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Abstract
Using interpolation with biarc curves we prove �-convergence of discretized
tangent-point energies to the continuous tangent-point energies in the C1-topology,
as well as to the ropelength functional. As a consequence, discrete almost minimizing
biarc curves converge to minimizers of the continuous tangent-point energies, and to
ropelength minimizers, respectively. In addition, taking point-tangent data from a
given C1,1-curve γ , we establish convergence of the discrete energies evaluated on
biarc curves interpolating these data, to the continuous tangent-point energy of γ ,
together with an explicit convergence rate.
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1 Introduction
The ropelength1 of a closed arclength parametrized curve γ : R/LZ → R

3 is defined as
the quotient of its length and thickness,

R(γ ) :=
L (γ )
�[γ ]

=
L

�[γ ]
. (1)

Here, for variational considerations, the thickness �[γ ] is most conveniently expressed
following Gonzalez and Maddocks [15]—without any regularity assumptions on the curve
γ —as

�[γ ] := inf
s �=t �=τ �=s

R
(
γ (s),γ (t),γ (τ )

)
, (2)

where R(x, y, z) denotes the circumcircle radius of the three points x, y, z ∈ R
3. Motivated

by numerous applications in the natural sciences, ropelength is used in numerical com-
putations (see [2, 10, 11, 20] and the references therein) to mathematically model long

1This name is coined after the mathematical question, how long a thick rope has to be in order to tie it into a knot.

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-022-03750-4
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-022-03750-4&domain=pdf
https://orcid.org/0000-0003-4716-8815
https://orcid.org/0000-0002-4498-510X
mailto:lagemann@eddy.rwth-aachen.de
http://creativecommons.org/licenses/by/4.0/


Lagemann and von der Mosel Advances in Continuous and Discrete Models          (2023) 2023:4 Page 2 of 33

and slender objects such as strings or macromolecules that do not self-intersect. In fact, it
was proved rigorously in [9, 16] that a curve of finite ropelength is embedded and of class
C1,1(R/LZ,R3), which means that its curvature exists and is bounded a.e. on R/LZ. More-
over, a curve γ with positive thickness �[γ ] > 0 is surrounded by an embedded tube with
radius equal to �[γ ] as shown in [16, Lemma 3], which justifies the use of the non-smooth
quantity �[·] as a steric excluded volume constraint.

The minimization over all triples of curve points to evaluate thickness in (2) is costly,
which leads to the idea to replace minimization by integration; see [15, p. 4773]. One such
integral energy is the tangent-point energy

TPq(γ ) :=
∫∫

(R/LZ)2

1
rq

tp(γ (s),γ (t))
ds dt, q ≥ 2, (3)

where the circumcircle radius is now replaced by the tangent-point radius

rtp
(
γ (s),γ (t)

)
=

|γ (s) – γ (t)|2
2 dist(γ (s) + Rγ ′(s),γ (t))

, (4)

i.e., the radius of the unique circle through the points γ (s) and γ (t) that is in addition tan-
gent to the curve γ at γ (s). Also, this energy implies self-avoidance and has regularizing
properties. It was shown in [33] that if TPq(γ ) is finite for some q > 2, then γ is embed-
ded and of class C1,1– 2

q (R/LZ,R3). Later, Blatt [5] improved this regularity to the optimal
fractional Sobolev2 regularity W 2– 1

q ,q(R/LZ,R3), which actually characterizes curves of
finite TPq-energy. The knowledge of the exact energy space was then used to establish
continuous differentiability of the tangent-point energy [7, Remark 3.1], [34], and to find
TPq-critical knots by means of Palais’s symmetric criticality principle [14]. Very recently,
long-time existence for a suitably regularized gradient flow for TPq was shown via a min-
imizing movement scheme [22].

But the tangent-point energy was also used in numerical simulations. Bartels et al. added
a desingularized variant of the TPq-energy in [3, 4] as a self-avoidance term to the bending
energy to find elastic knots. The impressive simulations of Crane et al. in [36] use the
TPq-energy as well to avoid self-intersections, a higher-dimensional tangent-point energy
allows for computations on self-avoiding surfaces; see [35].

In the present paper we address the mathematical question of variational convergence
of suitably discretized tangent-point energies towards the continuous TPq-energy, as well
as towards ropelength. To account for the tangential information encoded in the tangent-
point radius in (3) on the discrete level we use biarcs, i.e., pairs of circular arcs, which on
the one hand, can interpolate point-tangent data

(
γ (si),γ ′(si)

) ∈R
3 × S

2 for i = 1, . . . , n (5)

of a given arclength parametrized curve γ ∈ C1(R/LZ,R3). Every biarc curve β consisting
of n consecutive biarcs is therefore a C1,1-interpolant of the curve γ . On the other hand,

2For the definition see Appendix A; a condensed selection of pertinent results regarding periodic fractional Sobolev spaces
can be found, e.g., in [21, Appendix A].
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every biarc curve produces point-tangent data

(qi, ti) ∈R
3 × S

2 for i = 1, . . . , n, (6)

on its own, namely the points qi and unit-tangents ti at every junction of two consecutive
biarcs. In principle, we believe that one could carry out the analysis with other splines, but
biarcs are well adapted to discretizing geometric curvature energies such as the tangent-
point energy or ropelength. The respective integrands are defined by circles, and relevant
geometric quantities like arclength, curvature, torsion, or the global radius of curvature
can be evaluated accurately pointwise everywhere on biarc curves, thus providing rigorous
upper bounds for the ropelength of ideal knots, see [11, p. 10], [31, p. 81], [17]. In order to
avoid degeneracies we restrict ourselves to those biarc curves β whose biarcs have lengths
λi that are controlled in terms of the curve’s length L (γ ) by means of the inequality

L (γ )
2n

≤ λi ≤ 2L (γ )
n

for i = 0, . . . , n – 1. (7)

Let Bn be the class of biarc curves β satisfying (7). Accordingly, we define in a parameter-
invariant fashion the discrete tangent-point energy En

q for n ∈ N and q ∈ [2,∞) on closed
C1-curves γ as

En
q (γ ) :=

⎧
⎨

⎩

∑n–1
i=0

∑n–1
j=0,j �=i

(
2 dist(l(qj),qi)

|qi–qj|2
)q

λiλj if γ ∈ Bn,

∞ otherwise,
(8)

with the straight lines l(qi) := qi + Rti for i = 0, . . . , n – 1. Note that both TPq and En
q are

invariant under reparametrization of the curves, and they have the same scaling behavior,

TPq(dγ ) = d2–qTPq(γ ) and En
q (dγ ) = d2–qEn

q (γ ) for any d > 0. (9)

We restrict ourselves to injective C1-curves that are parametrized by arclength, denoted
as the subset C1

ia to state our main results.

Theorem 1.1 (�-convergence to tangent-point energy) For q > 2 and L > 0 the dis-
crete tangent-point energies En

q �-converge to the tangent-point energy TPq on the space
C1

ia(R/LZ,R3) with respect to the ‖ · ‖C1 -norm as n → ∞, i.e.,

En
q

�−→
n→∞

TPq on
(
C1

ia
(
R/LZ,R3),‖ · ‖C1

)
. (10)

As an immediate consequence we infer the convergence of almost minimizers in a given
knot class K of the discrete energies En

q to a minimizer of the continuous tangent-point
energy TPq in the same knot class K.

Corollary 1.2 (Convergence of discrete almost minimizers) Let q > 2, L > 0, and K be a
tame knot class and bn ∈ C∗ := C1

ia(R/LZ,R3) ∩K with

∣∣
∣inf
C∗ E

n
q – En

q (bn)
∣∣
∣ → 0 and ‖bn – γ ‖C1 → 0 as n → ∞.
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Then, γ is a minimizer of TPq in C∗ and limn→∞ En
q (bn) = TPq(γ ). Furthermore, it holds

that γ ∈ W 2– 1
q ,q(R/LZ,R3).

Moreover, the discrete tangent-point energies can also be used to approximate the non-
smooth ropelength functional R in the sense of �-convergence.

Theorem 1.3 (�-convergence to ropelength) It holds that L n–2
n (En

n ) 1
n

�−→
n→∞

R on

(C1,1
ia (R/LZ,R3),‖ · ‖C1 ).

Also, here we can state the convergence of almost minimizers to ropelength-minimizing
curves in a prescribed knot class, which could be of computational relevance for the min-
imization of ropelength.

Corollary 1.4 (Discrete almost minimizers approximate ropelength minimizers) Let K
be a tame knot class and bn,γ ∈ C∗∗ := C1,1

ia (R/LZ,R3) ∩K with
∣∣∣inf
C∗∗ E

n
n – En

n (bn)
∣∣∣ → 0 and ‖bn – γ ‖C1 → 0 as n → ∞.

Then, γ is a minimizer of R in C∗∗ and limn→∞ L n–2
n (En

n ) 1
n (bn) = R(γ ).

To the best of our knowledge, the only known contributions on variational convergence
of discrete energies to continuous knot energies are the �-convergence results of Scholtes
and Blatt. In [26] Scholtes proved the �-convergence of a discrete polygonal variant of the
Möbius energy to the classic Möbius energy introduced by O’Hara [23]. This result was
strengthened later by Blatt [6]. In [27, 28] Scholtes proved the �-convergence of polygonal
versions of ropelength and of integral Menger curvature to ropelength and to continuous
integral Menger curvature, respectively. It remains open at this point if stronger types of
variational convergence such as Hausdorff convergence of sets of almost minimizers can
be shown for the nonlocal knot energies treated here, as was, e.g., established in [29] for the
classic bending energy under clamped boundary conditions. It would be also interesting
to set up a numerical scheme for the discretized tangent-point energies En

q to numerically
approximate ropelength minimizers, in comparison to the simulated annealing computa-
tions in [11, 31], or to compute discrete (almost) minimizers of the tangent-point energy.
The almost linear energy convergence rate established in Theorem 3.1 in Sect. 3 is iden-
tical with the one in [26, Proposition 3.1] for Scholtes’ polygonal Möbius energy, which
exceeds the n– 1

4 -convergence rate for the minimal distance approximation of the Möbius
energy by Rawdon and Simon [24, Theorem 1].

The present paper is structured as follows. In Sect. 2 we provide the necessary back-
ground on biarcs—mainly following Smutny’s work [31]. Section 3 is devoted to the con-
vergence of the discretized energies En

q including explicit convergence rates; see Theo-
rem 3.1. In Sect. 4 we treat �-convergence towards the continuous tangent-point ener-
gies, as well as convergence of discrete almost minimizers, to prove Theorem 1.1 and
Corollary 1.2. Finally, in Sect. 5 we prove �-convergence to the ropelength functional,
Theorem 1.3 and convergence of discrete almost minimizers to ropelength minimizers,
Corollary 1.4. In Appendix A we establish the convergence of rescaled and reparametrized
convolutions in fractional Sobolev spaces. Appendix B contains some quantitative analysis
of general C1-curves.
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Figure 1 Left andmiddle: Examples of biarcs, tm is the tangent at the common matching pointm. Right: The
circles C0, C1, C+, and C– of Definition 2.2. Images taken from [31, Figs. 4.1 and 4.3] by courtesy of Jana Smutny

2 Biarcs and Biarc curves
The discrete tangent-point energy defined in (8) of the introduction is defined on biarc
curves, which are space curves assembled from biarcs, i.e., from pairs of circular arcs.
In this section we first present the basic definitions and a general existence result due
to Smutny [31, Chap. 4], before specializing to the balanced proper biarc interpolations
needed in our convergence proofs later.

Definition 2.1 (Point-tangent pairs and biarcs) Let T := R
3 × S

2 be the set of point-
tangent data [q, t], where S

2 is the unit sphere in R
3.

(i) A point-tangent pair is a pair of tuples of the form ([q0, t0], [q1, t1]) ∈ T × T with
q0 �= q1.

(ii) A biarc (a, ā) is a pair of circular arcs in R
3 that are continuously joined with con-

tinuous tangents and that interpolate a point-tangent pair ([q0, t0], [q1, t1]) ∈ T × T . The
common end point m of the two circular arcs a and ā is called the matching point. The
interpolation is meant with orientation, such that t0 points to the interior of the arc a and
–t1 points to the interior of the arc ā; see Fig. 1.

For two points q0, q1 ∈ R
3 we set d := q1 – q0 and e := q1–q0

|q1–q0| = d
|d| , and define

R(e) := 2e ⊗ e – Id = 2eeT – Id, (11)

which is a symmetric, proper rotation matrix representing the reflection at the unit vector
e. Moreover, for a point-tangent pair ([q0, t0], [q1, t1]) ∈ T × T we set

t∗
0 := R(e)t0 and t∗

1 := R(e)t1. (12)

Definition 2.2 Let ([q0, t0], [q1, t1]) ∈ T × T be a point-tangent pair.
(i) Let C0 be the circle through q0 and q1 with tangent t0 at q0 and let C1 be the circle

through both points with tangent t1 at q1. If t0 + t∗
1 �= 0, we denote the circle through q0 and

q1 with tangent t0 + t∗
1 at q0 by C+, if t0 – t∗

1 �= 0, we denote the circle through both points
with tangent t0 – t∗

1 at q0 by C–; see Fig. 1 on the right.
(ii) A point-tangent pair ([q0, t0], [q1, t1]) ∈ T × T is called cocircular, if C0 = C1 as point

sets. A cocircular point-tangent pair is classified as compatible, if the orientations of the
two circles induced by the tangents agree, and incompatible otherwise.
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Remark 2.3 For a point-tangent pair ([q0, t0], [q1, t1]) ∈ T × T , the compatible cocircular
case is equivalent to t0 – t∗

1 = 0. In this case, the circle C– is not defined. The incompatible
cocircular case is equivalent to t0 + t∗

1 = 0, thus the circle C+ is not defined.

The following central existence result of Smutny not only states that interpolating biarcs
always exist, but it also characterizes geometrically the possible locations of the corre-
sponding matching points depending on the type of the point-tangent pair. For the pre-
cise statement we denote for an arbitrary circle C through q0 and q1 the punctured set
C ′ := C \ {q0, q1}.

Proposition 2.4 ([31, Proposition 4.7]) For a given point-tangent pair ([q0, t0], [q1, t1]) ∈
T × T , we denote by �+ ⊂R

3 the set of matching points of all possible biarcs interpolating
the point-tangent pair. Then:

(i) If ([q0, t0], [q1, t1]) is not cocircular, then �+ = C ′
+.

(ii) If ([q0, t0], [q1, t1]) is cocircular, we distinguish between two cases:
(a) If the point-tangent pair is compatible, then �+ = C ′

+ = C ′
0 = C ′

1.
(b) If the point-tangent pair is incompatible, then �+ is the sphere passing through

q0 and q1 perpendicular to the circle C– without the points q0 and q1.
(iii) �+ is a straight line passing through q0 and q1 without the two points if and only if

t0 = t1 and 〈t0, e〉 �= 0.
(iv) �+ is a plane through q0 and q1 without the two points if and only if t0 = t1 and

〈t0, e〉 = 0.

A particularly powerful interpolation is possible if the location of the matching point
m ∈ �+ of the biarc is roughly “in between” the points q0 and q1. The following definition
states this precisely for the relevant cases (i), (ii)(a), and (iii) of Proposition 2.4.

Definition 2.5 (Desired matching point location �++ and proper biarcs) (i) Let ([q0, t0],
[q1, t1]) ∈ T × T be a point-tangent pair that is not incompatible cocircular. Then, we
denote by �++ ⊂ �+ the subarc of �+ from q0 to q1 with the orientation induced by the
tangent t0 + t∗

1 (see Fig. 2).
(ii) A point-tangent pair ([q0, t0], [q1, t1]) ∈ T × T is called proper if 〈q1 – q0, t0〉 > 0 and

〈q1 – q0, t1〉 > 0.
(iii) A biarc is called proper if it interpolates a proper point-tangent pair with a matching

point m ∈ �++.
(iv) Let γ ∈ C1

ia(R/LZ,R3). We call a biarc γ -interpolating and balanced if, for given h > 0
and s ∈ R, it interpolates a point-tangent pair ([γ (s),γ ′(s)], [γ (s + h),γ ′(s + h)]), such that
the matching point mh ∈ �h

++ satisfies |mh – γ (s)| = |γ (s + h) – mh|, where we indicate the
dependence of matching point and location by the index h.

Item (iv) of Definition 2.5 requires that the matching point mh bisects the segment con-
necting γ (s) and γ (s + h). That this is indeed possible for sufficiently small h is the content
of the following result. Note that here and throughout the paper we use the periodic norm

|s – t|R/LZ := min
k∈Z

|s + Lk – t| (13)
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Figure 2 The set �++ (boldface) contained in �+: Left: not cocircular and t0 �= t1. Right: t0 = t1 and 〈t0, e〉 �= 0

to measure distances in the periodic domain R/LZ. Moreover, for a continuous function f
on [0, L] we denote by ωf : [0, L] → [0,∞) its modulus of continuity, which satisfies ωf (0) =
0 and that can be chosen to be concave and non-decreasing.

Lemma 2.6 (Existence of γ -interpolating proper biarc) Let γ ∈ C1
ia(R/LZ,R3) and h ∈

(0, L
2 ] such that ωγ ′ (h) < 1

2 . Then, there exists a proper γ -interpolating balanced biarc in-
terpolating the point-tangent pair ([γ (s),γ ′(s)], [γ (s + h),γ ′(s + h)]) for all s ∈R.

Proof First, note that (79) and (80) of Lemma B.2 together with ωγ ′ (h) < 1
2 and the injec-

tivity of γ imply that

〈
γ ′(s),γ (s + h) – γ (s)

〉
> 0 and

〈
γ ′(s + h),γ (s + h) – γ (s)

〉
> 0. (14)

Thus, the point-tangent pair is proper according to Definition 2.5(ii).
If the point-tangent pair is not incompatible cocircular and γ ′(s) �= γ ′(s + h) holds, it

follows from Proposition 2.4(i) and (ii) (a) that �h
+ is the circle C ′

+. Hence, �h
++ is a circular

arc between γ (s) and γ (s + h). Thus, the matching point mh can be chosen in �h
++ such

that |mh – γ (s)| = |γ (s + h) – mh| holds.
If γ ′(s) = γ ′(s + h) holds, �h

+ is a straight line as a consequence of Proposition 2.4(iii),
since we obtain 〈γ ′(s), eh〉 > 0 by dividing (14) through |γ (s + h) – γ (s)|, thus excluding
case (iv) of Proposition 2.4. Moreover, with γ ′(s) = γ ′(s + h) we infer for the unit vector
eh := γ (s + h) – γ (s)/|γ (s + h) – γ (s)| by means of (11) and (12)

γ ′(s) +
(
γ ′(s + h)

)∗ (11),(12)= γ ′(s) + 2(eh ⊗ eh)γ ′(s + h) – γ ′(s + h)

= 2
〈
γ ′(s), eh

〉
eh.

Thus, the vector γ ′(s) + (γ ′(s + h))∗ is a positive multiple of the vector eh. In particular,
γ ′(s) + (γ ′(s + h))∗ has the same orientation as eh. According to Definition 2.5, �h

++ is in
this case the line segment between γ (s) and γ (s + h). Therefore, the matching point mh in
�h

++ can be also chosen such that |mh – γ (s)| = |γ (s + h) – mh|.
Hence, we have completed the proof once we have shown that the smallness condition

on h excludes case (ii) (b) of Proposition 2.4. Indeed, suppose that the point-tangent pair
was incompatible cocircular. Then,

γ ′(s) +
(
γ ′(s + h)

)∗ = 0, (15)
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and using (12) we can write

(
γ ′(s + h)

)∗ = 2eh ⊗ ehγ
′(s + h) – γ ′(s + h) = 2

〈
eh,γ ′(s + h)

〉
eh – γ ′(s + h).

This representation inserted into (15) leads to γ ′(s+h)–γ ′(s) = 2〈eh,γ ′(s+h)〉eh and hence,

∣
∣γ ′(s + h) – γ ′(s)

∣
∣ = 2

∣
∣〈eh,γ ′(s + h)

〉∣∣ |eh|︸︷︷︸
=1

= 2
〈γ (s + h) – γ (s),γ ′(s + h)〉

|γ (s + h) – γ (s)| . (16)

By virtue of inequality (80) in Lemma B.2 we conclude that

2
(
1 – ωγ ′ (h)

) (80)≤ 2
〈γ (s + h) – γ (s),γ ′(s + h)〉

|γ (s + h) – γ (s)|
(16)=

∣∣γ ′(s + h) – γ ′(s)
∣∣ ≤ ωγ ′ (h),

which is equivalent to ωγ ′ (h) ≥ 2
3 , contradicting our assumption on h. �

Glueing together finitely many interpolating biarcs in a C1-fashion produces biarc
curves precisely defined as follows.

Definition 2.7 ([31, cf. Definition 6.1]) (i) A closed biarc curve β : J →R
3 is a closed curve

assembled from biarcs in a C1-fashion where the biarcs interpolate a sequence ([qi, ti])i∈I

of point-tangent tuples. J is a compact interval, I ⊂N bounded, and the first and last point-
tangent tuple coincide. The set of such biarc curves is denoted by B̃n where n is the number
of indices contained in I .

(ii) We call a closed biarc curve proper if every biarc of the curve is proper.
(iii) A biarc curve is γ -interpolating and balanced for a given curve γ ∈ C1

ia(R/LZ,R3) if
every biarc of the curve is γ -interpolating and balanced.

Note that the set Bn of closed biarc curves satisfying (7) introduced in the introduction
is a strict subset of B̃n.

Under suitable control of partitions of the periodic domain we can prove the existence
of proper, γ -interpolating, and balanced biarc curves in Lemma 2.9 below.

Definition 2.8 Let c1, c2 > 0. A sequence (Mn)n∈N of partitions of R/LZ with Mn :=
{sn,0, . . . , sn,n} and 0 = sn,0 < sn,1 < · · · < sn,n–1 < sn,n = L is called (c1 – c2)-distributed if for

hn := max
k=0,...,n–1

|sn,k+1 – sn,k| and h̃n := min
k=0,...,n–1

|sn,k+1 – sn,k|

one has

c1

n
≤ h̃n ≤ hn ≤ c2

n
and hn ≤ L

2
for any n ∈N. (17)

Lemma 2.9 Let γ ∈ C1
ia(R/LZ,R3) c1, c2 > 0 and (Mn)n∈N a sequence of (c1 – c2)-

distributed partitions. Then, there is some N ∈ N such that for all n ≥ N there exists a
proper γ -interpolating and balanced biarc curve βn interpolating the point-tangent pairs

(([
γ (sn,i),γ ′(sn,i)

]
,
[
γ (sn,i+1),γ ′(sn,i+1)

]))
i=0,...,n–1.
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Proof By means of the defining inequality (17) for the (c1 – c2)-distributed sequence
(Mn)n∈N we have |sn,i+1 – sn,i|R/LZ = |sn,i+1 – sn,i| for all n ∈ N and i = 0, . . . , n – 1 (see (13)),
and we can choose N ∈ N so large that the inequalities ωγ ′ ( c2

N ) < 1
2 and c2

N ≤ L
2 hold. Then,

in particular,

ωγ ′
(|sn,i+1 – sn,i|

) ≤ ωγ ′ (hn)
(17)≤ ωγ ′

(
c2

N

)
<

1
2

for any n ≥ N .

As a consequence of Lemma 2.6, there exists for all n ≥ N and i = 0, . . . , n – 1 a proper
γ -interpolating and balanced biarc interpolating the point-tangent pair ([γ (sn,i),γ ′(sn,i)],
[γ (sn,i+1),γ ′(sn,i+1)]). Now, we assemble for i = 0, . . . , n – 1 these n biarcs as in Definition 2.7
and obtain a biarc curve with the required properties. �

From now on, whenever we write βn for a given curve γ ∈ C1
ia(R/LZ,R3), we mean a

proper γ -interpolating and balanced biarc curve obtained in Lemma 2.9. By λn,i we denote
the length of the ith biarc of the curve βn. In general, the elements βn do not have the same
length as the interpolated curve γ . However, Smutny showed in [31] that under certain
assumptions the sequence of the lengths (L (βn))n∈N of βn converges towards the length
L (γ ) of γ . The following lemma is an essential ingredient for that proof.

Lemma 2.10 Let γ ∈ C1,1
ia (R/LZ,R3) and (βn)n∈N be a sequence of proper γ -interpolating

and balanced biarc curves as in Lemma 2.9. Then,

λn,i – |sn,i+1 – sn,i| = O
(|sn,i+1 – sn,i|3

)
for all i = 1, . . . , n – 1, as n → ∞,

where the constant on the right-hand side only depends on the Lipschitz constant of γ ′.

Proof We identify the periodic domain R/LZ with [0, L] and check that (c1 – c2)-
distributed partitions of R/LZ satisfy Smutny’s requirements in [31, Notation 6.2, 6.3]
apart from the nestedness of the mesh. The latter, however, is not necessary in her proof;
whence we can apply [31, Lemma 6.8] to conclude the statement, where the dependence
of the constant follows from the proof of [31, Lemma 6.8]. �

Now, we show that the lengths L (βn) of proper γ -interpolating and balanced biarc
curves βn converge towards the length L (γ ) of γ .

Theorem 2.11 Let γ ∈ C1,1
ia (R/LZ,R3) and (βn)n∈N be a sequence of proper γ -interpolating

and balanced biarc curves. Then, |L (βn)
L (γ ) – 1| → 0 as n → ∞.

Proof This follows directly from [31, Corollary 6.9]; under the same preconditions as we
verified in the proof of Lemma 2.10. �

In order to address convergence of biarc curves βn to the interpolated curve γ we need to
reparametrize βn for all n ∈N such that those reparametrizations are defined on R/LZ like
γ is. An explicit reparametrization function that maps the arclength parameters of γ at
the supporting points of the mesh to the arclength parameters of βn is constructed in [31,
Appendix A]. With that, we can show the C1-convergence of a reparametrized sequence
of biarc curves to the interpolated curve γ .
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Theorem 2.12 Let γ ∈ C1,1
ia (R/LZ,R3), and let (βn)n∈N be a sequence of proper γ -

interpolating and balanced biarc curves parametrized by arclength. Then, for Bn := βn ◦ϕn

with ϕn as constructed in [31, Appendix A] one has ‖γ – Bn‖C1 → 0 as n → ∞.

Proof We want to apply [31, Theorem 6.13], where Smutny showed C1-convergence un-
der certain assumptions. Additionally to the hypotheses checked before in the proof of
Lemma 2.10, we need to show that the so-called biarc parameters 
n,i of the ith biarc of
the biarc curve βn, representable as (cf. [31, Lemma 4.13])


n,i =
〈γ ′(sn,i),γ (sn,i+1) – γ (sn,i)〉|mn,i – γ (sn,i)|2
〈γ ′(sn,i), mn,i – γ ′(sn,i)〉|γ (sn,i+1) – γ (sn,i)|2 ,

where the mn,i are the matching points of the ith biarc, are uniformly bounded from below
and from above. In other words, we have to prove that there exist two constants 
min,
max

such that

0 < 
min ≤ 
n,i ≤ 
max < 1 for any n ∈N, i = 0, . . . , n – 1.

Using the fact that the biarc curves are balanced, i.e., |mn,i – γ (sn,i)| = |mn,i – γ (sn,i+1)|, and
that γ is parametrized by arclength, we can then estimate by means of (79) in Lemma B.2
in the appendix


n,i ≥ 〈γ ′(sn,i),γ (sn,i+1) – γ (sn,i)〉|mn,i – γ (sn,i)|2
|mn,i – γ (sn,i)‖γ (sn,i+1) – γ (sn,i)|2

=
〈γ ′(sn,i),γ (sn,i+1) – γ (sn,i)〉

|γ (sn,i+1) – γ (sn,i)|
|mn,i – γ (sn,i)|

|γ (sn,i+1) – γ (sn,i)|

≥ 〈γ ′(sn,i),γ (sn,i+1) – γ (sn,i)〉
|γ (sn,i+1) – γ (sn,i)|

|mn,i – γ (sn,i)|
|mn,i – γ (sn,i+1)| + |mn,i – γ (sn,i)|︸ ︷︷ ︸

= 1
2

(79)≥ 1
2
(
1 – ωγ ′

(|sn,i+1 – sn,i|
)) ≥ 1

2
(
1 – ωγ ′ (hn)

)
.

Hence, we can choose n sufficiently large such that 1
2 (1 – ωγ ′ (hn)) ≥ 1

4 =: 
min. On the
other hand, by [31, Lemma 5.6] we have


n,i = 1 – 
̄n,i + O
(
h2

n,i
)

for any i = 0, . . . , n – 1, as n → ∞,

where the constant hidden in the O(h2
n,i)-term only depends on the curve γ and where


̄n,i is given by


̄n,i =
〈γ ′(sn,i+1),γ (sn,i+1) – γ (sn,i)〉|mn,i – γ (sn,i+1)|2
〈γ ′(sn,i+1),γ ′(sn,i+1) – mn,i〉|γ (sn,i+1) – γ (sn,i)|2 .

As for 
n,i, we can estimate 
̄n,i ≥ 1
2 (1 – ωγ ′ (hn)), which yields


n,i ≤ 1 –
1
2
(
1 – ωγ ′ (hn)

)
+ O

(
h2

n
) ≤ 1

2
(
1 + ωγ ′ (hn)

)
+ O

(
h2

n
)

as n → ∞.
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Hence, again choosing n sufficiently large, we obtain 1
2 (1 + ωγ ′ (hn)) + O(h2

n) ≤ 3
4 =: 
max as

the necessary uniform bound on the biarc parameters. Therefore, [31, Theorem 6.13] is
applicable and we obtain that Bn → γ in C1 as n → ∞. �

3 Discrete energies on interpolating biarc curves that converge to the
continuous TPq energy

For the central convergence result of this section, Theorem 3.1, we work with discrete
tangent-point energies Ẽn

q with the larger effective domain B̃n (see Definition 2.7(i)), in-
stead of with En

q introduced in (8) of the introduction, whose effective domainBn is defined
by the constraint (7). In other words,

Ẽn
q (γ ) :=

⎧
⎨

⎩

∑n–1
i=0

∑n–1
j=0,j �=i

(
2 dist(l(qj),qi)

|qi–qj|2
)q

λiλj if γ ∈ B̃n,

∞ otherwise.
(18)

These discrete energies evaluated on a sequence (βn)n∈N of proper γ -interpolating and
balanced biarc curves converge with a certain rate to the continuous TPq-energy of γ if
γ is sufficiently smooth. Some of the ideas in the proof of the theorem are based on [26,
Proposition 3.1] by Scholtes.

Theorem 3.1 Let c1, c2 > 0 and γ ∈ C1,1
ia (R/LZ,R3), and (Mn)n∈N with Mn = {sn,0, . . . , sn,n}

be a (c1 – c2)-distributed sequence of partitions of R/LZ (see Definition 2.8). Then, there is
a constant C > 0 depending on q, c1, c2, and γ , such that for a sequence (βn)n∈N of proper
γ -interpolating and balanced biarc curves interpolating the point-tangent data

(([
γ (sn,i),γ ′(sn,i)

]
,
[
γ (sn,i+1),γ ′(sn,i+1)

]))
i=0,...,n–1

with βn ∈ B̃n for all n ∈N, there is an index N ∈N with

∣
∣TPq(γ ) – Ẽn

q (βn)
∣
∣ ≤ C ln(n)

n
for any n ≥ N .

Note that in particular, the convergence rate ln(n)
n implies the convergence rate 1

n1–ε for
any given ε > 0.

Proof of Theorem 3.1 Set ϒ = 4 c2
c1

and define for i, j ∈ {0, . . . , n} the periodic index distance

|i – j|n := min
{|i – j|, n – |i – j|}.

We then decompose

TPq(γ ) – Ẽn
q (βn) =

n–1∑

i=0

∑

j,|i–j|n≤ϒ

∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

(
2

dist(l(γ (t)),γ (s))
|γ (s) – γ (t)|2

)q

ds dt

–
n–1∑

i=0

∑

j,0<|i–j|n≤ϒ

(
2

dist(l(γ (sn,j)),γ (sn,i))
|γ (sn,i) – γ (sn,j)|2

)q

λn,iλn,j

+ 2q
n–1∑

i=0

∑

j,|i–j|n>ϒ

(Ai,j + Bi,j + Ci,j),

(19)
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with

Ai,j :=
∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

dist(l(γ (t)),γ (s))q – dist(l(γ (sn,j)),γ (sn,i))q

|γ (s) – γ (t)|2q ds dt,

Bi,j :=
∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

(
dist(l(γ (sn,j)),γ (sn,i))q

|γ (s) – γ (t)|2q –
dist(l(γ (sn,j)),γ (sn,i))q

|γ (sn,i) – γ (sn,j)|2q

)
ds dt,

Ci,j :=
dist(l(γ (sn,j)),γ (sn,i))q

|γ (sn,i) – γ (sn,j)|2q

[|sn,i+1 – sn,i||sn,j+1 – sn,j| – λn,iλn,j
]
.

Step 1: Since γ is an injective C1-curve it is bi-Lipschitz (see Lemma B.1), i.e., there exists
a constant cγ ∈ (0,∞) such that

|t – s|R/LZ ≤ cγ

∣∣γ (t) – γ (s)
∣∣ for any t, s ∈ R. (20)

Step 2: Now, we give an upper bound for 2 dist(l(γ (t)),γ (s))
|γ (s)–γ (t)|2 for all s, t ∈ R with s �= t. Without

loss of generality we assume t < s. Then, there exists a number k = k(s, t) ∈ Z satisfying
|t – s|R/LZ = |kL + t – s|. We use the periodicity of γ and K := ‖γ ′′‖L∞ < ∞ (since γ ∈
C1,1(R/LZ,R3) � W 1,∞(R/LZ,R3)) to estimate

dist
(
l
(
γ (t)

)
,γ (s)

)

= inf
μ∈R

∣∣γ (s) – γ (t) – μγ ′(t)
∣∣

≤ ∣
∣γ (s) – γ (kL + t) –

(
s – (kL + t)

)
γ ′(kL + t)

∣
∣

≤
∫ s

kL+t

∫ u

kL+t

∣∣γ ′′(v)
∣∣dv du ≤ K(kL + t – s)2 = K |t – s|2

R/LZ, (21)

where we assumed, without loss of generality, that kL + t < s for the integrals. Therefore,
by means of (20)

(
2

dist(l(γ (t)),γ (s))
|γ (s) – γ (t)|2

)q

≤ (
2c2

γ K
)q for any s, t ∈R, s �= t. (22)

Define C1 := (2c2
γ K)qc2(2ϒ + 1)L. Applying the calculations above we can estimate the first

term on the right-hand side of (19) from above by

(22)≤ (
2c2

γ K
)q

n–1∑

i=0

∑

j,|i–j|n≤ϒ

|sn,i+1 – sn,i||sn,j+1 – sn,j|

(17)≤ (
2c2

γ K
)q c2

n

n–1∑

i=0

|sn,i+1 – sn,i|
∑

j,|i–j|n≤ϒ

1

︸ ︷︷ ︸
≤2ϒ+1

≤ (
2c2

γ K
)q c2

n
(2ϒ + 1)

n–1∑

i=0

|sn,i+1 – sn,i|
︸ ︷︷ ︸

=L

=
C1

n
. (23)
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Step 3: By Lemma 2.10 there exists a constant cK only depending on K such that

∣∣
∣∣

λn,i

|sn,i+1 – sn,i| – 1
∣∣
∣∣ ≤ cK |sn,i+1 – sn,i|2

for all n ≥ N and i = 0, . . . , n – 1, where N depends on the given sequence of biarc curves.
Using the fact that |sn,i+1 – sn,i| ≤ L

2 yields

λn,i ≤ cK

(
L
2

)2

︸ ︷︷ ︸
=:dK

|sn,i+1 – sn,i| for n ≥ N and i = 0, . . . , n – 1. (24)

Without loss of generalization we can assume that dK ≥ 1. Define C2 := d2
K C1. Thus,

n–1∑

i=0

∑

j,0<|i–j|n≤ϒ

(
2

dist(l(γ (sn,j)),γ (sn,i))
|γ (sn,i) – γ (sn,j)|2

)q

λn,iλn,j

(24)≤ d2
K

n–1∑

i=0

∑

j,0<|i–j|n≤ϒ

(
2

dist(l(γ (sn,j)),γ (sn,i))
|γ (sn,i) – γ (sn,j)|2

)q

|sn,i+1 – sn,i||sn,j+1 – sn,j|

(22)≤ d2
K
(
2c2

γ K
)q

n–1∑

i=0

∑

j,0<|i–j|n≤ϒ

|sn,i+1 – sn,i||sn,j+1 – sn,j|
(23)≤ C2

n
, (25)

which deals with the second term on the right-hand side of (19).
Step 4: We assume from now on that |i – j|n > ϒ . The sequence (Mn)n is assumed to be

(c1 – c2)-distributed, so that in view of (17)

|sn,k+1 – sn,k| = |sn,k+1 – sn,k|R/LZ for any n ∈ N and k = 0, . . . , n – 1.

For s ∈ [sn,i, sn,i+1) and t ∈ [sn,j, sn,j+1) with i �= j we use |s – t|R/LZ ≤ |s – sn,i|R/LZ + |sn,i –
sn,j|R/LZ + |sn,j – t|R/LZ to infer the inequality

|t – s|R/LZ ≤ |sn,i – sn,j|R/LZ + 2 max
k=0,...,n–1

|sn,k+1 – sn,k|R/LZ

(17)≤ |sn,i – sn,j|R/LZ + 2
c2

c1
min

k=0,...,n–1
|sn,k+1 – sn,k|R/LZ

︸ ︷︷ ︸
≤|sn,i–sn,j|R/LZ

≤
(

1 + 2
c2

c1

)
|sn,i – sn,j|R/LZ.

From |i – j|n > ϒ = 4 c2
c1

we have in particular

2
c2

c1
<

1
2
|i – j|n. (26)

Then, similarly as before,

|t – s|R/LZ ≥ |sn,i – sn,j|R/LZ – 2 max
k=0,...,n–1

|sn,k+1 – sn,k|R/LZ
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(17)≥ |i – j|n min
k=0,...,n–1

|sn,k+1 – sn,k|R/LZ –
2c2

c1
min

k=0,...,n–1
|sn,k+1 – sn,k|R/LZ

=
(

|i – j|n –
2c2

c1

)
min

k=0,...,n–1
|sn,k+1 – sn,k|R/LZ

(26)
>

1
2
|i – j|n min

k=0,...,n–1
|sn,k+1 – sn,k|R/LZ ≥ c1

2c2
|sn,i – sn,j|R/LZ.

In total, we conclude for |i – j|n > ϒ

c1

2c2
|sn,i – sn,j|R/LZ ≤ |t – s|R/LZ ≤

(
1 + 2

c2

c1

)
|sn,i – sn,j|R/LZ (27)

for s ∈ [sn,i, sn,i+1) and t ∈ [sn,j, sn,j+1), which we consider also in Steps 5 and 6.
Step 5: In order to estimate Ai,j, we initially estimate for arbitrary a, b ≥ 0

∣
∣bq – aq∣∣ =

∣∣
∣∣

∫ b

a

d
dx

xq dx
∣∣
∣∣ =

∣∣
∣∣

∫ b

a
qxq–1 dx

∣∣
∣∣ ≤ q|b – a|max{a, b}q–1, (28)

since the function f : [0,∞) → [0,∞), x → xq–1 is nondecreasing for q ≥ 2. We abbreviate
d(·, ·) := dist(l(γ (·)),γ (·)) and use estimate (28) to find for s ∈ [sn,i, sn,i+1) and t ∈ [sn,j, sn,j+1)

∣∣dq(t, s) – dq(sn,j, sn,i)
∣∣ ≤ q

∣∣d(t, s) – d(sn,j, sn,i)
∣∣(max

{
d(t, s), d(sn,j, sn,i)

})q–1. (29)

Furthermore, combining (21) with (27) yields

d(t, s)
(21)≤ K |t – s|2

R/LZ
(27)≤ K

(
1 + 2

c2

c1

)2

|sn,i – sn,j|2R/LZ,

d(sn,j, sn,i) ≤ K |sn,i – sn,j|2R/LZ ≤ K
(

1 + 2
c2

c1

)2

|sn,i – sn,j|2R/LZ.

(30)

Hence,

(
max

{
d(t, s), d(sn,j, sn,i)

})q–1 ≤ Kq–1
(

1 + 2
c2

c1

)2q–2

|sn,i – sn,j|2q–2
R/LZ. (31)

Moreover, we estimate again by virtue of (27) now for s := sn,i

|t – sn,i|R/LZ
(27)≤

(
1 + 2

c2

c1

)
|sn,i – sn,j|R/LZ,

and we use (17) to find for t ∈ [sn,j, sn,j+1)

|t – sn,j|R/LZ ≤ max
k=0,...,n–1

|sn,k+1 – sn,k|R/LZ

(17)≤ c2

c1
min

k=0,...,n–1
|sn,k+1 – sn,k|R/LZ ≤

(
1 + 2

c2

c1

)
|sn,i – sn,j|R/LZ.

Combining these last two estimates with (27) leads to

max
{|t – s|R/LZ, |t – sn,i|R/LZ

}
+ |t – sn,j|R/LZ + |t – sn,i|R/LZ

≤ 3
(

1 + 2
c2

c1

)
|sn,i – sn,j|R/LZ for s ∈ [sn,i, sn,i+1), t ∈ [sn,j, sn,j+1).

(32)
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For arbitrary τ ∈ R the mapping Pγ ′(τ ) : R3 →Rγ ′(τ ) defined as

Pγ ′(τ )(v) :=
〈
v,γ ′(τ )

〉
γ ′(τ ), for v ∈R

3 (33)

is the orthogonal projection onto the subspace Rγ ′(τ ) since |γ ′| = 1, and we have

∣
∣Pγ ′(τ )(v) – v

∣
∣ ≤ |w – v| for all w ∈Rγ ′(τ ), v ∈R

3. (34)

Moreover, we have for any τ ,σ ∈R

d(τ ,σ ) = dist
(
l
(
γ (τ )

)
,γ (σ )

)
=
∣
∣Pγ ′(τ )

(
γ (σ ) – γ (τ )

)
–
(
γ (σ ) – γ (τ )

)∣∣. (35)

Furthermore, we calculate for s ∈ [sn,i, sn,i+1) and t ∈ [sn,j, sn,j+1) using the linearity of the
projection

Pγ ′(t)
(
γ (s) – γ (t)

)
– Pγ ′(sn,j)

(
γ (sn,i) – γ (sn,j)

)

= Pγ ′(t)
(
γ (s) – γ (sn,i)

)
+ Pγ ′(t)

(
γ (sn,i) – γ (t)

)

– Pγ ′(sn,j)
(
γ (t) – γ (sn,j)

)
– Pγ ′(sn,j)

(
γ (sn,i) – γ (t)

)

(33)= Pγ ′(t)
(
γ (s) – γ (sn,i)

)
– Pγ ′(sn,j)

(
γ (t) – γ (sn,j)

)

+
〈
γ (sn,i) – γ (t),γ ′(t) – γ ′(sn,j)

〉
γ ′(t)

+
〈
γ (sn,i) – γ (t),γ ′(sn,j)

〉(
γ ′(t) – γ ′(sn,j)

)
. (36)

In conclusion, by (35) and the elementary inequality ‖a| – |b‖ ≤ |a – b|, this yields for the
expression |d(t, s) – d(sn,j, sn,i)| (for s ∈ [sn,i, sn,i+1) and t ∈ [sn,j, sn,j+1)) the upper bound

∣∣Pγ ′(t)
(
γ (s) – γ (t)

)
– Pγ ′(sn,j)

(
γ (sn,i) – γ (sn,j)

)
–
(
γ (s) – γ (sn,i)

)
+
(
γ (t) – γ (sn,j)

)∣∣,

which in turn by means of (36) and (34) can be bounded from above by

∣∣Pγ ′(t)
(
γ (s) – γ (sn,i)

)
–
(
γ (s) – γ (sn,i)

)∣∣

+
∣∣Pγ ′(sn,j)

(
γ (t) – γ (sn,j)

)
–
(
γ (t) – γ (sn,j)

)∣∣

+
∣∣〈γ (sn,i) – γ (t),γ ′(t) – γ ′(sn,j)

〉
γ ′(t)

∣∣

+
∣∣〈γ (sn,i) – γ (t),γ ′(sn,j)

〉(
γ ′(t) – γ ′(sn,j)

)∣∣

(34)≤ ∣∣(γ (s) – γ (sn,i)
)

– (s – sn,i)γ ′(t)
∣∣ +

∣∣(γ (t) – γ (sn,j)
)

– (t – sn,j)γ ′(sn,j)
∣∣

+ 2
∣∣γ (sn,i) – γ (t)

∣∣∣∣γ ′(sn,j) – γ ′(t)
∣∣.

The last summand is bounded by 2K |t – sn,i|R/LZ|t – sn,j|R/LZ since K = ‖γ ′′‖L∞ and 1
are the Lipschitz constants of γ ′ and γ , respectively. The first summand on the right-
hand side of the above equals | ∫ s

sn,i

∫ u
t γ ′′(v) dv du|, whereas the second is bounded by

∫ t
sn,j

∫ u
sn,j

|γ ′′(v)|dv du, so that we can summarize the estimate

∣∣d(t, s) – d(sn,j, sn,i)
∣∣
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≤ K |sn,i – s|R/LZ max
{|s – t|R/LZ, |t – sn,i|R/LZ

}

+ K |t – sn,j|2R/LZ + 2K |t – sn,i|R/LZ|t – sn,j|R/LZ

≤ 2K max
k=0,...,n–1

|sn,k+1 – sn,k|

× [
max

{|s – t|R/LZ, |t – sn,i|R/LZ
}

+ |t – sn,j|R/LZ + |t – sn,i|R/LZ
]

(32)≤ 6K
(

1 + 2
c2

c1

)
|sn,i – sn,j|R/LZ max

k=0,...,n–1
|sn,k+1 – sn,k|. (37)

Inserting (31) and (37) into (29) yields

∣∣dq(t, s) – dq(sn,j, sn,i)
∣∣

≤ 6qKq
(

1 + 2
c2

c1

)2q–1

|sn,i – sn,j|2q–1
R/LZ max

k=0,...,n–1
|sn,k+1 – sn,k|. (38)

In order to obtain an estimate for the denominator of Ai,j we consider

∣∣γ (s) – γ (t)
∣∣2q (20)≥ 1

c2q
γ

|t – s|2q
R/LZ

(27)≥
(

c1

2c2cγ

)2q

|sn,i – sn,j|2q
R/LZ. (39)

Setting CA := c3
2

c1
6qKq(1 + 2 c2

c1
)2q–1( 2c2cγ

c1
)2q we obtain from (38) and (39)

|Ai,j|
(38),(39)≤ c1

(c2)3 CA

∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

|sn,i – sn,j|2q–1
R/LZ maxk=0,...,n–1 |sn,k+1 – sn,k|

|sn,i – sn,j|2q
R/LZ

ds dt

≤ c1

(c2)3 CA

(
max

k=0,...,n–1
|sn,k+1 – sn,k|

)3 1
|sn,i – sn,j|R/LZ

(17)≤ c1CA
1
n3

1
|i – j|n mink=0,...,n–1 |sn,k+1 – sn,k|

(17)≤ CA
1
n2

1
|i – j|n . (40)

Step 6: To estimate Bi,j, we use (28) and twice (27) leading to

∣∣∣∣γ (sn,i) – γ (sn,j)
∣∣2q –

∣∣γ (s) – γ (t)
∣∣2q∣∣

=
∣
∣
∣
∣γ (sn,i) – γ (sn,j)

∣
∣q +

∣
∣γ (s) – γ (t)

∣
∣q∣∣

× ∣∣∣∣γ (sn,i) – γ (sn,j)
∣∣q – |γ (s) – γ (t)|q∣∣

(28)≤ q
(|sn,i – sn,j|qR/LZ + |t – s|q

R/LZ
)∣∣∣∣γ (sn,i) – γ (sn,j)

∣∣ –
∣∣γ (s) – γ (t)

∣∣∣∣

× max
{∣∣γ (s) – γ (t)

∣∣,
∣∣γ (sn,i) – γ (sn,j)

∣∣}q–1

(27)≤ 2q
(

1 + 2
c2

c1

)q

|sn,i – sn,j|qR/LZ
∣∣γ (sn,i) – γ (s) + γ (t) – γ (sn,j)

∣∣

× max
{|t – s|R/LZ, |sn,i – sn,j|R/LZ

}q–1

(27)≤ 2q
(

1 + 2
c2

c1

)2q–1

|sn,i – sn,j|2q–1
R/LZ

(∣∣γ (s) – γ (sn,i)
∣
∣ +

∣
∣γ (t) – γ (sn,j)

∣
∣)

≤ 2q
(

1 + 2
c2

c1

)2q–1

|sn,i – sn,j|2q–1
R/LZ

(|s – sn,i|R/LZ + |t – sn,j|R/LZ
)
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≤ 4q
(

1 + 2
c2

c1

)2q–1

|sn,i – sn,j|2q–1
R/LZ max

k=0,...,n–1
|sn,k+1 – sn,k|. (41)

Thus, by (30), (41), and (39),

|Bi,j|
(30)≤ Kq

(
1 + 2

c2

c1

)2q

|sn,i – sn,j|2q
R/LZ

×
∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

∣
∣∣
∣
|γ (sn,i) – γ (sn,j)|2q – |γ (s) – γ (t)|2q

|γ (sn,i) – γ (sn,j)|2q|γ (s) – γ (t)|2q

∣
∣∣
∣ds dt

(41)≤ 4qKq
(

1 + 2
c2

c1

)4q–1

|sn,i – sn,j|4q–1
R/LZ max

k=0,...,n–1
|sn,k+1 – sn,k|

×
∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

1
|γ (sn,i) – γ (sn,j)|2q|γ (s) – γ (t)|2q ds dt

(39)≤
(

2c2cγ

c1

)2q

c2q
γ 4qKq

(
1 + 2

c2

c1

)4q–1

|sn,i – sn,j|4q–1
R/LZ max

k=0,...,n–1
|sn,k+1 – sn,k|

×
∫ sn,j+1

sn,j

∫ sn,i+1

sn,i

1
|sn,i – sn,j|4q

R/LZ

ds dt

≤
(

2c2cγ

c1

)2q

c2q
γ 4qKq

(
1 + 2

c2

c1

)4q–1(
max

k=0,...,n–1
|sn,k+1 – sn,k|

)3 1
|sn,i – sn,j|R/LZ

(17)≤ (c2)3
(

2c2cγ

c1

)2q

c2q
γ 4qKq

(
1 + 2

c2

c1

)4q–1 1
n3

1
|i – j|n mink=0,...,n–1 |sn,k+1 – sn,k|

(17)≤ CB

n2
1

|i – j|n (42)

with CB := (c2)3

c1
( 2c2cγ

c1
)2qc2q

γ 4qKq(1 + 2 c2
c1

)4q–1.
Step 7: The expression

∑n
k=1

1
k – ln(n) converges for n → ∞ to the Euler–Mascheroni

constant; see [18, p. xix]. Thus, there exists a constant cl ∈ (0,∞) such that |∑n
k=1

1
k –

ln(n)| ≤ cl for all n ∈N. This leads for n ≥ 1 to

n–1∑

i=0

∑

j,|i–j|n>ϒ

(|Ai,j| + |Bi,j|
)

(40), (42)≤ 2 max{CA, CB}
n2

n–1∑

i=0

∑

j,|i–j|n>ϒ

1
|i – j|n

≤ 4 max{CA, CB}
n2

n–1∑

i=0

n∑

k=1

1
k

=
4 max{CA, CB}

n

( n∑

k=1

1
k

– ln(n)

)

+ 4 max{CA, CB} ln(n)
n

≤ CAB ln(n)
n

(43)

with CAB := 8 max{cl, 1}max{CA, CB}.
Step 8: Recall from Step 3 that

∣
∣λn,j – |sn,j+1 – sn,j|

∣
∣ ≤ cK |sn,j+1 – sn,j|3 ≤ cK

(
max

k=0,...,n–1
|sn,k+1 – sn,k|

)3
(44)
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holds for all n ≥ N and j = 0, . . . , n – 1, where N depends on the sequence (βn)n∈N. From
(22) and (24) we obtain from (44)

|Ci,j| ≤ dist(l(γ (sn,j)),γ (sn,i))q

|γ (sn,i) – γ (sn,j)|2q

∣
∣|sn,i+1 – sn,i||sn,j+1 – sn,j| – λn,iλn,j

∣
∣

(22)≤ (
c2
γ K

)q[|sn,i+1 – sn,i|
∣
∣|sn,j+1 – sn,j| – λn,j

∣
∣

+ λn,j
∣
∣|sn,i+1 – sn,i| – λn,i

∣
∣]

(24)≤ (
c2
γ K

)qdK
[|sn,i+1 – sn,i|

∣
∣|sn,j+1 – sn,j| – λn,j

∣
∣

+ |sn,j+1 – sn,j|
∣
∣|sn,i+1 – sn,i| – λn,i

∣
∣]

(44)≤ (
c2
γ K

)qdK cK

(
max

k=0,...,n–1
|sn,k+1 – sn,k|

)3

× [|sn,i+1 – sn,i| + |sn,j+1 – sn,j|
]

≤ 2
(
c2
γ K

)qdK cK

(
max

k=0,...,n–1
|sn,k+1 – sn,k|

)4 (17)≤ CC

n4 , (45)

with CC := 2(c2)4(c2
γ K)qdK cK for all n ≥ N . We then conclude that

n–1∑

i=0

∑

j,|i–j|n>ϒ

|Ci,j|
(45)≤ CC

n4

n–1∑

i=0

n–1∑

j=0

1 =
CC

n2 . (46)

Step 9: Inserting (23), (25), (43), and (46) into (19) yields

∣
∣TPq(γ ) – Ẽn

q (βn)
∣
∣ ≤C1

n
+

C2

n
+ 2q

(
CAB ln(n)

n
+

CC

n2

)
≤ C ln(n)

n
for n ≥ N ,

with C := 4 max{C1, C2, 2qCAB, 2qCC}, which gives the desired result. �

4 �-convergence to the continuous tangent-point energy
In the present section, we show that the continuous tangent-point energy TPq is the �-
limit of the discrete tangent-point energies En

q as n → ∞ (see Theorem 1.1). As a con-
sequence, we deduce that the limits of discrete almost minimizers are minimizers of the
continuous tangent-point energy; see Corollary 1.2.

4.1 �-convergence
In order to prove Theorem 1.1 we need to verify the liminf and limsup inequalities, see [8,
Definition 1.5]. Here, the liminf inequality is verified in a rather straightforward manner
(Theorem 4.1), whereas the proof of the limsup inequality requires more work; see Theo-
rem 4.4 below. Similarly as the notation Cia used before, we equip a function space S with
the index a if we take arclength-parametrized curves in that space.

Theorem 4.1 (Liminf inequality) Let γ ,γn ∈ C1
a (R/LZ,R3) with γn

C1

−→ γ as n → ∞.
Then, TPq(γ ) ≤ lim infn→∞ En

q (γn).
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Proof We may assume that lim infn→∞ En
q (γn) < ∞. Then, there exists a subsequence

(γnk )k∈N satisfying lim infn→∞ En
q (γn) = limk→∞ Enk

q (γnk ) < ∞. By definition of Enk
q we de-

duce γnk ∈ Bnk for all k ∈ N; see (8) in the introduction. Denote the point-tangent pairs
that are interpolated by γnk as (([qnk ,i, tnk ,i], [qnk ,i+1, tnk ,i+1]))i=0,...,nk –1, with qnk ,0 = qnk ,nk and
tnk ,0 = tnk ,nk for each k ∈ N. Furthermore, we denote by ank ,0, . . . , ank ,nk the arclength pa-
rameters satisfying γnk (ank ,i) = qnk ,i and |ank ,i+1 – ank ,i| = λnk ,i for all i = 0, . . . , nk – 1. Define
for all s, t ∈R/LZ with s �= t the function

fnk (s, t) :=
nk –1∑

i=0

nk –1∑

j=0,j �=i

(
2

dist(l(γnk (ank ,j)),γnk (ank ,i))
|γnk (ank ,i) – γnk (ank ,j)|2

)q

χ[ank ,i ,ank ,i+1)×[ank ,j ,ank ,j+1)(s, t),

where χA denotes the characteristic function of a set A ⊂R/LZ×R/LZ. Easy calculations
show that

lim
k→∞

fnk (s, t) =
(

2 dist(l(γ (t)),γ (s))
|γ (s) – γ (t)|2

)q

for any s �= t.

The functions fnk are nonnegative and measurable since they are piecewise constant. We
can rewrite the discrete tangent-point energies as En

q (γnk ) =
∫
R/LZ

∫
R/LZ fnk (s, t) ds dt, which

allows us to apply Fatou’s lemma to obtain the desired liminf inequality. �

An important first ingredient in the proof of the limsup inequality is the use of convo-
lutions

γε(x) := (γ ∗ ηε)(x) =
∫

R

γ (x – y)ηε(y) dy for x ∈R/LZ (47)

that approximate γ in the C1-norm. Here, η ∈ C∞(R) is a nonnegative mollifier with
suppη ⊂ [–1, 1] and

∫
R

η(x) dx = 1, and for any ε > 0 we set ηε(x) := 1
ε
η( x

ε
).

In general, the convolutions are not parametrized by arclength even if γ is, and they
do not need to have the same length as γ . Thus, we rescale the convolutions to have the
same length as γ and reparametrize then according to arclength. The following theorem
extends [6, Theorem 1.3] to the case ρ ≥ 1

s . A proof can be found in Appendix A.

Theorem 4.2 Let s ∈ (0, 1), ρ ∈ [ 1
s ,∞), and γ ∈ W 1+s,ρ

a (R/LZ,R3). For ε > 0 denote by γ̃ε be
the arclength parametrization of the rescaled convolutions L (γ )

L (γε)γε with γ̃ε(0) = L (γ )
L (γε)γε(0),

where L (γ ) is the length of γ and L (γε) is the length of γε . Then, γ̃ε → γ in W 1+s,ρ as
ε → 0.

The following abstract lemma is a specialization of [19, Lemma 6.1.1] and provides suf-
ficient conditions to transfer the limsup inequality from approximating elements to the
limit element. This result applied to smooth convolutions approximating a given C1-curve
γ will be the second ingredient in the proof of the limsup inequality, Theorem 4.4 below.

Lemma 4.3 (Limsup inequality by approximation) Let (X, d) be a metric space and Fn,F :
X → [–∞,∞]. If a sequence (xm)m∈N ⊂ X satisfies

1. d(x, xm) → 0 as m → ∞ for an element x ∈ X ;
2. lim supm→∞ F (xm) ≤F (x);
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3. for every m ∈N there exists a sequence (xm
n )n∈N with d(xm, xm

n ) → 0 as n → ∞ and
lim supn→∞ Fn(xm

n ) ≤F (xm),
then there exists a sequence (yn)n∈N ⊂ X with

d(x, yn) → 0 as n → ∞ and lim sup
n→∞

Fn(yn) ≤F (x).

The proof of the limsup inequality is inspired by Blatt’s improvement of Scholtes’ �-
convergence result for the Möbius energy [6, Theorem 4.8].

Theorem 4.4 (Limsup inequality) For every γ ∈ C1
ia(R/LZ,R3) there exists a sequence

(bn)n∈N ⊂ C1
ia(R/LZ,R3) such that

bn
C1

−→
n→∞

γ and lim sup
n→∞

En
q (bn) ≤ TPq(γ ).

Proof If TPq(γ ) = ∞, choose bn = γ for all n ∈ N. Then, bn → γ in C1 and the lim-
sup inequality follows trivially. From now on let TPq(γ ) < ∞. Thus, we have γ ∈
W 2– 1

q ,q(R/LZ,R3) by [5, Theorem 1.1]. Moreover, Lemma B.1 yields a cγ > 0 such that

cγ

∣
∣γ (s) – γ (t)

∣
∣ ≥ |s – t|R/LZ for any t, s ∈ R. (48)

We now consider a sequence of suitably rescaled and reparametrized convolutions of γ

and prove the limsup inequality for these convolutions. Applying Lemma 4.3 then yields
the limsup inequality for γ .

Step 1: For n ∈N define sn,i := iL
n for i = 0, . . . , n. Then, for all i = 0, . . . , n–1 we have |sn,i+1 –

sn,i| = hn = h̃n = L
n , so that the Mn := {sn,0, . . . , sn,n} form a (c1 – c2)-distributed sequence of

partitions with c1 = c2 = L for n ≥ 2; see Definition 2.8.
Step 2: For k ∈ N we set εk := 1

k . Let γεk be the convolution as in (47) and L (γεk )
the length of γεk . We then define γ̃k as the arclength parametrization of the rescalings
Lγεk /L (γεk ). Thus, γ̃k has the same length as γ for every k ∈ N. Furthermore, γ̃k is on
[0, L) injective for k sufficiently large, which follows from the bi-Lipschitz property (48) of
γ together with the C1-convergence of the convolutions γεk → γ as k → ∞. By omitting
finitely many indices we may assume that γ̃k ∈ C∞

ia (R/LZ,R3) for all k ∈N. For every k ∈N

there is by Lemma 2.9 some index N0(k) ∈N such that there exist proper γ̃k-interpolating
balanced biarc curves β̃k

n parametrized by arclength that interpolate the point-tangent
pairs (([γ̃k(sn,i), γ̃ ′

k(sn,i)], [γ̃k(sn,i+1), γ̃ ′
k(sn,i+1)]))i=0,...,n–1 for all n ≥ N0(k), such that the match-

ing points mk
n,i ∈ �n,i,k

++ satisfy (see Definitions 2.7 and 2.5(iv)) |γ̃k(sn,i) – mk
n,i| = |γ̃k(sn,i+1) –

mk
n,i| for all n ≥ N0(k), i = 0, . . . , n – 1. Let Lk

n := L (β̃k
n) be the length of β̃k

n , and note that
Theorem 2.11 implies

Lk
n → L = L (γ̃k) for each k ∈N as n → ∞. (49)

Step 3: For k ∈ N, let ϕk
n be Smutny’s reparametrization [31, Appendix A] and define

B̃k
n := β̃k

n ◦ ϕk
n , so that Theorem 2.12 implies

∥
∥γ̃k – B̃k

n
∥
∥

C1 → 0 for each k ∈N as n → ∞. (50)
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Now, define Bk
n(s) := L(Lk

n)–1B̃k
n(s) for all s ∈ R. Then, Bk

n obviously has length L. How-
ever, Bk

n is not parametrized by arclength. Nevertheless, by means of (49) we find ‖Bk
n –

B̃k
n‖C1 = | L

Lk
n

– 1|‖B̃k
n‖C1 → 0 for each k ∈ N as n → ∞. Consequently, by (50), one has

‖γ̃k – Bk
n‖C1 → 0 for each k ∈N as n → ∞, and therefore by means of Lemma B.3,

∥
∥γ̃k – βk

n
∥
∥

C1 −→ 0 for each k ∈N as n → ∞, (51)

where βk
n is the reparametrization of Bk

n by arclength. Again, since γ̃k is injective for k
sufficiently large, this implies that βk

n ∈ C1
ia(R/Z,R3) for n and k sufficiently large.

Step 4: We now show that βk
n ∈ Bn holds if n is sufficiently large, such that the values

En
q (βk

n) are finite by definition (8) in the introduction. We need to show that the length λk
n,i

of the ith biarc of βk
n satisfies (7). For that we apply Lemma 2.10 to the length λ̃k

n,i of the
ith biarc of β̃k

n . More precisely, we take the limit n → ∞ in the following inequality that
holds for each k ∈N, n ≥ N0(k), i = 0, . . . , n – 1,

– max
j=0,...,n–1

∣∣
∣∣

λ̃k
n,j

(L/n)
– 1

∣∣
∣∣ + 1 ≤ λ̃k

n,i

(L/n)
≤ max

j=0,...,n–1

∣∣
∣∣

λ̃k
n,j

(L/n)
– 1

∣∣
∣∣ + 1,

to obtain

1 ←− min
i=0,...,n–1

λ̃k
n,i

(L/n)
≤ max

i=0,...,n–1

λ̃k
n,i

(L/n)
−→ 1 as n → ∞. (52)

Since the image of βk
n is just the image of β̃k

n scaled by the factor L(Lk
n)–1 we deduce λk

n,j =
L(Lk

n)–1λ̃k
n,j. Combining this with (49) we find for each k ∈N and index N1(k) ≥ N0(k) such

that

L
2n

≤ min
j=0,...,n–1

λk
n,j ≤ max

j=0,...,n–1
λk

n,j ≤
2L
n

for any n ≥ N1(k), (53)

which is (7) for λi := λk
i . Thus, βk

n ∈ Bn for all n ≥ N1(k).
Step 5: The scaling property (9) and the parameter invariance of the discrete tangent-

point energies yields

En
q
(
βk

n
)

=
(
L
(
Lk

n
)–1)2–qẼn

q
(
β̃k

n
)

for all k ∈N and n ≥ N1(k),

so that we obtain by (49) and Theorem 3.1 applied to γ := γ̃k and βn := β̃k
n

∣
∣TPq(γ̃k) – En

q
(
βk

n
)∣∣ ≤ ∣

∣TPq(γ̃k) – Ẽn
q
(
β̃k

n
)∣∣ +

∣
∣Ẽn

q
(
β̃k

n
)∣∣
∣
∣1 –

(
L
(
Lk

n
)–1)2–q∣∣ −→ 0 (54)

for each k ∈N as n → ∞.
Step 6: In this final step we check the assumptions of Lemma 4.3. The space C1

ia(R/LZ,R3)
is a metric space with the metric induced by the C1-norm. By Morrey–Sobolev embed-
ding (see [21, Theorem A.2] in the setting of periodic functions) there exists a constant
cE > 0, such that

‖γ̃k – γ ‖C1 ≤ cE‖γ̃k – γ ‖
W 2– 1

q ,q .
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According to Theorem 4.2 applied to ρ = q and s = 1 – 1
q for q > 2 the right-hand side

converges to 0 as k → ∞. Thus, γ̃k converges in the C1-norm to γ , which verifies con-
dition (i) in Lemma 4.3. Furthermore, [34, (4.2) Satz] implies that TPq is continuous on

W
2– 1

q ,q
ia since q > 2. Thus, we obtain limk→∞ TPq(γ̃k) = TPq(γ ), which gives us condition

(ii) of Lemma 4.3. Combining (51) with (54) verifies condition (iii) of Lemma 4.3. Hence,
Lemma 4.3 yields the limsup inequality for γ . �

Remark 4.5 For the proof of Theorem 1.3 in Sect. 5 (see in particular Lemma 5.2) it is im-
portant to note that the actual recovery sequence for the limsup inequality in the previous
proof is a subsequence of the (doubly subscripted) arclength parametrized biarc curves
βk

n ∈ C1,1
ia (R/LZ,R3) for k ∈ N and n ≥ N1(k); see the choice of the abstract recovery se-

quence towards the end of the proof of [19, Lemma 6.1.1].

Proof of Theorem 1.1 According to [8, Definition 1.5] it suffices to verify two fundamen-
tal inequalities. Indeed, the liminf inequality is the content of Theorem 4.1, whereas the
limsup inequality is established in Theorem 4.4. �

4.2 Convergence of discrete almost minimizers
In this subsection, we prove the convergence of discrete almost minimizers of the discrete
tangent-point energies in the metric space defined before. The following lemma can be
found in [12, Corollary 7.20].

Lemma 4.6 (Convergence of minimizers) Let (X, d) be a metric space and Fn,F : X →
[–∞,∞]. Assume that Fn

�−→
n→∞

F . Let |Fn(zn) – infX Fn| → 0 and zn → z ∈ X as n tends to
infinity. Then, F (z) = minX F and limn→∞ Fn(zn) = F (z).

Proof of Corollary 1.2. The proof follows immediately from Lemma 4.6 with the metric
space X = C1

ia(R/LZ,R3) ∩K, with the metric induced by the C1-norm. Note that the knot
class K is stable under C1-convergence; see, e.g., [25]. Since TPq(γ ) < ∞ holds, we obtain
γ ∈ W 2– 1

q ,q(R/LZ,R3) by [5, Theorem 1.1]. �

5 � convergence to the Ropelength functional
As a first step towards the proof of Theorem 1.3 we show that the continuous tangent-
point energies (TPk)

1
k �-converge to the ropelengthR on C1,1

ia (R/Z,R3) equipped with the
C1-norm as k → ∞. We follow the proof of [14, Theorem 6.11], where Gilsbach showed
�-convergence of integral Menger curvatures towards ropelength.

Lemma 5.1 For any γ ∈ C1,1
ia (R/Z,R3) one has (TPk)

1
k (γ ) → R(γ ) as k → ∞. Moreover,

(TPk)
1
k

�−→
k→∞

R on (C1,1
ia (R/Z,R3),‖ · ‖C1 ).

Proof According to [30, Theorem 1(iii)] one has3 R(γ ) < ∞ for γ ∈ C1,1
ia (R/Z,R3). In ad-

dition, by [30, Lemma 2]

∥∥r–1
tp
(
γ (·),γ (·))∥∥L∞(R/Z×R/Z) = sup

s,t∈R/Z,s �=t
r–1

tp
(
γ (s),γ (t)

)
=

1
�[γ ]

= R(γ ). (55)

3Be aware of the notation: In [30] the expression R[·] was used for thickness �[·], whereas K[·] in [30] corresponds to
�[·]–1 .
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It is well known (see, e.g., [1, E3.4]) that the mapping

k �→ ∥
∥r–1

tp
(
γ (·),γ (·))∥∥Lk (R/Z×R/Z) = (TPk)

1
k

is nondecreasing and satisfies by means of (55)

lim
k→∞

(TPk)
1
k (γ ) =

∥∥r–1
tp
(
γ (·),γ (·))∥∥L∞(R/Z×R/Z)

(55)= R(γ ).

Furthermore, the continuous tangent-point energy is lower semicontinuous with respect
to the C1-norm, see [32, Proof of Corollary 2.3] or [14, Lemma 1.41]. Then, by [8, Re-

mark 1.40(ii)] the pointwise limit of (TPk)
1
k is also the �-limit and we obtain (TPk)

1
k

�−→R
as k → ∞. �

Lemma 5.2 (En
q )

1
q

�−→
n→∞

(TPq)
1
q on (C1,1

ia (R/Z,R3),‖ · ‖C1 ) for all q > 2.

Proof By Theorem 1.1 we have En
q

�−→ TPq on (C1
ia(R/Z,R3),‖ · ‖C1 ) for any q > 2 as n →

∞. However, in the proof of the limsup inequality in Theorem 4.4 the recovery sequence
is a sequence consisting only of biarc curves that are in C1,1

ia (R/Z,R3); see Remark 4.5.

Therefore, we also have En
q

�−→ TPq on the space (C1,1
ia (R/Z,R3),‖ · ‖C1 ) as n → ∞. Now,

apply [12, Proposition 6.16] to Fn := En
q , F := TPq and the continuous and nondecreasing

function g : (0,∞) →R, x �→ x
1
q to infer (En

q )
1
q = g ◦Fn

�−→
n→∞

g ◦F = (TPq)
1
q . �

Next, we compare two different discrete tangent-point energies.

Lemma 5.3 Let n, m, k ∈ N, 2 ≤ k ≤ m and γ ∈ C1(R/Z,R3) with length L (γ ). Then,
(En

k )
1
k (γ ) ≤ ( 4L (γ )2n(n–1)

n2 )
1
k – 1

m (En
m) 1

m (γ ).

Proof We only have to consider the case that γ ∈ Bn since otherwise both sides of the
inequality are infinite by definition of the discrete energy En

k ; see (8) in the introduction.
Denote by (([qi, ti], [qi+1, ti+1]))i=0,..,n–1 the point-tangent pairs that γ interpolates. For i �= j
define xi,j := 2 dist(l(qi),qj)

|qi–qj|2 ≥ 0. Then, we estimate by means of the generalized mean inequal-

ity for finite sums, ( 1
�

∑�
i=1 |ai|p)

1
p ≤ ( 1

�

∑�
i=1 |ai|q)

1
q for p ≤ q (here, for � := n(n – 1), p := k,

q := m), and by (7)

(
En

k
) 1

k (γ ) =

( n–1∑

i=0

n–1∑

j=0,j �=i

xk
i,jλiλj

) 1
k

=

( n–1∑

i=0

n–1∑

j=0,j �=i

[
xi,j(λiλj)

1
k
]k
) 1

k

≤ (
n(n – 1)

) 1
k – 1

m

( n–1∑

i=0

n–1∑

j=0,j �=i

xm
i,j (λiλj)

m
k

︸ ︷︷ ︸
=(λiλj)(λiλj)

m
k –1

) 1
m
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≤ (
n(n – 1)

) 1
k – 1

m max
i,j=0,...,n–1

i�=j

(λiλj)
1
k – 1

m
︸ ︷︷ ︸

(7)≤
(

4L (γ )2
n2

) 1
k – 1

m

( n–1∑

i=0

n–1∑

j=0,j �=i

xm
i,jλiλj

) 1
m

︸ ︷︷ ︸
=(En

m)
1
m (γ )

.

�

Proof of Theorem 1.3 It suffices to prove the �-convergence for L = 1, since then the state-
ment for general L follows from the scaling property and parametrization invariance of
the energies involved. Indeed, assume the theorem was proven for L = 1. Now, take L �= 1
and let (γn)n∈N ⊂ C1,1

ia (R/LZ,R3) with γn → γ in C1 as n → ∞. Denote by γ̃n the arclength
parametrization of γn

L . By Lemma B.3 this implies γ̃n → γ̃ in C1 as n → ∞, where γ̃ is
the arclength parametrization of γ

L . Together with the fact that the ropelength functional
is invariant under reparametrization and scaling, the liminf inequality for L = 1 yields the
liminf equality for general L:

R(γ ) = R(γ̃ ) ≤ lim inf
n→∞

(
En

n
) 1

n (γ̃n) = lim inf
n→∞

(
En

n
) 1

n

(
γn

L

)
(9)= lim inf

n→∞ L
n–2

n
(
En

n
) 1

n (γn).

For the limsup inequality let γ ∈ C1,1
ia (R/LZ,R3). Then, γ̃ (x) := γ (Lx)

L is the arclength
parametrization of γ scaled to unit length. Hence, there exists a recovery sequence
(γ̃n)n∈N ⊂ C1,1

ia (R/Z,R3) such that

γ̃n
C1→ γ̃ as n → ∞ and lim sup

n→∞
(
En

n
) 1

n (γ̃n) ≤R(γ̃ ). (56)

Define the reparametrization ϕ : [0, L] → [0, 1], x �→ x
L and set γn(x) := Lγ̃n(ϕ(x)) and

γ̂ (x) := Lγ̃ (ϕ(x)). Note that γn is parametrized by arclength and that γ̂ = γ holds. Then,
γn → γ̂ = γ in C1 for n → ∞ by (56). Again, by the scaling property of the energies and
the invariance under reparametrization we deduce with (56)

lim sup
n→∞

L
n–2

n
(
En

n
) 1

n (γn) (9)= lim sup
n→∞

(
En

n
) 1

n (γ̃n) ≤R(γ̃ ) = R(γ ).

Hence, it remains to prove the statement of Theorem 1.3 for L = 1, and for that we take a
general sequence (γn)n∈N ⊂ C1,1

ia (R/Z,R3) with γn → γ in C1 as n → ∞.
By Lemma 5.2 for q := k

(TPk)
1
k (γ ) ≤ lim inf

n→∞
(
En

k
) 1

k (γn) = lim
n→∞ inf

n≥k

(
En

k
) 1

k (γn). (57)

For k ≤ n we apply Lemma 5.3 to γ := γn and m := n to find

(
En

k
) 1

k (γn) ≤
(

4L (γn)2n(n – 1)
n2

) 1
k – 1

n (
En

n
) 1

n (γn).

Together with (57) and L (γn) = 1 for all n ∈N, this yields

(TPk)
1
k (γ ) ≤ lim

n→∞ inf
n≥k

(
4n(n – 1)

n2

) 1
k – 1

n (
En

n
) 1

n (γn). (58)
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Now, we have

lim
n→∞

(
4n(n – 1)

n2

) 1
k – 1

n
= lim

n→∞ exp

((
1
k

–
1
n

)
log

(
4n(n – 1)

n2

))
= exp

(
1
k

log(4)
)

= 4
1
k .

Combining this with the pointwise convergence in Lemma 5.1 and (58) we arrive at the
desired liminf inequality:

R(γ ) = lim
k→∞

(TPk)
1
k (γ )

(58)≤ lim
k→∞

lim
n→∞ inf

n≥k

(
4n(n – 1)

n2

) 1
k – 1

n (
En

n
) 1

n (γn)

= lim
k→∞

4
1
k lim inf

n→∞
(
En

n
) 1

n (γn) = lim inf
n→∞

(
En

n
) 1

n (γn).

To verify the limsup inequality let γ ∈ C1,1
ia (R/Z,R3), and for n ∈ N set sn,i := i

n for
i = 0, . . . , n. Then, we have |sn,i+1 – sn,i| = 1

n for all i = 0, . . . , n – 1, and therefore a sequence
of (c1 – c2)-distributed partitions with c1 = c2 = 1; see Definition 2.8. Now, we follow the
proof of Theorem 4.4. However, since γ is now a C1,1-curve, we do not have to work
with convolutions, but can follow the proof for γ directly. By Lemma 2.9 there exists for
n sufficiently large a γ -interpolating, proper, and balanced biarc curve β̃n interpolating
the point-tangent pairs (([γ (sn,i),γ ′(sn,i)], [γ (sn,i+1),γ ′(sn,i+1)]))i=0,...,n–1. Then, we obtain by
Theorem 2.11 that L (β̃n) → L (γ ) = 1 as n → ∞. Let ϕn be the reparametrization func-
tion from [31, Appendix A] and set B̃n := β̃n ◦ϕn. Then, by Theorem 2.12, we have B̃n → γ

in C1 for n → ∞. Setting Bn := L (β̃n)–1B̃n we obtain as in the proof of Theorem 4.4 that
Bn → γ in C1 for n → ∞. Let βn be the arclength parametrization of Bn. By Lemma B.3
we finally arrive at βn → γ in C1 for n → ∞. The biarc curves βn are only reparametrized
versions of β̃n rescaled by the factor L (β̃n)–1, so that we can show exactly as in the proof
of Theorem 4.4 that βn ∈ Bn for n sufficiently large. Moreover, due to the C1-convergence
towards γ , the βn are also injective for n large enough. Since βn is scaled to unit length
and parametrized by arclength, we have βn ∈ C1,1

ia (R/Z,R3) for n sufficiently large. Set
Ln := L (β̃n). By the scaling property of the discrete tangent-point energy (9) and its pa-
rameter invariance we have

(
En

k
) 1

k (βn) = L
1– 2

k
n

(
En

k
) 1

k (β̃n) for any k > 2. (59)

Abbreviating xi,j := 2 dist(γ (sn,i)+Rγ ′(sn,i),γ (sn,j))
|γ (sn,i)–γ (sn,j)|2 for i, j = 0, . . . , n – 1 with i �= j we can write and

estimate for sufficiently large n ∈N

(
En

k
) 1

k (βn) (59)= L
1– 2

k
n

(
En

k
) 1

k (β̃n) = L
1– 2

k
n

( n–1∑

i=0

n–1∑

j=0,j �=i

xk
i,jλiλj

) 1
k

= L
1– 2

k
n

(
1

n(n – 1)

n–1∑

i=0

n–1∑

j=0,j �=i

n(n – 1)xk
i,jλiλj

) 1
k

≤ L
1– 2

k
n

(
4L2

nn(n – 1)
n2

) 1
k
(

1
n(n – 1)

n–1∑

i=0

n–1∑

j=0,j �=i

xk
i,j

) 1
k

. (60)
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Here, we used (7) for β̃n ∈ Bn, which can be verified for n sufficiently large exactly as for
the β̃k

n in Step 4 of the proof of Theorem 4.4; see in particular (52). Now, observe that by [1,
E3.4] applied to the discrete measure μ :=

∑n–1
i=0

∑n–1
j=0,j �=i δ(sn,i ,sn,j) with μ((R/LZ)2) = n(n – 1)

we have

lim
k→∞

(
1

n(n – 1)

n–1∑

i=0

n–1∑

j=0,j �=i

xk
i,j

) 1
k

= max
i,j=0,...,n–1,i�=j

xi,j. (61)

With limk→∞ L
1– 2

k
n ( 4L2

nn(n–1)
n2 )

1
k = Ln. we obtain by means of (60), (61), and [30, Lemma 2.5]

for n sufficiently large

lim sup
k→∞

(
En

k
) 1

k (βn)
(60),(61)≤ Ln max

i,j=0,...,n–1,i�=j
xi,j ≤ Ln sup

s,t∈R/Z,s �=t

2 dist(γ (s) + Rγ ′(s),γ (t))
|γ (s) – γ (t)|2

= Ln sup
s,t∈R/Z,s �=t

1
rtp(γ (s),γ (t))

= LnR(γ ).
(62)

Now, let k ≥ n. By virtue of Lemma 5.3 applied to βn, m := k and replacing the index k in
that lemma by n here, we have (En

n ) 1
n (βn) ≤ ( 4Lnn(n–1)

n2 )
1
n – 1

k (En
k )

1
k (βn), which leads to

(
En

n
) 1

n (βn) ≤ lim sup
k→∞

(
4Lnn(n – 1)

n2

) 1
n – 1

k (
En

k
) 1

k (βn)
(62)≤

(
4Lnn(n – 1)

n2

) 1
n

LnR(γ ) (63)

for n sufficiently large. Finally, taking the limsup yields the desired limsup inequality

lim sup
n→∞

(
En

n
) 1

n (βn)
(63)≤ lim sup

n→∞

(
4Lnn(n – 1)

n2

) 1
n

︸ ︷︷ ︸
→1

Ln︸︷︷︸
→L (γ )=1

R(γ ) = R(γ ).
�

Proof of Corollary 1.4. Apply Lemma 4.6 to the metric space X = C1,1
ia (R/Z,R3) ∩ K with

the metric induced by the C1-norm. Note as in the proof of Corollary 1.2 that according
to [25] the knot class K is stable under C1-convergence. Since R(γ ) < ∞ holds, we obtain
by [16, Lemma 2] that γ ∈ C1,1

ia (R/Z,R3). �

Appendix A: Convergence of convolutions in W2– 1
q ,q(R/LZ,R3)

For fixed L > 0, s ∈ (0, 1) and ρ ∈ [1,∞) define the seminorm [f ]s,ρ of an L-periodic locally
ρ-integrable function f : R →R

n as

[f ]s,ρ :=
∫

R/LZ

∫

R/LZ

|f (x) – f (y)|ρ
|x – y|1+sρ

R/LZ
dx dy, (64)

where |x – y|R/LZ denotes the periodic distance on R defined in (13). Then, the peri-
odic fractional4 Sobolev space W 1+s,ρ(R/LZ,Rn) consists of those Sobolev functions f ∈

4Also known as periodic Sobolev–Slobodeckǐı space.
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W 1,ρ(R/LZ,Rn) whose weak derivatives f ′ have a finite seminorm [f ′]s,ρ . The norm on
W 1+s,ρ(R/LZ,Rn) is given by (‖f ‖W 1,ρ + [f ′]s,ρ)

1
ρ .

Proof of Theorem 4.2 The case ρ = 1
s is treated in [6, Theorem 1.3], so we may assume

from now on that ρ > 1
s .

Step 1: According to Morrey–Sobolev embedding [21, Theorem A.2] we have γ ∈
C1(R/LZ,R3), which implies that γ ′ is of vanishing mean oscillation, in short γ ′ ∈
VMO(R/LZ,R3), that is limr→0(supx∈R/LZ

1
2r (

∫
Br (x) |γ ′(y) – γ ′

x,r|dy)) = 0, where γ ′
x,r :=

1
2r
∫

Br (x) γ
′(z) dz denotes the integral mean. Indeed, γ ′ is uniformly continuous so that

for every ε > 0 there exists a δ = δ(ε) > 0 such that |γ ′(x) – γ ′(y)| < ε
2 for all x ∈ R/LZ and

y ∈ Bδ(x). Let 0 < r < δ and x ∈R/LZ. Then,

1
2r

∫

Br(x)

∣∣γ ′(y) – γ ′
x,r
∣∣dy ≤ sup

y∈Br(x)

∣∣γ ′(y) – γ ′(x)
∣∣ +

∣∣γ ′(x) – γ ′
x,r
∣∣

≤ ε

2
+

1
2r

∫

Br (x)

∣
∣γ ′(x) – γ ′(z)

∣
∣dz < ε for any x ∈R/LZ,

thus supx∈R/LZ
1
2r (

∫
Br(x) |γ ′(y) – γ ′

x,r|dy) < ε, which implies that γ ′ ∈ VMO(R/LZ,R3) since
ε > 0 was arbitrary.

Step 2: For the lengths Lε := L (γε) and L := L (γ ) we estimate

|Lε – L| ≤
∫ L

0

∣∣∣∣γ ′
ε(x)

∣∣ –
∣∣γ ′(x)

∣∣∣∣dx ≤ ∥∥∣∣γ ′
ε

∣∣ –
∣∣γ ′∣∣∥∥

C0 L −→
ε→0

0, (65)

since γ ′ ∈ VMO(R/LZ,R3) allows us to apply [6, Theorem 1.1] to deduce that |γ ′
ε| con-

verges uniformly to |γ ′| = 1 as ε tends to 0. Therefore, there is an ε0 > 0 such that

1
2

≤
∣
∣∣
∣

L
Lε

γ ′
ε(x)

∣
∣∣
∣ ≤ 2 for any x ∈ R/LZ, ε ∈ (0, ε0]. (66)

Step 3: Since the convolutions γε converge to γ in C1 we obtain by means of (65) that
also the rescalings Lγε/Lε converge towards γ in C1. According to Lemma B.3 we obtain

‖γ̃ε – γ ‖C1 −→ 0 as ε → 0. (67)

Step 4: It remains to show that [γ̃ ′
ε – γ ′]s,ρ → 0 holds as ε → 0, since then, together with

(67), we have established ‖γ̃ε – γ ‖W 1+s,ρ → 0 as ε → 0. Abbreviating the integrand of the
seminorm by Iε(x, y) := |(γ̃ ′

ε(x)–γ ′(x))–(γ̃ ′
ε(y)–γ ′(y))|ρ

|x–y|1+sρ
R/LZ

we want to apply Vitali’s theorem (see, e.g.,

[1, 3.23]) to prove ‖Iε‖L1 → 0 as ε → 0. Since we have a compact domain it suffices to
show that the sequence (Iε)ε>0 is uniformly integrable and converges pointwise to 0 a.e.
on R/LZ×R/LZ. The pointwise convergence Iε(x, y) → 0 (even for all x �= y) follows from
the C1-convergence (67).

Hence, we need to show the uniform integrability. In the obvious inequality

Iε(x, y) ≤ 2ρ–1
[ |γ̃ ′

ε(x) – γ̃ ′
ε(y)|ρ

|x – y|1+sρ
R/LZ

+
|γ ′(x) – γ ′(y)|ρ

|x – y|1+sρ
R/LZ

]
(68)

we estimate both summands on the right-hand side separately.
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This is easy for the second summand. Fix ε̃ > 0. Since γ is in W 1+s,ρ(R/LZ,R3), we find
a δ1 = δ1(ε̃) > 0 such that for every measurable subset E ⊂ (R/LZ)2 with |E| < δ1 we obtain

∫ ∫

E

|γ ′(x) – γ ′(y)|ρ
|x – y|1+sρ

R/LZ
dx dy <

ε̃

2ρ
. (69)

Regarding the first summand in (68) we consider the arclength function sε(x) :=
∫ x

0 | L
Lε

γ ′
ε(z)|dz such that sε(0) = 0. From (66) the derivative s′

ε(z) = | L
Lε

γ ′
ε(z)| is uniformly

bounded away from 0 for all ε ∈ (0, ε0]. As a consequence, sε is for ε ∈ (0, ε0] invertible.
Let s̃ε denote the inverse function of sε . As a next step, we will show |sε(x) – sε(y)|R/LZ ≥
1
2 |x – y|R/LZ for x, y ∈ R/LZ and ε ∈ (0, ε0]. Let 0 ≤ x < y < L, so that by monotonicity
0 ≤ sε(x) ≤ sε(y) < L. First, assume that |sε(x) – sε(y)|R/LZ = |sε(x) – sε(y)| = sε(y) – sε(x).
Then, we estimate by means of (66)

∣∣sε(x) – sε(y)
∣∣
R/LZ =

∫ y

x

∣
∣∣
∣

L
Lε

γ ′
ε(z)

∣
∣∣
∣dz

(66)≥ 1
2

(y – x) ≥ 1
2
|x – y|R/LZ.

If |sε(x) – sε(y)|R/LZ = L – (sε(y) – sε(x)), then again by (66)

∣∣sε(x) – sε(y)
∣∣
R/LZ = L –

∫ y

x

∣
∣∣∣

L
Lε

γ ′
ε(z)

∣
∣∣∣dz =

∫ x

0

∣
∣∣∣

L
Lε

γ ′
ε(z)

∣
∣∣∣dz +

∫ L

y

∣
∣∣∣

L
Lε

γ ′
ε(z)

∣
∣∣∣dz

(66)≥ 1
2
(
L – (y – x)

) ≥ 1
2
|x – y|R/LZ.

In particular, this yields for the inverse function

∣∣s̃ε(x) – s̃ε(y)
∣∣
R/LZ ≤ 2|x – y|R/LZ for any x, y ∈R/LZ, ε ∈ (0, ε0]. (70)

Due to (65) there exists a constant c > 0 such that

21+(1+s)ρ
∣
∣∣
∣

L
Lε

∣
∣∣
∣

ρ[
1 + 2ρ

∣
∣∣
∣

L
Lε

∣
∣∣
∣

ρ]
≤ c for any ε > 0. (71)

Now, we estimate pointwise for x �= y with Jensen’s inequality and by (70)

Jε(x, y) :=
|γ̃ ′

ε(x) – γ̃ ′
ε(y)|ρ

|x – y|1+sρ
R/LZ

=
| L

Lε
γ ′

ε(s̃ε(x))s̃′
ε(x) – L

Lε
γ ′

ε(s̃ε(y))s̃′
ε(y)|ρ

|s̃ε(x) – s̃ε(y)|1+sρ
R/LZ

|s̃ε(x) – s̃ε(y)|1+sρ
R/LZ

|x – y|1+sρ
R/LZ

(70)≤ 21+sρ
∣
∣∣∣

L
Lε

∣
∣∣∣

ρ[ |s̃′
ε(x)|ρ |γ ′

ε(s̃ε(x)) – γ ′
ε(s̃ε(y))|ρ

|s̃ε(x) – s̃ε(y)|1+sρ
R/LZ

+
|γ ′

ε(s̃ε(y))|ρ |s̃′
ε(x) – s̃′

ε(y)|ρ
|s̃ε(x) – s̃ε(y)|1+sρ

R/LZ

]
.

Together with |γ ′
ε| ≤ 1, |s′

ε(x)| = | L
Lε

γ ′
ε(x)| ∈ [ 1

2 , 2] due to (66), |s̃′
ε(x)| = | L

Lε
γ ′

ε(s̃ε(x))|–1 ∈
[ 1

2 , 2] for ε ∈ (0, ε0], and the estimate

∣
∣s̃′

ε(x) – s̃′
ε(y)

∣
∣ =

∣∣
∣∣

∣∣
∣∣

L
Lε

γ ′
ε

(
s̃ε(x)

)
∣∣
∣∣

–1

–
∣∣
∣∣

L
Lε

γ ′
ε

(
s̃ε(y)

)
∣∣
∣∣

–1∣∣
∣∣

≤
∣∣
∣∣

L
Lε

∣∣
∣∣
|γ ′

ε(s̃ε(x)) – γ ′
ε(s̃ε(y))|

|γ ′
ε(s̃ε(x))||γ ′

ε(s̃ε(y))|
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(66)≤ 4
∣∣
∣∣

L
Lε

∣∣
∣∣
∣
∣γ ′

ε

(
s̃ε(x)

)
– γ ′

ε

(
s̃ε(y)

)∣∣,

we obtain for all ε ∈ (0, ε0] the inequality

Jε(x, y) ≤ 21+sρ
∣
∣∣∣

L
Lε

∣
∣∣∣

ρ[
2ρ + 4ρ

∣
∣∣∣

L
Lε

∣
∣∣∣

ρ] |γ ′
ε(s̃ε(x)) – γ ′

ε(s̃ε(y))|ρ
|s̃ε(x) – s̃ε(y)|1+sρ

R/LZ

(71)≤ cAε

(
ψε(x, y)

)
(72)

for Aε(x, y) := |γ ′
ε(x)–γ ′

ε(y)|ρ
|x–y|1+sρ

R/LZ
and the transformation ψε : (R/LZ)2 → (R/LZ)2 sending (x, y) to

(s̃ε(x), s̃ε(y)). Observe that by (66), ψε is bi-Lipschitz, since det(Dψε(x, y)) = |s̃′
ε(x)||s̃′

ε(y)| ∈
[ 1

4 , 4]. This implies by (72) that

Jε(x, y) ≤ 4cAε

(
ψε(x, y)

)∣∣det
(
Dψε(x, y)

)∣∣ for any ε ∈ (0, ε0].

Let now E ⊂ (R/LZ)2. By a change of variables
∫ ∫

E
Jε(x, y) dx dy ≤ 4c

∫ ∫

E
Aε

(
ψε(x, y)

)∣∣det
(
Dψε(x, y)

)∣∣dx dy

= 4c
∫ ∫

ψε (E)
Aε(x, y) dx dy for any ε ∈ (0, ε0]. (73)

It is well known that the standard convolution γε converges in W 1+s,ρ to γ ; see, e.g., [13,
Lemma 11], which according to Vitali’s theorem implies that the Aε(x, y) are uniformly
integrable. In particular, for given ε̃ > 0 there exists δ2 = δ2(ε̃) > 0 such that if |ψε(E)| < δ2,
we have

∫ ∫

ψε(E)
Aε(x, y) dx dy <

ε̃

c2ρ+2 for any ε > 0. (74)

Since ψε is uniformly Lipschitz continuous for ε ∈ (0, ε0], there exists a δ3 > 0 such that
|E| < δ3 implies |ψε(E)| < δ2. Now, set δ̃ := min{δ1, δ3} so that for any set E ⊂ (R/LZ)2 with
|E| < δ̃ we infer by means of (68), (73), (69), and (74) that

∫ ∫

E
Iε(x, y) dx dy

(68),(73)≤ 2ρ–1
[

4c
∫ ∫

ψε(E)
Aε(x, y) dx dy +

∫ ∫

E

|γ ′(x) – γ ′(y)|ρ
|x – y|1+sρ

R/LZ
dx dy

]

(69), (74)
< 2ρ–1

[
4c

ε̃

c2ρ+2 +
ε̃

2ρ

]
= ε̃ for any ε ∈ (0, ε0].

Hence, (Iε)ε∈(0,ε0] is uniformly integrable. �

Appendix B: Quantitative analysis of C1-curves
Lemma B.1 (Injective C1-curves are bi-Lipschitz) For any curve γ ∈ C1

ia(R/LZ,R3) there
is a constant cγ > 0 such that

|t – s|R/LZ ≤ cγ

∣
∣γ (t) – γ (s)

∣
∣ for any t, s ∈R. (75)

Proof Using the Taylor expansion

γ (s + h) – γ (s) =
∫ s+h

s
γ ′(τ ) dτ = γ ′(s)h +

∫ s+h

s

(
γ ′(τ ) – γ ′(s)

)
dτ (76)
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we choose h0 = h0(γ ) ∈ (0, L
2 ] such that ωγ ′ (h0) ≤ 1

2 to infer for all s ∈ R

∣∣γ (s + h) – γ (s)
∣∣ ≥ (

1 – ωγ ′ (h0)
)|h| ≥ 1

2
|h| =

1
2
|h|R/LZ for any |h| ≤ h0. (77)

On the other hand, since γ is injective, we find a constant δ0 = δ0(γ ) > 0 such that

∣∣γ (s + h) – γ (s)
∣∣ ≥ δ0 ≥ 2δ0

L
|h| =

2δ0

L
|h|R/LZ for any s ∈R, h0 ≤ |h| ≤ L

2
, (78)

which implies (75) for cγ := max{2, L
2δ0

}. �

Lemma B.2 Let γ ∈ C1
ia(R/LZ,R3) and h ∈ (0, L

2 ] such that ωγ ′ (h) < 1 and h ≤ L
2 . Then, for

every s ∈R,

1 – ωγ ′ (h) ≤ 〈γ (s + h) – γ (s),γ ′(s)〉
|γ (s + h) – γ (s)| ≤ 1, (79)

1 – ωγ ′ (h) ≤ 〈γ (s + h) – γ (s),γ ′(s + h)〉
|γ (s + h) – γ (s)| ≤ 1. (80)

Proof Since 0 < h ≤ L
2 we have |s + h – s|R/LZ = h; see (13). We use the Taylor expansion

(76) to estimate

〈
γ (s + h) – γ (s),γ ′(s)

〉 ≥ h
[
1 – sup

τ∈[s,s+h]

∣∣γ ′(τ ) – γ ′(s)
∣∣
]

≥ h
[
1 – ωγ ′ (h)

]
(81)

and analogously

〈
γ (s + h) – γ (s),γ ′(s + h)

〉 ≥ h
[
1 – ωγ ′ (h)

]
. (82)

Using the above estimate for the inner product and the Lipschitz estimate |γ (s+h)–γ (s)| ≤
h we can deduce

〈γ (s + h) – γ (s),γ ′(s)〉
|γ (s + h) – γ (s)|

(81)≥ h(1 – ωγ ′ (h))
|γ (s + h) – γ (s)| ≥ h(1 – ωγ ′ (h))

h
= 1 – ωγ ′ (h).

Applying the Cauchy–Schwarz inequality yields the right part of inequality (79). Thus,
statement (79) is shown. In the same manner we can conclude the statement (80) with the
Cauchy–Schwarz inequality and estimate (82). �

Lemma B.3 Let γ ∈ C1([a, b],R3) satisfy |γ ′| ≥ vγ > 0 and L (γ ) > 0 and let � ∈
C1([0,L (γ )],R3) be the arclength parametrization. Suppose that β ∈ C1([a, b],R3) has
equal length, i.e. L (γ ) = L (β), and satisfies

‖γ – β‖C1([a,b],R3) < ε ≤ vγ

2
. (83)

Then, β possesses an arclength parametrization B ∈ C1([0,L (γ )],R3) with

‖� – B‖C1([0,L (γ )],R3) ≤ 2
vγ

ωγ ′
(

(b – a)ε
vγ

)
+ ωγ

(
(b – a)ε

vγ

)
+ ε

(
1 +

2
vγ

)
, (84)
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where ωγ denotes the modulus of continuity of γ and ωγ ′ denotes the modulus of continuity
of the tangent γ ′ of γ .

Proof Without loss of generality, we can assume �(s) = γ (t(s)) for s ∈ [0,L (γ )], where
t : [0,L (γ )] → [a, b] is the inverse function of the arclength function s(t) :=

∫ t
a |γ ′(u)|du

for t ∈ [a, b]. Furthermore, the conditions |γ ′| ≥ vγ and (83) imply |β ′(t)| ≥ vγ

2 > 0 for
all t ∈ [a, b]. Hence, the arclength function of β , σ (t) :=

∫ t
a |β ′(u)|du is therefore also in-

vertible. Let τ : [0,L (γ )] → [a, b] be the inverse function of σ and define the arclength
parametrization of β as B(s) := β(τ (s)) for s ∈ [0,L (γ )]. Now, fix an s ∈ [0,L (γ )]. Then,
there exist unique t, τ ∈ [a, b] such that s = s(t) = σ (τ ). This leads to

0 = σ (τ ) – s(t) =
∫ τ

a

(∣∣β ′(u)
∣
∣ –

∣
∣γ ′(u)

∣
∣)du –

∫ t

τ

∣
∣γ ′(u)

∣
∣du. (85)

Thus, we can estimate

vγ |t – τ | ≤
∣
∣∣
∣

∫ t

τ

∣∣γ ′(u)
∣∣du

∣
∣∣
∣

(85)=
∣
∣∣
∣

∫ τ

a

(∣∣β ′(u)
∣∣ –

∣∣γ ′(u)
∣∣)du

∣
∣∣
∣

(83)≤ ε(b – a). (86)

Now, we can use (83) and (86) to estimate the distance between � and B by

∣
∣�(s) – B(s)

∣
∣ =

∣
∣γ (t) – β(τ )

∣
∣ ≤ ∣

∣γ (t) – γ (τ )
∣
∣ +

∣
∣γ (τ ) – β(τ )

∣
∣

(83)≤ ωγ

(|t – τ |) + ε
(86)≤ ωγ

(
(b – a)ε

vγ

)
+ ε. (87)

With τ ′(s) = 1
σ ′(τ (s)) = 1

|β ′(τ (s))| we obtain B′(s) = β ′(τ (s))τ ′(s) = β ′(τ (s))
|β ′(τ (s))| and analogously

�′(s) = γ ′(t(s))
|γ ′(t(s))| . This leads to

∣∣�′(s) – B′(s)
∣∣

=
∣∣
∣∣

γ ′(t)
|γ ′(t)| –

β ′(τ )
|β ′(τ )|

∣∣
∣∣

≤ |γ ′(t) – γ ′(τ )|
|γ ′(t)| +

∣∣γ ′(τ )
∣∣
∣
∣∣
∣

1
|γ ′(t)| –

1
|γ ′(τ )|

∣
∣∣
∣

+
|γ ′(τ ) – β ′(τ )|

|γ ′(τ )| +
∣∣β ′(τ )

∣∣
∣
∣∣
∣

1
|γ ′(τ )| –

1
|β ′(τ )|

∣
∣∣
∣

≤ 1
vγ

ωγ ′
(|t – τ |) +

1
vγ

ωγ ′
(|t – τ |) +

ε

vγ

+
ε

vγ

(86)≤ 2
vγ

(
ωγ ′

(
(b – a)ε

vγ

)
+ ε

)
. (88)

With (87) and (88), we deduce (84). �
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