R�
t is the backward reachable set of the stochastic target problem with state

constraints (see (1.7)), and W (defined in (3.7)) is a continuous value function of the
auxiliary stochastic control problem that includes unbounded control sets At,T ×Bt,T ;

• The second main result is that the auxiliary value function W is a unique continuous
viscosity solution of the following Hamilton-Jacobi-Bellman (HJB) equation with
suitable boundary conditions (see Theorems 4.1 and 5.1): (time and state arguments
are suppressed)

0 = –∂tW + sup
u∈U

α∈Rr ,β∈G2

{
–

〈
DW ,

[
f (u)
–l(u)

]〉
–

1
2

Tr

([
σσ�(u) σ (u)α

(σ (u)α)� α�α

]
D2W

)

–
∫

E

[
W
(
t, a + χ (u, e), b + β(e)

)
– W (t, a, b) –

〈
DW ,

[
χ (u, e)
β(e)

]〉]
π (de)

}

– d(a,�), (1.6)

which is the second-order nonlinear partial integro-differential equation (PIDE) that
includes two unbounded control variables (α,β) ∈R

r × G2.
• The first and second main results imply that we can characterize the original value

function (1.4) using (1.5) and the solution of (1.6).
(Deterministic and stochastic) control problems with state constraints were studied ex-

tensively in the literature; see [1, 7, 14, 15, 20, 22, 25, 27, 28, 33, 34] and the references
therein. In particular, as discussed in [11, 15, 28, 33], under some conditions, the value
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function of the state-constrained stochastic control problem is only a discontinuous vis-
cosity solution to the associated constrained HJB equation having a complex boundary
condition at ∂� (the boundary of �), as the regularity cannot be guaranteed at ∂�. In fact,
in the references mentioned above, they did not study the equivalent representation of the
corresponding value function as a continuous function, their control spaces are bounded,
and they only considered the case for deterministic systems or SDEs in a Brownian setting
without jumps. Viability theory for deterministic and stochastic systems could be viewed
as an alternative approach to solve state-constrained problems [3–5, 19], and its extension
to jump-diffusion models was studied in [31, 39]. However, they focus only on the viability
property of state constraints (without optimizing the objective functional), their control
spaces are bounded, and some additional technical assumptions (e.g., see [31, (H.3)]) are
essentially required.

Recently, the state-constrained problem via the backward reachability approach was
studied in [11]. One remarkable feature of [11] is that it provides the explicit characteriza-
tion method of the original (possibly discontinuous) value function in terms of the zero-
level set of the auxiliary value function, which is continuous, as the auxiliary value function
is induced from the unconstrained control problem. However, the model used in [11] is
the SDE driven by Brownian motion without jumps, which is a special case of (1.2). More-
over, the HJB equation in [11] is the local equation, which is also a special case of (1.6)
without the nonlocal integral term (the second line of (1.6)). The aim of this paper is to
generalize the results in [11] to the case of jump-diffusion systems. As mentioned below,
it turns out that these generalizations are not straightforward due to jump diffusions in
(1.1) and the presence of the nonlocal operator in the HJB equation (1.6).

Our first main result given in (1.5) is obtained based on the stochastic target theory.
In particular, using the equivalence relationship between stochastic optimal control and
stochastic target problems, we show (1.5) (see Theorems 3.1 and 3.2), where R�

t is the
backward reachable set with the state constraint given by

R�
t :=

{
(a, b) ∈R

n ×R|∃(u,α,β) ∈ Ut,T ×At,T ×Bt,T such that

yu,α,β
T ;t,a,b ≥ m

(
xt,a;u

T
)
,P-a.s. and xt,a;u

s ∈ �,∀s ∈ [t, T],P-a.s.
}

, (1.7)

with (yu,α,β
s;t,a,b)s∈[t,T] being an auxiliary state process controlled by additional control pro-

cesses (α,β) ∈ At,T × Bt,T that take values from unbounded control spaces. Here, the
main technical tool to show the equivalence in (1.5) using (1.7) is the martingale repre-
sentation theorem for general Lévy processes, by which additional (unbounded) controls
(α,β) ∈ At,T × Bt,T are introduced. It should be mentioned that [11] also used the result
of [13] (where only (u,α) ∈ Ut,T × At,T appeared in [11]), and we extend [11] to the case
of jump-diffusion models. Note that this extension is not straightforward, since we have
to obtain the new estimates for SDEs with jump diffusions (Lemmas 2.1 and 3.1) and the
additional control variables (α,β) ∈At,T ×Bt,T (Remark 3.1). We mention that in addition
to the application of the martingale representation theorem, these steps are essential to
prove (1.5) and the properties of W in (1.5) (see Theorems 3.1 and 3.2 as well as the results
in Sect. 3.3). Moreover, (1.5) in Theorem 3.2 relies on the existence of optimal controls for
jump-diffusion systems, and our paper presents the new existence result for general op-
timal control problems with jump diffusions (see Theorem A.1 in the Appendix), which
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has not been reported in existing literatures. We should mention that the results on the
existence of optimal controls in [11, 38] are applicable only for linear SDEs without jumps.

The second main result of this paper is to show that the auxiliary value function W
is a unique continuous viscosity solution of the HJB equation in (1.6) (see Theorems 4.1
and 5.1), where W will be defined in Sect. 3.2 (see (3.7)). Therefore, using the solution of
(1.6), the explicit characterization of the original value function V in (1.4) can be obtained
through (1.5). We mention that the proofs for existence and uniqueness of the viscosity so-
lution in Theorems 4.1 and 5.1 should be different from those for the case without jumps in
[11]. Specifically, Theorem 4.1, the proof for existence of the viscosity solution for (1.6), re-
quires the dynamic programming principle and the application of Itô’s formula of general
Lévy-type stochastic integrals to test functions. In fact, unlike [11, Theorem 4.3], Theo-
rem 4.1 has to deal with two different stochastic integrals (stochastic integrals with respect
to the Brownian motion and the (compensated) Poisson process) and their quadratic vari-
ations to obtain the desired inequalities in the definition of viscosity solutions. Such an
extended (existence of viscosity solution) analysis is not presented in [11, Theorem 4.3],
and our paper provides the different proof in Theorem 4.1.

Regarding the proof of uniqueness of the viscosity solution in Theorem 5.1, the approach
developed for the case without jumps in [11, Theorem 4.6] (that also relies on [10, 17])
cannot be directly adopted, since the HJB equation in (1.6) includes the local term (the first
line of (1.6)) and the nonlocal (integral) operator in terms of the singular Lévy measure
π (the second line of (1.6)), where the latter is induced due to jump diffusions. Note also
that in classical stochastic optimal control problems with jump diffusions without state
constraints (� = R

n), the corresponding control space is assumed to be a compact set
[18, 31, 32, 35]. Hence, their approaches cannot be used directly to prove the uniqueness
of the viscosity solution for the HJB equation in (1.6).

Based on the discussion above, we need to develop a new approach to prove the unique-
ness of the viscosity solution for the HJB equation in (1.6). Our strategy to prove the
uniqueness in Theorem 5.1 is to use the equivalent definition of viscosity solutions in
terms of (super and sub)jets, where the nonlocal integral operator is decomposed into the
singular part with the test function and the nonsingular part with jets (see Lemma 6.3).
Then we obtain the desired result for the nonlocal singular part with the help of the reg-
ularity of test functions and the estimates in Remark 3.1. Note that the unboundedness of
β ∈ G2 in the nonlocal nonsingular part is resolved with the help of the appropriate con-
struction of the comparison functions 	 in (6.12) and the proper estimates of doubling
variables in 	 based on [21, Proposition 3.7].1 In addition, we convert the second-order
local part (the first line of (1.6)) into the equivalent spectral radius form by which the un-
boundedness with respect to α ∈ R

r can be handled (see Lemma 6.1). By combining all
these steps, we obtain the comparison principle of viscosity sub and supersolutions (see
Theorem 5.1), which implies the uniqueness of the viscosity solution for (1.6) (see Corol-
lary 5.1).

The rest of the paper is organized as follows. The notation and the precise problem state-
ment are given in Sect. 2. In Sect. 3, we obtain the equivalent representation of (1.4) given
in (1.5). In Sect. 4, we show that the auxiliary value function W is the continuous viscosity

1We mention that our comparison function should be different from that for the case without jumps in [11] to deal with
both the local and nonlocal parts of the HJB equation in (1.6).
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solution of the HJB equation in (1.6). The uniqueness of the viscosity solution for (1.6) is
presented in Sect. 5, and its proof is provided in Sect. 6. The Appendix provides several
different conditions for the existence of optimal controls for jump-diffusion systems.

2 Notation and problem statement
2.1 Notation
Let Rn be the n-dimensional Euclidean space. For x, y ∈ R

n, x� denotes the transpose of x,
〈x, y〉 is the inner product, and |x| := 〈x, x〉1/2. Let Sn be the set of n×n symmetric matrices.
Let Tr(A) be the trace operator for a square matrix A ∈ R

n×n. Let ‖ · ‖F be the Frobenius
norm, i.e., ‖A‖F := Tr(AA�)1/2 for A ∈R

n×m. Let In be an n × n identity matrix. In various
places of the paper, an exact value of a positive constant C can vary from line to line, which
mainly depends on the coefficients in Assumptions 1, 2, and 3, terminal time T , and the
initial condition, but independent of a specific choice of control.

Let (
,F ,P) be a complete probability space with the natural filtration F := {Fs, 0 ≤ s ≤
t} generated by the following two mutually independent stochastic processes and aug-
mented by all the P-null sets in F : (i) an r-dimensional standard Brownian motion B de-
fined on [t, T] and (ii) an E-marked right continuous Poisson random measure (process)
N defined on E × [t, T], where E := Ē \ {0} with Ē ⊂ R

l is a Borel subset of Rl equipped
with its Borel σ -field B(E). The intensity measure of N is denoted by π̂ (de, dt) := π (de) dt,
satisfying π (E) < ∞, where {Ñ(A, (t, s]) := (N – π̂ )(A, (t, s])}s∈(t,T] is an associated compen-
sated Fs-martingale random (Poisson) measure of N for any A ∈ B(E). Here, π is a σ -finite
Lévy measure on (E,B(E)), which holds

∫
E(1 ∧ |e|2)π (de) < ∞.

We introduce the following spaces:
• Lp(
,Fs;Rn), s ∈ [t, T], p ≥ 1: the space of Fs-measurable R

n-valued random vectors,
satisfying ‖x‖Lp := E[|x|p] < ∞;

• Lp
F

(t, T ;Rn), t ∈ [0, T], p ≥ 1: the space of F-predictable R
n-valued random processes,

satisfying ‖x‖Lp
F

:= E[
∫ T

t |xs|p ds]
1
p < ∞;

• G2(E,B(E),π ;Rn): the space of square integrable functions k : E → R
n such that k

satisfies ‖k‖G2 := (
∫

E |k(e)|2π (de)) 1
2 < ∞, where π is a σ -finite Lévy measure on

(E,B(E)). G2(E,B(E),π ;Rn) is a Hilbert space [2, page 9];
• G2

F
(t, T ,π ;Rn), t ∈ [0, T]: the space of stochastic processes k : 
 × [t, T] × E → R

n

such that k is a P ×B(E)-measurable and R
n-valued F-predictable stochastic process,

which satisfies ‖k‖G2
F

:= E[
∫ T

t
∫

E |ks(e)|2π (de) ds] 1
2 < ∞, where P denotes the

σ -algebra of F-predictable subsets of 
 × [0, T]. Note that G2
F

(t, T ,π ;Rn) is a Hilbert
space [2, Lemma 4.1.3];

• C([0, T] ×R
n): the set of R-valued continuous functions on [0, T] ×R

n;
• Cp([0, T] ×R

n), p ≥ 1: the set of R-valued continuous functions such that
f ∈ C([0, T] ×R

n) holds |f (t, x)| ≤ C(1 + |x|p);
• Cl,r

b ([0, T] ×R
n) l, r ≥ 1: the set of R-valued continuous functions on [0, T] ×R

n such
that for f ∈ Cl,r([0, T] ×R

n), ∂ l
t f and Drf exist, and are continuous and uniformly

bounded, where ∂ l
t f is the lth-order partial derivative of f with respect to t ∈ [0, T],

and Drf is the rth-order derivative of f in x ∈R
n.
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2.2 Problem statement
We consider the following stochastic differential equation (SDE) driven by both B and Ñ :

⎧⎪⎪⎨
⎪⎪⎩

dxt,a;u
s = f (s, xt,a;u

s , us) ds + σ (s, xt,a;u
s , us) dBs

+
∫

E χ (s, xt,a;u
s– , us, e)Ñ(de, ds),

xt,a;u
t = a,

(2.1)

where xt,a;u
s ∈R

n is the value of the state at time s, and us ∈ U is the value of the control at
time s with U being the space of control values, which is a compact subset of Rm. The set
of admissible controls is denoted by Ut,T := L2

F
(t, T ; U).

Assumption 1 f : [0, T] × R
n × U → R

n, σ : [0, T] × R
n × U → R

n×r and χ : [0, T] ×
R

n × U × E → R
n are continuous in (t, x, u) ∈ [0, T] × R

n × U , and hold the following
conditions with the constant L > 0: for x, x′ ∈R

n,

∣∣f (t, x, u) – f
(
t, x′, u

)∣∣ +
∣∣σ (t, x, u) – σ

(
t, x′, u

)∣∣
+
∥∥χ (t, x, u, ·) – χ

(
t, x′, u, ·)∥∥G2 ≤ L

∣∣x – x′∣∣,∣∣f (t, x, u)
∣∣ +

∣∣σ (t, x, u)
∣∣ +

∥∥χ (t, x, u, ·)∥∥G2 ≤ L
(
1 + |x|).

Lemma 2.1 Suppose that Assumption 1 holds. Then the following results hold:
(i) For any a ∈R

n and u ∈ Ut,T , there is a unique F-adapted càdlàg process such that
(2.1) holds;

(ii) For any a, a′ ∈R
n, u ∈ Ut,T , and t, t′ ∈ [0, T] with t ≤ t′, there exists a constant C > 0

such that (a) E[sups∈[t,T] |xt,a;u
s |2] ≤ C(1 + |a|2), (b)

E[sups∈[t,T] |xt,a;u
s – xt,a′ ;u

s |2] ≤ C|a – a′|2, and (c)
E[sups∈[t′ ,T] |xt,a;u

s – xt′ ,a;u
s |2] ≤ C(1 + |a|2)|t′ – t|.

Proof We only need to prove part (ii)-(c), as the proof for other parts can be found in [2,
Chap. 6].

Note that xt,a;u
s = x

t′ ,xt,a;u
t′ ;u

s for all s ∈ [t′, T]. Using (ii)-(a), (ii)-(b) and Kunita’s formula for
general Lévy-type stochastic integrals (see [2, Theorem 4.4.23]), it follows that

E

[
sup

s∈[t′ ,T]

∣∣xt′ ,xt,a;u
t′ ;u

s – xt′ ,a;u
s

∣∣2]≤ CE
[∣∣xt,a;u

t′ – a
∣∣2]≤ C

(
1 + |a|2)∣∣t′ – t

∣∣.

This completes the proof. �

The objective functional is given by

J(t, a; u) = E

[∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)]

. (2.2)

Let � ⊂ R
n be the non-empty and closed set, which captures the state constraint. Then

the state-constrained stochastic control problem for jump-diffusion systems considered
in this paper is as follows:

inf
u∈Ut,T

J(t, a; u) subject to (2.1) and xt,a;u
s ∈ �, ∀s ∈ [t, T], P-a.s.
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We introduce the value function for the above problem:

V (t, a) := inf
u∈Ut,T

{
J(t, a; u)|xt,a;u

s ∈ �, P-a.s., ∀s ∈ [t, T]
}

. (2.3)

Note that (2.3) means a ∈ � for the initial state of the SDE in (2.1). The following assump-
tions are imposed for (2.2).

Assumption 2
(i) l : [0, T] ×R

n × U →R and m : Rn →R are continuous in
(t, x, u) ∈ [0, T] ×R

n × U . l and m satisfy the following conditions with the constant
L > 0: for x, x′ ∈ R

n,

∣∣l(t, x, u) – l
(
t, x′, u

)∣∣ +
∣∣m(x) – m

(
x′)∣∣≤ L

∣∣x – x′∣∣,∣∣l(t, x, u)
∣∣ +

∣∣m(x)
∣∣≤ L

(
1 + |x|);

(ii) l and m are nonnegative functions, i.e., l, m ≥ 0.

Remark 2.1 In view of (ii) of Assumption 2, J(t, a; u) ≥ 0 for any (t, a, u) ∈ [0, T]×R
n ×Ut,T ,

which implies that V (t, a) ≥ 0 for (t, a) ∈ [0, T] ×R
n.

3 Characterization of V
In this section, we convert the original problem in (2.3) into the stochastic target problem
for jump-diffusion systems with state constraints. Then we show that (2.3) can be charac-
terized by the backward reachable set of the stochastic target problem, which is equivalent
to the zero-level set of the auxiliary value function.

3.1 Equivalent stochastic target problem via backward reachability approach
We first introduce an auxiliary SDE associated with the objective functional in (2.2):

⎧⎨
⎩

dyu,α,β
s;t,a,b = –l(s, xt,a;u

s , us) ds + α�
s dBs +

∫
E βs(e)Ñ(de, ds), s ∈ (t, T],

yu,α,β
t;t,a,b = b,

(3.1)

where b ∈R, u ∈ Ut,T , α ∈L2
F

(t, T ;Rr) =: At,T and β ∈ G2
F

(t, T ,π ;R) =: Bt,T .

Lemma 3.1 Suppose that Assumptions 1 and 2 hold. Then:
(i) For any (u,α,β) ∈ Ut,T ×At,T ×Bt,T and (a, b) ∈R

n+1, there is a unique F-adapted
càdlàg process such that (3.1) holds;

(ii) For any (u,α,β) ∈ Ut,T ×At,T ×Bt,T , (a, b) ∈ R
n+1, and (a′, b′) ∈R

n+1, there exists a
constant C > 0 such that (a) E[sups∈[t,T] |yu,α,β

s;t,a,b – yu,α,β
s;t,a′ ,b′ |2] ≤ C(|a – a′|2 + |b – b′|2)

and (b) limt′→t E[|yu,α,β
T ;t,a,b – yu,α,β

T ;t′ ,a,b|2] 1
2 = 0 for t′ ∈ [0, T].

Proof The proof for parts (i) and (ii)-(a) is analogous to that of Lemma 2.1. We prove part
(ii)-(b). Without loss of generality, we assume t′ ≥ t. Consider,

yu,α,β
T ;t,a,b – yu,α,β

T ;t′ ,a,b = –
∫ T

t

[
l
(
s, xt,a;u

s , us
)

– l
(
s, xt′ ,a;u

s , us
)]

ds

–
∫ t′

t
l
(
s, xt′ ,a;u

s , us
)

ds +
∫ t′

t
α�

s dBs +
∫ t′

t

∫
E
βs(e)Ñ(de, ds).
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By Assumptions 1 and 2, and using Lemma 2.1, we have

E
[∣∣yu,α,β

T ;t,a,b – yu,α,β
T ;t′ ,a,b

∣∣2] 1
2

≤ C
√

t′ – t + E

[∣∣∣∣
∫ t′

t
α�

s dBs

∣∣∣∣
2] 1

2
+ E

[∣∣∣∣
∫ t′

t

∫
E
βs(e)Ñ(de, ds)

∣∣∣∣
2] 1

2
.

Notice that as (α,β) ∈At,T ×Bt,T ,

E

[∣∣∣∣
∫ t′

t
α�

s dBs

∣∣∣∣
2]

= E

[∫ t′

t
|αs|2 ds

]
→ 0 as t′ → t,

and similarly using Kunita’s formula [2, Theorem 4.4.23],

E

[∣∣∣∣
∫ t′

t

∫
E
βs(e)Ñ(de, ds)

∣∣∣∣
2]

≤ CE

[∫ t′

t

∫
E

∣∣βs(e)
∣∣2π (de) ds

]
→ 0 as t′ → t.

Hence, part (ii)-(b) follows. This completes the proof. �

Remark 3.1 We may impose bounds (dependent on the initial state a for (2.1)) on addi-
tional control variables (α,β) ∈At,T ×Bt,T . In particular, let J̃(t, a; u) :=

∫ T
t l(s, xt,a;u

s , us) ds+
m(xt,a;u

T ). Since J̃ ∈ L2(
,FT ;R), in view of the martingale representation theorem [2, The-
orem 5.3.5], there exist unique (α,β) ∈At,T ×Bt,T such that2

J̃(t, a; u) = J(t, a; u) +
∫ T

t
α�

s dBs +
∫ T

t

∫
E
βs(e)Ñ(de, ds),

which implies

∫ T

t
α�

s dBs +
∫ T

t

∫
E
βs(e)Ñ(de, ds)

=
∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)

– E

[∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)]

.

Then from (i) of Assumption 2, the estimates in (ii) of Lemma 2.1, and the fact that Ñ and
B are mutually independent, we have

‖α‖2
L2
F

≤ C
(
1 + |a|2), ‖β‖2

G2
F

≤ C
(
1 + |a|2).

Hence, without loss of generality, we may use the controls (α,β) such that (α,β) are square
integrable and bounded in L2

F
and G2

F
senses.

For any function m : Rn →R, let us define the epigraph of m:

E(m) :=
{

(x, y) ∈R
n ×R|y ≥ m(x)

}
.

2Since the initial time of this paper is t ∈ [0, T ], the martingale representation theorem is initialized at t ∈ [0, T ].
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Then we have the following equivalent expression of the value function in (2.3) in terms
of the stochastic target problem with state constraints. Below, we drop t, T in Ut,T , At,T

and Bt,T to simplify the notation.

Lemma 3.2 Assume that Assumptions 1 and 2 hold. Then:

V (t, a) = inf
{

b ≥ 0|∃(u,α,β) ∈ U ×A×B such that
(
xt,a;u

T , yu,α,β
T ;t,a,b

) ∈ E(m),P-a.s. and xt,a;u
s ∈ �,∀s ∈ [t, T],P-a.s.

}
(3.2)

Remark 3.2 Note that (3.2) is the stochastic target problem for jump-diffusion systems
with state constraints; see [12–14, 30, 36].

Proof of Lemma 3.2 It is easy to see that

V (t, a) = inf
{

b ≥ 0|∃u ∈ U such that

b ≥ J(t, a; u) and xt,a;u
s ∈ �,∀s ∈ [t, T],P-a.s.

}
(3.3)

As discussed in [13] and [11], we consider the following two statements: for b ≥ 0,
(a) There exists u ∈ U such that b ≥ J(t, a; u) and xt,a;u

s ∈ � for s ∈ [t, T], P-a.s.;
(b) There exist (u,α,β) ∈ U ×A×B such that yu,α,β

T ;t,a,b ≥ m(xt,a;u
T ), P-a.s. and xt,a;u

s ∈ �

for s ∈ [t, T], P-a.s.
Note that (a) corresponds to (3.3), while (3.2) is equivalent to (b). Then it is necessary to
show the equivalence between (a) and (b).

First, from (b), there exist (u,α,β) ∈ U ×A×B such that yu,α,β
T ;t,a,b ≥ m(xt,a;u

T ) and by (3.1),

b ≥ m
(
xt,a;u

T
)

+
∫ T

t
l
(
s, xt,a;u

s , us
)

ds –
∫ T

t
α�

s dBs –
∫ T

t

∫
E
βs(e)Ñ(de, ds). (3.4)

Since the stochastic integrals
∫ r

t α�
s dBs and

∫ r
t
∫

E βs(e)Ñ(de, ds) in (3.4) areFr-martingales,
by taking the expectation of (3.4), we get b ≥ J(t, a; u). Hence, (b) implies (a).

On the other hand, let J̃(t, a; u) :=
∫ T

t l(s, xt,a;u
s , us) ds + m(xt,a;u

T ). Since J̃ ∈ L2(
,FT ;R),
in view of the martingale representation theorem [2, Theorem 5.3.5], there exist unique
(α̃, β̃) ∈A×B such that

J̃(t, a; u) = J(t, a; u) +
∫ T

t
α̃�

s dBs +
∫ T

t

∫
E
β̃s(e)Ñ( de, ds).

Then from (a), for b ≥ 0,

b ≥ J(t, a; u) =
∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)

–
∫ T

t
α̃�

s dBs

–
∫ T

t

∫
E
β̃s(e)Ñ(de, ds),

which, together with (3.1), shows that yu,α̃,β̃
T ;t,a,b ≥ m(xt,a;u

T ). Hence, (a) implies (b). This com-
pletes the proof. �
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We now introduce the backward reachable set

R�
t :=

{
(a, b) ∈R

n ×R|∃(u,α,β) ∈ U ×A×B such that
(
xt,a;u

T , yu,α,β
T ;t,a,b

) ∈ E(m),P-a.s. and xt,a;u
s ∈ �,∀s ∈ [t, T],P-a.s.

}
(3.5)

Clearly, based on Lemma 3.2, we have the following result:

Theorem 3.1 Assume that Assumptions 1 and 2 hold. For any (t, a) ∈ [0, T] ×R
n,

V (t, a) = inf
{

b ≥ 0|(a, b) ∈R�
t
}

. (3.6)

Remark 3.3 From Theorem 3.1, we observe that the value function in (2.3) can be charac-
terized by the backward reachable set R�

t . In the next subsection, we focus on an explicit
characterization of R�

t as the zero-level set of the value function for the unconstrained
auxiliary stochastic control problem.

3.2 Characterization of backward reachable set
Let

J̄(t, a, b; u,α,β) = E

[
max

{
m
(
xt,a;u

T
)

– yu,α,β
T ;t,a,b, 0

}
+
∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

,

where we introduce the following distance function on R
n to R

+:

d(x,�) = 0 if and only if x ∈ �.

Then the auxiliary value function W : [0, T] ×R
n ×R→R can be defined as follows:

W (t, a, b) := inf
u∈U

α∈A,β∈B
J̄(t, a, b; u,α,β), subject to (2.1) and (3.1). (3.7)

Remark 3.4 Note that (3.7) does not have any state constraints. Moreover, from (3.7), we
have W (T , a, b) = max{m(a) – b, 0}.

Assumption 3 d(x,�) is nonnegative, Lipschitz continuous in x with the Lipschitz con-
stant L, and satisfies the linear growth condition in x.

Remark 3.5 One example of d(x,�) is d(x,�) = infy∈� |x–y|. Clearly, it holds Assumption 3.

The following theorem shows the equivalent expression of V in terms of the zero-level
set of W .

Theorem 3.2 Suppose that Assumptions 1-3 hold and there exists an optimal control such
that it attains the minimum of the auxiliary optimal control problem in (3.7). Then:

(i) The reachable set can be obtained by

R�
t =

{
(a, b) ∈R

n ×R|W (t, a, b) = 0
}

, ∀t ∈ [0, T];
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(ii) The value function V in (2.3) can be characterized by the zero-level set of W : for
(t, a) ∈ [0, T] ×R

n,

V (t, a) = inf
{

b ≥ 0|(a, b) ∈R�
t
}

= inf
{

b ≥ 0|W (t, a, b) = 0
}

. (3.8)

Remark 3.6
(i) In Sects. 4 and 5, we show that W is a unique viscosity solution of the associated

Hamilton-Jacobi-Bellman (HJB) equation. Hence, from Theorem 3.2 (particularly
(3.8)), the value function of the state-constrained problem V in (2.3) can be
obtained by solving the HJB equation of W .

(ii) Theorem 3.2 relies on the existence of optimal controls for (3.7). In the Appendix,
we provide several different conditions under which (3.7) admits an optimal
solution.

Proof of Theorem 3.2 From (3.6) in Theorem 3.1, we see that (ii) follows from (i). Hence,
we prove (i). Recall R�

t defined in (3.5):

R�
t :=

{
(a, b) ∈R

n ×R|∃(u,α,β) ∈ U ×A×B such that
(
xt,a;u

T , yu,α,β
T ;t,a,b

) ∈ E(m),P-a.s. and xt,a;u
s ∈ �,∀s ∈ [t, T],P-a.s.

}
,

and let R̄�
t := {(a, b) ∈ R

n × R|W (t, a, b) = 0}. We will show that R�
t ⊆ R̄�

t and R�
t ⊇ R̄�

t
for t ∈ [0, T].

Fix (a, b) ∈R�
t . By definition, there exist (u,α,β) ∈ U ×A×B such that

max
{

m
(
xt,a;u

T
)

– yu,α,β
T ;t,a,b, 0

}
= 0 and d

(
xt,a;u

s ,�
)

= 0, ∀s ∈ [t, T],P-a.s.

This implies that W (t, a, b) = 0 for t ∈ [0, T]; hence, R�
t ⊆ R̄�

t for t ∈ [0, T].
Suppose that (a, b) ∈ R̄�

t , i.e., W (t, a, b) = 0. Then due to the assumption of the existence
of an optimal control given in the statement,3 there exist (ū, ᾱ, β̄) ∈ U ×A×B such that

W (t, a, b) = E

[
max

{
m
(
xt,a;ū

T
)

– yū,ᾱ,β̄
T ;t,a,b, 0

}
+
∫ T

t
d
(
xt,a;ū

s ,�
)

ds
]

= 0.

From the nonnegativity of l, m, and d(x,�) in Assumptions 2 and 3, and the property of
the max function, we can see that max{m(xt,a;ū

T ) – yū,ᾱ,β̄
T ;t,a,b, 0} +

∫ T
t d(xt,a;ū

s ,�) ds < 0, P-a.s.,
is not possible. In addition, max{m(xt,a;ū

T ) – yū,ᾱ,β̄
T ;t,a,b, 0} +

∫ T
t d(xt,a;ū

s ,�) ds > 0, P-a.s., is not
possible, as it contradicts W (t, a, b) = 0. Hence, we must have

max
{

m
(
xt,a;ū

T
)

– yū,ᾱ,β̄
T ;t,a,b, 0

}
+
∫ T

t
d
(
xt,a;ū

s ,�
)

ds = 0, P-a.s.,

which, together with the nonnegativity of d(x,�), leads to

(
xt,a;ū

T , yū,ᾱ,β̄
T ;t,a,b

) ∈ E(m) and xt,a;ū
s ∈ �, ∀s ∈ [t, T],Pa.s.

This shows that R̄�
t ⊆R�

t for t ∈ [0, T]. We complete the proof. �

3In the Appendix, we discuss the existence of optimal controls for jump-diffusion systems under some mild assumptions
of the coefficients.
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3.3 Properties of W
We provide some useful properties of W in (3.7).

Proposition 3.1 Assume that Assumptions 1-3 hold. Then for (a, b) ∈R
n ×R and t ∈ [0, T]

with τ > 0, the auxiliary value function W satisfies the following dynamic programming
principle (DPP):

W (t, a, b) = inf
u∈U

α∈A,β∈B
E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + W
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)]
.

Proof Let us define

Ŵ (t, a, b) := inf
u∈U

α∈A,β∈B
E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + W
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)]
.

We prove W (t, a, b) ≥ Ŵ (t, a, b) and W (t, a, b) ≤ Ŵ (t, a, b). Notice that for t′ ≥ t, it follows
that

xt,a;u
s = x

t′ ,xt,a;u
t′ ;u

s , yu,α,β
s;t,a,b = yu,α,β

s;t′ ,xt,a;u
t′ ,yu,α,β

t′ ;t,a,b
, ∀s ∈ [

t′, T
]
.

Hence, with t′ = t + τ ,

J̄(t, a, b; u,α,β)

= E

[
max

{
m
(
xt+τ ,xt,a;u

t+τ ;u
T

)
– yu,α,β

T ;t+τ ,xt,a;u
t+τ ,yu,α,β

t+τ ;t,a,b
, 0
}

+
∫ T

t+τ

d
(
xt+τ ,xt,a;u

t+τ ;u
s ,�

)
ds +

∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds
]

= E

[
J̄
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b; u,α,β

)
+
∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds
]

.

We can easily deduce that

J̄(t, a, b; u,α,β) ≥ E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + W
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)]
,

which, by taking the infimum with respect to (u,α,β) ∈ U ×A×B, leads to

W (t, a, b) ≥ Ŵ (t, a, b).

On the other hand, by the measurable selection theorem (see [37, Abstract] and [6, The-
orem 8.1.3]), for any ε > 0, there is the tuple (uε ,αε ,βε) ∈ Ut+τ ,T ×At+τ ,T ×Bt+τ ,T such that

W
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)
+ ε ≥ J̄

(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b; uε ,αε ,βε

)
. (3.9)
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Here, we apply [6, Theorem 8.1.3]4 to get (3.9). Specifically, let (
,M) be the measur-
able space, where 
 := [t + τ , T] × 
 and M := B([t + τ , T]) ⊗ F with B([t + τ , T]) be-
ing the Borel σ -algebra generated by subintervals of [t + τ , T]. Let Xt+τ ,T := Ut+τ ,T ×
At+τ ,T ×Bt+τ ,T . Note that Xt+τ ,T is a separable Hilbert space. For (s,ω) ∈ 
, define the set-
valued map � from 
 to closed subsets of Xt+τ ,T by �(s,ω) := {(us,T ,αs,T ,βs,T ) := (u,α,β) ∈
Xs,T |W (s, xt,a;u

s , yu,α,β
s;t,a,b) + ε ≥ J̄(s, xt,a;u

s , yu,α,β
s;t,a,b; u,α,β)}. Note that for (s,ω) ∈ 
, �(s,ω) is a

non-empty closed subset of Xt+τ ,T due to the definition of W and the continuity of the in-
volved functions by Assumptions 1-3. Then in view of the measurable selection theorem
in [6, Theorem 8.1.3], there is the tuple (uε ,αε ,βε) ∈Xt+τ ,T = Ut+τ ,T ×At+τ ,T ×Bt+τ ,T such
that (3.9) holds.

For any (u,α,β) ∈ Ut,t+τ ×At,t+τ ×Bt,t+τ , define

u′
s :=

⎧⎨
⎩

us, s ∈ [t, t + τ ),

uε
s , s ∈ [t + τ , T],

α′
s :=

⎧⎨
⎩

αs, s ∈ [t, t + τ ),

αε
s , s ∈ [t + τ , T],

β ′
s(e) :=

⎧⎨
⎩

βs(e), s ∈ [t, t + τ ),

βε
s (e), s ∈ [t + τ , T].

Cleary, (u′,α′,β ′) ∈ U ×A×B. We then have

W (t, a, b) ≤ J̄
(
t, a, b; u′,α′,β ′)

= E

[
J̄
(
t + τ , xt,a;u

t+τ yu,α,β
t+τ ;t,a,b; uε ,αε ,βε

)
+
∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds
]

≤ E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + W
(
t + τ , xt,a;u

t+τ yu,α,β
t+τ ;t,a,b

)]
+ ε,

which implies by the fact that (u,α,β) ∈ Ut,t+τ ×At,t+τ ×Bt,t+τ and ε > 0 are arbitrary,

W (t, a, b) ≤ Ŵ (t, a, b).

We complete the proof. �

Lemma 3.3 Suppose that Assumptions 1-3 hold. Then for t ∈ [0, T], there exists a constant
C > 0 such that

(i) |W (t, a, b)| ≤ C(1 + |a|) for any (a, b) ∈R
n × [0,∞);

(ii) W is Lipschitz continuous in R
n ×R, i.e., for (a, b) ∈R

n ×R and (a′, b′) ∈R
n ×R,

|W (t, a, b) – W (t, a′, b′)| ≤ C(|a – a′| + |b – b′|);
(iii) W is continuous in t ∈ [0, T].

4Note that [6, Theorem 8.1.3] is stated as follows. Let X be a complete separable metric space, (
,M) a measurable space,
� a measurable set-valued map from 
 to closed non-empty subsets of X . Then there exists a measurable selection of �
(see [6, Definition 8.1.2]).
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Proof In view of the definition of W , when b ∈ [0,∞), with α = 0 and β = 0,

W (t, a, b) ≤ inf
u∈U

E

[
max

{
m
(
xt,a;u

T
)

– yu,0,0
T ;t,a,b, 0

}
+
∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

= E

[∫ T

t
l
(
s, xt,a;u

s , us
)

ds + m
(
xt,a;u

T
)

+
∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

,

where the second inequality follows from the fact that l and m are nonnegative due to (ii)
of Assumption 2. Then the linear growth of W in a in the statement of (i) follows from
Assumptions 1, 2, and 3, and (ii) of Lemma 2.1.

Note that | inf f (x) – inf g(x)| ≤ sup |f (x) – g(x)| and | sup f (x) – sup g(x)| ≤ sup |f (x) – g(x)|.
From Assumptions 1, 2, and 3, and using the Hölder inequality,

∣∣W (t, a, b) – W
(
t, a′, b′)∣∣≤ C sup

u∈U
α∈A,β∈B

{
E
[∣∣xt,a;u

T – xt,a′ ;u
T

∣∣2] 1
2 + E

[∣∣yu,α,β
T ;t,a,b – yu,α,β

T ;t,a′ ,b′
∣∣2] 1

2

+ E

[∫ T

t

∣∣xt,a;u
s – xt,a′ ;u

s
∣∣2 ds

] 1
2
}

≤ C
(∣∣a – a′∣∣ +

∣∣b – b′∣∣).

Notice that to obtain the last inequality, we have used (ii) of Lemmas 2.1 and 3.1, the
compactness of U , and the fact that the controls (α,β) can be restricted to be bounded in
G2
F

and L2
F

senses from Remark 3.1. This shows (ii).
For the continuity of W in t ∈ [0, T] in (iii), let t, t +τ ∈ [0, T] with τ > 0. Then by applying

the similar technique above and using (ii) of Lemma 2.1, we have

∣∣W (t + τ , a, b) – W (t, a, b)
∣∣

≤ C sup
u∈U

α∈A,β∈B

{
E
[∣∣xt+τ ,a;u

T – xt,a;u
T

∣∣2] 1
2 + E

[∣∣yu,α,β
T ;t+τ ,a,b – yu,α,β

T ;t,a,b
∣∣2] 1

2

+ E

[∫ T

t+τ

∣∣xt+τ ,a;u
s – xt,a;u

s
∣∣2 ds

] 1
2

+ E

[∫ t+τ

t

(
1 +

∣∣xt,a;u
s

∣∣2)ds
] 1

2
}

≤ C
(
τ

1
2 + sup

u∈U
α∈A,β∈B

E
[∣∣yu,α,β

T ;t+τ ,a,b – yu,α,β
T ;t,a,b

∣∣2] 1
2
)

. (3.10)

From Remark 3.1, we may consider (α,β) bounded in G2
F

and L2
F

senses. We then apply
(ii) of Lemma 3.1 to get limτ↓0 supu∈U α∈A,β∈B E[|yu,α,β

T ;t+τ ,a,b – yu,α,β
T ;t,a,b|2] 1

2 = 0 in (3.10). This,
together with (3.10), implies |W (t + τ , a, b) – W (t, a, b)| → 0 as τ ↓ 0. We complete the
proof. �

Lemma 3.4 Suppose that Assumptions 1-3 hold. If b ≤ 0, then we have W (t, a, b) =
W0(t, a) – b, where W0 : [0, T] ×R

n →R is the value function of the following problem:

W0(t, a) := inf
u∈U

{
J(t, a; u) + E

∫ T

t
d
(
xt,a;u

s ,�
)

ds
}

.
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Proof By definition of W , for any (t, a, b) ∈ [0, T] ×R
n ×R, we have

W (t, a, b) = inf
u∈U

α∈A,β∈B
E

[
max

{
m
(
xt,a;u

T
)

– yu,α,β
T ;t,a,b, 0

}
+
∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

≥ inf
u∈U

α∈A,β∈B
E

[
m
(
xt,a;u

T
)

– yu,α,β
T ;t,a,b +

∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

= inf
u∈U

E

[
m
(
xt,a;u

T
)

– b +
∫ T

t
l
(
s, xt,a;u

s , us
)

+
∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

= W0(t, a) – b,

where we have used the fact that E[
∫ T

t α�
s dBs] = 0 and E[

∫ T
t
∫

E βs(e)Ñ(de, ds)] = 0, as the
stochastic integrals of B and Ñ are Ft-martingales.

On the other hand, when (α,β) = (0, 0) ∈ A×B, since b ≤ 0, and l and m are nonnega-
tive,

max
{

m
(
xt,a;u

T
)

– yu,0,0
T ;t,a,b, 0

}
= m

(
xt,a;u

T
)

– b +
∫ T

t
l
(
s, xt,a;u

s , us
)

ds ≥ 0.

Hence, with (α,β) = (0, 0) ∈A×B, it follows that

W (t, a, b) ≤ inf
u∈U

E

[
m
(
xt,a;u

T
)

– b +
∫ T

t
l
(
s, xt,a;u

s , us
)

ds +
∫ T

t
d
(
xt,a;u

s ,�
)

ds
]

= W0(t, a) – b.

This completes the proof. �

Based on (3.7) (see Remark 3.4) and Lemma 3.4, W satisfies the following boundary
conditions:

Lemma 3.5 Suppose that Assumptions 1, 2, and 3 hold. Then W satisfies the following
boundary conditions:

⎧⎨
⎩

W (T , a, b) = max{m(a) – b, 0}, (a, b) ∈ R
n × [0,∞),

W (t, a, 0) = W0(t, a), (t, a) ∈ [0, T) ×R
n.

4 Characterization of W via viscosity solution of Hamilton-Jacobi-Bellman
equation

Based on Theorem 3.2 and Remark 3.6, it is necessary to study the characterization of the
auxiliary value function W in (3.7) in order to solve the original state-constrained control
problem in (2.3). In this section and Sects. 5-6, we provide the characterization of W by
showing that W is a unique continuous viscosity solution of the associated HJB equation.

As seen from (3.7), the auxiliary value function depends on the augmented dynamical
system on R

n+1. We introduce the following notation:

f̂ (t, a, u) :=

[
f (t, a, u)
–l(t, a, u)

]
, σ̂ (t, a, u,α) :=

[
σ (t, a, u)

α�

]
,
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χ̂ (t, a, u, e,β) :=

[
χ (t, a, u, e)

β(e)

]
, â =

[
a
b

]
,

where σ̂ : [0, T] × R
n × U × R

p → R
(n+1)×p and χ̂ : [0, T] × R

n × U × E × G2(E,B(E),π ;
R) →R

n+1. Let O := [0, T) ×R
n × (0,∞), Ō := [0, T] ×R

n × [0,∞), and G2 := G2(E,B(E),
π ;R).

The HJB equation with the boundary conditions (see Lemma 3.5) is introduced below,
which is the second-order nonlinear partial integro-differential equation (PIDE):

⎧⎪⎪⎨
⎪⎪⎩

–∂tW (t, a, b) + H(t, a, b, (W , DW , D2W )(t, a, b)) = 0, (t, a, b) ∈O,

W (T , a, b) = max{m(a) – b, 0}, (a, b) ∈ R
n × [0,∞),

W (t, a, 0) = W0(t, a), (t, a) ∈ [0, T) ×R
n,

(4.1)

where the Hamiltonian H : Ō ×R×R
n+1 × S

n+1 →R is defined by

H
(
t, a, b, W , DW , D2W

)

:= sup
u∈U

α∈Rr ,β∈G2

{
–
〈
DW (t, a, b), f̂ (t, a, u)

〉
–

1
2

Tr
(
σ̂ σ̂�(t, a, u,α)D2W (t, a, b)

)

–
∫

E

[
W
(
t, a + χ (t, a, u, e), b + β(e)

)
– W (t, a, b)

–
〈
DW (t, a, b), χ̂(t, a, u, e,β)

〉]
π (de)

}
– d(a,�).

The notion of viscosity solutions for (4.1) is given as follows [8, 9]:

Definition 1 A real-valued function W ∈ C(Ō) is said to be a viscosity subsolution (resp.
supersolution) of (4.1) if

(i) W (T , a, b) ≤ max{m(a) – b, 0} (resp. W (T , a, b) ≥ max{m(a) – b, 0}) for
(a, b) ∈ R

n × [0,∞) and W (t, a, 0) ≤ W0(t, a) (resp. W (t, a, 0) ≥ W0(t, a)) for
(t, a) ∈ [0, T) ×R

n;
(ii) For all test functions φ ∈ C1,3

b (Ō) ∩ C2(Ō), the following inequality holds at the
global maximum (resp. minimum) point (t, a, b) ∈O of W – φ:

– ∂tφ(t, a, b) + H
(
t, a, b,

(
φ, Dφ, D2φ

)
(t, a, b)

)≤ 0
(
resp. –∂tφ(t, a, b) + H

(
t, a, b,

(
φ, Dφ, D2φ

)
(t, a, b)

)≥ 0
)
.

A real-valued function W ∈ C(Ō) is said to be a viscosity solution of (4.1) if it is both a
viscosity subsolution and a viscosity supersolution of (4.1).

The existence of the viscosity solution for (4.1) can be stated as follows:

Theorem 4.1 Suppose that Assumptions 1-3 hold. Then the auxiliary value function W
defined in (3.7) is a continuous viscosity solution of the HJB equation in (4.1).

Proof of Theorem 4.1 Let us first prove the subsolution property. In view of Lemma 3.3,
W ∈ C([0, T] ×R

n+1). Also, from Lemma 3.5, W satisfies (i) of Definition 1.
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We prove (ii) of Definition 1. Let φ ∈ C1,3
b (Ō) be the test function such that

(W – φ)(t, a, b) = max
(t̄,ā,b̄)∈O

(W – φ)(t̄, ā, b̄),

and without loss of generality, we may assume that W (t, a, b) = φ(t, a, b). This implies
W (t̄, ā, b̄) ≤ φ(t̄, ā, b̄) for (t̄, ā, b̄) ∈O and (t̄, ā, b̄) �= (t, a, b).

By using the DPP in Proposition 3.1 with t, t + τ ∈ [0, T] and τ > 0,

φ(t, a, b) = W (t, a, b)

= inf
u∈U

α∈A,β∈B
E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + W
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)]
,

which implies

φ(t, a, b) – E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + φ
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)]≤ 0.

By applying Itô’s formula of Lévy-type stochastic integrals [2, Theorem 4.4.7],

– E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds +
∫ t+τ

t
∂tφ

(
s, xt,a;u

s , yu,α,β
s;t,a,b

)
ds
]

– E

[∫ t+τ

t

〈
Dφ

(
s, xt,a;u

s , yu,α,β
s;t,a,b

)
, f̂
(
s, xt,a;u

s , us
)〉

ds
]

–
1
2
E

[∫ t+τ

t
Tr
(
σ̂ σ̂�(s, xt,a;u

s , us,αs
)
D2φ

(
s, xt,a;u

s , yu,α,β
s;t,a,b

))
ds
]

– E

[∫ t+τ

t

∫
E

[
φ
(
s, xt,a;u

s + χ
(
s, xt,a;u

s , us, e
)
, yu,α,β

s;t,a,b + βs(e)
)

– φ
(
s, xt,a;u

s , yu,α,β
s;t,a,b

)

–
〈
Dφ

(
s, xt,a;u

s , yu,α,β
s;t,a,b

)
, χ̂
(
s, xt,a;u

s , us, e,βs(e)
)〉]

π (de) ds
]

≤ 0,

where we have used the fact that the expectation for the stochastic integrals of B and Ñ
are zero, since they are Ft-martingales.

Multiplying 1
τ

above and then letting τ ↓ 0, we have

– ∂tφ(t, a, b) + H ′(t, a, b,
(
φ, Dφ, D2φ

)
(t, a, b); u,α,β

)≤ 0,

where

H ′(t, a, b,
(
φ, Dφ, D2φ

)
(t, a, b); u,α,β

)

:= –d(a,�) –
〈
Dφ(t, a, b), f̂ (t, a, u)

〉
–

1
2

Tr
(
σ̂ σ̂�(t, a, u,α)D2φ(t, a, b)

)

–
∫

E

[
φ
(
t, a + χ (t, a, u, e), b + β(e)

)
)

– φ(t, a, b) –
〈
Dφ(t, a, b), χ̂(t, a, u, e,β)

〉]
π (de). (4.2)
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By taking sup with respect to (u,α,β) ∈ U ×R
p × G2, in view of definition H ,

–∂tφ(t, a, b) + H
(
t, a, b,

(
φ, Dφ, D2φ

)
(t, a, b)

)≤ 0, (4.3)

which shows that W is the viscosity subsolution of (4.1).
We now prove, by contradiction, the supersolution property. It is easy to see that W

satisfies the boundary inequalities in (i) of Definition 1.
Suppose that φ ∈ C1,3

b (Ō) is the test function satisfying the following property:

(W – φ)(t, a, b) = min
(t̄,ā,b̄)∈O

(W – φ)(t̄, ā, b̄),

and without loss of generality, we may assume W (t, a, b) = φ(t, a, b). This implies that
W (t̄, ā, b̄) ≥ φ(t̄, ā, b̄) for (t̄, ā, b̄) ∈O and (t̄, ā, b̄) �= (t, a, b).

Let us assume that W is not a viscosity supersolution. Then there exists a constant θ > 0
such that

–∂tφ(t, a, b) + H
(
t, a, b,

(
φ, Dφ, D2φ

)
(t, a, b)

)≤ –θ < 0.

Recall the definition of H ′ in (4.2) and note that H ′ ≤ supu∈U ,α∈Rr ,β∈G2 H ′ = H . Then for
any (u,α,β) ∈ U ×R

p × G2, we have

–∂tφ(t, a, b) + H ′(t, a, b,
(
φ, Dφ, D2φ

)
(t, a, b); u,α,β

)≤ –θ < 0. (4.4)

On the other hand, the DPP in Proposition 3.1 implies

φ(t, a, b) = W (t, a, b)

≥ inf
u∈U

α∈A,β∈B
E

[∫ t+τ

t
d
(
xt,a;u

s ,�
)

ds + φ
(
t + τ , xt,a;u

t+τ , yu,α,β
t+τ ;t,a,b

)]
,

and for each ε > 0, there exist (uε ,αε ,βε) ∈ U ×A×B such that

–ετ ≤ φ(t, a, b) – E

[∫ t+τ

t
d
(
xt,a;uε

s ,�
)

ds + φ
(
t + τ , xt,a;uε

t+τ , yuε ,αε ,βε

t+τ ;t,a,b
)]

. (4.5)

As in the viscosity subsolution case, we apply Itô’s formula to (4.5) and then multiply 1
τ

.
Since (4.4) holds for any (u,α,β) ∈ U ×R

p × G2, by letting τ ↓ 0 and noting the arbitrari-
ness of ε, we have

0 ≤ –∂tφ(t, a, b) + H ′(t, a, b,
(
φ, Dφ, D2φ

)
(t, a, b); u,α,β

)≤ –θ .

This leads to the desired contradiction, since θ > 0. Hence, W is the viscosity supersolu-
tion. This, together with (4.3), shows that W is the continuous viscosity solution of (4.1).
This completes the proof. �
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5 Uniqueness of viscosity solution
We state the comparison principle of viscosity subsolution and supersolution, whose proof
is reported in Sect. 6.

Theorem 5.1 Suppose that Assumptions 1-3 hold. Let W ∈ C(Ō) be a viscosity subsolution
of the HJB equation in (4.1), and W ∈ C(Ō) a viscosity supersolution of (4.1), where both
W and W satisfy the linear growth condition in a ∈R

n. Then

W (t, a, b) ≤ W (t, a, b), ∀(t, a, b) ∈ Ō. (5.1)

Based on Theorems 4.1 and 5.1, we state the following main result:

Corollary 5.1 Let Assumptions 1-3 hold. Then the auxiliary value function W in (3.7) is
a unique continuous viscosity solution of the HJB equation in (4.1).

Proof Note first that in view of Theorem 4.1, the auxiliary value function W in (3.7) is the
continuous viscosity solution of the HJB equation in (4.1). To prove the uniqueness, by
Lemma 3.3, the auxiliary value function W satisfies the linear growth condition in The-
orem 5.1. As W is the viscosity solution of (4.1) (see Theorem 4.1), by Definition 1, W is
both the viscosity subsolution and the viscosity supersolution satisfying the comparison
principle in Theorem 5.1. Then the uniqueness follows from Theorem 5.1. This completes
the proof. �

5.1 Concluding remarks
We have studied the state-constrained stochastic optimal problem for jump-diffusion sys-
tems. Our main results are Theorems 3.2, 4.1, and 5.1, where we have shown that the
original value function V in (2.3) can be characterized by the zero-level set of the aux-
iliary value function W in (3.7) (see (3.8)). Note that W can be characterized by solving
the associated HJB equation in (4.1), since W is a unique continuous viscosity solution of
(4.1).

One possible potential future research problem would be to consider the two-player
stochastic game framework for which we need to generalize Theorem 3.2 using the notion
of nonanticipative strategies. The state-constrained problem with general BSDE (back-
ward SDE) type recursive objective functionals would also be an interesting avenue to
pursue. Applications to various mathematical finance problems will be studied in the near
future.

6 Proof of Theorem 5.1
This section is devoted to the proof of Theorem 5.1.
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6.1 Equivalent definitions of viscosity solutions
To prove the uniqueness, we first provide two equivalent definitions of Definition 1. The
HJB equation in (4.1) can be rewritten as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

supu∈U{supα∈Rr H (1)(t, a, (DW , D2W )(t, a, b); u,α)

+ supβ∈G2 H (2)(t, a, b, (W , DW )(t, a, b); u,β)} = 0, (t, a, b) ∈O,

W (T , a, b) = max{m(a) – b, 0}, (a, b) ∈R
n × [0,∞),

W (t, a, 0) = W0(t, a), (t, a) ∈ [0, T) ×R
n,

(6.1)

where with D2W =
[ D2W(11) D2W(12)

(D2W(12))� D2W(22)

]
,

H (1)(t, a,
(
∂tW , DW , D2W

)
; u,α

)

:= –∂tW – d(a,�) –
〈
DW , f̂ (t, a, u)

〉
–

1
2

Tr
(
σσ�(t, a, u)D2W(11)

)

– α�σ�(t, a, u)D2W(12) –
1
2
|α|2D2W(22),

and

H (2)(t, a, b, (W , DW )(t, a, b); u,β
)

:= –
∫

E

[
W
(
t, a + χ (t, a, u, e), b + β(e)

)
– W (t, a, b)

–
〈
DW (t, a, b), χ̂(t, a, u, e,β)

〉]
π (de).

To avoid the possibility of supα∈Rr H (1) = ∞ due to the unboundedness of α, we have
the following result. The proof is analogous that for [11, Lemma 4.1, Remark 4.5] and [17,
Sect. 2.3].

Lemma 6.1 H (1) can be expressed as

sup
α∈Rr

H (1)(t, a,
(
∂tW , DW , D2W

)
; u,α

)
= �+(Gψ

(
t, a,

(
∂tW , DW , D2W

)
; u
))

,

where �+(A) := sup|v|=1 |Av| = supv�=0
|Av|
|v| , i.e., the largest eigenvalue of A ∈ S

n, and

Gψ

(
t, a,

(
∂tW , DW , D2W

)
; u
)

:=

[
G(11) ψ(b)G(12)

ψ(b)G�
(12) ψ2(b)G(22)

]

with ψ : [0,∞) → [0,∞) being a continuous function and

G(11) := –∂tW – d(a,�) –
〈
DW , f̂ (t, a, u)

〉
–

1
2

Tr
(
σσ�(t, a, u)D2W(11)

)
,

G(12) := –
1
2
(
σ�(t, a, u)D2W(12)

)�, G(22) := –
1
2

D2W(22)Ir .
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Remark 6.1 From Lemma 6.1, the HJB equation in (6.1) is equivalent to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

supu∈U{�+(Gψ (t, a, (∂tW , DW , D2W )(t, a, b); u))

+ supβ∈G2 H (2)(t, a, b, (W , DW )(t, a, b); u,β)} = 0, (t, a, b) ∈O,

W (T , a, b) = max{m(a) – b, 0}, (a, b) ∈R
n × [0,∞),

W (t, a, 0) = W0(t, a), (t, a) ∈ [0, T) ×R
n.

(6.2)

We will use (6.2) to prove the comparison principle in Theorem 5.1 with ψ(b) := 1
2 e 1

2 b for
b ∈ [0,∞).

For δ > 0, let Eδ := {e ∈ E||e| < δ}; hence, E = Eδ ∪ EC
δ . We then define

H (2)(t, a, b, (W , DW ); u,β
)

= H (21)
δ

(
t, a, b, (W , DW ); u,β

)
+ H (22)

δ

(
t, a, b, (W , DW ); u,β

)
,

where

H (21)
δ

(
t, a, b, (W , DW ); u,β

)

:= –
∫

Eδ

[
W
(
t, a + χ (t, a, u, e), b + β(e)

)
– W (t, a, b)

–
〈
DW (t, a, b), χ̂(t, a, u, e,β)

〉]
π (de),

and

H (22)
δ

(
t, a, b, (W , DW ); u,β

)

:= –
∫

EC
δ

[
W
(
t, a + χ (t, a, u, e), b + β(e)

)
– W (t, a, b)

]
π ( de)

–
〈
DW (t, a, b), χ̂(t, a, u, e,β)

〉
]π (de).

From [8, 9, 18, 31, 32] (see [9, Proposition 1]), we have the following first equivalent
definition of Definition 1:

Lemma 6.2 Suppose that W is a viscosity subsolution (resp. supersolution) of the HJB
equation in (6.2). Then it is necessary and sufficient to hold the following:

(i) W (T , a, b) ≤ max{m(a) – b, 0} (resp. W (T , a, b) ≥ max{m(a) – b, 0}) for
(a, b) ∈R

n × [0,∞) and W (t, a, 0) ≤ W0(t, a) (resp. W (t, a, 0) ≥ W0(t, a)) for
(t, a) ∈ [0, T) ×R

n;
(ii) For all δ ∈ (0, 1) and test functions φ ∈ C1,3

b (Ō) ∩ C2(Ō), the following inequality
holds at the global maximum (resp. minimum) point (t, a, b) ∈O of W – φ:

sup
u∈U

{
�+(Gψ

(
t, a,

(
∂tφ, Dφ, D2φ

)
(t, a, b); u

))

+ sup
β∈G2

{
H (21)

δ

(
t, a, b, (φ, Dφ)(t, a, b); u,β

)

+ H (22)
δ

(
t, a, b, (W , Dφ)(t, a, b); u,β

)}}≤ 0
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(
resp. sup

u∈U

{
�+(Gψ

(
t, a,

(
∂tφ, Dφ, D2φ

)
(t, a, b); u

))

+ sup
β∈G2

{
H (21)

δ

(
t, a, b, (φ, Dφ)(t, a, b); u,β

)

+ H (22)
δ

(
t, a, b, (W , Dφ)(t, a, b); u,β

)}}≥ 0
)

.

The definition of parabolic superjet and subjet is given as follows [21]:

Definition 2
(i) For W (t, â), the superjet of W at the point of (t, â) ∈O is defined by5

P1,2,+W (t, â)

:=
{

(q, p, P) ∈R×R
n+1 × S

n+1|

W
(
t′, â′)≤ W (t, â) + q

(
t′ – t

)
+
〈
p, â′ – â

〉

+
1
2
〈
P
(̂
a′ – â

)
, â′ – â

〉
+ o

(∣∣t′ – t
∣∣ +

∣∣̂a′ – â
∣∣2), as (t′, â′) → (t, â)

}
.

(ii) The closure of P1,2,+W (t, â) is defined by

P1,2,+W (t, â) :=
{

(q, p, P) ∈R×R
n+1 × S

n+1|

(q, p, P) = lim
n→∞(qn, pn, Pn) with (qn, pn, Pn) ∈P1,2,+W (tn, ân)

and lim
n→∞

(
tn, ân, W (tn, ân)

)
=
(
t, â, W (t, â)

)}
.

(iii) For W (t, â), the subjet of W at the point of (t, â) ∈O and its closure are defined by

P1,2,–W (t, â) := –P1,2,+(–W (t, â)
)
, P1,2,–W (t, â) := –P1,2,+(–W (t, â)

)
.

Using Definition 2 and Lemma 6.2, we have the following second equivalent definition
of Definition 1 (see [8, 32], [31, Lemma 3.5], [9, Proposition 1], and [38, Lemmas 5.4 and
5.5, Chap. 4]):

Lemma 6.3 Suppose that W is a viscosity subsolution (resp. supersolution) of the HJB
equation in (6.2). Then it is necessary and sufficient to hold the following:

(i) W (T , a, b) ≤ max{m(a) – b, 0} (resp. W (T , a, b) ≥ max{m(a) – b, 0}) for
(a, b) ∈R

n × [0,∞) and W (t, a, 0) ≤ W0(t, a) (resp. W (t, a, 0) ≥ W0(t, a)) for
(t, a) ∈ [0, T) ×R

n;
(ii) For all δ ∈ (0, 1) and test functions φ ∈ C1,3

b (Ō) ∩ C2(Ō) with the local maximum
(resp. minimum) point (t, a, b) ∈O of W – φ, if (q, p, P) ∈P1,2,+W (t, a, b) (resp.
(q, p, P) ∈P1,2,–W (t, a, b)) with p = Dφ(t, a, b) and P = D2φ(t, a, b), then the following

5Note that â =
[
a� b

]� ∈ R
n+1 , by which we denote W(t, â) :=W(t,a,b) and W(t′ , â′) :=W(t′ ,a′ ,b′).
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inequality holds:

sup
u∈U

{
�+(Gψ

(
t, a, (q, p, P); u

))

+ sup
β∈G2

{
H (21)

δ

(
t, a, b, (φ, Dφ)(t, a, b); u,β

)

+ H (22)
δ

(
t, a, b, W (t, a, b), p; u,β

)}}≤ 0
(

resp. sup
u∈U

{
�+(Gψ

(
t, a, (q, p, P); u

))

+ sup
β∈G2

{
H (21)

δ

(
t, a, b, (φ, Dφ)(t, a, b); u,β

)

+ H (22)
δ

(
t, a, b, W (t, a, b), p; u,β

)}}≥ 0
)

.

Remark 6.2 Lemma 6.3 is introduced due to the singularity of the Lévy measure in zero,
appearing in the nonlocal operator H (21)

δ . We will see that with the regularity of the test
function, one can pass the limit of H (21)

δ around the singular point of the measure.

6.2 Strict viscosity subsolution
Lemma 6.4 Suppose that W is the viscosity subsolution of (6.2). Let

W ν(t, a, b) := W (t, a, b) + νγ (t, b),

where for ν > 0,

γ (t, b) := –(T – t) –
(
1 – e–b).

Then W ν is the strict viscosity subsolution of (6.2) in the sense that ≤ 0 is replaced by ≤ – ν
8

in Definition 1.

Proof We first verify the boundary condition of Wν . Note that as b ∈ [0,∞) and ν > 0,

W ν(T , a, b) = W (T , a, b) – ν
(
1 – e–b)≤ max

{
m(a) – b, 0

}
,

and by Lemma 3.5

W ν(t, a, 0) = W (t, a, 0) – ν(T – t) ≤ W0(t, a).

Now, let φν ∈ C1,3
b (Ō) be the test function such that

(W ν – φν)(t, a, b) = max
(t′ ,a′ ,b′)∈O

(W ν – φν)
(
t′, a′, b′).

Then from (6.2) and Definition 1, it is necessary to show that

sup
u∈U

{
�+(Gψ

(
t, a,

(
∂tφν , Dφν , D2φν

)
(t, a, b); u

))

+ sup
β∈G2

H (2)(t, a, b, (φν , Dφν)(t, a, b); u,β
)}≤ –

ν

8
. (6.3)
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By defining

φ(t, a, b) := –νγ (t, b) + φν(t, a, b),

it is easy to see that φ ∈ C1,3
b (Ō) and

(W ν – φν)(t, a, b) = W (t, a, b) –
(
–νγ (t, b) + φν(t, a, b)

)
= W (t, a, b) – φ(t, a, b).

Then

max
(t′ ,a′ ,b′)∈O

(W ν – φν)
(
t′, a′, b′) = (W ν – φν)

(
t, a′, b′)

= (W – φ)
(
t, a′, b′) = max

(t′ ,a′ ,b′)∈O
(W – φ)

(
t′, a′, b′). (6.4)

Since φν = φ + νγ , �+ is the norm, and H (2) is linear in φν and Dφν ,

sup
u∈U

{
�+(Gψ

(
t, a,

(
∂tφν , Dφν , D2φν

)
(t, a, b); u

))

+ sup
β∈G2

H (2)(t, a, b, (φν , Dφν)(t, a, b); u,β
)}≤ I(1) + I(2),

where

I(1) := sup
u∈U

{
�+(Gψ

(
t, a,

(
∂tφ, Dφ, D2φ

)
(t, a, b); u

))

+ sup
β∈G2

H (2)(t, a, b, (φ, Dφ)(t, a, b); u,β
)}

,

I(2) := ν sup
u∈U

{
�+(Gψ

(
t, a,

(
∂tγ , Dγ , D2γ

)
(t, b); u

))

+ sup
β∈G2

H (2)(t, a, b, (γ , Dγ )(t, b); u,β
)}

.

We now provide the estimate of I(1) and I(2). First, since W is the viscosity subsolution
and φ is the corresponding test function in view of (6.4), we have

I(1) ≤ 0. (6.5)

For I(2), we observe that

H (2)(t, a, b, (γ , Dγ )(t, b); u,β
)

=
∫

E

[(
1 – e–(b+β(e))) –

(
1 – e–b) – e–bβ(e)

]
π (de).

Since b ∈ [0,∞) and β ∈ G2, it is easy to see that with β(e) = 0,

sup
β∈G2

H (2)(t, a, b, (γ , Dγ )(t, b); u,β
)

= 0.
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Recall ψ(b) = 1
2 e 1

2 b for b ∈ [0,∞). In the definition of Gψ ,

G(11) = –1 – e–bl(t, a, u) – d(a,�), ψ(b)G(12) = 0,

ψ2(b)G(22) = –
1

2 × 4
ebe–bIr = –

1
8

Ir .

Note that since l and d(a,�) are positive, and b ∈ [0,∞), we have G(11) ≤ –1. Then we
can show that

�+(Gψ

(
t, a,

(
∂tγ , Dγ , D2γ

)
(t, b); u

))

= �+

([
–1 – e–bl(t, a, u) – d(a,�) 0

0 – 1
8 Ir

])
≤ –

1
8

,

which implies

I(2) ≤ –(ν/8). (6.6)

Then (6.5) and (6.6) lead to (6.3). We complete the proof. �

6.3 Proof of Theorem 5.1
We continue to prove the uniqueness. For η > 0 and ν > 0, let

	ν;η,λ(t, a, b) := W ν(t, a, b) – W (t, a, b) – 2ηe–λt(1 + |a|2 + b
)
, (6.7)

where λ > 0 will be specified later. Then it is necessary to show that

	ν;η,λ(t, a, b) ≤ 0, ∀(t, a, b) ∈ Ō, (6.8)

since by letting η ↓ 0 and then ν ↓ 0, the desired result in (5.1) holds, i.e.,

W (t, a, b) ≤ W (t, a, b), ∀(t, a, b) ∈ Ō.

Assume that (6.8) is not true, i.e., 	ν;η,λ(t, a, b) > 0 for some (t, a, b) ∈ Ō. Consider,

	ν;η,λ(t̃, ã, b̃) = max
(t,a,b)∈Ō

	ν;η,λ(t, a, b) > 0, (6.9)

where the maximum exists, since W ν and W satisfy the linear growth condition (log(1 + b)
also holds the linear growth condition) and e–λt is decreasing. Actually, (t̃, ã, b̃) is depen-
dent on (ν,η,λ), i.e., (t̃, ã, b̃) := (t̃ν;η,λ, ãν;η,λ, b̃ν;η,λ).

Suppose that t̃ = T . Then in view of (6.7) and the definition of W ν ,

	ν;η,λ(T , ã, b̃) =W (T , ã, b̃) + νγ (T , b̃) – W (T , ã, b̃) – 2ηe–λT(1 + |ã|2 + b̃
)≤ 0,

which contradicts (6.9). Hence, t̃ < T . Similarly, when b̃ = 0, we have

	ν;η,λ(t̃, ã, 0) = W (t̃, ã, 0) – ν(T – t̃) – W (t̃, ã, 0) – 2ηe–λt(1 + |ã|2)≤ 0,

which again contradicts (6.9). Hence, b̃ > 0. This implies that (t̃, ã, b̃) ∈O.
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After doubling variables of 	 , we consider

	κ
ν;η,λ(t, a, b, ă, b̆) =	̂ν;η,λ(t, a, b, ă, b̆) – κζ (a, b, ă, b̆),

where κ > 0 and

	̂ν;η,λ(t, a, b, ă, b̆) := W ν(t, a, b) – W (t, ă, b̆) – ηe–λt(1 + |a|2 + b
)

– ηe–λt(1 + |ă|2 + b̆
)

–
ηe–λt

2
(|a – ã|2 + (b – b̃)

)
–

1
2
|t – t̃|2,

ζ (a, b, ă, b̆) :=
1
2
(|a – ă|2 + |b – b̆|2).

Since 	̂ν;η,λ(t, a, b, a, b) ≤ 	ν;η,λ(t, a, b) and 	̂ν;η,λ(t̃, ã, b̃, ã, b̃) = 	ν;η,λ(t̃, ã, b̃),

	ν;η,λ(t̃, ã, b̃) = max
(t,a,b)∈O

	ν;η,λ(t, a, b) = max
(t,a,b)∈O

	̂ν;η,λ(t, a, b, a, b). (6.10)

We consider (t′
κ , a′

κ , b′
κ , ă′

κ , b̆′
κ ) such that

	κ
ν;η,λ

(
t′
κ , a′

κ , b′
κ , ă′

κ , b̆′
κ

)
= max

(t,a,b,ă,b̆)∈O×Rn×(0,∞)

{
	̂ν;η,λ(t, a, b, ă, b̆) – κζ (a, b, ă, b̆)

}
,

which exists since –	κ
ν;η,λ is coercive. Then from [21, Proposition 3.7],

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

limκ→∞ κζ (a′
κ , b′

κ , ă′
κ , b̆′

κ ) = 0,

limκ→∞ 	κ
ν;η,λ(t′

κ , a′
κ , b′

κ , ă′
κ , b̆′

κ ) = 	̂ν;η,λ(t′, a′, b′, ă′, b̆′)

= maxζ (a,b,ă,b̆)=0 	̂ν;η,λ(t, a, b, ă, b̆),

limκ→∞ ζ (a′
κ , b′

κ , ă′
κ , b̆′

κ ) = ζ (a′, b′, ă′, b̆′) = 0.

This, together with (6.10), implies that as κ → ∞,

⎧⎪⎪⎨
⎪⎪⎩

|a′
κ – ă′

κ |2, |b′
κ – b̆′

κ |2 → 0,
κ
2 |a′

κ – ă′
κ |2, κ

2 |b′
κ – b̆′

κ |2 → 0,

t′
κ → t̃, a′

κ , ă′
κ → ã, b′

κ , b̆′
κ → b̃.

(6.11)

For simplicity, we denote (t′, a′, b′, ă′, b̆′) := (t′
κ , a′

κ , b′
κ , ă′

κ , b̆′
κ ).

We let

hη,λ(t, a, b) := ηe–λt(1 + |a|2 + b
)

+
1
2
|t – t̃|2 + ηe–λt 1

2
(|a – ã|2 + (b – b̃)

)
,

ĥη,λ(t, ă, b̆) := ηe–λt(1 + |ă|2 + b̆
)
,

ζκ (a, b, ă, b̆) :=
κ

2
(|a – ă|2 + |b – b̆|2).
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Then

	κ
ν;η,λ(t, a, ă, b, b̆) =

(
W ν(t, a, b) – hη,λ(t, a, b)

)
–
(
W (t, ă, b̆) + ĥ(t, ă, b̆)

)
– ζκ (a, b, ă, b̆). (6.12)

We invoke Crandall-Ishii’s lemma in [21, Theorem 8.3 and Remark 2.7] from which there
exist

⎧⎪⎪⎨
⎪⎪⎩

q + q̂ = ∂tζκ (a′, b′, ă′, b̆′) = 0,

(q + ∂thη,λ, D(a,b)(hη,λ + ζκ ), P + D2
(a,b)hη,λ)(t′, a′, b′) ∈P1,2,+W ν(t′, a′, b′),

(–̂q – ∂t ĥη,λ, –D(ă,b̆)(̂hη,λ + ζκ ), –P̂ – D2
(ă,b̆)̂

hη,λ)(t′, ă′, b̆′) ∈P1,2,–W (t′, ă′, b̆′),

such that

–3κ

[
In+1 0

0 In+1

]
≤
[

P 0
0 P̂

]
≤ 3κ

[
In+1 –In+1

–In+1 In+1

]
. (6.13)

Straightforward computation yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂thη,λ(t, a, b) = –ηλe–λt(1 + |a|2 + b) + (t – t̃) – ηλe–λt

2 (|a – ã|2 + (b – b̃)),

∂t ĥη,λ(t, ă, b̆) = –ηλe–λt(1 + |ă|2 + b̆),

D(a,b)hη,λ(t, a, b) =

⎡
⎣2ηe–λta + ηe–λt(a – ã)

3
2ηe–λt

⎤
⎦ ,

D(ă,b̆)̂hη,λ(t, ă, b̆) =

⎡
⎣2ηe–λt ă

ηe–λt

⎤
⎦ ,

D2
(a,b)hη,λ(t, a, b) =

⎡
⎣3ηe–λtIn 0

0 0

⎤
⎦ ,

D2
(ă,b̆)̂

hη,λ(t, ă, b̆) =

⎡
⎣2ηe–λtIn 0

0 0

⎤
⎦ ,

D(a,b)ζκ (t, a, b, ă, b̆) =

⎡
⎣κ(a – ă)

κ(b – b̆)

⎤
⎦ ,

D(ă,b̆)ζκ (t, a, b, ă, b̆) =

⎡
⎣–κ(a – ă)

–κ(b – b̆)

⎤
⎦ .

(6.14)

Below, we use the superscript ′ in the above derivatives when they are evaluated at
(t′, a′, b′, ă′, b̆′) (e.g. ∂th′

η,λ := ∂thη,λ(t′, a′, b′)).
From Lemmas 6.3 and 6.4, there exists φ ∈ C1,3

b (Ō) ∩ C2(Ō) such that

sup
u∈U

{
�+(Gψ

(
t′, a′,

(
q + ∂th′

η,λ, D(a,b)
(
h′

η,λ + ζ ′
κ

)
, P + D2

(a,b)h
′
η,λ
)
; u
))

+ sup
β∈G2

{
H (21)

δ

(
t′, a′, b′, (φ, Dφ)

(
t′, a′, b′); u,β

)
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+ H (22)
δ

(
t′, a′, b′, W ν

(
t′, a′, b′), D(a,b)

(
h′

η,λ + ζ ′
κ

)
; u,β

)}}≤ –
ν

8
,

and

sup
u∈U

{
�+(Gψ

(
t′, ă′,

(
–̂q – ∂t ĥ′

η,λ, –D(ă,b̆)
(̂
h′

η,λ + ζ ′
κ

)
, –P̂ – D2

(ă,b̆)̂h
′
η,λ
)
; u
))

+ sup
β∈G2

{
H (21)

δ

(
t′, ă′, b̆′, (φ, Dφ)

(
t′, ă′, b̆′); u,β

)

+ H (22)
δ

(
t′, ă′, b̆′, W

(
t′, ă′, b̆′), –D(ă,b̆)

(̂
h′

η,λ + ζ ′
κ

)
; u,β

)}}≥ 0.

Then using sup{f (x) – g(x)} ≤ sup f (x) – sup g(x), we have

ϒ (1) + ϒ (2) + ϒ (3) ≥ ν

8
,

where

ϒ (1) := sup
u∈U

{
�+(Gψ

(
t′, ă′,

(
–̂q – ∂t ĥ′

η,λ, –D(ă,b̆)
(̂
h′

η,λ + ζ ′
κ

)
, –P̂ – D2

(ă,b̆)̂h
′
η,λ
)
; u
))

– �+(Gψ

(
t′, a′,

(
q + ∂th′

η,λ, D(a,b)
(
h′

η,λ + ζ ′
κ

)
, P + D2

(a,b)h
′
η,λ
)
; u
))}

,

ϒ (2) := sup
u∈U ,β∈G2

{
H (21)

δ

(
t′, ă′, b̆′, (φ, Dφ)

(
t′, ă′, b̆′); u,β

)

– H (21)
δ

(
t′, a′, b′, (φ, Dφ)

(
t′, a′, b′); u,β

)}
,

ϒ (3) := sup
u∈U ,β∈G2

{
H (22)

δ

(
t′, ă′, b̆′, W

(
t′, ă′, b̆′), –D(ă,b̆)

(̂
h′

η,λ + ζ ′
κ

)
; u,β

)

– H (22)
δ

(
t′, a′, b′, W ν

(
t, a′, b′), D(a,b)

(
h′

η,λ + ζ ′
κ

)
; u,β

)}
.

We obtain the estimate of ϒ (1), ϒ (2), and ϒ (3) in (6.15), (6.21) and (6.26) separately below.
That is, (6.15), (6.21), and (6.26) show that for any λ ≥ max{C2, C4}, where C2 and C4 are
given below, we have

ν

8
≤ lim

η↓0
lim

κ→∞ lim
δ↓0

{
ϒ (1) + ϒ (2) + ϒ (3)}≤ 0,

which leads to the desired contradiction, since ν > 0 from Lemma 6.4. Hence, (6.8) holds,
and we have the comparison principle in (5.1).

6.4 Estimate of ϒ (1)

From the definition of Gψ , we denote

Gψ

(
t′, ă′,

(
–̂q – ∂t ĥ′

η,λ, –D(ă,b̆)
(̂
h′

η,λ + ζ ′
κ

)
, –P̂ – D2

(ă,b̆)̂h
′
η,λ
)
; u
)

= Ĝ(1)
ψ + Ĝ(2)

ψ + Ĝ(3)
ψ ,

where

Ĝ(1)
ψ := Gψ

(
t′, ă′,

(
–̂q –

1
2
∂t ĥ′

η,λ, –D(ă,b̆)
(̂
h′

η,λ + ζ ′
κ

)
, 0
)

; u
)

,

Ĝ(2)
ψ := Gψ

(
t′, ă′, (0, 0, –P̂); u

)
,
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Ĝ(3)
ψ := Gψ

(
t′, ă′,

(
–

1
2
∂t ĥ′

η,λ, 0, –D2
(ă,b̆)̂h

′
η,λ

)
; u
)

,

and

Gψ

(
t′, a′,

(
q + ∂th′

η,λ, D(a,b)
(
h′

η,λ + ζ ′
κ

)
, P + D2

(a,b)h
′
η,λ
)
; u
)

= G(1)
ψ + G(2)

ψ + G(3)
ψ ,

where

G(1)
ψ := Gψ

(
t′, a′,

(
q +

1
2
∂th′

η,λ, D(a,b)
(
h′

η,λ + ζ ′
κ

)
, 0
)

; u
)

,

G(2)
ψ := Gψ

(
t′, a′, (0, 0, P); u

)
,

G(3)
ψ := Gψ

(
t′, a′,

(
1
2
∂th′

η,λ, 0, D2
(a,b)h

′
η,λ

)
; u
)

.

Then using |A – B| ≥ |A| – |B|, we have

ϒ (1) := sup
u∈U

{
�+(Ĝ(1)

ψ + Ĝ(2)
ψ + Ĝ(3)

ψ

)
– �+(G(1)

ψ + G(2)
ψ + G(3)

ψ

)}

≤ sup
u∈U

�+(Ĝ(1)
ψ + Ĝ(2)

ψ + Ĝ(3)
ψ –

(
G(1)

ψ + G(2)
ψ + G(3)

ψ

))

≤ ϒ (11) + ϒ (12) + ϒ (13),

where

ϒ (11) := sup
u∈U

�+(Ĝ(1)
ψ – G(1)

ψ

)
, ϒ (12) := sup

u∈U
�+(Ĝ(2)

ψ – G(2)
ψ

)
,

ϒ (13) := sup
u∈U

�+(Ĝ(3)
ψ – G(3)

ψ

)
.

The estimate of ϒ (1i), i = 1, 2, 3, is obtained in (6.16), (6.19), and (6.20) separately below,
which show that for any λ ≥ max{C2, C4}, where C2 and C4 are given below,

lim
κ→∞ϒ (1) ≤ lim

κ→∞
{
ϒ (11) + ϒ (12) + ϒ (13)}≤ 0. (6.15)

6.4.1 Estimate of ϒ (11)

From definition,

Ĝ(1)
ψ =

[̂
q + 1

2∂t ĥ′
η,λ – d(ă′,�) + 〈D(ă,b̆)(̂h

′
η,λ + ζ ′

κ ), f̂ (t′, ă′, u)〉 0
0 0

]
,

G(1)
ψ =

[
–q – 1

2∂th′
η,λ – d(a′,�) – 〈D(a,b)(h′

η,λ + ζ ′
κ ), f̂ (t′, a′, u)〉 0

0 0

]
,

which implies (note that q̂ + q = 0)

ϒ (11) = sup
u∈U

max
{
∂t ĥ′

η,λ + ∂th′
η,λ +

〈
D(ă,b̆)

(̂
h′

η,λ + ζ ′
κ

)
, f̂
(
t′, ă′, u

)〉

+
〈
D(a,b)

(
h′

η,λ + ζ ′
κ

)
, f̂
(
t′, a′, u

)〉
+
(
d
(
a′,�

)
– d

(
ă′,�

))
, 0
}

.
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We have

1
2
(
∂t ĥ′

η,λ + ∂th′
η,λ
)

= –
η

2
λe–λt′(1 +

∣∣a′∣∣2 + b′) +
(
t′ – t̃

)
–

ηλe–λt′

4
(∣∣a′ – ã

∣∣2 +
∣∣b′ – b̃

∣∣4)

–
η

2
λe–λt′(1 +

∣∣ă′∣∣2 + b̆′)→ –ηλe–λt̃(1 + |ã|2 + b̃
)

as κ → ∞ due to (6.11),

and using Cauchy-Schwarz inequality, and Assumptions 1 and 2,

〈
D(ă,b̆)

(̂
h′

η,λ + ζ ′
κ

)
, f̂
(
t′, ă′, u

)〉
+
〈
D(a,b)

(
h′

η,λ + ζ ′
κ

)
, f̂
(
t′, a′, u

)〉
≤ C1ηe–λt′(1 +

∣∣a′∣∣2 +
∣∣ă′∣∣2 + b′ + b̆′) → C2ηe–λt̃(1 + |ã|2 + b̃

)
,

as κ → ∞ due to (6.11).

Moreover, from Assumption 3,

∣∣d(a′,�
)

– d
(
ă′,�

)∣∣≤ C
∣∣a′ – ă′∣∣→ 0 as κ → ∞ due to (6.11).

Hence,

lim
κ→∞ϒ (11) ≤ max

{
(–λ + C2)ηe–λt̃(1 + |ã|2 + b̃

)
, 0
}

,

and for any λ > 0 with λ ≥ C2, we have

lim
κ→∞ϒ (11) ≤ 0. (6.16)

6.4.2 Estimate of ϒ (12)

From definition,

Ĝ(2)
ψ =

[
1
2 Tr(σσ�(t′, ă′, u)̂P(11)) 1

2ψ(b̆′)̂P�
(12)σ (t′, ă′, u)

1
2ψ(b̆′)σ�(t′, ă′, u)̂P(12)

1
2ψ2(b̆′ )̂P(22)Ir

]
,

G(2)
ψ =

[
– 1

2 Tr(σσ�(t′, a′, u)P(11)) – 1
2ψ(b′)P�

(12)σ (t′, a′, u)
– 1

2ψ(b′)σ�(t′, a′, u)P(12) – 1
2ψ2(b′)P(22)Ir

]
.

Let

� :=

[
σ�(t′, a′, u) 0

0 ψ(b′)

]
, �̆ :=

[
σ�(t′, ă′, u) 0

0 ψ(b̆′)

]
.

Using (6.13) and Assumption 1, together with Cauchy-Schwarz inequality, we can show
that for any z ∈R

r+1,

z�
[
� �̆

][P 0
0 P̂

][
��

�̆�

]
z

≤ 3κz�
[
� �̆

][ In+1 –In+1

–In+1 In+1

][
��

�̆�

]
z
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≤ 3κ
∥∥�� – �̆�∥∥2

F |z|2 ≤ 3κC2(∣∣a′ – ă′∣∣2 +
∣∣b′ – b̆′∣∣2)|z|2. (6.17)

For j ∈ {1, . . . , r}, let z(j) :=
[

ẑ�
(j) zj

]� ∈ R
r+1, where zj ∈ R and ẑ(j) is an r-dimensional

vector with the jth entry being ẑ ∈ R and other entries being zero, i.e., ẑ(j) := [0 · · · 0 ẑ
0 · · · 0]. Then

1
2

z�
(j)
(
�P�� + �̆P̂�̆�)z(j)

=
1
2

ẑ2(σ�(t′, ă′, u
)̂
P(11)σ

(
t′, ă′, u

)
+ σ�(t′, a′, u

)
P(11)σ

(
t′, a′, u

))
jj

+ ẑ
(
ψ
(
b̆′)̂P�

(12)σ
(
t′, ă′, u

)
+ ψ

(
b′)P�

(12)σ
(
t′, a′, u

))
jzj

+
1
2

z2
j
(
ψ2(b̆′)̂P(22) + ψ2(b′)P(22)

)

≤ 3
2
κC2(∣∣a′ – ă′∣∣2 +

∣∣b′ – b̆′∣∣2)(ẑ2 + z2
j
)
, (6.18)

where the inequality follows from (6.17). In (6.18) and below, (·)j and (·)jj indicate the
jth component of the vector, and the jth element of the row and column of the matrix,
respectively.

Let

y :=
[
ẑ y�

2

]�
, y2 :=

[
z1 · · · zr

]�
.

Using (6.18), we can show that

y�(Ĝ(2)
ψ – G(2)

ψ

)
y

=
1
2

r∑
j=1

ẑ2(σ�(t′, ă′, u
)̂
P(11)σ

(
t′, ă′, u

)
+ σ�(t′, a′, u

)
P(11)σ

(
t′, a′, u

))
jj

+
r∑

j=1

ẑ
(
ψ
(
b̆′)̂P�

(12)σ
(
t′, ă′, u

)
+ ψ

(
b′)P�

(12)σ
(
t′, a′, u

))
jzj

+
1
2

r∑
j=1

z2
j
(
ψ2(b̆′)̂P(22) + ψ2(b′)P(22)

)

≤ 3
2
κC2(∣∣a′ – ă′∣∣2 +

∣∣b′ – b̆′∣∣2)r|y|2,

which, together with the arbitrariness of ẑ and zj, j ∈ {1, . . . , r}, leads to

max
|y|=1

y�(Ĝ(2)
ψ – G(2)

ψ

)
y ≤ 3

2
rκC2(∣∣a′ – ă′∣∣2 +

∣∣b′ – b̆′∣∣2).

Hence, in view of (6.11) and the definition of �+ (see Lemma 6.1 and [26, Example 5.6.6]),
we have

lim
κ→∞ϒ (12) ≤ 0. (6.19)
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6.4.3 Estimate of ϒ (13)

By definition, we have

Ĝ(3)
ψ =

[
1
2∂t ĥ′

η,λ + ηe–λt′ Tr(σσ�(t′, ă′, u)) 0
0 0r×r

]
,

G(3)
ψ =

[
– 1

2∂th′
η,λ – 3

2ηe–λt′ Tr(σσ�(t′, a′, u)) 0
0 0r×r

]
,

which implies

ϒ (13) = sup
u∈U

max

{
1
2
(
∂t ĥ′

η,λ + ∂th′
η,λ
)

+ ηe–λt′ Tr
(
σσ�(t′, ă′, u

))

+
3
2
ηe–λt′ Tr

(
σσ�(t′, a′, u

))
, 0
}

.

Note that from Assumption 1,

∣∣∣∣ηe–λt′ Tr
(
σσ�(t′, ă′, u

))
+

3ηe–λt′

2
Tr
(
σσ�(t′, a′, u

))∣∣∣∣
=
∣∣∣∣ηe–λt′∥∥σ (t′, ă′, u

)∥∥2
F +

3ηe–λt′

2
∥∥σ (t′, a′, u

)∥∥2
F

∣∣∣∣
≤ C3ηe–λt′(1 +

∣∣a′∣∣2 +
∣∣ă′∣∣2) → C4ηe–λt̃(1 + |ã|2) as κ → ∞ due to (6.11),

and as shown above,

1
2
(
∂t ĥ′

η,λ + ∂th′
η,λ
)→ –ηλe–λt̃(1 + |ã|2 + b̃

)
as κ → ∞ due to (6.11).

Hence,

lim
κ→∞ϒ (13) ≤ max

{
(C4 – λ)ηe–λt̃(1 + |ã|2 + b̃

)
, 0
}

,

and if we choose λ > 0 with λ ≥ C4, then

lim
κ→∞ϒ (13) ≤ 0. (6.20)

6.5 Estimate of ϒ (2)

In view of the definition of H (21),

ϒ (2) = sup
(u,β(e))∈U×G2

{
ϒ (21) + ϒ (22)},

where

ϒ (21) := –
∫

Eδ

[
φ′(t′, ă′ + χ

(
t′, ă′, u, e

)
, b̆′ + β(e)

)
– φ′(t′, ă′, b̆′)

–

〈
Dφ′(t′, ă′, b̆′),

[
χ (t′, ă′, u, e)

β(e)

]〉]
π (de),
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ϒ (22) :=
∫

Eδ

[
φ
(
t′, a′ + χ

(
t′, a′, u, e

)
, b′ + β(e)

)
– φ

(
t′, a′, b′)

–

〈
Dφ

(
t, a′, b′),

[
χ (t′, a′, u, e)

β(e)

]〉]
π (de).

Let χ ′(u, e) := χ (t′, a′, u, e). From the Höder inequality, it follows from the uniform
boundedness of D2φ that

ϒ (22) ≤
∫

Eδ

∫ 1

0
(1 – z)

∥∥D2φ
(
t′, a′ + zχ ′(u, e), b′ + zβ(e)

)∥∥
F

× (∣∣χ ′(u, e)
∣∣ +

∣∣β(e)
∣∣)dzπ ( de).

≤ C
((∫

Eδ

∣∣χ ′(u, e)
∣∣2π (de)

) 1
2

+
(∫

Eδ

∣∣β(e)
∣∣2π ( de)

) 1
2
)

.

Then the regularity of χ in Assumption 1 and the fact that β ∈ G2(E,B(E),π ;R) can be
restricted to a bounded control from Remark 3.1 imply that limδ↓0 ϒ (22) ≤ 0. A similar
technique can be applied to show that limδ↓0 ϒ (21) ≤ 0.

Hence, we have

lim
δ↓0

ϒ (2) ≤ 0. (6.21)

6.6 Estimate of ϒ (3)

Recall (6.12)

	κ
ν;η,λ(t, a, ă, b, b̆) =

(
W ν(t, a, b) – hη,λ(t, a, b)

)
–
(
W (t, ă, b̆) + ĥ(t, ă, b̆)

)
– ζκ (a, b, ă, b̆),

from which we have

W ν(t, a, b) – W (t, ă, b̆) = 	κ
ν;η,λ(t, a, b, ă, b̆)

+ hη,λ(t, a, b) + ĥη,λ(t, ă, b̆) + ζκ (a, b, ă, b̆). (6.22)

We note that (t′, a′, b′, ă′, b̆′) is the maximum point of 	κ
ν;η,λ.

Let χ ′(u, e) := χ (t′, a′, u, e) and χ̆ ′(u, e) := χ (t′, ă′, u, e). Since (t′, a′, b′, ă′, b̆′) is the maxi-
mum point of 	κ

ν;η,λ, it follows from (6.22) and the definition of ϒ (3) that

ϒ (3) ≤ sup
u∈U ,β∈G2

{
ϒ (31) + ϒ (32) + ϒ (33)},

where

ϒ (31) :=
∫

EC
δ

[
hη,λ

(
t′, a′ + χ ′(u, e), b′ + β(e)

)
– hη,λ

(
t′, a′, b′)]π (de)

–
∫

EC
δ

〈
D(a,b)h′

η,λ,

[
χ ′(u, e)
β(e)

]〉
π (de),
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ϒ (32) :=
∫

EC
δ

[̂
hη,λ

(
t′, ă′ + χ̆ ′(u, e), b̆′ + β(e)

)
– ĥη,λ

(
t′, ă′, b̆′)]π (de)

–
∫

EC
δ

〈
D(ă,b̆)̂h

′
η,λ,

[
χ̆ ′(u, e)
β(e)

]〉
π (de),

ϒ (33) :=
∫

EC
δ

[
ζκ

(
a′ + χ ′(u, e), b′ + β(e), ă′ + χ̆ ′(u, e), b̆′ + β(e)

)
– ζκ

(
a′, b′, ă′, b̆′))]π (de)

–
∫

EC
δ

〈
D(a,b)ζ

′
κ ,

[
χ ′(u, e)
β(e)

]〉
π (de) +

∫
EC

δ

〈
–D(ă,b̆)ζ

′
κ ,

[
χ̆ ′(u, e)
β(e)

]〉
π (de).

From (6.14), we can show that

ϒ (31) =
∫

EC
δ

∫ 1

0
(1 – z) Tr

([
3ηe–λt′ In 0

0 0

]

×
[

χ ′(χ ′)�(u, e) χ ′(u, e)β�(e)
β(e)(χ ′)�(u, e) β(e)β�(e)

])
dz π (de)

≤ Cnηe–λt′(1 +
∣∣a′∣∣2), (6.23)

and similarly,

ϒ (31) =
∫

EC
δ

∫ 1

0
(1 – z) Tr

([
2ηe–λt′ In 0

0 0

]

×
[

χ̆ ′(χ̆ ′)�(u, e) χ̆ ′(u, e)β�(e)
β(e)(χ̆ ′)�(u, e) β(e)β�(e)

])
dz π (de)

≤ Cnηe–λt′(1 +
∣∣ă′∣∣2). (6.24)

Moreover, using (6.14) and Assumption 1,

ϒ (33) =
κ

2

∫
EC

δ

∣∣χ ′(u, e) – χ̆ ′(u, e)
∣∣2π (de)

≤ κ

2
∣∣a′ – ă′∣∣2 → 0 as κ → ∞ due to (6.11). (6.25)

Hence, (6.23)-(6.25), together with (6.11), imply that

lim
η↓0

lim
κ→∞ lim

δ↓0
ϒ (3) ≤ 0. (6.26)

Appendix: Existence of optimal controls for jump-diffusion systems
In Theorem 3.2, an additional assumption of the existence of optimal controls for the aux-
iliary optimal control problem in (3.7) is needed. Here, we show that a certain class of
stochastic optimal control problems for jump-diffusion systems with unbounded control
sets admits an optimal control. The proof of the main result in this appendix (see The-
orem A.1) extends the case of SDEs in a Brownian setting without jumps studied in [11,
Appendix A] and [38, Theorem 5.2, Chap. 2] to the framework of jump-diffusion systems.
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As in (3.7), consider

W (t, a, b) := inf
u∈U

α∈A,β∈B
J(t, a, b; u,α,β),

J(t, a, b; u,α,β) = E

[
ρ2
(
xt,a;u

T , yu,α,β
T ;t,a,b

)
+
∫ T

t
ρ1
(
s, xt,a;u

s , us
)

ds
]

,

(A.1)

and subject to (we recall (2.1) and (3.1))

⎧⎪⎪⎨
⎪⎪⎩

dxt,a;u
s = f (s, xt,a;u

s , us) ds + σ (s, xt,a;u
s , us) dBs

+
∫

E χ (s, xt,a;u
s– , us, e)Ñ(de, ds), xt,a;u

t = a,

dyu,α,β
s;t,a,b = –l(s, xt,a;u

s , us) ds + α�
s dBs +

∫
E βs(e)Ñ(de, ds), yu,α,β

t;t,a,b = b.

Assumption 4
(i) For ι := f ,σ ,χ , l with ι =

[
ι�1 · · · ι�n

]�
, ι satisfies Assumptions 1 and 2, and is

independent of x. Moreover, ιi, i = 1, . . . , n, is convex and Lipschitz continuous in u
with the Lipschitz constant L;

(ii) ρ1 and ρ2 are convex, nondecreasing and bounded from below;
(iii) U ⊂R

m is a compact and convex set.

Note that Assumption 4 is different from that in [11, Appendix A] and [38, Theorem 5.2,
Chap. 2]. We have the following result:

Theorem A.1 Suppose that Assumption 4 holds. Then (A.1) admits an optimal solution
(̂u, α̂, β̂) ∈ U ×A×B, i.e.,

W (t, a, b) = J(t, a, b; û, α̂, β̂) = inf
u∈U

α∈A,β∈B
J(t, a, b; u,α,β).

Proof Since ρ1 and ρ2 are bounded from below, (A.1) is well defined. Suppose that
{(̂uk , α̂k , β̂k)}k≥1 ∈ U × A × B is a sequence of minimizing controllers such that J(t, a, b;
ûk , α̂k , β̂k) k→∞−−−→ W (t, a, b). Note that L2

F
and G2

F
are Hilbert spaces. Also, from Remark 3.1,

{(̂αk , β̂k)}k≥1 can be restricted to a sequence of controls bounded in L2
F

and G2
F

senses, and
U is compact from (iii) of Assumption 4. Hence, in view of [16, Theorem 3.18], we can
extract a subsequence {(uki , α̂ki , β̂ki )}i≥1 from {(̂uk , α̂k , β̂k)}k≥1 such that

(̂uki , α̂ki , β̂ki )
i→∞−−−→ (̂u, α̂, β̂) weakly in L2

F
×L2

F
× G2

F
.

Then for each ε > 0, there exists i′ such that for any i ≥ i′,

J(t, a, b, ; ûki , α̂ki , β̂ki ) ≤ W (t, a, b) +
ε

2
. (A.2)

From Mazur’s lemma [16, Corollary 3.8], we have convex combinations of subsequences
above

(̃uki , α̃ki , β̃ki ) :=
∑
p≥1

θkip (̂uki+p, α̂ki+p, β̂ki+p), θkip ≥ 0,
∑
p≥1

θkip = 1, (A.3)
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such that

(̃uki , α̃ki , β̃ki )
i→∞−−−→ (̂u, α̂, β̂) strongly in L2

F
×L2

F
× G2

F
, (A.4)

where (̂u, α̂, β̂) ∈ U ×A×B. Then from (A.3) and (i) of Assumption 4, we have

x
t,a;̃uki
s �

∑
p≥1

θkipx
t,a;̂uki+p
s , y

ũki ,̃αki ,β̃ki
s;t,a,b ≤

∑
p≥1

θkipy
ûki+p ,̂αki+p ,β̂ki+p
s;t,a,b , s ∈ [t, T],

where � denotes the componentwise inequality. Using the Lipschitz property of f , σ , χ

and l in u (see (i) of Assumption 4) and the proof of Lemma 2.1, (A.4) implies the conver-
gence of the following sequence strongly in the L∞

F
-norm sense:

(
x

t,a;̃uki
t , y

ũki ,̃αki ,β̃ki
t;t,a,b

) i→∞−−−→ (
xt,a;̂u

t , yû,̂α,β̂
t;t,a,b

)
.

By continuity of J , for each ε > 0, there exists i′′ such that i ≥ i′′,

J(t, a, b; û, α̂, β̂) ≤ J(t, a, b; ũki , α̃ki , β̃ki ) +
ε

2
.

This, together (ii) of Assumption 4 and (A.2), shows that for any i ≥ max{i′, i′′},

J(t, a, b; û, α̂, β̂) ≤ J(t, a, b; ũki , α̃ki , β̃ki ) +
ε

2

≤ E

[
ρ2

(∑
p≥1

θkipx
t,a;̂uki+p
T ,

∑
p≥1

θkipy
ûki+p ,̂αki+p ,β̂ki+p
T ;t,a,b

)

+
∫ T

t
ρ1

(
s,
∑
p≥1

θkipx
t,a;̂uki+p
s ,

∑
p≥1

θkipûki+p,s

)
ds
]

+
ε

2

≤
∑
p≥1

θkipJ(t, a, b; ûki+p, α̂ki+p, β̂ki+p) +
ε

2

≤ W (t, a, b) + ε.

Since ε is arbitrary, we have the desired result. This completes the proof. �

Remark A.1 As in [11, Appendix A], we can also use the following assumption in Theo-
rem A.1 instead of Assumption 4:

(i) f (s, x, u) = Asx + Bsu, σ (s, x, u) = Csx + Dsu, χ (s, x, e) = Esx + Fsu + rs(e) and
l(s, x, u) = Hsx + Ksu, where A, B, C, E, F , r, H and K are deterministic and bounded
coefficients with appropriate dimensions;

(ii) ρ1 and ρ2 are convex and bounded from below;
(iii) U ⊂R

m is a compact and convex set.
Unlike the case of SDEs in a Brownian setting, there are not many results on the existence
of optimal controls for jump-diffusion systems. Some results related to the relaxed optimal
solution approach can be found in [23, 29]. It is interesting to study the existence of optimal
controls for jump-diffusion systems in the original strong sense as for the case of SDEs
driven by Brownian motion in [24].
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