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Abstract
This paper studies a stochastic predator–prey model with Beddington–DeAngelis
functional response, fear effect, and Lévy noise, where the fear is of prey induced by
predator. First, we use Itô’s formula to prove the existence and uniqueness of a global
positive solution and its moment boundedness. Next, sufficient conditions for the
persistence and extinction of both species are given. We further investigate the
stability in distribution of our system. Finally, we verify our analytical results by
exhaustive numerical simulations.
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1 Introduction
As an important part of ecology, population models have been widely studied and ex-
plored because of their rich dynamic behaviors, aiming to provide theoretical guidance
for the protection, development, and utilization of biological resources [1]. Among the
most important population models, the predator–prey model plays an important role in
understanding the interactions of different species in unstable natural environments and
has been extensively studied [2–4].

In the past few decades, most studies have only considered the direct effects of preda-
tor species on prey species, because the effect is easy to observe in any case. However,
some actual data suggest that indirect effects of predator species on prey species also have
a significant effect on population dynamics, and in some cases are even greater than di-
rect predation [5–7]. Although we only observe direct predation behavior in nature, any
prey will respond to perceived predation risk and therefore exhibit different types of anti-
predation behaviors such as new selection of habitat, foraging behaviors, vigilance, and
several psychological changes [8–11]. This activity against predators can be thought of as
beneficial to adult survival, but the long-term cost will reduce the prey’s basic reproduc-
tion. In addition, when some prey are fully aware of impending predation risks, the choice
of a new habitat can sometimes negatively affect an individual’s lifetime reproductive suc-
cess. Poor habitat selection, i.e., poor quality of new habitat, affects not only adult repro-
duction, but also adult survival [4]. In 2011, experiments by Zanette et al. [12] showed that
song sparrows (Melospiza Melodia) produced 40% less offspring due to fear of predators.
This reduction is due to the effect of anti-predator behavior on both the birth rate and the
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survival of offspring. Thus, theoretical biologists and evolutionary ecologists have realized
that it is not only the direct killing or shock that needs to be taken into account, but also
the indirect shock or fear costs that must be incorporated into the model of predator and
prey populations.

The behavioral characteristics of predation can be called functional responses, which
play a dominant role in some complex dynamical behaviors, such as the steady states,
bistability, periodic oscillations, chaos, and bifurcation phenomena. The functional re-
sponse depends on many factors, such as different prey densities, the efficiency with
which predators search for and kill prey, processing time, competition between preda-
tors, etc. The most typical prey-dependent functional responses are (i) Lotka–Volterra
type; g(x) = px (linear); (ii) Holling type II, g(x) = px

c+x (concave increasing); (iii) Holling
type III, g(x) = px2

c+x2 (sigmoid increasing), where x is the density of prey, p is the maximum
predation rate, and c is the half-satiation constant. However, prey-dependent functional
responses fail to mimic predator–predator interference and face challenges from biolog-
ical and physiological communities. Some biologists have argued that in many cases, es-
pecially when predators must search for food (and therefore must share or compete for
food), the functional response in the predator–prey model should be predator-dependent,
and numerous experiments and observations have shown this to be the case. In order to
reconcile the theoretical and experimental views, Beddington and DeAngelis et al. con-
sidered a functional form of prey consumption rate and proposed the following form:
g(x, y) = px

ax+by+c , which is similar to Holling-type II functional response, but there is an
extra term “by” in the denominator, which is interpreted as an interference between preda-
tors. The function g(x, y) = px

ax+by+c is called the Beddington–DeAngelis function response,
where x and y represent the populations of prey and predator, respectively [13–15].

Let x(t) be the prey density at time t and y(t) be the predator population density at
time t. It is assumed that the predator preys on prey according to the functional response
of Beddington–DeAngelis. In the presence of direct predation and fear factor, the prey
population follows a logical growth, then we get the following differential system:

⎧
⎨

⎩

dx
dt = αx

1+ky – bx2 – βxy
1+mx+ny ,

dy
dt = –cy – dy2 + θβxy

1+mx+ny ,
(1.1)

where α, b, c, d, θ , β , m, n are positive constants, α is the intrinsic growth rate of prey, c
is the natural death rate of the predator, b and d respectively represent the mortality rates
of the prey and predator species due to intraspecific competition between individuals.
The constants m, n, θ , and β are the half-saturation constant of prey, the half-saturation
constant of predator, the conversion rate of prey biomass to predator biomass, and the
rate of predation, respectively [16, 17]. Function g(k, y) = 1

1+ky represents the fear function,
which stands for the cost of anti-predator defence of prey due to fear induced by predator,
and k is the level of fear. The function g(k, y) has some special properties, as several field
data show that the effect of fear reduces the reproductive process of prey species. For more
details on the fear function g(k, y), see [18].

On the other hand, population dynamics in the real world is inevitably affected by en-
vironmental noise. To capture how environmental fluctuations affect system (1.1), it is
necessary to take into account the stochastic differential equation model corresponding
to the deterministic model (1.1) [19–22]. Applying the technique used in [23] to include
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stochastic effects, we can obtain the stochastic version of model (1.1) as follows (the proof
can be shown by the similar procedure as in [4]):

⎧
⎨

⎩

dx(t) = { αx(t)
1+ky(t) – bx2(t) – βx(t)y(t)

1+mx(t)+ny(t) }dt + σ1x(t) dB1(t),

dy(t) = {–cy(t) – dy2(t) + θβx(t)y(t)
1+mx(t)+ny(t) }dt + σ2y(t) dB2(t),

(1.2)

where σ 2
j (j = 1, 2) stands for the intensity of white noise. Throughout this paper, let

(�,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e. it is right continuous and F0 contains all P – null sets) and Bj(t)(t ≥
0)(j = 1, 2) be a scalar standard Brownian motion defined on this probability space.

Furthermore, the population system may suffer sudden environmental shocks, e.g.,
earthquakes, hurricanes, epidemics, etc. However, the stochastic Lotka–Volterra model
(1.2) cannot explain such phenomena [24–26]. Just as Scheffer et al. [27] pointed out that
studies on lakes, coral reefs, oceans, forests, and arid lands had shown that smooth change
could be interrupted by sudden drastic switches to a contrasting state. For example, an
abrupt climate change, whether warming or cooling, wetting or drying, could have lasting
and profound impacts on natural ecosystems [28]. Zhou et al. [29] studied the dynamics
of a stochastic SIS models with Lévy jumps and found that Lévy noise could suppress dis-
ease outbreak. Zhao et al. [30] analyzed a two-species Lotka–Volterra competition model
in an impulsive polluted environment and showed that Lévy noise could change the per-
sistence and extinction of each species significantly, and the Lévy noise was harmful to the
survival of one of the species and was advantageous to the survival of the other. Therefore
it is interesting and beneficial to treat differential systems with Lévy noise. In this paper,
we develop a stochastic predator–prey model with Beddington–DeAngelis functional re-
sponse, fear effect, and Lévy noise as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = x(t){[ α
1+ky(t) – bx(t) – βy(t)

1+mx(t)+ny(t) ] dt + σ1 dB1(t)}
+

∫

Z
γ1(u)x(t–)Ñ(dt, du),

dy(t) = y(t){[–c – dy(t) + θβx(t)
1+mx(t)+ny(t) ] dt + σ2 dB2(t)}

+
∫

Z
γ2(u)y(t–)Ñ(dt, du),

(1.3)

with initial data X(0) = (x(0), y(0)) ∈R
2
+, where x(t–) and y(t–) represent the left limit of x(t)

and y(t), respectively; N is a Poisson counting measure with compensator Ñ and char-
acteristic measure λ on a measurable subset Z of (0,∞) with λ(Z) < ∞ and Ñ(dt, du) =
N(dt, du) – λ(du) dt. The parameter γi(u) characterizes the effect of Lévy noise on the ith
species. For biological reasons, we suppose that 1 + γi(u) > 0, where γi(u) > 0 means the
increasing of the species (e.g., planting) and –1 < γi(u) < 0 means the decreasing of the
species (e.g., harvesting and epidemics), u ∈ Z, i = 1, 2. For more details of the Lévy jumps,
see [31]. The Brownian motion and Lévy jumps are assumed to be mutually independent.

Based on the above discussion, this paper intends to study the dynamical properties
of (1.3). The organization of this paper is as follows. In the next section, we present some
necessary notations and preliminary results of model (1.3). In Sect. 3, we prove the exis-
tence and boundedness of global positive unique solutions. Then, in Sect. 4, we establish
some sufficient conditions for the persistence and extinction of both species. We further
investigate the stability in distribution of our system in Sect. 5. Some numerical simula-
tions are carried out in Sect. 6. We close the paper with a conclusion in Sect. 7.



Xue et al. Advances in Continuous and Discrete Models         (2022) 2022:72 Page 4 of 24

2 Preliminaries
In this section, we begin with the introduction of the generalized Itô formula with jumps.
Let x(t) ∈ R

n be a solution of the following stochastic differential equation with Lévy
jumps:

dx(t) = F
(
x
(
t–)

, t–)
dt + G

(
x
(
t–)

, t–)
dB(t) +

∫

Z

H
(
x
(
t–)

, t–, u
)
Ñ(dt, du), (2.1)

where F : Rn ×R+ → R
n, G : Rn ×R+ → R

n, and H : Rn ×R+ × Z → R
n are measurable

functions. Given V ∈ C2,1(Rn ×R+;R), we define the operator LV by

LV (x, t) = Vt(x, t) + Vx(x, t)F(x, t) +
1
2

trace
[
GT (x, t)Vxx(x, t)G(x, t)

]

+
∫

Z

{
V

(
x + H(x, t, u), t

)
– V (x, t) – Vx(x, t)H(x, t, u)

}
λ(du), (2.2)

where Vt(x, t) = ∂V (x,t)
∂t , Vx(x, t) = ( ∂V (x,t)

∂x1
, . . . , ∂V (x,t)

∂xn
), Vxx(x, t) = ( ∂2V (x,t)

∂xi∂xj
)n×n. Then the gen-

eralized Itô formula with jumps is as follows:

dV (x, t) = LV (x, t) dt + Vx(x, t)G(x, t) dB(t)

+
∫

Z

{
V

(
x + H(x, t, u), t

)
– V (x, t)

}
Ñ(dt, du). (2.3)

For more details on Itô’s formula with jumps, see, e.g., Reference [32].
From now on, we make the following fundamental assumptions on the jump-diffusion

coefficients of model (1.3).

Assumption 1 For any p > 0 and i = 1, 2, there exist constants Kj > 0 (j = 1, 2, 3) such that

∫

Z

{∣
∣γi(u)

∣
∣2 ∨ [

ln
(
1 + γi(u)

)]2}
λ(du) ≤ K1 < ∞,

∫

Z

{
γi(u) – ln

(
1 + γi(u)

)}
λ(du) ≤ K2 < ∞,

∫

Z

{(
1 + γi(u)

)p – 1 – pγi(u)
}
λ(du) ≤ K3 < ∞,

which implies that the intensity of Lévy noise cannot be too strong, otherwise the solution
of system (1.3) may explode in some finite time.

For the continuous and bounded function f (t) defined on [0, +∞), we cite the following
notions:

〈
f (t)

〉
=

1
t

∫ t

0
f (s) ds,

〈
f (t)

〉∗ = lim
t→∞ sup

〈
f (t)

〉
,

〈
f (t)

〉

∗ = lim
t→∞ inf

〈
f (t)

〉
.

3 Existence and boundedness of solutions
In this section, under Assumption 1, we show that the solution of system (1.3) is globally
nonnegative, and for any n > 0, the solution admits a uniformly finite nth moment.
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Theorem 3.1 Let Assumption 1 hold. Then, for any given initial value (x0, y0) ∈ R
2
+, sys-

tem (1.3) will possess a unique solution (x(t), y(t)) for all t ≥ 0, and the solution will remain
in R

2
+ with probability 1.

Proof Since the coefficients of (1.3) are locally Lipschitz continuous, for any given initial
condition (x0, y0) ∈R

2
+, there is a unique local solution (x(t), y(t)) for t ∈ [0, τe), where τe is

the explosion time (see [33]). To show that the solution is global, we need to prove τe = ∞
a.s. Let k0 > 0 be sufficiently large such that x0 and y0 are lying within the interval [1/k0, k0].
For each integer k ≥ k0, we define the stopping time by

τk = inf

{

t ∈ [0, τe) : x(t) /∈
(

1
k

, k
)

or y(t) /∈
(

1
k

, k
)}

,

where inf∅ = ∞ (as usual, ∅ denotes the empty set). Denote τ∞ = limk→∞ τk , and since τk

is nondecreasing as k → ∞, then τ∞ ≤ τe a.s. Now we show that τ∞ = ∞ a.s. If not, then
there exist T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thus, by denoting Ωk = {τk ≤ T},
there exists k1 ≥ k0 such that

P(Ωk) ≥ ε for all k ≥ k1. (3.1)

Define a C2-function V :R2
+ →R

2
+ by V (x, y) = x–1– ln x+y–1– ln y, which is nonnegative.

If (x(t), y(t)) ∈R
2
+, by using Itô’s formula, we get

dV (x, y) = LV (x, y) dt + σ1(x – 1) dB1(t) + σ2(y – 1) dB2(t)

+
∫

Z

{[
γ1(u)x – ln

(
1 + γ1(u)

)]
+

[
γ2(u)y – ln

(
1 + γ2(u)

)]}
Ñ(dt, du), (3.2)

where

LV (x, y) = (x – 1)
(

α

1 + ky
– bx –

βy
1 + mx + ny

)

+
(

1 –
1
y

)
θβxy

1 + mx + ny
– (y – 1)(c + dy) +

σ 2
1 + σ 2

2
2

+
∫

Z

[
γ1(u) – ln

(
1 + γ1(u)

)]
λ(du) +

∫

Z

[
γ2(u) – ln

(
1 + γ2(u)

)]
λ(du)

≤ x
(

α

1 + ky
– bx –

βy
1 + mx + ny

)

–
(

α

1 + ky
– bx –

βy
1 + mx + ny

)

– y(c + dy) + (c + dy)

+
θβxy

1 + mx + ny
+

σ 2
1 + σ 2

2
2

+
∫

Z

[
γ1(u) – ln

(
1 + γ1(u)

)]
λ(du)

+
∫

Z

[
γ2(u) – ln

(
1 + γ2(u)

)]
λ(du)

≤ – bx2 + (α + b)x – dy2 +
(

d – c + β +
θβ

m

)

y + c +
σ 2

1 + σ 2
2

2
+ 2K2

≤ (α + b)2

4b
+

(d – c + β + θβ

m )2

4d
+ c +

σ 2
1 + σ 2

2
2

+ 2K2
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:= K > 0, (3.3)

where K is a positive constant. Thus

dV (x, y) ≤ K dt + σ1(x – 1) dB1(t) + σ2(y – 1) dB2(t)

+
∫

Z

[
γ1(u)x – ln

(
1 + γ1(u)

)]
Ñ(dt, du)

+
∫

Z

[
γ2(u)y – ln

(
1 + γ2(u)

)]
Ñ(dt, du). (3.4)

Integrating both sides of (3.4) from 0 to τk ∧ T , we obtain

∫ τk∧T

0
dV

(
x(t), y(t)

) ≤
∫ τk∧T

0
K dt +

∫ τk∧T

0
σ1(x – 1) dB1(t) +

∫ τk∧T

0
σ2(y – 1) dB2(t)

+
∫ τk∧T

0

∫

Z

[
γ1(u)x – ln

(
1 + γ1(u)

)]
Ñ(dt, du)

+
∫ τk∧T

0

∫

Z

[
γ2(u)y – ln

(
1 + γ2(u)

)]
Ñ(dt, du).

Taking expectations of the above inequality leads to

EV (xτk∧T , yτk∧T ) ≤ V (x0, y0) + KE(τk ∧ T) ≤ V (x0, y0) + KT .

On the other hand, by (3.1), we get P(Ωk) ≥ ε. Noting that, for every ω ∈ Ωk , either xτk (ω)
or yτk (ω) equals either k or 1/k, we have

V
(
xτk∧T (ω), yτk∧T (ω)

) ≥ ε(k – 1 – ln k) ∧
(

1
k

– 1 + ln k
)

.

Setting k → ∞ leads to the contradiction

∞ > V (x0, y0) + KT = ∞.

Therefore, we have τ∞ = ∞ a.s. The proof is complete. �

Now we prove the boundedness of the moments of x(t) and y(t).

Theorem 3.2 Let X(t) = (x(t), y(t)) be a solution of system (1.3). For any initial value X0 =
(x0, y0) ∈R

2
+, then for n ≥ 1 we have

E
(
xn(t)

) ≤ M1(n), where M1(n) =
(

n
n + 1

)n+1 [ 1+γ̃1n
n + α + n–1

2 σ 2
1 ]n+1

bn .

Also, for n ≥ 1,

E
(
yn(t)

) ≤ M2(n), where M2(n) =
(

n
n + 1

)n+1 [ 1+γ̃2n
n + θβ

m + n–1
2 σ 2

2 ]n+1

dn .
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Proof Applying Itô’s formula to the first equation of (1.3), we can easily obtain

d
(
etxn(t)

)
= netxn(t)

[
1 + γ̃1n

n
+

α

1 + ky(t)
– bx(t) –

βy(t)
1 + mx(t) + ny(t)

+
n – 1

2
σ 2

1

]

dt

+ netxn(t)σ1 dB1(t) + etxn(t)
∫

Z

[(
1 + γ1(u)

)n – 1
]
Ñ(dt, du), (3.5)

where γ̃1n =
∫

Z
{(1 +γ1(u))n – 1 – nγ1(u)}λ(du). Integrating the two sides of (3.5) and taking

expectations leads to

E
(
etxn(t)

)

= xn
0 + n

∫ t

0

{

E
(
esxn(s)

)
[

1 + γ̃1n

n
+

α

1 + ky(t)
–

βy(t)
1 + mx(t) + ny(t)

+
n – 1

2
σ 2

1

]

– bE
(
esxn+1(s)

)
}

ds

≤ xn
0 + n

∫ t

0

{

E
(
esxn(s)

)
[

1 + γ̃1n

n
+ α +

n – 1
2

σ 2
1

]

– bE
(
esxn+1(s)

)
}

ds.

Now let h(x) = xn{[ 1+γ̃1n
n + α + n–1

2 σ 2
1 ] – bx}. In order to find the maximum value of h(x),

we first calculate h′(x) and obtain

h′(x) = nxn–1
{[

1 + γ̃1n

n
+ α +

n – 1
2

σ 2
1

]

– bx
}

+ xn(–b)

= xn–1
{

n
[

1 + γ̃1n

n
+ α +

n – 1
2

σ 2
1

]

– b(n + 1)x
}

.

When x = n[ 1+γ̃1n
n +α+ n–1

2 σ 2
1 ]

b(n+1) , we get the critical point by getting h′(x) = 0. Further, we notice
that h′′(x) < 0 at the critical point, and maximum value at the critical point is given by

hmax =
(

n
b

)n( 1+γ̃1n
n + α + n–1

2 σ 2
1

n + 1

)n+1

.

Therefore,

E
(
etxn(t)

) ≤ xn
0 + nE

∫ t

0
es

(
n
b

)n( 1+γ̃1n
n + α + n–1

2 σ 2
1

n + 1

)n+1

ds

≤ xn
0 +

(
n

n + 1

)n+1 [ 1+γ̃1n
n + α + n–1

2 σ 2
1 ]n+1

bn

(
et – 1

)
,

i.e.,

E
(
xn(t)

) ≤
{

xn
0 –

(
n

n + 1

)n+1 [ 1+γ̃1n
n + α + n–1

2 σ 2
1 ]n+1

bn

}

e–t

+
(

n
n + 1

)n+1 [ 1+γ̃1n
n + α + n–1

2 σ 2
1 ]n+1

bn .
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It is clear that E(xn(t)) = xn
0 if t = 0, and if t → ∞, then

E
(
xn(t)

) ≤
(

n
n + 1

)n+1 [ 1+γ̃1n
n + α + n–1

2 σ 2
1 ]n+1

bn := M1(n).

Therefore, we conclude that E(xn(t)) ≤ M1(n) for n ≥ 1.
Similarly for predator species, we have

d
(
etyn(t)

)
= netyn(t)

[
1 + γ̃2n

n
– c – dy(t) +

θβx(t)
1 + mx(t) + ny(t)

+
n – 1

2
σ 2

2

]

dt

+ netyn(t)σ2 dB2(t) + etyn(t)
∫

Z

[(
1 + γ2(u)

)n – 1
]
Ñ(dt, du), (3.6)

where γ̃2n =
∫

Z
{(1 + γ2(u))n – 1 – nγ2(u)}λ(du). Integrating both sides of (3.6) from 0 to t

and taking expectation, we have

E
(
etyn(t)

)

= yn
0 + n

∫ t

0
E
(
esyn(s)

)
[

1 + γ̃2n

n
– c – dy(t) +

θβx(t)
1 + mx(t) + ny(t)

+
n – 1

2
σ 2

2

]

ds

≤ yn
0 + n

∫ t

0
E
(
esyn(s)

)
{[

1 + γ̃2n

n
+

θβ

m
+

n – 1
2

σ 2
2

]

– dy(t)
}

ds

≤ yn
0 + nE

∫ t

0
es

(
n
d

)n( 1+γ̃2n
n + θβ

m + n–1
2 σ 2

2

n + 1

)n+1

ds

≤ yn
0 +

(
n

n + 1

)n+1 [ 1+γ̃2n
n + θβ

m + n–1
2 σ 2

2 ]n+1

dn

(
et – 1

)
.

That is,

E
(
yn(t)

) ≤
{

yn
0 –

(
n

n + 1

)n+1 [ 1+γ̃2n
n + θβ

m + n–1
2 σ 2

2 ]n+1

dn

}

e–t

+
(

n
n + 1

)n+1 [ 1+γ̃2n
n + θβ

m + n–1
2 σ 2

2 ]n+1

dn .

By a similar reason as above, we have

E
(
yn(t)

) ≤
(

n
n + 1

)n+1 [ 1+γ̃2n
n + θβ

m + n–1
2 σ 2

2 ]n+1

dn := M2(n), n ≥ 1.

The proof is now complete. �

4 Stochastic persistence and extinction scenarios
In this current section we are motivated to investigate the persistence and extinction crite-
rion of system (1.3). Before going to the main results, we want to highlight some frequently
used definitions and lemmas [34].

Definition 4.1 For system (1.3), we say that:
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(a) The population x(t) goes to extinction if limt→∞ x(t) = 0;
(b) The population x(t) is nonpersistent in mean if 〈x(t)〉∗ = 0;
(c) The population x(t) is weakly persistent in mean if 〈x(t)〉∗ > 0.

For later applications, we cite a strong law of large numbers for local martingales as the
first lemma below, see Theorem 1 in [35].

Lemma 4.1 Let J(t)(t ≥ 0) be a local martingale vanishing at time 0 and define

ρJ (t) :=
∫ t

0

d〈J〉(s)
(1 + s)2 , t ≥ 0,

where 〈J〉(t) := 〈J , J〉(t) is Meyer’s angle bracket process. Then

lim
t→∞

J(t)
t

= 0a.s. provided that lim
t→∞ρJ (t) < ∞ a.s.

Lemma 4.2 For the solution (x(t), y(t)) of system (1.3) initiated from (x0, y0) ∈R
2
+, the below

mentioned properties hold:

lim
t→∞ sup

ln x(t)
t

≤ 0 and lim
t→∞ sup

ln y(t)
t

≤ 0 almost surely.

Proof The proof can be shown by a similar procedure as in Cheng [36]. So we omit it
here. �

Lemma 4.3 (See Lemma 7.3 in [18]) Let x(t) ∈ C[Ω × R+,R0
+], where R

0
+ := {r : r > 0, r ∈

R}.
(1) If it is possible to find positive constants α0, T ,α ≥ 0 such that

ln x(t) ≤ αT – α0

∫ t

0
x(s) ds +

n∑

i=1

βi(t)Bi(t)

for t ≥ T , where βi(t) (1 ≤ i ≤ n) are continuous bounded functions on R+ and Bi(t)
are independent standard Brownian motions, then we have 〈x(t)〉∗ ≤ α

α0
almost

surely.
(2) If it is possible to find positive constants α0, T ,α ≥ 0 such that

ln x(t) ≥ αT – α0

∫ t

0
x(s) ds +

n∑

i=1

βi(t)Bi(t)

for t ≥ T , where βi(t)(1 ≤ i ≤ n) are continuous bounded functions on R+ and Bi(t)
are independent standard Brownian motions, then we have 〈x(t)〉∗ ≥ α

α0
almost

surely.

Now we are going to present the main results of this section. Applying Itô’s formula
to (1.3) results in

d ln x =
{

α

1 + ky(t)
– bx(t) –

βy(t)
1 + mx(t) + ny(t)

–
σ 2

1
2
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+
∫

Z

[
ln

(
1 + γ1(u)

)
– γ1(u)

]
λ(du)

}

dt

+ σ1 dB1(t) +
∫

Z

ln
(
1 + γ1(u)

)
Ñ(dt, du), (4.1)

d ln y =
{

–c – dy(t) +
θβx(t)

1 + mx(t) + ny(t)
–

σ 2
2

2
+

∫

Z

[
ln

(
1 + γ2(u)

)
– γ2(u)

]
λ(du)

}

dt

+ σ2 dB2(t) +
∫

Z

ln
(
1 + γ2(u)

)
Ñ(dt, du). (4.2)

For convenience, we denote

Q1 = α –
σ 2

1
2

, Q2 = –c –
σ 2

2
2

, Q3 =
α

1 + kM2(1)
–

σ 2
1

2
,

where M2(1) = (1+γ̃21+ θβ
m )n+1

4d , Q2 < 0. We give the dynamics of prey population x(t) of (1.3)
as follows.

Theorem 4.1 For the prey population x(t) of (1.3), we have the following properties:
(1) If Q1 < 0, then x(t) goes to extinction almost surely.
(2) If Q1 = 0, then x(t) is nonpersistent in the mean almost surely.
(3) If Q3 > 0, then x(t) is weakly persistent in the mean almost surely.

Proof Now we prove them point by point.
(1) Integrating both sides of (4.1) from 0 to t leads to

ln x(t) – ln x0 ≤
∫ t

0

{

Q1 – bx(s) –
βy(s)

1 + mx(s) + ny(s)

–
∫

Z

[
γ1(u) – ln

(
1 + γ1(u)

)]
λ(du)

}

ds + P1(t), (4.3)

where P1(t) =
∫ t

0 σ1 dB1(s) +
∫ t

0
∫

Z
ln(1 + γ1(u))Ñ(ds, du). From (4.3) we get

ln x(t) – ln x0 ≤ tQ1 + P1(t).

By Lemma 4.1 and the strong law of large numbers, we obtain

lim
t→∞

1
t

∫ t

0
σ1 dB1(s) = 0 and lim

t→∞
1
t

∫ t

0

∫

Z

ln
(
1 + γ1(u)

)
Ñ(ds, du) = 0 a.s.,

i.e.,

lim
t→∞

P1(t)
t

= 0 a.s. (4.4)

Thus

ln x(t) – ln x0

t
≤ Q1 +

P1(t)
t

. (4.5)
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By taking the superior limit on both sides of (4.5), we get

lim
t→∞ sup

ln x(t)
t

≤ Q1 < 0.

So limt→∞ x(t) = 0.
(2) From (4.3) we get

ln x(t) – ln x0

t
≤ Q1 – b

〈
x(t)

〉
+

P1(t)
t

. (4.6)

By the specific property of the superior limit and from (4.4), we can easily notice that for
arbitrarily given and sufficiently small ε > 0, there exists T > 0 such that P1(t)/t ≤ ε for all
t ≥ T . Now, by substituting the above inequality in (4.6), we have

ln x(t) – ln x0 ≤ (Q1 + ε)t – b
∫ t

0
x(s) ds.

Under the condition that Q1 = 0, we have

ln
x(t)
x0

≤ εt – bx0

∫ t

0

x(s)
x0

ds.

As b > 0, we derive from Lemma 4.3 that

〈
x(t)

〉∗ ≤ ε

b
.

By the arbitrariness of ε, due to the fact that the solution of (1.3) is nonnegative, we have
〈x(t)〉∗ = 0. From Definition 4.1, the prey species x(t) is nonpersistent in the mean a.s.

(3) By Definition 4.1, we only need to show that there exists a constant m1 > 0 such that

〈
x(t)

〉∗ ≥ m1

for any solution (x(t), y(t)) of (1.3) with initial value (x0, y0) ∈R
2
+ almost surely. If not, then

for any arbitrary ε1 > 0, there exists a solution (x̃(t), ỹ(t)) with positive initial values x̃0 > 0
and ỹ0 > 0 satisfying P{〈x̃(t)〉∗ < ε1} > 0. Let ε1 be sufficiently small so that

⎧
⎨

⎩

Q3 – bε1 > 0,

Q2 + θβε2
1 < 0.

(4.7)

From (4.2) we have

ln ỹ(t) – ln y0

t
≤ Q2 – d

〈
ỹ(t)

〉
+ θβ

〈
x̃(t)

〉
+

P2(t)
t

, (4.8)

where P2(t) =
∫ t

0 σ2 dB2(s) +
∫ t

0
∫

Z
ln(1 + γ2(u))Ñ(ds, du), then we get 〈t–1 ln ỹ(t)〉∗ = Q2 +

θβε1 < 0. Therefore,

lim
t→∞ ỹ(t) = 0. (4.9)
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From (4.3) we have

ln x̃(t) – ln x0

t
≥ Q3 – b

〈
x̃(t)

〉
– β

〈
ỹ(t)

〉
+

P1(t)
t

.

Taking the superior limit on both sides of the above inequality and using (4.4), (4.7),
and (4.9), we get

〈
t–1 ln x̃(t)

〉∗ ≥ Q3 – bε1 > 0.

Now we have shown that P{〈t–1 ln x̃(t)〉∗ > 0} > 0, which contradicts Lemma 4.2. Hence
〈x(t)〉∗ > 0, that is, the prey population x(t) is weakly persistent in the mean almost surely.
The proof is complete. �

In the case of predator species of system (1.3), we have the following theorem.

Theorem 4.2 For the predator population of system (1.3), we have the following properties:
(1) If bQ2 + θβQ1 < 0, then y(t) goes to extinction almost surely.
(2) If bQ2 + θβQ1 = 0, then y(t) is nonpersistent in the mean almost surely.
(3) If Q2 + 〈 θβx̄(t)

1+mx̄(t)+nȳ(t) 〉∗ > 0, then y(t) is weakly persistent in the mean almost surely,
where x̄(t) and ȳ(t) are defined later.

Proof We prove them point by point as follows.
(1) If bQ2 + θβQ1 < 0, because Q2 = –c – σ 2

2
2 < 0 is known and b, θ ,β are all positive

constants, we consider the following two cases of Q1.
If Q1 ≤ 0, then it follows from Theorem 4.1 that 〈x(t)〉∗ = 0. On the other hand, by us-

ing (4.2), we have

ln y(t) – ln y0

t
≤ Q2 + θβ

〈
x(t)

〉
+

P2(t)
t

.

Then we get [t–1 ln y(t)]∗ ≤ Q2 < 0, and hence limt→∞ y(t) = 0 holds.
If Q1 > 0, from the properties of the superior and inferior limits combined with (4.4), we

obtain that there exists a constant T > 0 such that

ln x(t) – ln x0

t
≤ Q1 – b

〈
x(t)

〉
+ ε

for arbitrarily sufficiently small ε > 0 and t > T . Applying Lemma 4.3 and the arbitrariness
of ε, we have

〈
x(t)

〉∗ ≤ Q1

b
. (4.10)

Now by (4.2) we get

(
t–1 ln y(t)

)∗ ≤ Q2 + θβ
Q1

b
. (4.11)

By the condition bQ2 + θβQ1 < 0, we have

(
t–1 ln y(t)

)∗ ≤ bQ2 + θβQ1

b
< 0.

Therefore, limt→∞ y(t) = 0 almost surely.
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(2) In the previous case we have shown that limt→∞ y(t) = 0 under the condition Q1 ≤ 0,
so we only need to show that 〈y(t)〉∗ = 0 if Q1 > 0. If not, then 〈y(t)〉∗ > 0 under Q1 > 0. By
Lemma 4.3 and (4.11), we have

[
t–1 ln y(t)

]∗ ≤ Q2 + θβ
〈
x(t)

〉∗. (4.12)

For any arbitrarily small ε > 0, we get T > 0 such that, for any t > T , the following inequal-
ities hold:

〈
θβx(t)

〉 ≤ θβ
〈
x(t)

〉∗ +
ε

2
,

P2(t)
t

<
ε

2
.

Substituting them in (4.2) leads to

ln y(t) – ln y0

t
≤ Q2 + ε + θβ

〈
x(t)

〉∗ – d
〈
y(t)

〉 ∀t > T .

We can obtain from Lemma 4.3 and (4.12) that

〈
y(t)

〉∗ ≤ Q2 + ε + θβ〈x(t)〉∗
d

.

Since ε is arbitrarily small, we get from (4.10) that

〈
y(t)

〉∗ ≤ bQ2 + θβQ1

bd
= 0,

which is a contradiction. Therefore, 〈y(t)〉∗ = 0 holds almost surely.
(3) By Definition 4.1, we only need to show that 〈y(t)〉∗ > 0 almost surely. If it is not true,

then for any arbitrarily small ε2 > 0, there exists a solution (x̃(t), ỹ(t)) of system (1.3), with
positive initial value, (x̃0, ỹ0) ∈R

2
+ such that 〈ỹ(t)〉∗ < ε2. Let ε2 be sufficiently small so that

Q2 +
〈

θβx̄(t)
1 + mx̄(t) + nȳ(t)

〉∗
>

(

d +
θβ(kα + θβ)

mb

)

ε2, (4.13)

where (x̄(t), ȳ(t)) is the solution of the following system:

⎧
⎨

⎩

dx̄(t) = x̄(t)(α – bx̄(t)) dt + σ1x̄(t) dB1(t),

dȳ(t) = ȳ(t)( θβ

m – dȳ(t)) dt + σ2ȳ(t) dB2(t),
(4.14)

with initial value x̄0 > 0 and ȳ0 > 0. By the comparison theorem, we have x̃(t) ≤ x̄(t), ỹ(t) ≤
ȳ(t) a.s. for t ∈ [0,∞). From (4.2), we have

ln ỹ(t) – ln y0

t
= Q2 +

〈
θβx̄(t)

1 + mx̄(t) + nȳ(t)

〉

–
〈
dỹ(t)

〉
+

P2(t)
t

+
〈

θβx̃(t)
1 + mx̃(t) + nỹ(t)

–
θβx̄(t)

1 + mx̄(t) + nȳ(t)

〉

.
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Then

θβx̃(t)
1 + mx̃(t) + nỹ(t)

–
θβx̄(t)

1 + mx̄(t) + nȳ(t)
=

θβ(x̃(t) – x̄(t)) + θβn(x̃(t)ȳ(t) – x̄(t)ỹ(t))
(1 + mx̃(t) + nỹ(t))(1 + mx̄(t) + nȳ(t))

≥ –
θβ(x̄(t) – x̃(t)) + θβn(x̄(t) – x̃(t))ỹ(t)
(1 + mx̃(t) + nỹ(t))(1 + mx̄(t) + nȳ(t))

≥ –
θβ(x̄(t) – x̃(t))

m
.

After calculation we get

ln ỹ(t) – ln y0

t
≥ Q2 +

〈
θβx̄(t)

1 + mx̄(t) + nȳ(t)

〉

–
〈
dỹ(t)

〉
+

P2(t)
t

+
〈
θβ(x̄(t) – x̃(t))

m

〉

. (4.15)

Consider the Lyapunov function V2(t) = | ln x̄(t) – ln x̃(t)|. Obviously, V2(t) is a positive
function on R+. After using Itô’s formula and by (4.14) and (4.15), we get

d+V2(t) =
[(

α –
σ 2

1
2

– bx̄(t)
)

dt + σ1 dB1(t)
]

–
[(

α

1 + kỹ(t)
–

σ 2
1

2
– bx̃(t) –

θβ ỹ(t)
1 + mx̃(t) + nỹ(t)

)

dt + σ1 dB1(t)
]

≤ [
(kα + θβ)ỹ(t) – b

(
x̄(t) – x̃(t)

)]
dt. (4.16)

Integrating first both sides of (4.16) from 0 to t and then dividing by t, we have

V2(t) – V2(0)
t

≤ (kα + θβ)
〈
ỹ(t)

〉
– b

〈
x̄(t) – x̃(t)

〉
.

Using V2(t)/t ≥ 0 and V2(0) = 0 yields

〈
x̄(t) – x̃(t)

〉 ≤ kα + θβ

b
〈
ỹ(t)

〉
.

We can derive from the above inequality and (4.15) that

ln ỹ(t) – ln y0

t
≥ Q2 +

〈
θβx̄(t)

1 + mx̄(t) + nȳ(t)

〉

–
〈
dỹ(t)

〉
+

P2(t)
t

–
θβ(kα + θβ)

mb
〈
ỹ(t)

〉
.

Taking the superior limit of the above inequality and by (4.13), we obtain

[
t–1 ln ỹ(t)

]∗ ≥ Q2 +
〈

θβx̄(t)
1 + mx̄(t) + nȳ(t)

〉∗
–

(

d +
θβ(kα + θβ)

mb

)

ε2 > 0,

which contradicts Lemma 4.2. Therefore 〈y(t)〉∗ > 0 almost surely. This implies that y(t) is
weakly persistent in the mean almost surely. The proof is now complete. �

5 Stability in distribution
In this section, let us turn to establishing sufficient criteria for the stability in distribution
of system (1.3). First we give the following important lemmas [37, 38].
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Lemma 5.1 Let X(t) be an n-dimensional stochastic process on t ≥ 0. Suppose that there
exist positive constants α̃, β̃ , ξ̃ such that

E
∣
∣X(t) – X(s)

∣
∣α̃ ≤ ξ̃ |t – s|1+β̃ , 0 ≤ s, t < ∞.

Then there exists a continuous modification X̃(t) of X(t), and almost every sample path
of X̃(t) is local but uniformly Hölder continuous with exponent κ < α̃

β̃
. In other words, the

continuous modification X̃(t) of X(t) has the property that, for every κ ∈ (0, α̃

β̃
),

P
{

ζ : sup
0<|t–s|<f (ζ ),0≤s,t<∞

|X̃(t, ζ ) – X̃(s, ζ )
|t – s|κ ≤ 2

1 – 2–κ

}

= 1.

Lemma 5.2 Let f (t) be a nonnegative function defined on [0,∞) such that f (t) is integrable
on [0,∞) and is uniformly continuous on [0,∞), then limt→+∞ f (t) = 0.

Definition 5.1 Let X1(t) = (x1(t), y1(t)) be a positive solution of (1.3) with initial value
X1(0) ∈R

2
+. X1(t) is said to be globally asymptotically stable in expectation if for any other

solution X2(t) = (x2(t), y2(t)) of (1.3), we have

P
{

lim
t→+∞ E

(∣
∣X1(t) – X2(t)

∣
∣
)

= 0
}

= 1.

Theorem 5.1 If b – θβ – (βm + θβn)G2 > 0 and d – αk – β – (βm + θβn)G1 > 0, then
system (1.3) is asymptotically stable in distribution, where G1 and G2 are defined later.
That is, there exists a unique probability measure μ(·) such that, for any initial value X(0) =
(x(0), y(0)), the transition probability p(t, X(0), ·) of X(t) weakly converges to μ(·) as t → ∞.

Proof Consider the following stochastic integral equation of (1.3):

x(t) = x(0) +
∫ t

0
x(s)

[
α

1 + ky
– bx –

βy
1 + mx + ny

]

ds +
∫ t

0
x(s)σ1 dB(s)

+
∫ t

0

∫

Z

x(s)γ1(u)Ñ(ds, du).

Let f1 = x(t)[ α
1+ky(t) – bx(t) – βy

1+mx+ny ], g1 = x(t)σ1, h1 = x(t)γ1(u). By Theorem 3.2, there is a
positive constant M1(n) such that E(xn(t)) ≤ M1(n) on t ≥ 0. Then we can derive that

E
(|f1|n

)
= E

(

xn(s)
∣
∣
∣
∣

α

1 + ky(s)
– bx(s) –

βy(s)
1 + mx(s) + ny(s)

∣
∣
∣
∣

n)

≤ 1
2

E
(
x2n(s)

)
+

1
2

E
[(

α

1 + ky(s)
– bx(s) –

βy(s)
1 + mx(s) + ny(s)

)2n]

≤ 1
2

E
(
x2n(s)

)
+ 22n–2(E

(
α – bx(s)

)2n + (β)2nE
(
y2n(s)

))

≤ 1
2

E
(
x2n(s)

)
+ 24n–3(α2n + b2nE

(
x2n(s)

))
+ 22n–2(β)2nE

(
y2n(s)

)

≤ 1
2

M1(2n) + 24n–3(α2n + b2nM1(2n)
)

+ 22n–2(β)2nM2(2n)

:= R1(n)

(5.1)
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and

E
(|g1|n

)
= E

(
xn(t)σ n

1
)

= σ n
1 E

(
xn(t)

) ≤ σ n
1 M1(n) := R2(n). (5.2)

We assume n > 2. For 0 ≤ s < t < ∞, the moment inequality (cf. Friedman [39]) on (5.2)
leads to

E
∣
∣
∣
∣

∫ t

s
g1 dB(v)

∣
∣
∣
∣

n

≤
[

n(n – 1)
2

] n
2

(t – s)
n–2

2

∫ t

s
E|g1|n dB(v). (5.3)

Under the conditions of Theorem 5.1, with Kunita’s inequalities (see Lemma 2.3, [40]), we
have

E
[

|
∫ t

s

∫

Z

h1Ñ(dv, du)|n
]

≤ 2n–1
{

E
[∫ t

s

∫

Z

∣
∣x(s)γ1(u)

∣
∣2

λ(du) dv
] n

2

+ E
[∫ t

s

∫

Z

∣
∣x(s)γ1(u)

∣
∣n

λ(du) dv
]}

≤ 2n–1{(t – s)
n
2 K

n
2

3 M1(n) + (t – s)K
n
2

3 M1(n)
}

.

(5.4)

Let 0 < s < T < ∞, t – s ≤ 1, 1
n + 1/q = 1, then from (5.1)–(5.4), we obtain

E
∣
∣x(t) – x(s)

∣
∣n

≤ 2n–1E
(∫ t

s
|f1|dv

)n

+ 2n–1E
(∫ t

0
|g1|dB(v)

)n

+ 2n–1E
(∣

∣
∣
∣

∫ t

s

∫

Z

h1Ñ(dv, du)
∣
∣
∣
∣

n)

≤ 2n–1
(∫ t

s
1q dv

) n
q

E
(∫ t

s
|f1|n dv

)

+ 2n–1
[

n(n – 1)
2

] n
2

(t – s)
n–2

2

∫ t

s
E|g1|n dB(v)

+ 2n–1{2n–1(t – s)
p
2 K

n
2

3 M1(n) + 2n–1(t – s)K
n
2

3 M1(n)
}

= 2n–1(t – s)(n–1)+1R1(n) + 2n–1
[

n(n – 1)
2

] n
2

(t – s)
n–2

2 +1R2(n)

+ 2n–1{2n–1(t – s)
n
2 K

n
2

3 M1(n) + 2n–1(t – s)K
p
2

3 M1(p)
}

≤ 2n–1(t – s)
n
2

{

(t – s)
n
2 R1(n) +

[
n(n – 1)

2

] p
2

R2(n) + 2n–1K
n
2

3 M1(n)

+ 2n–1(t – s)
n
2 K

n
2

3 M1(n)
}

≤ 2n–1(t – s)
n
2 R(n),

where R(n) = (t – s) n
2 R1(n) + [ n(n–1)

2 ] n
2 R2(n) + 2n–1K

n
2

3 M1(n) + 2n–1(t – s) n
2 K

n
2

3 M1(n) < ∞.
Then it follows from Lemma 5.1 that almost every sample path of x(t) is locally but uni-
formly Hölder continuous with exponent κ for every κ ∈ (0, (n–2)/(2n)). Therefore almost
every sample path of x(t) is uniformly continuous on t ≥ 0. From a similar discussion about
E|y(t) – y(s)|n, we can conclude that almost every sample path of x(t) and y(t) is uniformly
continuous on t ≥ 0. Next, let X1(t) = (x1(t), y1(t)) and X2(t) = (x2(t), y2(t)) be any two solu-
tions of system (1.3) with positive initial data. Consider a Lyapunov function V3(t) defined
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by

V3(t) =
∣
∣ln x1(t) – ln x2(t)

∣
∣ +

∣
∣ln y1(t) – ln y2(t)

∣
∣, t ≥ 0. (5.5)

Making use of Itô’s formula with jumps for (5.5), one can deduce that

d+V3(t) = sgn
(
x1(t) – x2(t)

)
{

α

(
1

1 + ky1(t)
–

1
1 + ky2(t)

)

– b
(
x1(t) – x2(t)

)

– β

(
y1(t)

1 + mx1(t) + ny1(t)
–

y2(t)
1 + mx2(t) + ny2(t)

)}

dt

+ sgn
(
y1(t) – y2(t)

)
{

–d
(
y1(t) – y2(t)

)

+ θβ

(
x1(t)

1 + mx1(t) + ny1(t)
–

x2(t)
1 + mx2(t) + ny2(t)

)}

dt.

Integrating from 0 to t and taking expectations yields

E
(
V3(t)

)
– E

(
V3(0)

)

= E
∫ t

0

{

sgn
(
x1(s) – x2(s)

)
[

α

(
1

1 + ky1(s)
–

1
1 + ky2(s)

)

– b
(
x1(s) – x2(s)

)

– β

(
y1(s)

1 + mx1(s) + ny1(s)
–

y2(s)
1 + mx2(s) + ny2(s)

)]

+ sgn
(
y1(s) – y2(s)

)
[

–d
(
y1(s) – y2(s)

)

+ θβ

(
x1(s)

1 + mx1(s) + ny1(s)
–

x2(s)
1 + mx2(s) + ny2(s)

)]}

ds.

Thus,

dE
(
V (t)

) ≤ αE
(

1
1 + ky1(t)

–
1

1 + ky2(t)

)

– bE
(∣
∣x1(t) – x2(t)

∣
∣
)

– dE
(∣
∣y1(t) – y2(t)

∣
∣
)

– βE
(

y1(t)
1 + mx1(t) + ny1(t)

–
y2(t)

1 + mx2(t) + ny2(t)

)

+ θβE
(

x1(t)
1 + mx1(t) + ny1(t)

–
x2(t)

1 + mx2(t) + ny2(t)

)

≤ αkE
(∣
∣y1(t) – y2(t)

∣
∣
)

– bE
(∣
∣x1(t) – x2(t)

∣
∣
)

– dE
(∣
∣y1(t) – y2(t)

∣
∣
)

+ βE
(∣
∣y1(t) – y2(t)

∣
∣
)

+ βmE
(∣
∣x2(t)y1(t) – x1(t)y2(t)

∣
∣
)

+ θβE
(∣
∣x1(t) – x2(t)

∣
∣
)

+ θβnE
(∣
∣x1(t)y2(t) – x2(t)y1(t)

∣
∣
)

≤ (
–b + θβ + (βm + θβn)E

(
y1(t)

))
E
(∣
∣x1(t) – x2(t)

∣
∣
)

+
(
–d + αk + β + (βm + θβn)E

(
x1(t)

))
E
(∣
∣y1(t) – y2(t)

∣
∣
)

≤ (
–b + θβ + (βm + θβn)E

(
y3

1(t)
) 1

3
)
E
(∣
∣x1(t) – x2(t)

∣
∣
)

+
(
–d + αk + β + (βm + θβn)E

(
x3

1(t)
) 1

3
)
E
(∣
∣y1(t) – y2(t)

∣
∣
)
.
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By Theorem 3.2, we have

E
(
x3

1(t)
) 1

3 ≤ [ 3
4 ( 1+γ̃13

3 + α + σ 2
1 )] 4

3

b
:= G1,

E
(
y3

1(t)
) 1

3 ≤ [ 3
4 ( 1+γ̃23

3 + θβ

m + σ 2
2 )] 4

3

d
:= G2.

So,

dE(V3(t))
dt

≤(
–b + θβ + (βm + θβn)G2

)
E
(∣
∣x1(t) – x2(t)

∣
∣
)

+
(
–d + αk + β + (βm + θβn)G1

)
E
(∣
∣y1(t) – y2(t)

∣
∣
)
.

By the condition of Theorem 5.1,

E
(
V3(t)

) ≤ V3(0) –
(
b – θβ – (βm + θβn)G2

)
∫ t

0
E
(∣
∣x1(t) – x2(t)

∣
∣
)

ds

–
(
d – αk – β – (βm + θβn)G1

)
∫ t

0
E
(∣
∣y1(t) – y2(t)

∣
∣
)

ds

< ∞.

According to V (t) ≥ 0, E|x1(t) – x2(t)| ∈ L1[0,∞) and E|y1(t) – y2(t)| ∈ L1[0,∞), therefore,

E
(∣
∣
(
x1(t), y1(y)

)
–

(
x2(t), y2(t)

)∣
∣
)

=E
{(∣

∣x1(t) – x2(t)
∣
∣2 +

∣
∣y1(t) – y2(t)

∣
∣2) 1

2
}

≤E
(∣
∣x1(t) – x2(t)

∣
∣
)

+ E
(∣
∣y1(t) – y2(t)

∣
∣
)

∈L1[0,∞).

Then, by Lemma 5.1 and X1(t) = (x1(t), y1(t)) is uniformly continuous on t ≥ 0, we have

lim
t→+∞E

(∣
∣X1(t) – X2(t)

∣
∣
)

= 0. (5.6)

And finally, let p(t, X(0),B) denote the transition probability of the event X(t; X(0)) ∈ B,
where B is a Borel measurable set of R2

+. Let P(R2
+) denote all probability measures on R

2
+.

For any P1,P2 ∈P(R2
+), we define metric dBL as follows:

dBL(P1,P2) = sup
g∈BL

∣
∣
∣
∣

∫

R
2
+

g(X)P1(dX) –
∫

R
2
+

g(X)P2(dX)
∣
∣
∣
∣,

where BL = {g : R2
+ →R : |g(X) – g(Y )| ≤ ‖X – Y‖, |g(·) ≤ 1}. First, we prove p((t, X(0),B) :

t ≥ 0) is Cauchy in the space P(R2
+) with metric dBL. According to Theorem 3.2 and
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Chebyshev inequality, p((t, X(0),B) : t ≥ 0) is tight. For any g ∈ BL and t, s > 0, we have

∣
∣Eg

(
X

(
X(0); t + s

))
– Eg

(
X

(
X(0); t

))∣
∣

=
∣
∣E

[
E
(
g
(
X

(
X(0); t + s

))|Fs
)]

– Eg
(
X

(
X(0); t

))∣
∣

=
∣
∣
∣
∣

∫

R
2
+

Eg
(
X

(
X̃(0); t

))
p
(
s, X(0), dX̃(0)

)
– Eg

(
X

(
X(0); t

))
∣
∣
∣
∣

≤
∫

R
2
+

|Eg
(
X

(
X̃(0); t

))
– Eg

(
X

(
X(0); t

))|p(
s, X(0), dX̃(0)

)
.

It follows from (5.6) that there is a constant T ≥ 0 such that

sup
g∈BL

∣
∣Eg

(
X

(
X̃(0); t

))
– Eg

(
X

(
X(0); t

))∣
∣ ≤ ε, ∀t ≥ T .

Thanks to the arbitrariness of g , we have

sup
BL

∣
∣Eg

(
X(0); t + s

)
– Eg

(
X(0); t

)∣
∣ ≤ ε1, ∀t ≥ T , s > 0. (5.7)

(5.7) is equivalent to

dBL
(
p
(
t + s, X(0), ·), p

(
t, X(0), ·)) ≤ ε, ∀t ≥ T , s > 0.

Therefore, the transition probability p((t, X(0), ·) : t ≥ 0) of the solution of system (1.3) is
Cauchy in the space P(R2

+) with metric dBL. So there is a unique probability measure μ(·)
such that

lim
t→∞ dBL

(
P(t, 0, ·),μ(·)) = 0. (5.8)

Then, for any fixed X(0) ∈R
2
+, combining with (5.7) and (5.8), we have

lim
t→∞ dBL

(
P

(
t, X(0), ·),μ(·)) ≤ lim

t→∞
[
dBL

(
P(t, 0, ·),μ(·))+dBL

(
P(t, 0, ·),P(

t, X(0), ·))].

That is,

lim
t→∞ dBL

(
P

(
t, X(0), ·),μ(·)) = 0.

The proof is complete. �

6 Numerical simulations
In this section, computer-based simulations are performed to validate our analytical find-
ings obtained in the previous sections. The numerical simulations and figures have been
done using MATLAB R2013a. In this section, we always take the following parameter val-
ues:

α = 1, b = 0.3, c = 0.1, d = 0.4,

k = 0.1, β = 0.4, θ = 0.7, m = 1.5, (6.1)
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Figure 1 Mean weakly persistent images of two species in system (1.3). (a) and (b) represent the trajectories
for the prey and predator populations respectively of the stochastic system (1.3)

n = 0.5, γ1 = γ2 = 0.15,

and Z = (0, +∞), λ(Z) = 1 with initial value (x(0), y(0)) = (0.6, 0.6). First, we chose σ1 = σ2 =
0.08, then verified that Q3 = 0.7364 > 0, i.e., the condition of weak persistence of prey of
Theorem 4.1 holds here. Similarly, the condition of weak persistence of predator species
of Theorem 4.2 also holds. Hence system (1.3) is weakly persistent. Figure 1 depicts the
fact.

Secondly, in order to obtain deep insights of the influences of Lévy noise, we keep the
model parameter values the same but let γ1 = γ2 = 0, that is, without Lévy jumps. We can
obtain that system (1.3) is persistent. Comparing Fig. 1 with Fig. 2, it is found that the Lévy
jumps promote the survival of both prey and predator populations to a certain extent. In
the absence of Lévy noise, the number of predator populations remains at a low level and
the fluctuation frequency is small.

Now we consider some other cases. We consider system (1.3) with the intensity of white
noise as σ1 = 1.5, σ2 = 0.5 and keep the rest of the parameters consistent with (6.1). Then
we get Q1 = –0.125 < 0 and bQ2 +θβQ1 = –0.1025 < 0. So the conditions of prey and preda-
tor extinction in Theorems 4.1 and 4.2 are satisfied. We exhibit the fact by Fig. 3.

Next, in order to illustrate the influence of fear effect on model (1.3) through numerical
simulation, we choose different values of k, say k = 0, k = 0.5, and k = 1. For the remaining
parameter values, we keep them the same as in (6.1). We can check that these parameters
satisfy the condition of population persistence, which is depicted in Fig. 4. From Fig. 4 we
find that the increase of fear effect will reduce the density of prey, the number of predators
also decreased, but the magnitude of the change was less than that of the prey.

Finally, we numerically simulate the stability in distribution of system (1.3). We choose
the parameters α = 0.8, b = 0.5, d = 1, θ = 0.5, m = 0.5, and for the remaining parameter
values, we keep them the same as in (6.1). We can compute that b – θβ – (βm + θβn)G2 =
0.1574 > 0 and d –αk –β – (βm +θβn)G1 = 0.0198 > 0, which means that these parameters
satisfy the condition of Theorem 5.1. So we obtain that system (1.3) is asymptotically stable
in distribution by Theorem 5.1, shown in Fig. 5.
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Figure 2 Population state diagram of system (1.2). (a) and (b) represent time evolution of the prey and
predator populations respectively of system (1.2); the only difference from system (1.3) is that there is no Lévy
noise. Compared with Fig. 1, we can find that Lévy noise promotes the survival of species

Figure 3 Time evolution of the stochastic predator–prey system (1.3) when the intensity of noise is high.
These figures clearly show that high intensity of noise leads to the extinction of both species

7 Conclusion
This paper focuses on a stochastic Beddington–DeAngelis prey–predator model with fear
effect and Lévy noise. Mathematically, we have shown that the solution of the stochastic
system will not explode at a finite time, and without any parametric restriction the system
will possess a unique global solution starting from any interior of the positive quadrant.
We also establish some sufficient conditions for the stochastic persistence and the extinc-
tion of both species in view of parametric restrictions and noise intensity. The sufficient
criteria for the asymptotic stability in distribution of the model have been obtained (see
Theorem 5.1 and Fig. 5). Ecologically, we get the following conclusions:
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Figure 4 Population state diagrams under different fear levels. (a) and (b) represent the numerical simulation
for model (1.3) with initial value (x(0), y(0)) = (0.6, 0.6) and different k = 0, k = 0.5, and k = 1, respectively. Other
parameters are taken as in (6.1)

Figure 5 The population dynamics of system (1.3), which shows that (1.3) is asymptotically stable in
distribution when the condition of Theorem 5.1 is satisfied. The parameters α = 0.8, b = 0.5, d = 1, θ = 0.5,
m = 0.5, others are the same as in (6.1)

(1) By Theorems 4.1 and 4.2, a random disturbance may change the dynamical
behaviors of the population. Especially when the noise is large, it may lead to the
extinction of the prey and predator populations, see Fig. 3.

(2) The Lévy jumps promote the survival of species. In the absence of the Lévy noise,
the number of predator populations remain at a low level and the fluctuation
frequency is small, see Fig. 1 and Fig. 2.

(3) The level of fear also has significant effects on the dynamics of system (1.3). We find
that the increasing of the fear effect k will lead to a decrease in the density of prey
and predator, but the range of change of predator is less than that of prey, see Fig. 4.
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There are some interesting themes worthy of further research. On the one hand, we
can consider some other functional response into model (1.3), such as a ratio-dependent
functional response and so on. On the other hand, to make model (1.3) be more realis-
tic, we can further consider the factors such as the influence of impulsive perturbations
and delay. In addition, the Lévy jump process is very useful in other scenarios as well (for
example, foragers have maximized abundances when individuals perform scale-free Lévy
flights [41]). We leave these for future investigations.
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