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1 Introduction

LetBandN be a standard Brownian motion and ak-marked compensated Poisson ran-
dom process, respectively, which are mutually independent of each other. The problem
studied in this paper is to minimize the following objective functional over U 1

.
Jt,a;u)=E I sxiY ug ds+m x{2Y (1.1)
t
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subject to theR"-dimensional stochastic di erential equation (SDE)

dxtiau = f (s x4, ug) ds+ o (s X423, ug) dBs
+ x(sxg®, us, ©N(de, ds), (1.2)

tau _
au = o

Xt
and thestate constraint(I" is a non-empty closed subset &®")
& T, s [t,T],P-as. (1.3)

The precise problem formulation is given in Sec.2 The associated value function for
(1.2) is de“ned by

V(t,a) ::uirZ}fT Jt,a;u)xy*  r,P-as.,s [tT]. (1.4)
t,

The problem in (1.4) can then be referred to as thetochastic optimal control problem for
jump-di usion systems with state constraints
The main results of the paper can be summarized as follows:
« The first main result is that the value function in (1.4) can be equivalently represented
by the zero-level set of W (see Theorems 3.1 and 3.2), i.e.,

V(t,a)=inf b 0|@ab) R =infb OW(t,ab)=0, (1.5)

where R{ is the backward reachable set of the stochastic target problem with state
constraints (see (1.7)), and W (defined in (3.7)) is a continuous value function of the
auxiliary stochastic control problem that includes unbounded control sets A1 X By 1;

+ The second main result is that the auxiliary value function W is a unique continuous
viscosity solution of the following Hamilton-Jacobi-Bellman (HJB) equation with
suitable boundary conditions (see Theorems 4.1 and 5.1): (time and state arguments
are suppressed)

f(u) 1 oo (U) o(UWa

0=.%W+ sup ..DW, = Tr D?W
uu (1)) 2 (o (Wa) o o
a RN B G2
LW ta+yWeb+sE . Wtab) .. ow, 9 e
E B(e
.d@,n), (1.6)

which is the second-order nonlinear partial integro-differential equation (PIDE) that
includes two unbounded control variables (a, 8) R'x G2
+ The first and second main results imply that we can characterize the original value
function (1.4) using (1.5) and the solution of (1.6).
(Deterministic and stochastic) control problems with state constraints were studied ex-
tensively in the literature; seel], 7, 14, 15, 20, 22, 25, 27, 28, 33, 34] and the references
therein. In particular, as discussed inifl, 15, 28, 33], under some conditions, the value
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function of the state-constrained stochastic control problem is only a discontinuous vis-
cosity solution to the associated constrained HJB equation having a complex boundary
condition at aT" (the boundary ofl"), as the regularity cannot be guaranteed ar'. In fact,

in the references mentioned above, they did not study the equivalent representation of the
corresponding value function as a continuous function, their control spaces are bounded,
and they only considered the case for deterministic systems or SDEs in a Brownian setting
without jumps. Viability theory for deterministic and stochastic systems could be viewed
as an alternative approach to solve state-constrained probler@s$, 19], and its extension

to jump-di usion models was studied in 31, 39]. However, they focus only on the viability
property of state constraints (without optimizing the objective functional), their control
spaces are bounded, and some additional technical assumptions (e.g.,3e¢H.3)]) are
essentially required.

Recently, the state-constrained problem via the backward reachability approach was
studied in [11]. One remarkable feature off1] is that it provides the explicit characteriza-
tion method of the original (possibly discontinuous) value function in terms of the zero-
level set of the auxiliary value function, which is continuous, as the auxiliary value function
is induced from the unconstrained control problem. However, the model used ih] is
the SDE driven by Brownian motion without jumps, which is a special case dfd). More-
over, the HIB equation in11] is the local equation, which is also a special case &fq)
without the nonlocal integral term (the second line ofX.6)). The aim of this paper is to
generalize the results in11] to the case of jump-di usion systems. As mentioned below,
it turns out that these generalizations are not straightforward due to jump di usions in
(1.2) and the presence of the nonlocal operator in the HIB equatiah §).

Our “rst main result given in (1.5 is obtained based on the stochastic target theory.
In particular, using the equivalence relationship between stochastic optimal control and
stochastic target problems, we showl () (see Theorems3.1and 3.2), whereR[ is the
backward reachable set with the state constraint given by

R{ = (@b) R"xR| (u,a,f) U7 x Ayt x By 1 suchthat

.
Titab

m xi* P-as.ank® T, s [t,T],P-as., (1.7)
with (y;ffb)s .11 being an auxiliary state process controlled by additional control pro-
cessesd,8) A1 x Bi7 that take values from unbounded control spaces. Here, the
main technical tool to show the equivalence inl(5 using (L.7) is the martingale repre-
sentation theorem for general Lévy processes, by which additional (unbounded) controls
(a,8) A¢r x Byt areintroduced. It should be mentioned that11] also used the result

of [13] (where only (U,a) Uit x A7 appeared in L1]), and we extend 11] to the case

of jump-di usion models. Note that this extension is not straightforward, since we have
to obtain the new estimates for SDEs with jump di usions (Lemma&1and 3.1) and the
additional control variables&,8) A1 x Bi1 (Remark3.1). We mention that in addition

to the application of the martingale representation theorem, these steps are essential to
prove (1.5 and the properties ofW in (1.5) (see Theorem&8.1and3.2as well as the results

in Sect.3.3). Moreover, (1.5 in Theorem 3.2relies on the existence of optimal controls for
jump-di usion systems, and our paper presents the new existence result for general op-
timal control problems with jump di usions (see TheoremA.1 in the Appendix), which



Moon Advances in Continuous and Discrete Models (2022) 2022:68 Page 4 of 38

has not been reported in existing literatures. We should mention that the results on the
existence of optimal controls in11, 38] are applicable only for linear SDEs without jumps.

The second main result of this paper is to show that the auxiliary value functioff
is a unique continuous viscosity solution of the HIB equation id.g) (see Theoremst.1
and5.1), whereW will be de“ned in Sect.3.2(see B.7)). Therefore, using the solution of
(1.6), the explicit characterization of the original value functioV in (1.4) can be obtained
through (1.5). We mention that the proofs for existence and uniqueness of the viscosity so-
lutionin Theorems4.1and5.1should be di erent from those for the case without jumpsin
[11]. Speci“cally, Theorenmd.1, the proof for existence of the viscosity solution fol(6), re-
quires the dynamic programming principle and the application of It6es formula of general
Lévy-type stochastic integrals to test functions. In fact, unlik&], Theorem 4.3], Theo-
rem4.1has to deal with two di erent stochastic integrals (stochastic integrals with respect
to the Brownian motion and the (compensated) Poisson process) and their quadratic vari-
ations to obtain the desired inequalities in the de“nition of viscosity solutions. Such an
extended (existence of viscosity solution) analysis is not presentedlif, [Theorem 4.3],
and our paper provides the di erent proof in Theorem4.1

Regarding the proof of uniqueness of the viscosity solution in Theorésrd, the approach
developed for the case without jumps in11, Theorem 4.6] (that also relies onl0, 17])
cannot be directly adopted, since the HIB equation ib.) includes the local term (the “rst
line of (1.6)) and the nonlocal (integral) operator in terms of the singular Lévy measure
7 (the second line of 1.6)), where the latter is induced due to jump di usions. Note also
that in classical stochastic optimal controproblems with jump di usions without state
constraints " = R"), the corresponding control space is assumed to be a compact set
[18, 31, 32, 35]. Hence, their approaches cannot be used directly to prove the uniqueness
of the viscosity solution for the HIB equation inl(.6).

Based on the discussion above, we need to develop a new approach to prove the unique-
ness of the viscosity solution for the HIB equation il ). Our strategy to prove the
uniqueness in Theorenb.1lis to use the equivalent de“nition of viscosity solutions in
terms of (super and sub)jets, where the nonlocal integral operator is decomposed into the
singular part with the test function and the nonsingular part with jets (see Lemn@3).
Then we obtain the desired result for the nonlocal singular part with the help of the reg-
ularity of test functions and the estimates in Remar& 1 Note that the unboundedness of
B G?in the nonlocal nonsingular part is resolved with the help of the appropriate con-
struction of the comparison functions¥ in (6.12 and the proper estimates of doubling
variables in¥ based on 21, Proposition 3.7]* In addition, we convert the second-order
local part (the “rst line of (1.6)) into the equivalent spectral radius form by which the un-
boundedness with respecttae R" can be handled (see Lemm@.1). By combining all
these steps, we obtain the comparison primie of viscosity sub and supersolutions (see
Theorem5.1), which implies the uniqueness of the viscosity solution fot (6) (see Corol-
lary 5.7).

The rest of the paper is organized as follows. The notation and the precise problem state-
ment are given in Sect2. In Sect.3, we obtain the equivalent representation ofl(4) given
in (1.5). In Sect4, we show that the auxiliary value functioiWV is the continuous viscosity

1\We mention that our comparison function should be different from that for the case without jumps in [11] to deal with
both the local and nonlocal parts of the HJB equation in (1.6).



Moon Advances in Continuous and Discrete Models (2022) 2022:68 Page 5 of 38

solution of the HIB equation in {.6). The uniqueness of the viscosity solution fod(6) is
presented in Sectb, and its proof is provided in Sect6. The Appendix provides several
di erent conditions for the existence of optimal controls for jump-di usion systems.

2 Notation and problem statement

2.1 Notation

Let R" be then-dimensional Euclidean space. Fary R",x denotes the transpose of,

x,y istheinner product, andx| := x,x 2. LetS" be the set ofh x n symmetric matrices.
Let Tr(A) be the trace operator for a square matriA  R™". Let - f be the Frobenius
norm,i.e., A g:=Tr(AA )Y2for A R™™M. Letl, be annx n identity matrix. In various

places of the paper, an exact value of a positive const@ntan vary from line to line, which
mainly depends on the coe cients in Assumptionsl, 2, and 3, terminal time T, and the
initial condition, but independent of a speci“c choice of control.

Let (22,F ,P) be a complete probability space with the natural “ltratiofr :={F;0 s

t} generated by the following two mutually independent stochastic processes and aug-
mented by all theP-null sets inF : (i) anr-dimensional standard Brownian motiorB de-
“ned on [t,T] and (ii) an E-marked right continuous Poisson random measure (process)
N de“ned on E x [t,T], whereE:=E\{0} with E R' is a Borel subset oR' equipped
with its Borel o-“eld B(E). The intensity measure oN is denoted byr (de, dt) := 7 (de) dt,
satisfyingm(E) < , where{N(A, (t,s]) := (N ..7)(A, (t,9)}s (1] is an associated compen-
satedF s-martingale random (Poisson) measure df foranyA B(E). Here,r isac-“nite
Lévy measure onk, B(E)), which holds (1 | g2 (de) <

We introduce the following spaces:

o LP(Q,FgR™),s [t,T],p 1 the space of Fs<-measurable R"-valued random vectors,
satisfying X (o :=E[|X|P]<

. L]FF’(t,T ;R"),t [0,T],p 1 the space of F-predictable R"-valued random processes,
satisfying X = E[ tT [Xs|P ds]% <

+ G?(E,B(E), ;R"): the space of square integrable functions kK :E ~ R" such that k
satisfies K g2:=( ¢ |k(e)|°m (de))% < , where 7 is a o -finite Lévy measure on
(E,B(E)). G*(E,B(E),;R") is a Hilbert space [2, page 9];

o Gi(t,T,m;R"),t [0, T]: the space of stochastic processes k: 2 x [t,T]x E R"
such that k isa P x B(E)-measurable and R"-valued F-predictable stochastic process,
which satisfies k @2 = E[ tT £ [ks(€)|? (de) ds]% < , where P denotes the
o -algebra of F-predictable subsets of 2 % [0, T]. Note that Gﬁz‘(t,T ,70;R") is a Hilbert
space [2, Lemma 4.1.3];

» C([0,T] % R"): the set of R-valued continuous functions on [0,T] x R";

+ Co([0,T]x R™), p  1: the set of R-valued continuous functions such that
f C([0,T]x R") holds |f(t,x)] C(1+]|x|P);

. CL‘r([O,T] x RM) I,r  1: the set of R-valued continuous functions on [0, T] X R" such
that for f  C'([0,T] x R™), 8!f and D'f exist, and are continuous and uniformly
bounded, where 3{f is the Ith-order partial derivative of f with respecttot [0, T],
and D'f is the rth-order derivative of f in x R".



Moon Advances in Continuous and Discrete Models (2022) 2022:68 Page 6 of 38

2.2 Problem statement
We consider the following stochastic di erential equation (SDE) driven by botB andN:

dxtal = f (s xL@Y, ug) ds+ o (5, x4*Y, us) dBs
+ (X4, g, N (de,ds), 2.1)
tau

x* =a,

wherex{®  R" is the value of the state at tims, andus U is the value of the control at
time swith U being the space of control values, which is a compact subseR3f. The set
of admissible controls is denoted by + :=L2(t,T;U).

Assumption 1 f:[0,T]x R"x U R"o:[0,T]x R"xU R™"andy :[0,T] x
R"x Ux E R"are continuous in ¢,x,u) [0,T]x R"x U, and hold the following
conditions with the constantL > 0: forx,x R",

f(t,x,u)..f t,x,u + o(t,x,u)..o t,x,u

+ x(t,x,u,’)..x t,x,u,- Lx.x,

G2

f(t,x,u) + o(t,x,u) + x(t,x,u,)) 2 L 1+[x|.

Lemma 2.1 Suppose that Assumptiofh holds Then the following results hotd
(i) Foranya R"andu Ui, there is a unique F-adapted cadlag process such that
(2.1) holds;
(i) Foranya,a R"u Ur,andt,t [0, T]witht t,thereexistsa constant C>0
such that (2) E[sups 1) [xt3412]  C(1+|al?), (b)
Elsups ;p1y IX¢® .. xg2 2] Cla..a|? and (c)
Elsups ¢ 1y X X422 C(L+[aP)lt -.4].

Proof We only need to prove part (ii)-(c), as the proof for other parts can be found i@,
Chap. 6].
t.au,

Note that x{&" = th * oralls [t,T]. Using (ii)-(a), (ii)-(b) and Kunitass formula for
general Lévy-type stochastic integrals (se& Theorem 4.4.23]), it follows that

t xbau.

E sup %' & .xt®? CE X&U 2% Cc1+]a? t .t.
s [t,T]
This completes the proof. g

The objective functional is given by

T
Jt,a;u)=E | sxiY ug ds+m {2V . (2.2)
t
LetI" R" be the non-empty and closed set, which captures the state constraint. Then
the state-constrained stochastic control problem for jump-di usion systems considered
in this paper is as follows:

ig{f Jt,a;u) subjectto @.0) andx{*™ T, s [t,T], P-as.
t,T

u
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We introduce the value function for the above problem:

V(t,a) I:uizr}th Jt,au)x® T, Pas,s [tT]. (2.3)

Note that (2.3) meansa T for the initial state of the SDE in 2.1). The following assump-
tions are imposed for 2.2).

Assumption 2
(i) 1:[0,T]*x R"x U Randm:R" R are continuous in
(t,x,u) [0, T]x R"x U. | and m satisfy the following conditions with the constant
L>0: for x,x R",

I(t,x,u)..] t,x,u + m(X)..mx Lx.x,

I(t,x,u) + m(x) L 1+|x|;
(i) | and m are nonnegative functions, i.e, l,m 0.

Remark2.1 Inview of (i) of Assumption2, J(t,a;u) Oforanyt,a,u) [0,T]x R"x U,
which implies thatV (t,a) 0Ofor(t,a) [0,T]x R".

3 Characterization of V

In this section, we convert the original problem inZ.3) into the stochastic target problem

for jump-di usion systems with state constraints. Then we show tha®(3) can be charac-
terized by the backward reachable set of the stochastic target problem, which is equivalent
to the zero-level set of the auxiliary value function.

3.1 Equivalent stochastic target problem via backward reachability approach
We “rst introduce an auxiliary SDE associated with the objective functional i2 Q):

dy;'t‘f‘fb:..l(sx‘sva?“,us)ds+as dBs+ Bs(eN(deds), s (t,TI,

uo,f _
Yitap = B

(3.1)

whereb R,u U, L2(t,T;R)=Airandp G(t,T,7;R)=:Br.

Lemma 3.1 Suppose that Assumptiorisand 2 hold. Then:
(i) Forany (U,a,8) Uit X At X Bir and (a,b) R™1, there is a unique F-adapted
cadlag process such that (3.1) holds;
(i) Forany (u,a,B) Uy x Ayt x Ber, (@) R™Land (a,b) R™1, there exists a
constant C > O such that (a) E[supg 1) |y§"f‘fb ..y;ffa’ﬂ’b 2l C(a..al?+|b..b|?»
and (b) limg  (E[ly¥50, . yash 212 =0fort  [0,T].

Proof The proof for parts (i) and (ii)-(a) is analogous to that of Lemm2.1 We prove part
(ii)-(b). Without loss of generality, we assume  t. Consider,

T
ua,p ua,f  _ t,au tau
YTtap Y ap = I sxg*us ..J sxg %% us ds

t t t
. Isx®ug ds+  ag dBg+ Bs(6e)N(de, ds).
t t t E
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By Assumptionsl and 2, and using Lemm&2.1, we have

1
u,a,pB uap 2 3
E yT itab "'yT it,ab

_ t 2 3 t 2 3
Ct.t+E ag dBg +E Bs(€)N (de, ds)
t t E

Notice that as ¢,8) A¢1 X BT,

t 2 t
E ag dBs =E lag?’ds 0 ast t,
t t

and similarly using Kunitass formulaZ, Theorem 4.4.23],

t 2 t

E B(eN(ded9  CE B *x(deds 0 ast t.
t E t E

Hence, part (ii)-(b) follows. This completes the proof. O

Remark3.1 We may impose bounds (dependent on the initial statefor (2.1)) on addi-
tional control variables &,8) A¢r % Br. Inparticular, letJ(t,a;u) := tT (s, X434, ug) ds+
mxy™). Sinced  L%(Q,Ft;R), in view of the martingale representation theoren®] The-

orem 5.3.5], there exist uniqueo(, 8) A1 x Bt such that

T T
Jt,a;u) =J(t,a;u) + ag dBs+ Bs(€)N (de, ds),
t t E

which implies

T T
oy dBs+ Bs(e)N(de, ds)
t t E

T T

— t,a; tau t,a; tau
= | sx®,us ds+m xy*" .E I sxg®,us ds+m xy

t t

Then from (i) of Assumption 2, the estimates in (ii) of Lemm&.1, and the fact thatN and
B are mutually independent, we have

a2, Cil+la?, B2, C1+la?.
‘C]F g]F

Hence, without loss of generality, we may use the controts, 8) such that g, 8) are square
integrable and bounded irL2 and G2 senses.

For any functionm:R" R, let us de“ne theepigraphof m:

E(m):= (x,y) R"xRly m(x) .

2Since the initial time of this paperis t ~[0,7], the martingale representation theorem is initialized at t [0,T].
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Then we have the following equivalent expression of the value function 2.9 in terms
of the stochastic target problem with state constraints. Below, we dropl in Uir, A1
and B; 1 to simplify the notation.

Lemma 3.2 Assume that Assumptiong and 2 hold. Then:

V(t,a=inf b 0] (u,@,8) Ux A x Bsuchthat

tau | ua.pf

xyrie,  E(m),P-asandx®™ T, s [t,T],P-as (3.2)

Remark3.2 Note that (3.2 is the stochastic target problem for jump-di usion systems
with state constraints; seel2..14, 30, 36].

Proof of LemméB.2 Itis easy to see that

V(t,a=inf b 0] u U suchthat

b Jtau)andx(* T, s [t,T],P-as. (3.3)

As discussed in13] and [11], we consider the following two statements: fdo O,
(a) Thereexistsu Usuchthatb J(t,a;u)andx{® T fors [t,T], P-as;
(b) There exist (U,,8) U X A x B such that y#?,':,b me&*Y), P-as. and X3 T
fors [t,T], P-as.
Note that (a) corresponds t03.3), while (3.2) is equivalent to (b). Then it is necessary to
show the equivalence between (a) and (b).
First, from (b), there exist ¢,«,8) Ux A x B such thaty#';"’gb m(¢*) and by @.1),

T T T
b mx® + 1 sx®ugds... a dBs... E,Bs(e)N(de, ds). (3.4)
t t t

Since the stochasticintegralgr o, dBsand tr e Bs(EIN(de, ds) in (3.4 areF -martingales,
by taking the expectation of8.4), we getb  J(t,a;u). Hence, (b) implies (a).

On the other hand, letJ(t,a;u) := tT I(s XL¥, ug) ds+ m(xy*"). Sinced L2%(Q,Ft1;R),
in view of the martingale representation theorem?, Theorem 5.3.5], there exist unique
(o,8) A x B such that

T T
Jt,a;u) = J(t,a;u) + oy dBs+ Bs(e)N(de, ds).
t t E

Then from (a), forb 0,

T T
b Jt,au)= t | sx{® us ds+m xy*! SR dBs

' Bs(e)N(de, ds),
E

t

which, together with (3.1), shows thaly#’fffvb m(xy*"). Hence, (a) implies (b). This com-
pletes the proof. d
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We now introduce thebackward reachable set

R := (ab) R"xR| (u,a,) Ux A x Bsuch that

x%a;”,y?;’f’b E(m),P-a.s.ana* T, s [t,T],P-as. (3.5)
Clearly, based on Lemma.2, we have the following result:

Theorem 3.1 Assume that Assumptions and 2 hold. For any(t,a) [0,T]x R",
V(t,a)=inf b 0|(a,b) R} . (3.6)

Remark3.3 From Theorem3.1, we observe that the value function i3 can be charac-
terized by the backward reachable s&/ . In the next subsection, we focus on an explicit
characterization ofR|" as the zero-level set of the value function for the unconstrained
auxiliary stochastic control problem.

3.2 Characterization of backward reachable set
Let

- - T .
Jt,a,b;u,e, B)=E max m Xy .yt 0 + t d xt®.r ds,

where we introduce the followingdistance functionon R" to R*:
dx,’)=0 ifandonlyif x T.
Then the auxiliary value functionwW : [0,T] x R"x R R can be de“ned as follows:

W (t,a,b):= inlg Jt,a,b;u,a,B), subjectto@.1)and (3.1). (3.7
u
a AB B

Remark3.4 Note that 3.7) does not have any state constraints. Moreover, frord.7), we
haveW (T,a,b) = max{m(a) .. b, 0}.

Assumption 3 d(Xx,I') is nonnegative, Lipschitz continuous ix with the Lipschitz con-
stantL, and satis“es the linear growth condition irx.

Remark3.5 One example ofi(x,I") isd(x,I") =infy 1 |X..y|. Clearly, itholds Assumptior8.

The following theorem shows the equivalent expression ¥fin terms of the zero-level
set of W.

Theorem 3.2 Suppose that Assumptioris 3 hold and there exists an optimal control such
that it attains the minimum of the auxiliary optimal control problem in(3.7). Then:
(i) The reachable set can be obtained by

R{= (ab) R"xR|W(t,ab)=0, t [0,T]
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(i) The value function V in (2.3) can be characterized by the zero-level set of W : for
(t,a) [0, T]x R",

V(t,a)=inf b 0](ab) R =infb OW(t,ab)=0. (3.8)

Remark3.6

(i) In Sects. 4 and 5, we show that W is a unique viscosity solution of the associated
Hamilton-Jacobi-Bellman (H]B) equation. Hence, from Theorem 3.2 (particularly
(3.8)), the value function of the state-constrained problem V in (2.3) can be
obtained by solving the HJB equation of W.

(i) Theorem 3.2 relies on the existence of optimal controls for (3.7). In the Appendix,
we provide several different conditions under which (3.7) admits an optimal
solution.

Proof of Theoren3.2 From (3.6) in Theorem 3.1, we see that (ii) follows from (i). Hence,
we prove (i). RecalR{ de“ned in (3.5

R{:= (ab) R"xR| (u,a,) Ux A x Bsuch that

XA yref - E(m),P-as.and®™ T, s [t,T],P-as.,

and letRI :={(a,b) R"x R|W(t,a,b)=0}. We will show thatRI R andRI RF
fort [0,T].
Fix (a,b) RT.Byde“nition, there exist (i,&, ) U x A x B such that

max m X WP 0 =0 and dx*U.r =0, s [t,T]Pas.

This implies thatW (t,a,b)=0fort [0,T]; hence,R{ R_tF fort [0, T].
Suppose thatg,b) R[,i.e.W(t,a,b)=0. Then due to the assumption of the existence
of an optimal control given in the statemeng, there exist (1,a, 8) U x A x B such that

s T -
W(t,a,b)=E max m Xy _y1¥f 0 +  dx*T ds =0.
t
From the nonnegativity ofl, m, andd(x,I') in Assumptions2 and 3, and the property of
the max function, we can see thamax{m(x{*") .. y}5%, 0} + ! d(x37, 1) ds< 0, P-a.s.,
is not possible. In additionmax{m(x;*") ..yy5% 0+ " d(x*¥,I')ds> 0, P-a.s., is not
possible, as it contradict®V (t,a,b) = 0. Hence, we must have
T

tal Oa.f tal _
max M X{™ . Yriap 0 + t d x;*,T' ds=0, P-as,

which, together with the nonnegativity ofd(x,I"), leads to
tal | 0ab

i yriee  E(mM) and x** T, s [t,T]Pas.

This shows thatRI  RI fort [0,T]. We complete the proof. O

3In the Appendix, we discuss the existence of optimal controls for jump-diffusion systems under some mild assumptions
of the coefficients.
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3.3 Properties of W
We provide some useful properties diV in (3.7).

Proposition 3.1 Assume that Assumptiont-3hold. Thenfor(a,b) R"x Randt [0,T]
with 7 > 0, the auxiliary value function W satis“es the following dynamic programming

principle (DPP):
t+t ] ]
W(tab)= inf E t d xi T ds+W t+7, X2 yer
a AB B
Proof Let us de“ne
t+t
W(tab):= inf E d XU T ds+W t+7, X8yl

We proveW (t,a,b) W(t,a,b)andW (t,a,b) W (t,a,b). Noticethatfort t,itfollows
that

t X u
tau —y "t uae,f _ Uap
Xg " = Xs ! ySt,a,b - yst Yxt,a;uyygvf:yfb' s t,T.

Hence, witht =t + 7,

Jt,a,b;u,a,p)

tau
t+r X U o,
=E max mxy 0T L yP L es 00
T;HI’XYV*'% ’yt+r;t,a,b
T tau t+r
t+T X U ;
+  dx UTUT ds+ d x{?.T ds
t+t t
_ 5 t+r
— tau U, . t.au
=E Jt+ 7, %5 Virrap b, B+ d x;*T ds .
t

We can easily deduce that

t+t
ua.B

Jt,a,b;u,a,f) E d xg®, T ds+W t+7,x8 i,
which, by taking the in“mum with respectto (u,«,8) Ux A x B, leads to
W (t,a,b) W(t,a,b).

On the other hand, by the measurable selection theorem (s&&[Abstract] and [6, The-
orem 8.1.3]), for any > 0, there is the tuple ¢, «¢, B¢) Uitz 1 X A4z 1 X Biar 1 SUCh that

tau Mo tau MaB . e e pe
W t+ 7% Viaetap 7€ JUHTXE Yourrap Usa, B . (3.9
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Here, we apply 6, Theorem 8.1.3} to get (3.9). Speci“cally, let ©,M ) be the measur-
able space, wher® =[t+7¢,T]x QandM :=B([t+7,T]) F with B([t + 7, T]) be-
ing the Borel o-algebra generated by subintervals of § 7,T]. Let X4z 1 1= U1 X
A+ 1 X Biar 7. Note that X4, 1 is @ separable Hilbert space. Fog @) O, de“ne the set-
valued mapZ from © to closed subsets oK+, 1 by E(S ) :={(UsT,asT1,BsT) = (U,, B)
XsTIW (s X530 Yoy + e s Xt yau,a, B)}. Note that for (sw)  ©, E(sw) is a
non-empty closed subset oK., 1t due to the de“nition of W and the continuity of the in-
volved functions by Assumptiond-3. Then in view of the measurable selection theorem
in [6, Theorem 8.1.3], there is the tupleut,«, 8¢)  Xi+r T = Uter T X Ater 7 X Brar 7 SUCH
that (3.9 holds.

Forany (,a,8) Utre X Agger X Byrar, de“ne

us, s [t,t+71), as, S [t,t+71),
o=
ug, s [t+7,T], af, s [t+7,T],

ﬁS(e)i S [t,t""[),
B, s [t+7,T]

Bs(®):

Cleary, (4,0 ,8) Ux A x B. We then have

Wi(t,ab) Jtabu,a,B
— t+t
=E Jt+ 7, XAy Ut B+ d xg®,I" ds
t

t+t
t,au tauytha.p
E d x®U T ds+W t+7, x50y 5 e

which implies by the factthat (1,0, 8) Ui t+r X Att+r X Bii+r @ande >0 are arbitrary,
W(t,a,b) W(t,a,b).

We complete the proof. O

Lemma 3.3 Suppose that Assumptioris3 hold. Thenfort [0, T], there exists a constant
C > 0such that
@) W(t,ab) C(L+lal)forany(ab) R"x [0, )
(i) W is Lipschitz continuous in R" %X R, i.e, for (a,b) R"x Rand(a,b) R"x R,
|W(t,a,b)..W(t,a,b)] C(la..a|+|b..b]|);
(iii) W is continuous int [0, T].

4Note that [6, Theorem 8.1.3] is stated as follows. Let X’ be a complete separable metric space, (@, M) a measurable space,
Z a measurable set-valued map from © to closed non-empty subsets of X'. Then there exists a measurable selection of E
(see [6, Definition 8.1.2]).

Page 13 of 38
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Proof In view of the de“nition of W, whenb [0, ),withe=0andg =0,

;
W(tab) infE max mxi™ .y192,,0 + d XTI ds
t

T T
=E | sxi® us ds+m ¢ +  d xi¥U T ds,
t t

where the second inequality follows from the fact thdtand m are nonnegative due to (ii)
of Assumption 2. Then the linear growth of W in a in the statement of (i) follows from
Assumptionsl, 2, and3, and (ii) of Lemma2.1

Note that | inff(X) ..infg(x)] sup|f(X)..g(X)| and]|supf (X)..supg(X)| sup|f(X)..g(X)|.
From Assumptionsl, 2, and3, and using the Hdlder inequality,

1

t,a; tau 2 : U, U, 2
W (t,a,b)..W t,a,b C SHB E xy® .. x@" 7 2+E yijyf’b..yT;f’b 2
u

a AB B

T 1
+E xgau | xLa %ds

t
C a..a +b..b

Notice that to obtain the last inequality, we have used (ii) of Lemmas1 and 3.1, the
compactness ofJ, and the fact that the controls ¢, 8) can be restricted to be bounded in
G? and L2 senses from RemarB.1 This shows (ii).

Forthe continuityof W int [0, T]1in (iii),let t,t+7 [0, T]with ¢ >0. Then by applying
the similar technique above and using (ii) of Lemma 1, we have

W (t +7,a,b) .. W(t,a,b)

t+7,au tau 2 % ua,B uap 2 %
C sup E xr ™ .x *E Yriirap - Yrrab
u
a AB B
1 1
T 3 t+r 3
: Y 2 u 2
+E xormal xlal fds  +E 1+ x4 ° ds
t+t t
3 uap wp 23
Crt2+ SUB E Yrtirap - YTtap . (3.10)
u
a AB B

From Remark3.1, we may consider¢, ) bounded in G and L2 senses. We then apply
(ii) of Lemma3.1to getlim, osupy 11 s 5 ELVYSE ap - Yrinn 23 = 0in (3.10. This,
together with (3.10, implies|[W (t + 7,a,b) ..W (t,a,b)] 0 ast 0. We complete the
proof. O

Lemma 3.4 Suppose that Assumption&-3 hold. If b 0, then we have Wt,a,b) =
Wo(t,a) ..b,where Wy : [0,T] x R" R is the value function of the following problem

T

WO(t'a)::jnZE Jt,au)+E  d XU T ds .
t
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Proof By de“nition of W, for any ¢,a,b) [0,T]x R"x R, we have

.
W(tab)= inf E max m XAyl 0+ t d x{*. T ds
a AB B
inf E m o LY+ t d {31 ds
a AB B
T T
=infE mx* b+ Isx{*us+ dx{? T ds
uu t t
=Wo(t,a) ..b,

where we have used the fact théd][ tT ag dBg] =0 and E[ IT £ Bs(e)N(de, dg)] = 0, as the
stochastic integrals oB andN are F{-martingales.
On the other hand, when &,8) =(0,0) A x B, sinceb 0, andl andm are nonnega-
tive,
T

t,au ,0,0 — t.au t,au
max M Xy L YFeap, 0 =m x™0 b+ t I sxg*",us ds 0.

Hence, with @, 8) =(0,0) A x B, it follows that

T T
W(tab) infE m XU b+ 1 sx®ug ds+  d XU T ds
u t t

=Wo(t,a) ..b.
This completes the proof. O

Based on 8.7) (see Remari3.4 and Lemma3.4, W satis“es the following boundary
conditions:

Lemma 3.5 Suppose that Assumptions, 2, and 3 hold. Then W satis“es the following
boundary conditions

W (T,a,b)=max{m(a) ..b,0}, (a,b) R"x [0, ),
W (t,a,0) =Wpo(t,a), (t,a [0, T)x R"

4 Characterization of W via viscosity solution of Hamilton-Jacobi-Bellman
equation
Based on Theoren8.2and Remark3.6, it is necessary to study the characterization of the
auxiliary value functionW in (3.7) in order to solve the original state-constrained control
problem in (2.3). In this section and Sectss-6, we provide the characterization ofV by
showing thatW is a unique continuous viscosity solution of the associated HIB equation.
As seen from 8.7), the auxiliary value function depends on the augmented dynamical
system onR™?. We introduce the following notation:

f(t,a,u) s(taua) = o(t,a,u)

ftaw="|cau o
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x(t,a,u,e a

x(t,a,u,epB) = 50 , a= ,

whereo :[0,T]x R"x Ux RP RM™D*P and y :[0,T] x R"x U x Ex G%(E,B(E),n;
R) R™. LetO:=[0,T)x R"x (0, ),0:=[0,T]x R"x [0, ), andG?:=G2(E,B(E),
7;R).

The HJB equation with the boundary conditions (see Lemn&a5) is introduced below,
which is the second-order nonlinear partial integro-di erential equation (PIDE):

LW (t,a,b) + H(t,a,b, (W,DW,D?W)(t,a,b)) =0, ,ab) O,
W (T,a,b) = max{m(a) ..b, 0}, (@b) R"x[0, ), (41
W (t,a, 0) =Wj(t,a), (t,a) [0,T)x R",

where the HamiltonianH : O x Rx R™1x S"1  Ris de“ned by

H t,a,b,W,DW,D?W
! "1
= sup ..DW(t,ab),f(t,au) 5 Tr oo (t,a,u,a)D?W (t,a,b)
uu
a RM B G2

.. W t,a+x(t,a,u,e,b+8(e ..W(t,ab)
E

...!DW(t,a,b),x(t,a,u,e,ﬂ)"n(de) ..d(@a, ).

The notion of viscosity solutions for 4.1) is given as follows$§, 9]:

Definition 1 A real-valued functionW C(6) is said to be a viscosity subsolution (resp.
supersolution) of @.1) if
(i) W(T,a,b) max{m(a)..b,0} (resp. W(T,a,b) max{m(a)..b,0}) for
(a,b) R"x [0, )andW(t,a,0) Wo(t,a) (resp. W(t,a,0) Wo(t,a)) for
(t,a) [0, T)x R™
(ii) For all test functions ¢ Ctl)’3(6) C2(6), the following inequality holds at the
global maximum (resp. minimum) point (t,a,b) O of W ..¢:

Ldot,ab)+H t,ab, ¢,Dp,D% (t,a,b) 0
resp. ..dip(t,a,b) +H t,a,b, ¢,Dp,D?% (t,a,b) 0.

A real-valued functionW C(O_) is said to be a viscosity solution of4(1) if it is both a
viscosity subsolution and a viscosity supersolution cf.().

The existence of the viscosity solution for(1) can be stated as follows:

Theorem 4.1 Suppose that Assumptionk-3 hold. Then the auxiliary value function W
de“ned in (3.7) is a continuous viscosity solution of the HIB equation(4hl).

Proof of Theorendl.1 Let us “rst prove the subsolution property. In view of Lemma.3,
W  C([0,T] x R™%). Also, from Lemma3.5 W satis“es (i) of De“nition 1.
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We prove (ii) of De“nition 1. Let¢ Cr*O) be the test function such that
(W ..$)(t,a,b)= max (W ..¢)(t,ab),
(tab) ©

and without loss of generality, we may assume th&¥ (t,a,b) = ¢(t,a,b). This implies
W(t,a,b) ¢(tab)for(t,ab) Oand¢,ab)=(ta,b).
By using the DPP in Propositior8.1with t,t +t [0,T]andz >0,

#(t,a,b) =W(t,a,b)

t+7

- t,a; tau \Ma.b
= bf E t d ™I ds+ W t+ 7,8 Vilthap
a AB B
which implies
t+r ] ]
¢(t,a,b)..E dxi T ds+g t+o, XAyl 0.

t
By applying Itdes formula of Lévy-type stochastic integrald [Theorem 4.4.7],

t+7 t+7

E o d XL T ds+ e SX Y ds
t+r| 5 "
b : u,o, -
.E t D¢ sx¢™, Yerap of sx¢®,us ds
t+r p
y ;) U,
~E t Tr oo X, Us,as D’ Xy, ds
t+r 5 5
£, £, ua, tau Mo,
"E ¢ £ ()b Slxsau +X SyxsauyuSIe 1yst’a’b+ﬂ3(e) "¢ Slxsauyys;t’a'b

! — .
e D¢ Sﬂ XtS’a’u 1 y;’t’a"’sb ’ X Sﬂ th,a,u, uS! e, ,35(6‘) T (de) ds O’

where we have used the fact that the expectation for the stochastic integral8and N
are zero, since they aré-martingales.
Multiplying % above and then lettingr 0, we have

L o(t,ab)+H t,ab, ¢,Dp,D% (t,a,b):u,a,f O,
where

H t,ab, ¢ D¢,D% (t,a,b);u,«,p

=.d@,nn) ...!Dq)(t,a,b),f(t,a,u) % Tr oo (t,a,u,a)D%p(t,a,b)

. ¢ ta+yx(t,au,e,b+8(E)
E

.p(t,a,b) ...!Dqs(t,a,b),x(t,a,u,eﬂ) w(de). 4.2)
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By takingsup with respectto (,a,8) U x RP x G?, in view of de“nition H,
.&o(t,a,b)+H tab, ¢,Dp,D% (t,a,b) 0, (4.3)

which shows thatW is the viscosity subsolution of4.1).

We now prove, by contradiction, the supersolution property. It is easy to see that
satis“es the boundary inequalities in (i) of De"nitionl.

Suppose thatp  C¥O) is the test function satisfying the following property:

(W ..9)t,ab)= min (W ..¢)Eab),
(tab) O

and without loss of generality, we may assum# (t,a,b) = ¢(t,a,b). This implies that
W(t.ab) ¢ab)for(tab) Oandab)=(ab).

Let us assume thatV is not a viscosity supersolution. Then there exists a constant 0
such that

Lao(t,a,b)+H t,ab, ¢,Dp,D% (t,ab) ..6<O0.

Recall the de“nition of H in (4.2 and note thatH  sup, y, rrg czH =H. Then for
any U,«,8) U x RPx G?, we have

.&p(t,a,b)+H t,ab, ¢,Dp,D% (t,ab);u,a,f .6<O0. (4.4)
On the other hand, the DPP in Propositior8.1implies

#(t,a,b) =W (t,a,b)

t+7

inf E d xS T ds+ g t+o, 8yl
u t o
a AB B

and for eache > 0, there exist (€,a¢,8¢) U x A x B such that

t+7
€t ¢(t,ab)..E d XE¥U T ds+ g t+ o, B YA (4.5)
t

As in the viscosity subsolution case, we apply Itées formula ta%) and then multiply %
Since @.4) holds for any (1,, 8) U x RPx G?, by lettingz 0 and noting the arbitrari-
ness ofe, we have

0 .&ot,ab)+H tab, ¢,Dp,D% (t,ab)u,a,p .0.
This leads to the desired contradiction, sinceé > 0. Hence W is the viscosity supersolu-

tion. This, together with @.3), shows thatW is the continuous viscosity solution of4.1).
This completes the proof. d
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5 Uniqueness of viscosity solution
We state the comparison principle of viscosity subsolution and supersolution, whose proof
is reported in Sect6.

Theorem 5.1 Suppose that Assumptioris3hold. Let W C(6) be aviscosity subsolution
of the HJB equation in4.1), and W C(O_) a viscosity supersolution @¢#.1), where both
W and W satisfy the linear growth condition in a R". Then

W(t,ab) Wi(t,ab), (tab) O. (5.1)

Based on Theoremd.1land5.1, we state the following main result:

Corollary 5.1 Let Assumptionsl-3 hold. Then the auxiliary value function W in(3.7) is
a unique continuous viscosity solution of the HIB equatior(4nl).

Proof Note “rst that in view of Theorem 4.1, the auxiliary value functionw in (3.7) is the
continuous viscosity solution of the HIB equation in4(1). To prove the uniqueness, by
Lemma3.3 the auxiliary value functionW satis“es the linear growth condition in The-
orem5.1 AsW is the viscosity solution of 4.1) (see Theoremd.1), by De"nition 1, W is
both the viscosity subsolution and the viscosity supersolution satisfying the comparison
principle in Theorem5.1 Then the uniqueness follows from Theorerd.1 This completes
the proof. O

5.1 Concluding remarks
We have studied the state-constrained stochastic optimal problem for jump-di usion sys-
tems. Our main results are Theorem8.2 4.1, and 5.1, where we have shown that the
original value functionV in (2.3) can be characterized by the zero-level set of the aux-
iliary value function W in (3.7) (see 8.8)). Note that W can be characterized by solving
the associated HIB equation ir(1), sinceW is a unique continuous viscosity solution of
4.7).

One possible potential future research problem would be to consider the two-player
stochastic game framework for which we need to generalize Theor8t2using the notion
of nonanticipative strategiesThe state-constrained problem with general BSDE (back-
ward SDE) type recursive objective functionals would also be an interesting avenue to
pursue. Applications to various mathematical “nance problems will be studied in the near
future.

6 Proofof Theorem 5.1
This section is devoted to the proof of Theorens.1
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6.1 Equivalent de“nitions of viscosity solutions
To prove the unigueness, we “rst provide two equivalent de“nitions of De“nitiorl. The
HJB equation in 4.1) can be rewritten as follows:

sup, y{sup, mr HO(t,a, (DW,D?W)(t,a,b);u,«)
+supy g2 H®(t,a,b,(W,DW)(t,a,b);u,)}=0, (,ab) O,

(6.1)
W (T,a,b) =max{m(a) ..b, 0}, (a,b)y R"x [0, ),
W (t,a, 0) =Wj(t,a), t,.a [0,T)xR",
where withD2w = 2.Vav DWaz)
(D?W(12) D?W(ap) '
H® t,a, 8W,DW,D?W ;u,a
! "1
= .%W ..d(a,I')...DW,f(t,a,u) 5 Tr oo (t,a,u)D*Wy
2 1 22
..o o (t,a,u)D W12) Elal D“W (22,
and
H® t,a,b,(W,DW)(t,a,b);u, 8
= W t,a+ x(t,a,u,e),b+ (e ..W(t,a,b)
E
| "
...DW (t,a,b), x(t,a,u,e 8) m(de).
To avoid the possibility ofsup, r H® = due to the unboundedness of, we have
the following result. The proof is analogous that forl[1, Lemma 4.1, Remark 4.5] and ,
Sect. 2.3].

Lemma 6.1 H® can be expressed as

sup H® t,a, 3W,DW,D?W ;u,a =A* G, t,a, %W,DW,D?°W ;u ,
a RM

whereA*(A) = supjy=1 [AV] = sup,—q %, i.e., the largest eigenvalue of AS", and

G, t,a, %W,DW,D?W ;u := Guy) Y (0)Giz)
ST T Gy, vAO)Ge

with ¢ : [0, ) [0, ) being a continuous function and

! 1
.&W ..d(a,I')...DW,f(t,a,u) w5 Tr oo (t,a,u)D*Wy) ,

Gay:

1 1
Guo): 5 o (t,a, U)DZW(lz) , Goo) = ..EDZW(zz)h.
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Remark6.1 From Lemma6.1, the HIB equation in §.1) is equivalent to

sup, u{A*(Gy(t,a, (3W,DW,D?W)(t,a,b);u))

+sup; czH®@(t,a,b,(W,DW)(t,a,b);u,8)}=0, (t.ab) O,
W (T,a,b) =max{m(a) ..b, 0}, (a,b) R"x [0, ),
W (t,a, 0) =Wo(t,a), t,a [0, T)x R".

(6.2)

We will use (6.2) to prove the comparison principle in Theoren®.1with yr(b) := %e%b for
b [0, ).

Fors >0, letEs:={e E||g <8}; henceE=E; ES.We then de“ne

H® t,a,b,(W,DW);u,B
=H® t,a,b,(W,DW);u,8 +H t,a,b,(W,DW);u,8 ,

where
HEY t,a,b, (W,DW);u, 8

=... W ta+y(,aue,b+s(e ..W(t,ab)
Es

...!DW(t,a,b),x(t,a,u,e,ﬂ) w(de),
and
H? t,a,b, (W,DW);u,

=... Wta+y(t,aue,b+pE ..W(,ab) z(de

c
E5

...!DW(t,a, b), x (t,a,u,e B) ] (de).

From [8, 9, 18, 31, 32] (see B, Proposition 1]), we have the following “rst equivalent
de“nition of De"nition 1.

Lemma 6.2 Suppose that W is a viscosity subsolutigresp supersolution of the HIB
equation in(6.2). Then it is necessary and su cient to hold the following
(i) W(T,a,b) max{m(a)..b,0} (resp. W(T,a,b) max{m(a)..b,0}) for
(a,b) R"x [0, )andW(t,a,0) Wo(t,a) (resp. W(t,a,0) Wo(t,a)) for
(t,a) [0,T)x R
(i) Foralls (0,1)and test functions ¢ Cé’3(6) C2(O_), the following inequality
holds at the global maximum (resp. minimum) point (t,a,b) O of W .. ¢:

#
sup A" Gy t,a, &¢,Dp,D% (t,ab);u
uu

+sup HY t,a,b, (¢,Dg)(t,a,b);u, B
g G2
$

+H® t,ab,W,Dg)t,absup 0
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#
resp. sup A" G, t,a, &¢,D¢,D% (t,ab);u
uu

+sup HZY t,a,b, (¢,De)(t,a,b);u, B
p G2 $

+HP t,a,b,W,Dg)t,abyup 0.
The de“nition of parabolic superjet and subijet is given as follow&7]:

Definition 2
(i) For W(t,a), the superjet of W at the point of (t,a) O is defined by®

PL2W (t,a)

= (q,p, P) R x Rn+l>< Sn+l|

| "
Wt,a W(ta+qt.t +pa..a

| "
+§Pa .a,a..a+ot .t +a ..az,as(t,a) (t,a) .

(ii) The closure of P12*W (t,a) is defined by

—1,2,+ #
P ""'W(t,a):= (g,p,P) Rx R"™x g

(@,p.P) = nlim (Qn,+ Pn, Pn) with (an, pn, Pn) pL2wW (tn,an)

$
and nlim th,an, W (tnh,an) = t,a,W(t,a)

(ili) For W(t,a), the subjet of W at the point of (t,a) O and its closure are defined by
Pl2aw(t,a):=. P2 W(ta), P W(ta):=.P > . .W(ta).

Using De“nition 2 and Lemma6.2, we have the following second equivalent de*nition
of De"nition 1 (see B, 32, [31, Lemma 3.5], §, Proposition 1], and B8, Lemmas 5.4 and
5.5, Chap. 4)):

Lemma 6.3 Suppose that W is a viscosity subsolutigresp supersolution of the HIB
equation in(6.2). Then it is necessary and su cient to hold the following
(i) W(T,a,b) max{m(a)..b,0} (resp. W(T,a,b) max{m(a)..b,0}) for
(a,b) R"x [0, )andW(t,a,0) Wo(t,a) (resp. W(t,a,0) Wo(t,a)) for
(t,a) [0, T)x R"
(i) Foralls (0,1)and test functions ¢ Cé’a(d) Cg(O_) with the local maximum
(resp. minimum) point (t,a,b) O of W ..¢, if (Q,p,P) PH*w (t,a,b) (resp.

@p.P) P ZW(t,a,b)) with p=De(t,a,b) and P= D2p(t,a,b), then the following

5Note thata= a b R™1, by which we denote W(t,a) :=W(t,a,b) and W(t ,a) :=W(t ,a,b).
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inequality holds:

#
sup AT Gy t,a,(q,p,P);u
uu

+sup H* t,a,b, (9, Dg)(t.ab)iu,p
B G2
$

+H® ta,bW(tab).pup 0
#
resp. sup A G, t,a,(q,p,P);u
uu

+sup HZY t,a,b, (¢,De)(t,a,b);u, B
p G2 3

+HP tabW(tab).pup 0.

Remark6.2 Lemma6.3is introduced due to the singularity of the Lévy measure in zero,
appearing in the nonlocal operatoH§21). We will see that with the regularity of the test
function, one can pass the limit of—|§21) around the singular point of the measure.

6.2 Strict viscosity subsolution
Lemma 6.4 Suppose that Wis the viscosity subsolution ¢6.2). Let

W, (t,a,b):=W(t,a,b)+vy(t,b),
where forv > 0,
yt,b):=..7.1..1..e°.

Then W, is the strict viscosity subsolution ¢8.2) in the sense that Ois replaced by ..g
in De“nition 1.

Proof We “rst verify the boundary condition of W,.. Note thatasb [0, )andv >0,
W (T,a,b)=W(T,a,b)..o 1..e® max m(@)..b,0,
and by Lemma3.5
W, (t,a,0)=W(t,a,0)..0(T ..1) Wo(t,a).
Now, let$, Cr*O) be the test function such that

W, ..p)t.ab)= max (W, .$)t,ab .
tab) ©

Then from (6.2 and De"nition 1, it is necessary to show that

#
sup AT G, t,a, &¢,,De,, D%, (t,a,b);u
uu

$

+sup H® t,ab, (¢, D)t ab)u, B v (6.3)
B G2 8
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By de“ning
(t,ab):= vy (t,b)+¢,(t.a,b),
itis easy to see thap C}¥(O) and

(W, ..,)(t,a,b) =W(t,a,b) ... .vy(t,b) +¢,(t,ab)
=W(t,ab)..¢(t,ab).

Then

max (W, ..¢,)t,a,b =(W, ..9) t,a,b

tab) ©

=(W .. = W .. :
W ..g) ta,b (t,?t?;(O(_ ¢) t,a,b

Sinceg, = ¢ + vy, A* is the norm, andH®@ is linear in ¢, and D¢,

#
sup A" Gy t,a, &¢,,De,, D%, (t,a,b);u
uu
$
+sup H® t,a,b, (¢, Dg,)(t,ab)iu, B I+l
p G2

where

#
IM:=sup A* G, t,a, 3¢,D¢,D?* (t,a,b);u
uu -

$
+ sup H® t,a,b, (p,Do)(t,a,b);u, B,
p G2 -

#
1@:=psup A* G, t,a, dy,Dy,D?y (t,b);u
uu

$
+ sup H® t,a,b, (y,Dy)(t,b);u, B
B G2
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(6.4)

We now provide the estimate of M) and | @. First, sinceW is the viscosity subsolution

and ¢ is the corresponding test function in view of§.4), we have
1o,
For1®, we observe that

H® t,a,b, (y,Dy)(t,b);u, B

=  1.e®@ 1. eP  ePB(e n(de).
E

Sinceb [0, )andpg G?, itis easy to see that wittB(e) =0,

sup H® t,a,b, (y,Dy)(t,b);u, =0.
B G2

(6.5)
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Recally(b) = 1e2° for b [0, ). In the denition of Gy,

Gupy=-..1.e%(tau)..d@rl), ¥()Gi=0,

1 1
2 - deb) =
v (b)G(zz)— 5% 4 e”l; 8|r
Note that sincel andd(a,I") are positive, ando [0, ), we haveGayy ...1. Then we

can show that

A* G, t,a, dy,Dy,D? (t,b);u

At ..1.e®l(tau)..d@ar) o }
0 2l 8'
which implies
oy ...0/8). (6.6)
Then (6.5 and (6.6) lead to (6.3). We complete the proof. O

6.3 Proof of Theorem5.1
We continue to prove the uniqueness. Foy >0 andv >0, let

W, (t,a,b):=W (t,a,b)..W(t,ab)...2e* 1+]a?+b, (6.7)
where A >0 will be speci“ed later. Then it is necessary to show that
W,,.(tab) 0, (tab) O, (6.8)
since by lettingy 0 and thenv 0, the desired resultin.1) holds, i.e.,
W(t,ab) Wi(ab), (tab) O.
Assume that 6.8) is not true, i.e.,\ ¥, , (t,a,b) > 0 for some ¢, a, b) O. Consider,

lpv;n,)u(t!ar b) = max ,\Ijv;n,l(tian b) > Ol (69)
(tab) O

where the maximum exists, sinc&/ , andW satisfy the linear growth condition [og(1 +b)
also holds the linear growth condition) ande*! is decreasing. Actually,t(a,b) is depen-
dent on (\), 771)‘)1 i-e-a (vay b) = (tvin,)nav;n,ka bv;n,k)'
Suppose that = T. Then in view of 6.7) and the de“nition of W ,
W, (T,a,b) =W (T,a,b)+vy(T,b)..W(T,a,b) ... 2e*T 1+|aj®*+b 0,
which contradicts 6.9). Hencet <T. Similarly, whenb = 0, we have

W, (t,a,0)=W(t,a,0)..0(T ..1) ..W(t,a,0) ... ge* 1+]a> 0,

which again contradicts 6.9). Hence,b > 0. This implies that €,a,b) O.
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After doubling variables of¥, we consider
vatabab)=v,,,(tabab)..x;(ab,a,b),

wherex >0 and
W, (tab,ab) =W (t,ab) . W(t,ab)..ne* 1+|a*+b
et 1
.nett 1+|a2+b ”T a2+ (b..b) ..zt 12

1
Z(a,b,a,b) =5 la..a>+|b..b?.
SinceV¥, ., (t,a,b,a,b) W, ,(t,ab)and ¥, ,(t,ab,a,b) =V, (t,ab),

V.5 (t,a,b)= v, ,a,b) = W, ,a,b,a,b). A
aatab)= max W(tab)= max W(tabab) (6.10)

We consider ¢, ,a,,b,,a,,b,) such that

‘pﬁ;n,x t..a.,b. a.,b,

= max v, (t,ab,ab)..x¢(ab,ab) ,
(t,abab) OxR"x (0, )

which exists since \j., ; is coercive. Then from 1, Proposition 3.7],

lim, «¢(a.,b,,a,,b)=0,
lim, W7, (t.a.b,a.,b)=V,,.(t,a,b,a,b)

= Max, o pa =0 Yo (t,a,b,a,b),
lim, ¢(a,,b,,a.,b)=¢(a,b,a,b)=0.

This, together with 6.10, implies that as«c ,

la, ..a |2 |b, ..b 2 O,
tla, ..a.l? 5lb, b > O, (6.11)

t t,a.a, ab,b b

K

For simplicity, we denote{(,a ,b,a,b):=(,,a.b, a.b,).
We let

1 1
h,.(t,a,b) :=ne*" 1+|a]®+b 5t ..1|2+ne--“E la..a*+(b..b) ,
h,.(t,a,b) :=ne?t 1+|a*+b,

;K(a,b,a,b)::g la..a)+b..bJ? .
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Then

W (ta,abb)= W, (t,ab)..h,,(tab)
... W(t,a,b)+h(t,a,b) ..z(ab,a,b). (6.12)

We invoke Crandall-Ishiies lemma inZ1, Theorem 8.3 and Remark 2.7] from which there
exist

q+q:8t§K(a,b,a,b):0,

=1,2,
(q+ 8thn,A1D(a,b)(hr1,k +§K)1P+ D(Za’b)hn,)\)(t ,a,b) P +ﬂv(t ,a,b),
—=1,2,

(..q..Bth,M,..D(a'b)(h,,,ﬁg),..P...D(Zayb)h,?,)\)(t,a,b) P ™™ "Wi(t,a,b),
such that
gm0 PO g T ol (6.13)
O |n+]_ O P ..I.r|+]_ |n+]_

Straightforward computation yields

oo (t,ah) = phe i (L+]al2 +b)+ (t 1) .25 (Ja.. a2 + (b ..b)),
ah(tab) = gt rla+b),

2ne*ta+nei(a..a)
D(a,b)h,,,k(t,a, b) =&

%
27’]6"“ a(

3 .
2ne. At

Daphna(t.ab) = & yed
% 1
3ne*l, 0
Dfapyhua(t.a,b) =& " (6.14)
0 0
% 1
2neitl, 0

0 0
% .
/c(a..a)(
k(b..b)

%

D2 ,hua(t.ab) =&
D(a,b) i (t, a,b,a, b) =&

D(ab)Cx(t,a,b,a’ b) = &K(a ‘a)( .
| .k(b..b)

Below, we use the superscript in the above derivatives when they are evaluated at
(t,a,b,a,b)(e.g.oh,, :=ah,;(t,a,b)).
From Lemmas6.3and 6.4, there existsp  Ci¥(O) C»(O) such that

#
sup A* G, t,a, q+dh,,,Dap h,, +¢ P+ D(Za’b)h,M u
uu

+ sup H§21) t,a,b,(@,D¢)t,a,b ;u,pB
B G?
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$
+HP ta,b W, tab Day by, +5 iup g,
and

#

sup A* Gy t,a, .q..8h,,,.Dap h,,+ o, ,..P..D(Za‘b)h,]’,\ u
u

+sup H® t,a,b,(¢,D¢) t,a,b ;u,p
p G2

$

+H§22) t,a,b,Wt,a,b +Diapy Mo+ 8 P 0.

Then usingsup{f (X) ..g(X)} supf(x) ..supg(x), we have

T+ v@ 4 G
where

@ . + 2 )
T = ﬁug A" Gy t,a, ..q...athﬂ’/\,..D(a’b) hM+§’K "'P"'D(a,b)hn)» u

AT G, t,a, q+3thﬂ,k’D(a,b) hrz,/\ *+ 'P+D(2a,b)hn,x U
@

sup H§21)t,a,b,(¢,D¢)t,a,b u, B
uupg G2

_H®t a,b,(#,D¢)t,a,b ;up ,

— 22 tvyva .
T(3).—u Sl;sz H t,a,b,Wt,a,b ,.Dyy h,, +2 iup

..H(§22) t 1a1bywv tyavb yD(a,b) h'f]v)»+§/( 1u1/3

We obtain the estimate ofr ™, 7@, andY® in (6.159, (6.21) and (6.26 separately below.

Thatis, (6.19, (6.2, and 6.26 show that for anyA  max{C;,C4}, whereC, and C, are
given below, we have

V
—  lim lim lim Y®+1®@+y®
8 o0« 50

which leads to the desired contradiction, since> 0 from Lemma6.4. Hence, 6.8) holds,
and we have the comparison principle ing(1).

6.4 Estimate of YV
From the de“nition of G,, we denote

2 iy =Y 4 22 L &3
Gy t,a, .Q..dh,,, Dey hy,+5 ,.P.DZ h . u =GP +GP+ G,

where

. ) ) 1 * *
G](/,)::G, t,a, "q"'Eathn,A"'D(a,b) h,,+¢ .0 5u

G](/,Z)::G, t,a,(0,0,.B);u,
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) ) * *

1
3)._ 2 ;
G, =G, t,a, --Eathn,wo-'D(a,b)th\ U

and
Gy t,a, q+dh,,.Dap h,, +¢, P+Diyh,, ;u =GP +G?+G?,

where

) ) 1 * *
Gl(/fl)::Gw t,a, q+§athn_pD(a,b) h,,+¢ .0 5u

G](/,Z)::G,, t,a,(0,0P);u,
) * *

1
GY:=G, t,a, Eathn,xvo’D(za,b)hn,k U

Then using|A..B| | A|..|B|, we have
.= e O e O C) + 0@ c®
T .—iug AT GI+GI+GY AT GG+ G

+ ~1) (2) (3) (1) 2) 3)
SHBA G +GP+GY ... GP+GP+G)

Y1) ¢ (12) 4 T(13),
where
(11) .— + 1) (1) 12) .— + ~@2) (2)
T .—ﬁuBA Gx// ...Gw , T .—iuBA G‘/, ...Gw ,

(13) ._ + ~((3) (3)
T .—ﬁuBA Gd, ...Gw .

The estimate ofY (), i =1,2, 3, is obtained in§.16), (6.19, and 6.20 separately below,
which show that for anyd.  max{C,, C4}, whereC, and C, are given below,

Jim T® Jim TAD 4+ A2 4 @) o, (6.15)

6.4.1 Estimate ofr D
From de“nition,

q+3ah,, ..d@,I)+ Dyy(h,, +¢).f(t,a,u) 0

G(l): '
v 0 0
o - .33h,, ..d@,T)...Daph,, +¢).f(t,a,u) 0
w - y

0 0

which implies (note thatq+ q=0)

| "
T = sup max 3th,,,;\ + 3th,,,;\ + D(a’b) h,M +¢ ,ft,a,u
uu

!
+ D) h,M+§K Jt,a,u +da, ..da,I' ,0.
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We have

1
5 ahy, o,

)\'e..M
= DLe® 1+a%+b +t .t .0 a.a’+b.b*
2 4
...gxe"“ 1+ a 2+b .gre*t 1+]al?+b  ask due to (6.12),

and using Cauchy-Schwarz inequality, and Assumptiohsnd 2,

!
D(a,b) hn,k+§x Jt,a,u + Db h,M'*'{K ,t,a,u

Cime™ 1+ a ’+ a ’+b+b Cone? 1+]al®2+b ,

ask dueto (6.11).
Moreover, from Assumption3,
da,I' ..da,rI Ca.a 0 ask due to (6.11).
Hence,
K]im TAY  max (.a+C)pe?t 1+]a?+b ,0,
and foranyr >0 with . C,, we have
lim A 0. (6.16)

6.4.2 Estimate ofr(12
From de“nition,

3Ti(oo (t,a,u)Par) ¥ (b)Py,o(t,a,u)
V' Lyb)o (t,a,u)Puy 1y 2(b)Peos

G(z) _ % Tr(oo (t,a, U)P(ll)) %w(b )P(lz)U(t ,a,u)
Vo iy (t.a,u)Puy 192(b)Pes
Let
A= O auw 0 . o (tau 0
' 0 y(b) ' 0 vb)

Using (6.13 and Assumptionl, together with Cauchy-Schwarz inequality, we can show
that foranyz R"™?,

P 0O A
z A A
0O P A
I .l A
3z A A n+1l n+1l

. -ln+l I n+1 A



Moon Advances in Continuous and Discrete Models (2022) 2022:68

Page 31 of 38
2,_12 2 2 2 2
3k A LA (|7 3kC° a.a"+b.b"|Z% (6.17)
Forj {1,...r} letzp:= z;, 3 R™!, wherez R and z; is anr-dimensional
vector with the jth entry beingz R and other entries being zero, i.ez; :=[0 --- 0z
0 ---0]. Then
1

2522 o t,a,uPupot,au+o t,a,uPuotau

+Zy b Pyyo t,a,u +y b Pyyo t,a,u iZ

1
* EZJZ Y2 b Pay+y? b Py

’+ b .b

SKCZ a..a Z+z, (6.18)
where the inequality follows from 6.17). In (6.18 and below, ¢); and (-); indicate the

jth component of the vector, and thgth element of the row and column of the matrix,

respectively.
Let
y=2z Y ., Yo=zn - I

Using (6.18, we can show that

(2) 2)
y G Gf/j y

1+
E 2o t,a,u P(ll)(T t,a,u +o t,a,u P(ll)a t,a,u
=1

i

+r
+  zy b Pgpyot,a,u+y b Pypot,au
=1

1+
*5 Z Y? b Pagy+y® b Pyy
=1

4

4+ b..b %y

3
EKCZ a..a
which, together with the arbitrariness oz andz,j { 1,...r}, leadsto

3
maxy GP.GPy JreC’a.a’+b.b”.

Hence, in view of 6.11) and the de“nition of A* (see Lemma.1and [26, Example 5.6.6]),
we have

lim Y®? 0. (6.19)
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6.4.3 Estimate ofr %
By de“nition, we have

%&hm +ne* Tr(co (t,a,u)) O

G(3): ,
' 0 Orxr
c@= ~zdh,, . Snet Tiwo (ta,w) 0
' 0 Orxr

which implies
(13) — 1 At
T = supmax > E)thw+8thn’A +ne* Troo t,a,u
uu

3
+§ne'M Trooc t,a,u ,0.

Note that from Assumption 1,

Lt 3ne
ne* Troo t,a,u + Tr oo t,a,u
3 e..M
:ne"‘“ ot,a,u |2=+ '72 ot,a,u |2:
Cane™ 1+a’+a?’ Cine?t 1+|a]®> ask due to (6.11),
and as shown above,
1 At 2
> dth,, +ah, ; .gre*t 1+|al“+b ask due to (6.11.
Hence,
lim Y max (C4..A)ne* 1+|aj®+b ,0,
and if we choose. > 0 with A C4, then
lim Y@ 0. (6.20)
6.5 Estimate of Y@
In view of the de“nition of H®@),
T@ = sup @) 4 y(22) ,
(up(e) UxG?
where
Y@=, ¢ t,a+yt,a,ue,b+pE .9 t,a,b
Es
t,a,u,e
D¢ tab, X ) 1(de,

G



Moon Advances in Continuous and Discrete Models (2022) 2022:68 Page 33 of 38

T@):= gt,a+yxt,a,ue,b+pEe .pt,a,b
Es
... D¢ t,a,b , x(t.a,u,e de).
¢ 8O 7(de)

Let x (u,e) := x(t ,a,u,e). From the Hoder inequality, it follows from the uniform
boundedness 0D?%¢ that

1?2 1(1 ..2) D2¢ t,a +zy (u,e,b +z8(e .
Es O
x x(ue + B(e dzr(de.
)) *1 ) * 1%

C x (u,©) %7 (de) ‘4 B(e) > (de) ?
Es Es

Then the regularity of x in Assumption 1 and the fact that8 G?(E,B(E),7;R) can be
restricted to a bounded control from Remark3.1imply that lims ¢ Y?2 0. A similar
technique can be applied to show thdim; o Y@V 0.

Hence, we have

limT® 0. (6.21)
§ 0

6.6 Estimate of Y®
Recall .12

v, (taabb)= W (t,ab)..h,.(tab)
... W(t,a,b)+h(t,ab) ..z(ab,ab),

from which we have

W (t,a,b) .. W(t,a,b)= W~ ,(t,a,b,ab)

v,

+h,.(t,a,b)+h,,(t,a,b) + ¢ (a,b,ab). (6.22)

We note that (t ,a,b,a,b) is the maximum point of &7, ;.
Let x (u,e):=x(t,a,u,e) and x (u,e) := x(t,a,u,e). Since {,a,b,a,b) is the maxi-
mum point of W ., it follows from (6.22 and the de“nition of T that

T® sup TED 4 (@2 4 @3
uup G2

where

TED = i tatx(ueb+p@ hytab m(de
ES

u, €
Daph x (u,€

e B
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16 .= Mo tia+x(ueb+pe .hytab r(de
ES
x (u,e)
. D , m(de),
e Dol g (09
16 .= LGeatx(ueb+p@e.a+x(ueb+pE .4 ab.ab)r(de
E8
x (u,€) x (u,€)
. D , (de) + .D - (de).
o Devto Tpg TEIT o Danbo Ty 70
From (6.14, we can show that
1 - At
Y@= 1.1 e 0
ES o 0 0
x(x) (ue x(uep (¢ dz(de)
BE(x) (u,e) BEB (9
Crpet 1+ a 2, (6.23)
and similarly,
1 AL
Y@= a.gm 21 0
E o 0 0
(00 0O xUdF @ o
BE(x) (ue) BEB (9
Crpet 1+ a ° (6.24)
Moreover, using 6.14 and Assumptionl,
@)K 2
T = — x (U,8) ..x (u,e) “m(de)
2 Ez(S:
% a.a’® 0 asc due to (6.11). (6.25)
Hence, 6.23-(6.25, together with (6.11), imply that
lim lim limY® 0. (6.26)
n O« 5 0

Appendix: Existence of optimal controls for jump-diffusion systems

In Theorem 3.2 an additional assumption of the existence of optimal controls for the aux-
iliary optimal control problem in (3.7) is needed. Here, we show that a certain class of
stochastic optimal control problems for jump-di usion systems with unbounded control
sets admits an optimal control. The proof of the main result in this appendix (see The-
orem A.1) extends the case of SDEs in a Brownian setting without jumps studied Iri
Appendix A] and [38, Theorem 5.2, Chap. 2] to the framework of jump-di usion systems.
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As in (3.7), consider

W(t,a,b):= inzi; Jit,a,b;u,a, B),
u
a AB B

. (A1)
It,abju,a, f)=E pp XU WP+ o X ug ds
t
and subject to (we recallZ.1) and 3.1))
dxlal = f (5, x\*Y, ug) ds+ o (s, X4%Y, us) dBs
+ cx(sxt ugeN(de ds), x*=a,
dysf = (s X, ug) ds+ o dBs+ ¢ B((@N(de ds), i =b.
Assumption 4
(i) Fore:=f,o,x,Iwithe= ¢y --- ¢, ,satisfies Assumptions 1 and 2, and is
independent of X. Moreover, ¢j, i =1, ... N, is convex and Lipschitz continuous in u

with the Lipschitz constant L;
(i) p1 and py are convex, nondecreasing and bounded from below;
(iii) U R™isacompact and convex set.

Note that Assumption4is di erentfromthatin[ 11, Appendix A] and [38, Theorem 5.2,
Chap. 2]. We have the following result:

Theorem A.1 Suppose that Assumptiod holds Then (A.1) admits an optimal solution
(u,a,8) Ux AxB,i.e,

W (t,a,b)=J(t,a,b;u,a,B) = in{{ Jt,a,b;u,a,B).
u
a AB B

Proof Since p; and p, are bounded from below, A.1) is well de“ned. Suppose that
{(u,a, Bl 1 U x A x B is a sequence of minimizing controllers such thai(t,a, b;
U ok B) & W(t,a,b). Note thatL 2 and G? are Hilbert spaces. Also, from Rema 1,
{(o, B)}k 1 can be restricted to a sequence of controls boundedlirf and GZ senses, and
U is compact from (iii) of Assumption4. Hence, in view of L6, Theorem 3.18], we can
extract a subsequencf{uy,, ax;, Bi;)}i 1 from {(uk, ok, B)}k 1 such that

(U ok, ) &S (U, B) weaklyinl2x L2 x G2,
Then for eache > 0, there exists such that for anyi i,
It a,b, Uy, i, i) W(t,a,b)+%. (A.2)

From Mazures lemmal6, Corollary 3.8], we have convex combinations of subsequences
above
+ +
(M0, B) = Okp(Uig+ps ieps Big+p)s Okp 0, Oip=1, (A-3)
p1 p 1
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such that
(g i) 8 (U, ) stronglyinL2x L2x G (A4)

where (,«a,8) Ux A x B. Then from (A.3) and (i) of Assumption4, we have

tajy; tay +p Ui 0tk 1B Ui +p 2tk +p:Bk; +p
Xs OipXs ys;tia,bI I Gkipystl,a,b I s LT

p1 p1

where denotes the componentwise inequality. Using the Lipschitz property bfo, x
andl in u (see (i) of Assumptiord) and the proof of Lemma2.1, (A.4) implies the conver-
gence of the following sequence strongly in tHe, -norm sense:

tam Mgk Bl deses tau \Ma.p
X Ygan S5 XY -

By continuity of J, for eache > 0, there exists suchthati i ,
Jt,a,b;u,a,p) j(t,a,b;uki,aki,ﬂki)+g.
This, together (ii) of Assumption4 and (A.2), shows that foranyi max{i,i },

Jt,a,bju,a,p) j(t,a,b;uki,aki,ﬂkiﬂ%

) + +
tauk +p Uk +p Ok +p Bki +p
E p2 OipXr s BipYrrap
1 p1

*

p
*
T ) o+
t,a;uk.+p €
+ p1 S OgpXs T, BgpUieps ds +§
t p1 p1
+ €

Qkipj(t.a, b;uki+p,05ki+p.,3ki+p) + 2

p1

W (t,a,b)+e.
Sincee is arbitrary, we have the desired result. This completes the proof. O

Remark A1l Asin [11, Appendix A], we can also use the following assumption in Theo-
rem A.linstead of Assumptiord:
(i) f(s%,uU)=AX+BgU, o(5X,U)=CeX+DgU, x(5X,6) = Ex+ Fsu +rg(e) and
I(s,x,u) = Hgx + Kgu, where A, B, C, E, F, r, H and K are deterministic and bounded
coefficients with appropriate dimensions;
(ii) p1 and p7 are convex and bounded from below;
(i) U R™isacompact and convex set.
Unlike the case of SDEs in a Brownian setting, there are not many results on the existence
of optimal controls for jump-di usion systems. Some results related to the relaxed optimal
solution approach can be found inZ3, 29]. Itis interesting to study the existence of optimal
controls for jump-di usion systems in the original strong sense as for the case of SDEs
driven by Brownian motion in [24].
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