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1 Introduction
The ropelength! of a closed arclength parametrized curve y : R/LZ — R? is defined as
the quotient of its length and thickness,

_ZLy)_ L
RW= 3071 = 21 @

Here, for variational considerations, the thickness A[y] is most conveniently expressed
following Gonzalez and Maddocks [15]—without any regularity assumptions on the curve
y—as

Aly]:= S;';tf#sR(V(S)’V(t)’y(f))’ (2)

where R(x, y,z) denotes the circumcircle radius of the three points x,y,z € R3. Motivated
by numerous applications in the natural sciences, ropelength is used in numerical com-

putations (see [2, 10, 11, 20] and the references therein) to mathematically model long

I'This name is coined after the mathematical question, how long a thick rope has to be in order to tie it into a knot.
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and slender objects such as strings or macromolecules that do not self-intersect. In fact, it
was proved rigorously in [9, 16] that a curve of finite ropelength is embedded and of class
CVY(R/LZ,R?), which means that its curvature exists and is bounded a.e. on R/LZ. More-
over, a curve y with positive thickness A[y] > 0 is surrounded by an embedded tube with
radius equal to A[y] as shown in [16, Lemma 3], which justifies the use of the non-smooth
quantity A[-] as a steric excluded volume constraint.

The minimization over all triples of curve points to evaluate thickness in (2) is costly,
which leads to the idea to replace minimization by integration; see [15, p. 4773]. One such

integral energy is the tangent-point energy

1
TP = — dsdg, >2, 3
¥ //(R/mz oo o) S 1= ®

where the circumcircle radius is now replaced by the tangent-point radius

_ ly(s) -y @®)*
2dist(y (s) + Ry'(s), y (£))

T (v (), v (0)) (4)

i.e., the radius of the unique circle through the points y(s) and y(¢) that is in addition tan-
gent to the curve y at y(s). Also, this energy implies self-avoidance and has regularizing
properties. It was shown in [33] that if TP,(y) is finite for some g > 2, then y is embed-
ded and of class Cl'l_% (R/LZ,R3). Later, Blatt [5] improved this regularity to the optimal
fractional Sobolev? regularity W 29(R/LZ,R3), which actually characterizes curves of
finite TP,-energy. The knowledge of the exact energy space was then used to establish
continuous differentiability of the tangent-point energy [7, Remark 3.1], [34], and to find
TP,-critical knots by means of Palais’s symmetric criticality principle [14]. Very recently,
long-time existence for a suitably regularized gradient flow for TP, was shown via a min-
imizing movement scheme [22].

But the tangent-point energy was also used in numerical simulations. Bartels et al. added
a desingularized variant of the TP,-energy in [3, 4] as a self-avoidance term to the bending
energy to find elastic knots. The impressive simulations of Crane et al. in [36] use the
TP,-energy as well to avoid self-intersections, a higher-dimensional tangent-point energy
allows for computations on self-avoiding surfaces; see [35].

In the present paper we address the mathematical question of variational convergence
of suitably discretized tangent-point energies towards the continuous TP, -energy, as well
as towards ropelength. To account for the tangential information encoded in the tangent-
point radius in (3) on the discrete level we use biarcs, i.e., pairs of circular arcs, which on

the one hand, can interpolate point-tangent data
(v(s),v'(s)) eR* x S* fori=1,...,n (5)

of a given arclength parametrized curve y € C}(R/LZ,R3). Every biarc curve 8 consisting

of  consecutive biarcs is therefore a C1"!-interpolant of the curve y. On the other hand,

2For the definition see Appendix A; a condensed selection of pertinent results regarding periodic fractional Sobolev spaces
can be found, e.g., in [21, Appendix A].
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every biarc curve produces point-tangent data
(gnt;) eR3 x S* fori=1,...,n, (6)

on its own, namely the points ¢; and unit-tangents ¢; at every junction of two consecutive
biarcs. In principle, we believe that one could carry out the analysis with other splines, but
biarcs are well adapted to discretizing geometric curvature energies such as the tangent-
point energy or ropelength. The respective integrands are defined by circles, and relevant
geometric quantities like arclength, curvature, torsion, or the global radius of curvature
can be evaluated accurately pointwise everywhere on biarc curves, thus providing rigorous
upper bounds for the ropelength of ideal knots, see [11, p. 10], [31, p. 81], [17]. In order to
avoid degeneracies we restrict ourselves to those biarc curves 8 whose biarcs have lengths

A; that are controlled in terms of the curve’s length .#(y) by means of the inequality

L) _, . 220)
m ~ T onm

fori=0,...,n—1. (7)

Let B, be the class of biarc curves B satisfying (7). Accordingly, we define in a parameter-
invariant fashion the discrete tangent-point energy £ for n € N and g € [2,00) on closed
C'-curves y as

-1 w1 ((2distllg).q0) \ 7 .
S Yo () iy ify € By

00 otherwise,

ENy) = ®

with the straight lines /(g;) := q; + Rt; for i = 0,...,n — 1. Note that both TP, and 5; are
invariant under reparametrization of the curves, and they have the same scaling behavior,

TP,(dy) = dz‘qTPq(y) and Eg(dy) = dz_qc‘f;(y) for any d > 0. 9)

We restrict ourselves to injective C*-curves that are parametrized by arclength, denoted
as the subset C}, to state our main results.

Theorem 1.1 (I'-convergence to tangent-point energy) For g > 2 and L > 0 the dis-
crete tangent-point energies 5;’ I"-converge to the tangent-point energy TP, on the space
CL(R/LZ,R®) with respect to the || - || c1-norm as n — o, i.e.,

&y jr; TP, on (CL(R/LZ,R?),| - |Ic1). (10

As an immediate consequence we infer the convergence of almost minimizers in a given
knot class K of the discrete energies £ to a minimizer of the continuous tangent-point
energy TP, in the same knot class K.

Corollary 1.2 (Convergence of discrete almost minimizers) Let g > 2, L >0, and K be a
tame knot class and b, € C* := CL(R/LZ,R?) N K with

iél*fé’(;’—é’;(bn) —0 and ||b,-y|ct >0 asn— oo.
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Then, y is a minimizer of TP, in C* and lim,,_, o Sg(b,,) = TP,(y). Furthermore, it holds
that y € W> 0 (R/LZ, R?).

Moreover, the discrete tangent-point energies can also be used to approximate the non-
smooth ropelength functional R in the sense of I"-convergence.

e r
Theorem 1.3 (I'-convergence to ropelength) It holds that LTZ(&Z’)% — R om
(Ci (R/LZ,R3), || - [|ca).

Also, here we can state the convergence of almost minimizers to ropelength-minimizing
curves in a prescribed knot class, which could be of computational relevance for the min-
imization of ropelength.

Corollary 1.4 (Discrete almost minimizers approximate ropelength minimizers) Let
be a tame knot class and b,y € C** := Cila’l(R/LZ, R3) N K with

icrgc‘:,’f—gf(b,,) —0 and ||b,-y|ca—>0 asn— oo.

n-2

Then, y is a minimizer of R in C** and lim,,_, .o L= (5[,‘)% (by) = R(y).

To the best of our knowledge, the only known contributions on variational convergence
of discrete energies to continuous knot energies are the I'-convergence results of Scholtes
and Blatt. In [26] Scholtes proved the I"-convergence of a discrete polygonal variant of the
Mobius energy to the classic Mobius energy introduced by O’Hara [23]. This result was
strengthened later by Blatt [6]. In [27, 28] Scholtes proved the I'-convergence of polygonal
versions of ropelength and of integral Menger curvature to ropelength and to continuous
integral Menger curvature, respectively. It remains open at this point if stronger types of
variational convergence such as Hausdorff convergence of sets of almost minimizers can
be shown for the nonlocal knot energies treated here, as was, e.g., established in [29] for the
classic bending energy under clamped boundary conditions. It would be also interesting
to set up a numerical scheme for the discretized tangent-point energies £/ to numerically
approximate ropelength minimizers, in comparison to the simulated annealing computa-
tions in [11, 31], or to compute discrete (almost) minimizers of the tangent-point energy.
The almost linear energy convergence rate established in Theorem 3.1 in Sect. 3 is iden-
tical with the one in [26, Proposition 3.1] for Scholtes’ polygonal Mébius energy, which
exceeds the 1”1 -convergence rate for the minimal distance approximation of the Mobius
energy by Rawdon and Simon [24, Theorem 1].

The present paper is structured as follows. In Sect. 2 we provide the necessary back-
ground on biarcs—mainly following Smutny’s work [31]. Section 3 is devoted to the con-
vergence of the discretized energies & including explicit convergence rates; see Theo-
rem 3.1. In Sect. 4 we treat I"-convergence towards the continuous tangent-point ener-
gies, as well as convergence of discrete almost minimizers, to prove Theorem 1.1 and
Corollary 1.2. Finally, in Sect. 5 we prove I'-convergence to the ropelength functional,
Theorem 1.3 and convergence of discrete almost minimizers to ropelength minimizers,
Corollary 1.4. In Appendix A we establish the convergence of rescaled and reparametrized
convolutions in fractional Sobolev spaces. Appendix B contains some quantitative analysis
of general C'-curves.
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Figure 1 Left and middle: Examples of biarcs, t,, is the tangent at the common matching point m. Right: The
circles Co, Cy, C4, and C_ of Definition 2.2. Images taken from [31, Figs. 4.1 and 4.3] by courtesy of Jana Smutny

2 Biarcs and Biarc curves

The discrete tangent-point energy defined in (8) of the introduction is defined on biarc
curves, which are space curves assembled from biarcs, i.e., from pairs of circular arcs.
In this section we first present the basic definitions and a general existence result due
to Smutny [31, Chap. 4], before specializing to the balanced proper biarc interpolations

needed in our convergence proofs later.

Definition 2.1 (Point-tangent pairs and biarcs) Let 7 := R® x S? be the set of point-
tangent data [q,t], where S? is the unit sphere in R3.

(i) A point-tangent pair is a pair of tuples of the form ([go, %], [q1,£1]) € T x T with
90 7 9.

(ii) A biarc (a,a) is a pair of circular arcs in R? that are continuously joined with con-
tinuous tangents and that interpolate a point-tangent pair ([qo, t], [41,%1]) € T X T. The
common end point m of the two circular arcs a and a is called the matching point. The
interpolation is meant with orientation, such that ¢, points to the interior of the arc  and

—t; points to the interior of the arc g; see Fig. 1.

For two points go,q1 € R3 we set d:= q; — o and e := Igi:gg\ = %, and define

R(e) :=2e®e—1Id = 2ee’ —1d, (11)

which is a symmetric, proper rotation matrix representing the reflection at the unit vector

e. Moreover, for a point-tangent pair ([qo, o], [q1,21]) € T x T we set
t5:=R(e)ty and t]:=R(e)t;. (12)

Definition 2.2 Let ([qo, to], [q1,t1]) € T x T be a point-tangent pair.

(i) Let Cp be the circle through go and ¢; with tangent £, at go and let C; be the circle
through both points with tangent ¢; at g;. If £, + £ # 0, we denote the circle through gy and
q1 with tangent ¢, + £ at go by C,, if £, — £f # 0, we denote the circle through both points
with tangent £, — ] at go by C_; see Fig. 1 on the right.

(ii) A point-tangent pair ([qo, %], [q1,t1]) € T x T is called cocircular, if Cy = C; as point
sets. A cocircular point-tangent pair is classified as compatible, if the orientations of the

two circles induced by the tangents agree, and incompatible otherwise.
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Remark 2.3 For a point-tangent pair ([qo, to], [q1,t1]) € T x T, the compatible cocircular
case is equivalent to £y — ¢] = 0. In this case, the circle C_ is not defined. The incompatible

cocircular case is equivalent to ¢ + ¢ = 0, thus the circle C, is not defined.

The following central existence result of Smutny not only states that interpolating biarcs
always exist, but it also characterizes geometrically the possible locations of the corre-
sponding matching points depending on the type of the point-tangent pair. For the pre-

cise statement we denote for an arbitrary circle C through go and ¢; the punctured set
C":=C\{q0,q1}.

Proposition 2.4 ([31, Proposition 4.7]) For a given point-tangent pair ([qo, o], [41,t1]) €
T x T, we denote by =, C R? the set of matching points of all possible biarcs interpolating
the point-tangent pair. Then:
(1) If ([q0, o), lq1, t1]) is not cocircular, then X, =C/,.
(i1) If ([0, tol, [q1, t1]) is cocircular, we distinguish between two cases:
(a) Ifthe point-tangent pair is compatible, then X, = C, = Cy = Cy.
(b) Ifthe point-tangent pair is incompatible, then X, is the sphere passing through
qo and q, perpendicular to the circle C_ without the points qo and q;.
(i) X, is a straight line passing through qo and q; without the two points if and only if
to = t1 and (ty,e) #O0.
(iv) X, is a plane through qo and g1 without the two points if and only if ty = t; and
(to,e) =0.

A particularly powerful interpolation is possible if the location of the matching point
m € X, of the biarc is roughly “in between” the points gy and g;. The following definition

states this precisely for the relevant cases (i), (ii)(a), and (iii) of Proposition 2.4.

Definition 2.5 (Desired matching point location X, and proper biarcs) (i) Let ([qo, to],
[q1,t1]) € T x T be a point-tangent pair that is not incompatible cocircular. Then, we
denote by X,, C X, the subarc of ¥, from g, to g; with the orientation induced by the
tangent o + ¢ (see Fig. 2).

(ii) A point-tangent pair ([qo, to], [q1,t1]) € T x T is called proper if (g1 — qo,to) > 0 and
(g1 —qo,11) > 0.

(iii) A biarc is called proper if it interpolates a proper point-tangent pair with a matching
pointme X,,.

(iv) Let y € CL(R/LZ,R?). We call a biarc y -interpolating and balanced if, for given h > 0
and s € R, it interpolates a point-tangent pair ([y(s), y'(s)], [y (s + /), y'(s + h)]), such that
the matching point m, € Zﬁﬂr satisfies |my, — y (s)| = |y (s + h) — my|, where we indicate the
dependence of matching point and location by the index /.

Item (iv) of Definition 2.5 requires that the matching point m, bisects the segment con-

necting y (s) and y (s + &). That this is indeed possible for sufficiently small / is the content

of the following result. Note that here and throughout the paper we use the periodic norm

|s — t|g/Lz := min|s + Lk — t| (13)
keZ
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Figure 2 The set X, (boldface) contained in 3. Left: not cocircular and ty # ty. Right: to = t; and (to,e) #0

to measure distances in the periodic domain R/LZ. Moreover, for a continuous function f
on [0, L] we denote by wy : [0, L] — [0, 00) its modulus of continuity, which satisfies wy(0) =
0 and that can be chosen to be concave and non-decreasing.

Lemma 2.6 (Existence of y-interpolating proper biarc) Let y € CL(R/LZ,R3?) and h €
(o, %] such that w,(h) < % Then, there exists a proper y -interpolating balanced biarc in-
terpolating the point-tangent pair ([y(s), y'(s)], [y (s + h), y'(s + h)]) for all s € R.

Proof First, note that (79) and (80) of Lemma B.2 together with w, (/) < % and the injec-
tivity of y imply that

(;/(s), y(s+h) - y(s)) >0 and (y’(s +h),y(s+h) - y(s)) > 0. (14)

Thus, the point-tangent pair is proper according to Definition 2.5(ii).

If the point-tangent pair is not incompatible cocircular and y'(s) # y’(s + k) holds, it
follows from Proposition 2.4(i) and (ii) (a) that X lf is the circle C,. Hence, E’L is a circular
arc between y(s) and y (s + /). Thus, the matching point m;, can be chosen in Zi‘ , such
that |my, — y(s)| = |y (s + k) — my,| holds.

If y'(s) = y'(s + h) holds, Ef is a straight line as a consequence of Proposition 2.4(iii),
since we obtain (y’(s),e;) > 0 by dividing (14) through |y (s + /) — y(s)|, thus excluding
case (iv) of Proposition 2.4. Moreover, with y’'(s) = y'(s + &) we infer for the unit vector
en:=y(s+h)—y(s)/|y(s+h)—y(s)| by means of (11) and (12)

y'(s)+ (v (s + )" "EP y(5) 4 2en ® en)y (s + ) — v/ (s + h)

=2(y'(s), ex)en-

Thus, the vector y'(s) + (y'(s + /))* is a positive multiple of the vector e. In particular,
y'(s) + (y'(s + h))* has the same orientation as ej. According to Definition 2.5, E’L is in
this case the line segment between y (s) and y (s + /). Therefore, the matching point m, in
Ef+ can be also chosen such that |my, — Y (s)| = |y (s + k) — my|.

Hence, we have completed the proof once we have shown that the smallness condition
on /1 excludes case (ii) (b) of Proposition 2.4. Indeed, suppose that the point-tangent pair
was incompatible cocircular. Then,

y'()+ (v (s + ) =0, (15)
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and using (12) we can write
(V' (s+h) =26, @eny'(s+h)—y'(s+h)=2en v (s + h)en— y'(s + h).

This representation inserted into (15) leads to y'(s+ /) —y’(s) = 2{ex, y'(s+ h))e;, and hence,

(y(s+h)—y(s),y'(s+h))

4 / /
y'(s+h) —y'(s)] =2|len y'(s + h))| len| =2 (16)
| [ =2lfe ”J; [y (s+/) = y(9)
By virtue of inequality (80) in Lemma B.2 we conclude that
®0) _(y(s+h)—y(s)y'(s+h) ae /
2(1-wy(h) <2 = [V (s+h)-y'(9)] <, (h),
(1= ) ly(s+h) =yl | =
which is equivalent to w, (k) > %, contradicting our assumption on /. d

Glueing together finitely many interpolating biarcs in a C!-fashion produces biarc
curves precisely defined as follows.

Definition 2.7 ([31, cf. Definition 6.1]) (i) A closed biarc curve 8 :J — R? isa closed curve
assembled from biarcs in a C*-fashion where the biarcs interpolate a sequence ([g;, £;])ier
of point-tangent tuples. J is a compact interval, I C N bounded, and the first and last point-
tangent tuple coincide. The set of such biarc curves is denoted by B, where 7 is the number
of indices contained in /.

(ii) We call a closed biarc curve proper if every biarc of the curve is proper.

(iii) A biarc curve is y -interpolating and balanced for a given curve y € Cila(R/LZ, R3)if
every biarc of the curve is y-interpolating and balanced.

Note that the set 5, of closed biarc curves satisfying (7) introduced in the introduction
is a strict subset of B,

Under suitable control of partitions of the periodic domain we can prove the existence
of proper, y -interpolating, and balanced biarc curves in Lemma 2.9 below.

Definition 2.8 Let cj,c; > 0. A sequence (M,,),en of partitions of R/LZ with M,, :=
{8100+ +» S} and 0 =8,,0 < Sp1 < -+ < Sy < Sy = L is called (¢; — ¢p)-distributed if for

h,:= max 1 |sn,k+1 _Sn,k| and /= glin 1 |Sn,k+1 _Sn,k|
=0,..., n— ZUseens -
one has
C1 =~ Co L
— <h,<h,<— and hnii for any n e N. 17)
n n

Lemma 2.9 Let y € CL(R/LZ,R?) c1,¢2 > 0 and (My)uen a sequence of (c1 — c2)-
distributed partitions. Then, there is some N € N such that for all n > N there exists a
proper y-interpolating and balanced biarc curve B, interpolating the point-tangent pairs

(([V(Sn,i)v V/(Sn,i)} [V(Sn,i+l)) y/(sn,i+l)]))i=0w,n 1°
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Proof By means of the defining inequality (17) for the (¢; — c;)-distributed sequence
(M) neny we have |8, 111 — Spilrizz = |Spis1 — Snil forallme Nand i=0,...,n -1 (see (13)),
and we can choose N € N so large that the inequalities w,/ (%) < % and 2 < % hold. Then,
in particular,

17) c 1
wy/(|sn,i+l _Sn,i|) < a)y/(hn) < w,y’ (ﬁ) < 5 for any n > N.
As a consequence of Lemma 2.6, there exists for all # > N and i = 0,...,n — 1 a proper
y-interpolating and balanced biarc interpolating the point-tangent pair ([y (s,,:), ¥'(Su,)],
[y (snis1), ¥ (Snis1)]). Now, we assemble for i = 0, ..., n— 1 these n biarcs as in Definition 2.7
and obtain a biarc curve with the required properties. d

From now on, whenever we write 8, for a given curve y € Cila(]R/LZ, R3), we mean a
proper y -interpolating and balanced biarc curve obtained in Lemma 2.9. By A,,; we denote
the length of the ith biarc of the curve B,. In general, the elements §, do not have the same
length as the interpolated curve y. However, Smutny showed in [31] that under certain
assumptions the sequence of the lengths ((Z(8,)).en of B, converges towards the length
Z(y) of y. The following lemma is an essential ingredient for that proof.

Lemma 2.10 Let y € Cila’l(R/LZ, R3) and (B,)nen be a sequence of proper y -interpolating
and balanced biarc curves as in Lemma 2.9. Then,

Ami = |Sniv1 — Snil = O(Isn,m —sn,ila’) foralli=1,...,n-1, asn— oo,
where the constant on the right-hand side only depends on the Lipschitz constant of y'.

Proof We identify the periodic domain R/LZ with [0,L] and check that (c; — ¢2)-
distributed partitions of R/LZ satisfy Smutny’s requirements in [31, Notation 6.2, 6.3]
apart from the nestedness of the mesh. The latter, however, is not necessary in her proof;
whence we can apply [31, Lemma 6.8] to conclude the statement, where the dependence
of the constant follows from the proof of [31, Lemma 6.8]. d

Now, we show that the lengths .Z(8,) of proper y-interpolating and balanced biarc
curves S, converge towards the length Z(y) of y.

Theorem 2.11 Lety € Cila’1 (R/LZ,R3) and (By)nen be a sequence of proper y -interpolating
“‘?{’;f -1l —> 0asn— oo.

and balanced biarc curves. Then, |

Proof This follows directly from [31, Corollary 6.9]; under the same preconditions as we
verified in the proof of Lemma 2.10. d

In order to address convergence of biarc curves 8, to the interpolated curve y we need to
reparametrize B, for all n € N such that those reparametrizations are defined on R/LZ like
y is. An explicit reparametrization function that maps the arclength parameters of y at
the supporting points of the mesh to the arclength parameters of 8, is constructed in [31,
Appendix A]. With that, we can show the C!-convergence of a reparametrized sequence
of biarc curves to the interpolated curve y.
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Theorem 2.12 Let y € Cﬁa’l(R/LZ, R3), and let (B.)nen be a sequence of proper y-
interpolating and balanced biarc curves parametrized by arclength. Then, for B, := B, 0 ¢,
with ¢, as constructed in [31, Appendix A] one has ||y — B,||c1 — 0 as n — oo.

Proof We want to apply [31, Theorem 6.13], where Smutny showed C!-convergence un-
der certain assumptions. Additionally to the hypotheses checked before in the proof of
Lemma 2.10, we need to show that the so-called biarc parameters A, ; of the ith biarc of
the biarc curve 8, representable as (cf. [31, Lemma 4.13])

Y (0) ¥ (1) = ¥ () i = ¥ (50,1

A= )
Y (i) i = ¥ Su) Y i) — ¥ (50,012

where the m,,; are the matching points of the ith biarc, are uniformly bounded from below
and from above. In other words, we have to prove that there exist two constants A in, Amax
such that

0<Amin <Aui<Amx<l foranyneN,i=0,...,n-1.
Using the fact that the biarc curves are balanced, i.e., |71,,; — y (Su,i)| = |, — ¥ (Sn,i41) |, and
that y is parametrized by arclength, we can then estimate by means of (79) in Lemma B.2

in the appendix

(y/(sn,i)! y(sn,H-I) - y(sn,i)>|mn,i - V(Sn,z')|2

Api>
" |mn,i - y(sn,i)lly(sn,iH) - V(Sn,i)|2
_ <y/(sn,i)’ V(Sn,i+1) - y(sn,i)) |mn,i - y(sn,i)l
|V(Sn,i+1) - V(Sn,i)| |V(sn,i+1) - V(sn,i)|
(V' (51,0, ¥ (Smiv1) = v (8,0)) [, =y (Sn)|
>
N [V (Sniv1) = ¥ (Sui)] 10 = ¥ (Swic1) | + [P0 = ¥ (S,
_1
=2
(79 1 1
= 5 (1 - wy’(|sn,i+l - Sn,i')) = 5(1 - a)y’(hn))'

Hence, we can choose # sufficiently large such that %(1 — wy(hy)) = 7 = Apin. On the

other hand, by [31, Lemma 5.6] we have

1
4

Ayi= 1—1_\,,,,»+O(hflyi) foranyi=0,...,n—-1, as n — 00,

where the constant hidden in the O(hfl,i)—term only depends on the curve y and where

A, is given by

Ao (¥ (51,i61), ¥ (Sic1) = ¥ (Su,)) i = ¥ (S1) 1
n,i

Y i) ¥ Smin1) = M)V (Spie1) = ¥ () 12

As for A, we can estimate A,; > 1(1 - w,/(h,)), which yields

An,i <1- %(1 - a)y/(hn)) + O(hlz’l) = %(1 + a))’/(h”)) + O(h%l) asn— 0.

Page 10 of 33
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Hence, again choosing # sufficiently large, we obtain %(1 +wy(hy) + O(h2) < % =: Apax a8
the necessary uniform bound on the biarc parameters. Therefore, [31, Theorem 6.13] is
applicable and we obtain that B, — y in C! as n — oo. g

3 Discrete energies on interpolating biarc curves that converge to the
continuous TP, energy

For the central convergence result of this section, Theorem 3.1, we work with discrete

tangent-point energies 67;‘ with the larger effective domain B, (see Definition 2.7(i)), in-

stead of with £ 7 introduced in (8) of the introduction, whose effective domain B, is defined

by the constraint (7). In other words,

2dist(l(gj).9:) \ 4 . >
S Yo () iy ify € By

00 otherwise.

ENy) = (18)

These discrete energies evaluated on a sequence (8,),en of proper y-interpolating and
balanced biarc curves converge with a certain rate to the continuous TP,-energy of y if
y is sufficiently smooth. Some of the ideas in the proof of the theorem are based on [26,
Proposition 3.1] by Scholtes.

Theorem 3.1 Letci,cy >0andy € Cila’l(]R/LZ, R3), and (M) new With M, = {805+, Snn)
be a (c1 — cy)-distributed sequence of partitions of R/LZ (see Definition 2.8). Then, there is
a constant C > 0 depending on q, c1,cy, and 'y, such that for a sequence (B8,),cn of proper
y -interpolating and balanced biarc curves interpolating the point-tangent data

(([V(Sn,i)r )/'(Sn,i)], [)/(Sn,m), y/(Sﬂ,l'+1):|))L':0 ,,,, -1
with 8, € anor all n e N, there is an index N € N with

Cln(n)

’TPq(V)_é;(ﬂn” < foranyn>N.

(

Note that in particular, the convergence rate implies the convergence rate —— for

any given € > 0.
Proof of Theorem 3.1 SetY = 4% and define for i,j € {0, ..., n} the periodic index distance
|i = jl 2= min{|i — jl,n - |i - jl}.

We then decompose

-5 ¥ [ [ (OO

i=0 jli~jla< 7 5n

—Z 5 (  distly (1), V(Sm”) Aty (19)

2
i=0 j,0<|i—jln<Y |V S”l) - (Sn,1)|

n-1
+21 Z Z (Ai,j + Bi,j + Cis/)’

i=0 J,i=j|n>"
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with

_ / Snjrl / Snivt dist(I(y (2)), ¥ (s))? — dist({(y (s,,)), V(sm))q d&r

ly(s) =y (©)1*
Smiel - Smivd £ dist(U(y (s1), ¥ ($,))T  dist(U(y (5,)), ¥ (5,))7
”_/ / <1s v () v (s ist((y (su;)), ¥ (s )dsdt,

|}/ S) ( )|2q |V(Sn,i) (Snj)lzq

dist(Z(y (s)), ¥ (sn,1))?
ly (Sn,z') - )/(Sn,j) |24

i = [|Sn,i+1 — Sl 1Snjs1 — Snjl — )»n,i)hn,j]-

Step 1: Since y is an injective C!-curve it is bi-Lipschitz (see Lemma B.1), i.e., there exists
a constant ¢, € (0,00) such that

|t—s|R/LZ§c,,}y(t)—y(s)‘ for any t,s e R. (20)

Step 2: Now, we give an upper bound for 2% for all 5, € R with s # £. Without
loss of generality we assume ¢ < s. Then, there exists a number k = k(s,t) € Z satisfying
|t — s|lgz = |kL + t — s|. We use the periodicity of y and K := ||y”||1= < 00 (since y €

CY(R/LZ,R3) ~ WL*(R/LZ,R?)) to estimate

dist(I(y (), 7 (s))
= inf |y (s) -y (O) — uy ' (2)|
nekR

< |y(s) —y(kL+18) = (s— (kL +£))y (kL + t)|

5/ / |)/”(V)|dvduSK(kLHt—s)2 = K|t - |32 (21)
kL+t J kL+t

where we assumed, without loss of generality, that kL + ¢ < s for the integrals. Therefore,
by means of (20)

Define C; := (ZCJZ/I< )2¢2(27 + 1)L. Applying the calculations above we can estimate the first
term on the right-hand side of (19) from above by

n-1
(22)
2 q § : § :
=< (2Cy1<) |Sn,i+1 - Sn,i| |Sn,j+1 - Sn,j|

i=0 jli~jln <"

2C I<q 2Z|Snz+l_snl| Z 1

Jili=jla=Y
———
<2Y+1

n-1

< (2¢2K)" 2(21r+1)2|sm+1—sm|——. (23)

i=0

=L

Page 12 of 33
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Step 3: By Lemma 2.10 there exists a constant cx only depending on K such that

)Ln,i

|sn,i+1 - Sn,i|

2
- 1‘ < cxlSniv1 = Su,il

forallm >N andi=0,...,n— 1, where N depends on the given sequence of biarc curves.
Using the fact that [s;,,;11 — S| < % yields

N2
Ani < CK(5> Snis1 —Suil form>Nandi=0,...,n-1. (24)

—_—
=dyg

Without loss of generalization we can assume that dix > 1. Define C, := d%C;. Thus,

”2_1: Z <2 diSt(l(y(SnJ))r V(Sn,i))>q)tn‘i}\n,i

) — )12
i=0 j,0<|i—jln=" |y(sn,z) )/(Sn,])|

n-1 .
(24) dist(/(y (s,)), ¥ (Su,)) )"
< d2 (2 / . |Sn,z'+ - Sn,i| |sn,'+ - Sn,'|
ODEDD 1 (50) = ¥ (5 2 ! el

i=0 j,0<li~jla<T
22) ! 23 C
2 2 1-\4 2

S drEK)TY T D Usuin = Swillsuji = sugl < — (25)
i=0 j0<licflu < "

which deals with the second term on the right-hand side of (19).
Step 4: We assume from now on that |i —j|,, > Y. The sequence (M,,), is assumed to be
(c1 — ¢p)-distributed, so that in view of (17)

ISnis1 — Skl = |Suks1 — Suilr/rz  foranyme Nand k=0,...,n—1.

For s € [syi,Sn,i41) and £ € [s,,8,71) with i #j we use |s — tlr/zz < IS — Suilrizz + ISni —
SnjlR/LZ + |Snj — tlr/rz to infer the inequality

(17) Cy

< ISni—Sujlr/zz +2— min 8,441 — SuilrizZ
€1 k=0,..,n-1

Zlsni=snjlR/LZ
(%]
<\ 1+2—= |Isni —SnjlriLz-
a
From |i—j|,> 7T = 4% we have in particular
o 1. .
2= < =|i—jly- (26)
C1 2
Then, similarly as before,

|t —s|riLz = |Sni — SnjlrRiLZ — 2, max ISnk+1 = SnklR/LZ
k=0,...,n—
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17)

. . 2¢) .
> li—jlp, min [Syre1 —Spklrizz — —  min [S, 401 — SpklriLz
k=0,..,n-1 C1 k=0,..,n-1

.. 20 .
=\li—jln— min S, k1 — SuklR/LZ
c1 ) k=0,.,n-1

(26) 1 | . | : | | - C1 | |
> —|(l— min S -8 — |Sni— Snj .
2 ] nk:O,m,n 1 nk+1 mkIR/LZ — 2 ) n,i njIR/LZ

In total, we conclude for |i —j|,, > T

C1

Cy
8,i = SujlrRizz < |t = $lr/rz < (1 + 2-) ISn,i = SnjlR/LZ (27)
202 C1

for s € [sp,i, Sn,iv1) and ¢ € [s,,,8,+1), Which we consider also in Steps 5 and 6.
Step 5: In order to estimate A;;, we initially estimate for arbitrary a,b > 0

b d b
/%qux /qxq‘ldx

since the function f : [0,00) — [0, 00),x — x97! is nondecreasing for g > 2. We abbreviate
d(-,-) :=dist({(y(-)), ¥()) and use estimate (28) to find for s € [s,,;, Sp,i+1) and £ € [s,,, Sy 1)

|69 — a?| = = < qlb - a| max{a, b}, (28)

dl(t,s) — AU sy sni)| < q|d(t,s) — d(sp>sni) | (max{d(t,s), d(snssni)})" (29)
| jrsni)| < 4 j»Sni)| (max{ psnd )"

Furthermore, combining (21) with (27) yields

2
(21) (27) Cy
d(t,s) < Klt—slg, < K<1+2Z> IS = Snjl%/125

) (30)
d <K 2 <K(1+422 2
(Sn,jrsn,i) <K|sp,; - Sn,th/Lz = + a |$,i — Sn,j|R/Lz~
Hence,
1 ¢\ 2q-2
qa- -1 -
(max{d(t,s),d(sn,/, sn,i)}) < K1 (1 + 26—) S0, = Snjl Rz (31)
1
Moreover, we estimate again by virtue of (27) now for s:=s,;
(27) Co
|t —Suilrizz < {1+ 2c_ 81, = SnjlIR/LZ)
1
and we use (17) to find for £ € [s,,, 5,+1)
[t = sujlriLz < Jpax [Snie1 — SuklR/LZ
=0,...,n—
(17) ¢y . C
< — min Spre1 = Suklrizz <\ 1+2— )Isui = SujlriL2Z-
C1 k=0,..,n-1 C1
Combining these last two estimates with (27) leads to
max{ |t - s|g/1z, |t = Snilriiz} + |6 = Sujlriez + |t = Spilriz
(32)

()]
<31+ 2c_ [$ni = Snjlrizz fOr s €[Sy Spie1)s £ € [Snjs Snje1)-
1

Page 14 of 33



Lagemann and von der Mosel Advances in Continuous and Discrete Models (2023) 20234 Page 15 0of 33

For arbitrary t € R the mapping P, /(r) : R®* — Ry’(r) defined as
P,ir)(v) = (v, y’(r))y/(r), forveR3 (33)
is the orthogonal projection onto the subspace Ry’(t) since |y’| = 1, and we have
’Py/(f)(v) - V| <|w-v| forallweRy'(r),veR3 (34)
Moreover, we have for any 7,0 € R

d(t,0) =dist(I(y (1)), 7 (0)) = [Py (v (o) =y (1)) = (y(0) - y (1)) |. (35)

Furthermore, we calculate for s € [s,;,5,,,1) and £ € [s,,5,/.1) using the linearity of the
projection
Py (v(8) =y () = Pyris, (¥ (5,) = ¥ (1))
=Py(r(s) = ¥ (1) + Pyroy (¥ (smi) — ¥ (8))
= Py, ) (Y (8) = 7 (5)) = Pty (v (500) = v (£))

D o (1(8) = ¥ (5i)) = Py (1(8) = ¥ 50)
+{y (sni) = ¥ (0, 7' (©) = ¥ (s0)))y (2)
+{y (i) = v (0,7 () (¥ (&) = ¥/ (51y)).- (36)

In conclusion, by (35) and the elementary inequality ||| — |b|| < |a — b|, this yields for the
expression |d(t,s) — d(s,j,$u,:)| (for s € [s,,i,S4,41) and £ € [s,,,5,/.1)) the upper bound

’

1Py (v (5) = ¥ (©) = Pyris, ) (v (i) = ¥ (5) = ((8) = ¥ (su0)) + (v (&) = ¥ (s0))

which in turn by means of (36) and (34) can be bounded from above by

1Py (v/(8) = ¥ (50)) = (v(8) = ¥ (s)) |
+ ’Py’(sn,/)(y(t) - y(sn,j)) - (J/(t) - V(Sn,j)H
+ (v (sus) = ¥ (0, (&) = ¥ (su))y (®)]
+ |<V(Sn,i) - V(t)r J//(Sn,j))()/(f) - V/(Sn,j))}
@ |(y(5) = ¥ (5mi) = (s = $0)Y" @) + | (¥ () = ¥ (8)) = (& = 50,))¥ (517)]|
+ 2|y (sui) =¥ O] |y(sn) = ' (@)
The last summand is bounded by 2Kt — s,,lr/1z|t — Sujlr/izz since K = |ly”|l;~ and 1

are the Lipschitz constants of y’ and y, respectively. The first summand on the right-
hand side of the above equals |fssﬂ , ft” y"(v) dvdu|, whereas the second is bounded by

! fs “ 1y”(v)| dvdy, so that we can summarize the estimate
nj

Sn,j

’d(t, S) - d(sn,j; sn,i) |
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< Klsy; — slrizz max{|s — t|r/z, |t — Spilr/z }
2
+ Kt = 8ujlg/17 + 2Kt = SpilR/L21E = SnjlR/LZ

<2K max |[8,k41 — Sukl
k n—1

,,,,,

x [max{|s - tlr/z, |t = Spilriz} + |t = Sujlrinz + |6 = Suilriz]

.....

(32) Cy
< 6K(1+2—= |Sn,i _Sn,le/LZ max |Sn,k+1 _Sn,k|- (37)
C1 k=0,..,n-1
Inserting (31) and (37) into (29) yields
|d?(,8) — A9(Sj» Sni)|

2g-1
(&) 2g-1
=< 66]1(q <1 + 2C_> 8, = sn,j|Rq/LZ ‘ I(}lax ) [Smk+1 — Skl (38)
1 =0,...,n

In order to obtain an estimate for the denominator of A;; we consider

2 20)

1 2q @D 2! 2 2q
|V(S) - )/(t)| = 7, |t — S|]R/LZ > |81, = Sn,j|R/Lz- (39)
Cy 2C2Cy

3
Setting Cy4 := Z—f6q[(q(1 + 2%)2*1(2?%)” we obtain from (38) and (39)

. . 2g-1
(38,39 ¢ Smjxl (il Sy — Sy j|py 7 MAXk=0,..,n-1 |Snk+1 — Skl
|Aj,j| < —SCAf n,i nJ\R/LZ n n,k+ n dsdr
(CZ) Snj Sp,i

2q
[$1,i = 5n,j|]R/LZ

C1 3 1
< CA( max |8k — Sn,kl) —
(c2) k=0,...n-1 S,i = SnjlRILZ
(17) 1 1 (17) 1 1
= C1CA—3 — - = CA—zf' (40)
n |l_]|n MiNg-o,..,n-1 |Sn,k+1 _Sn,k| n |l_]|n

,,,,,

Step 6: To estimate B;;, we use (28) and twice (27) leading to

|1 (50) =y (su)) | = |y (5) =y O]
= |y s = ¥ )|+ [y =y @)

||y (su) =y (su))|" = 1y (s) v (017

(28)
=< q(|sn,i - Sn,j|?R/LZ + |t - Slﬂqg/Lz) | |V(Sn,i) - V(Sn,j)| - |J/(S) - V(t)||

Y(sn) = ()|}

< max{|y(s) - y ()],

(27) e \?

= 261(1 + 26_2) |85, — Sn,j|g§/Lz|y(Sn,i) -y +y() - V(Sn,j)|
1

g-1
x max{|t = s|r/12, |Sn,i — Snjlrirz)

27) cy 2q-1 2q-1
<21+ 25 Isni = Sujlerz (| V() = v (sud)| + | (&) = v (su))])

2g-1
2 2g-1
=< 2Q(1 + 2C_) |Sn,i - Sn,jl]RZLzﬂs - Sn,ihR/LZ +]t— Sn,j|R/LZ)
1
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2g-1
(%)
544(1‘*'26_) |85, — Sn,]l]R/LZ max |Snk+1 Sukl- (41)
1

Thus, by (30), (41), and (39),
(30) e\
|Bij| < Kq(l + 2c_> |85, _Sn,j|]12§q/LZ
1

/5n1+1 fsn ,i+1
Sn,i

1
(41 da- 4g-1
q
< 4q1(‘7 1+ 2 |Sn,i = Snjlrz k_{)nail( . [Syki1 — Skl

ly (Sui) — v (Sn])lzq_ly(s) (t)|2q

dsd
1 Gnd) = 7 a2y 6) —y 0P | <

/Sn,jﬂ /Sn,i+1 1
X dsdt
sup s V(i) = v (sup) Py (s) = y ()77

39) [ 2¢oc, \ 4 4q-1
E( y> 2q4‘q1<q 1+2 |S}’ll Sn1|1R/LkaaX |Snk+l Sn,kl

Sn,j+1 Snyi+l
/ / ———dsd¢
Sn,i |85, — Sny |R/LZ

2q 4g-1
2¢yc c 3 1
< =2y 24gK7( 1 +22 ( max  |S, 1 _Sn,kl) _—

c v c k=0,...n-1 S1,i = Sujlr/LZ

2q 4g-1
(1_<7) (c2)? (262Cy ) 214qK1 (1 + 26—2) s . !
2 v a 13 |i = jl, Ming=o,.n1 [Sn,k41 = Sukl
a7 C, 1
< 5= (42)
n |l _]|n

with Cp := (&2 (22 )24 2”I4qz<q(1 +22)41,

Step 7: The expression Y ;_; k ln(n) converges for n — oo to the Euler—Mascheroni
constant; see [18, p. xix]. Thus, there exists a constant ¢; € (0,00) such that |Zk=1 =
In(n)| < ¢; for all n € N. This leads for n > 1 to

nfj > (1Al + 1Byl

i=0 Jyi=j|p>"

,542) 2max{CA,CB} Z Z

i=0 1v|l—}\n>T

4max{CA, Cs} <

4max{Cy, Cp} [y 1
_AmaxdCa Cad (S ynn) ) + 4max(Ca, Ca)
7 = k

]|n

ln(n) Cugln(n)
n

(43)

with Cyp := 8 max{c;, 1} max{C,, Cz}.
Step 8: Recall from Step 3 that

3
3
’)»n,j — |Snje1 — Sn,j” < cxlsujsr — Snjl” < cx (k max [Snke1 — Sn,k|) (44)

,,,,,

Page 17 of 33
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holds for all » > N and j =0,...,n — 1, where N depends on the sequence (8,),cn. From
(22) and (24) we obtain from (44)

dist(U(y (sn,)), ¥ (51,1))
|y(sn,i) - V(Sn,j) |2q

|Cijl <

| |Sn,i+1 - Sn,i| |Sn,j+1 - Sn,j| - )\n,i)\n,j

(22)
< (Ci[()qﬂsn,nl - Sn,i| | |Sn,j+1 - Sn,jl - An,j‘

+ M| 1Smict = Smil = Ani]]

(24)
= (C]Z/I<)qd1<[|sn,i+l - Sn,t’| | |Sn,j+1 - Sn,/’| - )\n,j|

+ [8njs1 — Snjl | Sn,i+1 = Sn,il — )Ln,i”

@ 5o q 3
< (¢K) d1<C1<<k max 1|Sn,l<+1 —Sn,k|>
T

.....

X [|Sr1,i+1 _Sn,i| + |Sn,/'+1 _Sn,j|]
17) C,

4 (
52(c21<)qd1<61<( max |Sn,k+1_5n,k|) <= (45)
4 k=0,...n-1 n*

with Cc := 2(c2)*(c2 K)?dck for all n > N. We then conclude that

n-1 n—

C
1= n—f (46)

n-1
Y Y e € C—

1 n-1
i=0 jli—jlu>Y i=0 j=0

Step 9: Inserting (23), (25), (43), and (46) into (19) yields

~ G C Cagl C Cl
’TPq(V) —5;(,3n)| <12 +2q<Ln(n) + —g) < Cln(r) forn > N,
n n n n n
with C :=4max{Cj, Cy,27C43p,27Cc}, which gives the desired result. O

4 T'-convergence to the continuous tangent-point energy

In the present section, we show that the continuous tangent-point energy TP, is the I'-
limit of the discrete tangent-point energies £ as n — o0 (see Theorem 1.1). As a con-
sequence, we deduce that the limits of discrete almost minimizers are minimizers of the

continuous tangent-point energy; see Corollary 1.2.

4.1 I'-convergence

In order to prove Theorem 1.1 we need to verify the liminf and limsup inequalities, see [8,
Definition 1.5]. Here, the liminf inequality is verified in a rather straightforward manner
(Theorem 4.1), whereas the proof of the limsup inequality requires more work; see Theo-
rem 4.4 below. Similarly as the notation C;, used before, we equip a function space S with

the index a if we take arclength-parametrized curves in that space.

1

c
Theorem 4.1 (Liminf inequality) Let v,y, € CH(R/LZ,R3) with y, — y as n — oc.
Then, TP,(y) < liminf,_, o E;(yn).



Lagemann and von der Mosel Advances in Continuous and Discrete Models (2023) 20234 Page 19 of 33

Proof We may assume that liminf,_, 8;()/”) < 00. Then, there exists a subsequence
(Y ken satisfying liminf,_, oo E7(yy) = lim o0 E;"(y,,k) < 00. By definition of E;k we de-
duce y,, € B, for all k € N; see (8) in the introduction. Denote the point-tangent pairs
that are interpolated by y,,, as (([qu.i» Eugils [Gngie1s Eagiv1]))i=0,..omp -1, With gy 0 = Gy m, and
b0 = tugmy, for each k € N. Furthermore, we denote by a0, ...,y the arclength pa-
rameters satisfying y,,, (@, ;) = qn,.; and |@y; i1 — @ny il = Ayy,i foralli=0,..., n — 1. Define
for all s, € R/LZ with s # t the function

n—1 np—1 .
dlSt(l(J/nk (ank,j)): Vg (ank,i)) 1
fnk (s,2) = Z Z <2 X[“nk,ivank,iﬂ)X[“nk,jvank,j+l)(s’ £),

i=0 j=0,i |Vnk (ank,i) = Vg (ﬂnk,j)|2

where x4 denotes the characteristic function of a set A C R/LZ x R/LZ. Easy calculations
show that

2dist({(y (£)), y (
ly(s) -y ()12

, 9)\*
lim f, (s,t) = foranys #¢.
k—o0
The functions f,, are nonnegative and measurable since they are piecewise constant. We
can rewrite the discrete tangent-point energies as £ ;(Vnk) = fR Lz fR szt (8, 2) ds dt, which
allows us to apply Fatou’s lemma to obtain the desired liminf inequality. O

An important first ingredient in the proof of the limsup inequality is the use of convo-
lutions

Ye(®) := (v *ne)(x) = /R y(x—=yn:(»)dy forxeR/LZ (47)

that approximate y in the C!'-norm. Here, n € C*®(R) is a nonnegative mollifier with
suppn C [-1,1] and fR n(x)dx =1, and for any & > 0 we set n.(x) := %n(f).

In general, the convolutions are not parametrized by arclength even if y is, and they
do not need to have the same length as y. Thus, we rescale the convolutions to have the
same length as y and reparametrize then according to arclength. The following theorem
extends [6, Theorem 1.3] to the case p > % A proof can be found in Appendix A.

Theorem 4.2 Lets € (0,1),p € [2,00),and y € W, " (R/LZ,R3). For ¢ > 0 denote by 7, be

the arclength parametrization of the rescaled convolutions % Ve With y.(0) = 5&)) 7:(0),
where £ (y) is the length of y and £ (y.) is the length of y.. Then, y. — y in W*° as

g— 0.

The following abstract lemma is a specialization of [19, Lemma 6.1.1] and provides suf-
ficient conditions to transfer the limsup inequality from approximating elements to the
limit element. This result applied to smooth convolutions approximating a given C!-curve
y will be the second ingredient in the proof of the limsup inequality, Theorem 4.4 below.

Lemma 4.3 (Limsup inequality by approximation) Let (X, d) be a metric space and F,,, F :
X — [-00,00]. If a sequence (x™),eny C X satisfies

1. d(x,x™) — 0 as m — oo for an element x € X;

2. limsup,,_, . F(x™) < F(x);
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3. for every m € N there exists a sequence (x)'),en With d(x™,x)}) — 0 as n — oo and
limsup,,_, o, Fu(*)) < Fx™),

then there exists a sequence (y,)nen C X with

dx,y,) >0 asn— oo and limsupF,(y,) < F(x).

n— 00

The proof of the limsup inequality is inspired by Blatt’s improvement of Scholtes’ I'-
convergence result for the Mobius energy [6, Theorem 4.8].

Theorem 4.4 (Limsup inequality) For every y € CL(R/LZ,R3) there exists a sequence
(bu)nen C CL(R/LZ, R®) such that

Cl
b, — vy and limsupé’;(bn) <TP,(y).

n—oo n—00

Proof If TP,(y) = oo, choose b, = y for all n € N. Then, b, — y in C' and the lim-
sup inequality follows trivially. From now on let TP,(y) < oco. Thus, we have y €
WZ_‘%‘q(R/LZ, R?) by [5, Theorem 1.1]. Moreover, Lemma B.1 yields a ¢, > 0 such that

cy |y(s) - y(t)| > |s—tlgyz foranyt,seR. (48)

We now consider a sequence of suitably rescaled and reparametrized convolutions of y
and prove the limsup inequality for these convolutions. Applying Lemma 4.3 then yields
the limsup inequality for y.

Step 1:For n € Ndefines,,; := % fori=0,...,n. Then,foralli=0,...,n—1wehave |s,,;,1 —
Snil =hy = h, = %, so that the M, := {s;,0,...,8,,} form a (¢; — ¢y)-distributed sequence of
partitions with ¢; = ¢; = L for n > 2; see Definition 2.8.

Step 2: For k € N we set g := % Let y,, be the convolution as in (47) and Z(y;,)
the length of y,,. We then define y; as the arclength parametrization of the rescalings
Ly, 1L (ye,). Thus, y has the same length as y for every k € N. Furthermore, y is on
[0, L) injective for k sufficiently large, which follows from the bi-Lipschitz property (48) of
y together with the C'-convergence of the convolutions y,, — y as k — co. By omitting
finitely many indices we may assume that 7 € C2°(R/LZ,R?) for all k € N. For every k € N
there is by Lemma 2.9 some index Ny(k) € N such that there exist proper yx-interpolating
balanced biarc curves BX parametrized by arclength that interpolate the point-tangent
ing points mﬁ,i € E:”j’k satisfy (see Definitions 2.7 and 2.5(iv)) | Pk (su,:) — m',‘,’il = | P(Snis1) —
m | for all n > No(k), i = 0,...,n — 1. Let L¥ := Z(B¥) be the length of ¥, and note that
Theorem 2.11 implies

L];—>L:$()7k) for each k e Nas n — oo. (49)

Step 3: For k € N, let X be Smutny’s reparametrization [31, Appendix A] and define
BX := B 0 ¢, so that Theorem 2.12 implies

||)7k—f3];||cl—>0 for each k e Nas n — oo. (50)
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Now, define Bﬁ(s) = L(L],‘,)‘IBI;(S) for all s € R. Then, B’; obviously has length L. How-
ever, BX is not parametrized by arclength. Nevertheless, by means of (49) we find ||BX —
Bﬁll@ = Ié - IIIIB’,‘,H@ — 0 for each k € N as n — oo. Consequently, by (50), one has

vk — B’,‘,llcl — 0 for each k € N as n — 00, and therefore by means of Lemma B.3,
||)7/<—,3,/:||C1—>0 for each k e Nas n — oo, (51)

where BX is the reparametrization of BX by arclength. Again, since 7 is injective for k
sufficiently large, this implies that ¥ € CL(R/Z,R3) for n and k sufficiently large.

Step 4: We now show that X € B, holds if # is sufficiently large, such that the values
& ;(ﬂll‘ ) are finite by definition (8) in the introduction. We need to show that the length Aﬁ'i
of the ith biarc of B* satisfies (7). For that we apply Lemma 2.10 to the length X’;)i of the
ith biarc of BX. More precisely, we take the limit # — oo in the following inequality that
holds for each k € N, n > Ny(k),i=0,...,n -1,

Ak Ak Ly
— max - <2 < max Yo 1 +1,
j=0,...n-1| (L/n) (L/n) ~ j=0,..n-1| (L/n)
to obtain
g Ak
1 <— min 51 asu— oo. (52)

‘- < max
i=0,...n-1 (L/n) ~ i=0,..n-1 (L/n)

Since the image of BX is just the image of Bﬁl‘ scaled by the factor L(L¥)~! we deduce )Jn"/ =
L(L’;)‘l):’;,j. Combining this with (49) we find for each k € N and index Nj (k) > Np(k) such
that

2L
: k k
5 < j=$12_1 Ayj < j:(r)??r)l(_l Myj < ~ for any n > N (k), (53)
which is (7) for A; := Af. Thus, X € B, for all n > N (k).
Step 5: The scaling property (9) and the parameter invariance of the discrete tangent-
point energies yields

(L(LX)")En(Bk) forall k e Nand n> Ni(k),

n

ACH
so that we obtain by (49) and Theorem 3.1 applied to y := 7 and g, := B
[T24(70) = £ (B3| = [TPa0) = E1(B) [ + 1 (B[ - (L) )| — 0 (69

for each k e Nas n — oo.

Step 6: In this final step we check the assumptions of Lemma 4.3. The space C., (R/LZ, R?)
is a metric space with the metric induced by the C'-norm. By Morrey—Sobolev embed-
ding (see [21, Theorem A.2] in the setting of periodic functions) there exists a constant
cg > 0, such that

e =vlcr < cellve=yIl o1,
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According to Theorem 4.2 applied to p =g and s =1 — % for g > 2 the right-hand side
converges to 0 as k — co. Thus, y, converges in the C!-norm to y, which verifies con-
dition (i) in Lemma 4.3. Furthermore, [34, (4.2) Satz] implies that TP, is continuous on

Wi 77 since q > 2. Thus, we obtain limy_, o TP,(yx) = TP,(y), which gives us condition

(ii) of Lemma 4.3. Combining (51) with (54) verifies condition (iii) of Lemma 4.3. Hence,
Lemma 4.3 yields the limsup inequality for y. g

Remark 4.5 For the proof of Theorem 1.3 in Sect. 5 (see in particular Lemma 5.2) it is im-
portant to note that the actual recovery sequence for the limsup inequality in the previous
proof is a subsequence of the (doubly subscripted) arclength parametrized biarc curves
/3,’: € Cia’l(R/LZ, R3) for k € N and n > N (k); see the choice of the abstract recovery se-
quence towards the end of the proof of [19, Lemma 6.1.1].

Proof of Theorem 1.1 According to [8, Definition 1.5] it suffices to verify two fundamen-
tal inequalities. Indeed, the liminf inequality is the content of Theorem 4.1, whereas the
limsup inequality is established in Theorem 4.4. O

4.2 Convergence of discrete almost minimizers

In this subsection, we prove the convergence of discrete almost minimizers of the discrete
tangent-point energies in the metric space defined before. The following lemma can be
found in [12, Corollary 7.20].

Lemma 4.6 (Convergence of minimizers) Let (X,d) be a metric space and F,, F : X —
r
[-o0, 00]. Assume that F,, — F. Let |F,(z,) —infx F,,| = 0 and z, — z € X as n tends to
n— 00
infinity. Then, F(z) = miny F and lim,,_, o, F,(z,) = F(2).

Proof of Corollary 1.2. The proof follows immediately from Lemma 4.6 with the metric
space X = C.(R/LZ,R3®) N K, with the metric induced by the C'-norm. Note that the knot
class K is stable under C!-convergence; see, e.g., [25]. Since TP,(y) < oo holds, we obtain
y € W #9(R/LZ,R?) by [5, Theorem 1.1]. 0

5 I convergence to the Ropelength functional

As a first step towards the proof of Theorem 1.3 we show that the continuous tangent-
point energies (TPk)% I"-converge to the ropelength R on Cﬁa’l (R/Z,R3) equipped with the
C!'-norm as k — o0o. We follow the proof of [14, Theorem 6.11], where Gilsbach showed
I"-convergence of integral Menger curvatures towards ropelength.

Lemma 5.1 Forany y € Cila‘l(R/Z, R3) one has (TPk)% (¥) = R(y) as k — oco. Moreover,

I
(TPt — R on (CEYRIZ,R), || - [|c1).
k— 00

Proof According to [30, Theorem 1(iii)] one has® R(y) < oo for y € C;’I(R/Z, R3). In ad-
dition, by [30, Lemma 2]

- _ 1
||rtp1 (J/(), )/()) ”LOO(]R/ZX]R/Z) = SYtE%l}gs# rtpl (J/(S); V(t)) = Ty] = R()/) (55)

3Be aware of the notation: In [30] the expression R[-] was used for thickness A[-], whereas /C[-] in [30] corresponds to
AL
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It is well known (see, e.g., [1, E3.4]) that the mapping

ki ”rt; (rhy )HLk RIZXR/Z) - (TP

is nondecreasing and satisfies by means of (55)

(55)

hm (TPy) k(y || ( = R(y).

), 7(4) HLOC(]R/ZXR/Z)

Furthermore, the continuous tangent-point energy is lower semicontinuous with respect
to the C'-norm, see [32, Proof of Corollary 2.3] or [14, Lemma 1.41]. Then, by [8, Re-

r
mark 1.40(ii)] the pointwise limit of (TPk)% is also the I"-limit and we obtain (TPk)% — R

as k — oo. J

r
Lemma 5.2 (5;)% — (TPq)‘li on (CHRIZ,R3), || - || 1) for all q > 2.

r

Proof By Theorem 1.1 we have 5; — TP, on (Cila(R/Z, R3), || - ||c1) for any g > 2 as n —

00. However, in the proof of the limsup inequality in Theorem 4.4 the recovery sequence

is a sequence consisting only of biarc curves that are in Cila’l(]R/Z, R3); see Remark 4.5.
r

Therefore, we also have £ — TP, on the space (Cila’l(R/Z, R3), | - lc1) as n — oo. Now,

apply [12, Proposition 6.16] to F, := &, F := TP, and the continuous and nondecreasing
r
function g: (0,00) > R,x x% to infer (5(;’)% =goF, — goF= (TPq)%. a
n— 00

Next, we compare two different discrete tangent-point energies.

Lemma 53 Let ,mk € N, 2 <k <m and y € CH(R/Z,R®) with length £(y). Then,
(EF () < (LA ki (1) ().

Proof We only have to consider the case that y € B, since otherwise both sides of the
inequality are infinite by definition of the discrete energy £/; see (8) in the introduction.
Denote by (([g:, ], [gi+1, ti+1]))i=0,.,n—1 the point-tangent pairs that y interpolates. For i #

2dist(l(q;).q; . . .
M > 0. Then, we estimate by means of the generalized mean inequal-

ity for finite sums,( Zl 1|ozl|1’)17 <( Zl l|61L|q)q for p < q (here, for £ :=n(n-1),p:=k,
q := m), and by (7)

1
n-1 n-1 I3
k

i=0 j=0,i

n-1 n-1 - %
= < [ (1) ] )
i=0 j=0,j#i

n-1 n-1
—1)k " (Z DA ¥ )

i=0 j=0,j#i — .
=(hidj)(hihg) K

define x;; :

5'3
»w

N

A
3
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—

n-1 n-1 m
1_1 1_1
g(n(n—l))k m Hj(.?a,;l (Aikj)k m (E E xf}“}kﬁ,») .
- _

i,j=0,..., .
i 11 i=0 j=0,j#i
(;)(4g(y)2>k i

n2

SEALL =
Proof of Theorem 1.3 1t suffices to prove the I"-convergence for L = 1, since then the state-
ment for general L follows from the scaling property and parametrization invariance of
the energies involved. Indeed, assume the theorem was proven for L = 1. Now, take L # 1
and let () uen C C'(R/LZ,R?) with y, — y in C' as 1 — 00. Denote by 7, the arclength
parametrization of 2. By Lemma B.3 this implies 7, — 7 in C! as n — oo, where 7 is
the arclength parametrization of Z. Together with the fact that the ropelength functional
is invariant under reparametrization and scaling, the liminf inequality for L = 1 yields the

liminf equality for general L:

R(y) = R(7) < liminf(E2)7 (7,) = liminf(£7) " (%) D liminf L (£7)7 (v,).

n—0o0 n—o0 n—00

For the limsup inequality let y € CL'(R/LZ,R?). Then, 7(x) := y%x) is the arclength
parametrization of y scaled to unit length. Hence, there exists a recovery sequence

(Fu)nen C C2H(R/Z,R?) such that

1 1
7S 7 asn—oo and  limsup(EX)" (7,) < R(7). (56)

n—00

Define the reparametrization ¢ : [0,L] — [0,1],x = 7 and set y,(x) := Ly,(¢(x)) and
7(x) := Ly (¢(x)). Note that y, is parametrized by arclength and that y = y holds. Then,
Ya — ¥ =y in C! for n — oo by (56). Again, by the scaling property of the energies and

the invariance under reparametrization we deduce with (56)

. n=2 1 9) .. 1. ~
limsup L7 (£))" (vn) D im sup(€))" (7n) < R(7) = R(y).
n—00 n—0o0
Hence, it remains to prove the statement of Theorem 1.3 for L = 1, and for that we take a
general sequence (¥y)yen C Cila‘l(R/Z, R3) with y,, — y in C' as n — oo.

By Lemma 5.2 for g := k

=

(TP () < liminf(€2)F () = lim inf (€2) () (57)

For k < n we apply Lemma 5.3 to y := y,, and m := n to find

4.2 (yn)*n(n-1)
1’12

(EE () < < )k_"(gg)i(yn).

Together with (57) and .Z(y,) = 1 for all n € N, this yields

N

(TP () < Tim inf(%;ﬂ S EN o). (58)

n—o0 n>k n
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Now, we have

1 1
— k™ n —
im (DN i exp( (2= L ) og (DY) < exp( L iogea) ) = 4t
n—00 n? n—>00 k n n? k

Combining this with the pointwise convergence in Lemma 5.1 and (58) we arrive at the

desired liminf inequality:

-

— 00 N—>00 n>k n?

R(V)=k1LIgO(TPk)k( )< Jim_lim 1nf(w)k_n(5n)%( )

= lim 4k11m1nf( ) (y,,)_hmlnf( ) (Vn)-

k— o0

To verify the limsup inequality let y € Cila’l(]R/Z, R3), and for n € N set s,,; := ﬁ for
i=0,...,n. Then, we have |s,;11 — 8y| = % foralli=0,...,n—1, and therefore a sequence
of (¢c1 — ¢y)-distributed partitions with ¢; = ¢; = 1; see Definition 2.8. Now, we follow the
proof of Theorem 4.4. However, since y is now a CY-curve, we do not have to work
with convolutions, but can follow the proof for y directly. By Lemma 2.9 there exists for
n sufficiently large a y-interpolating, proper, and balanced biarc curve 8, interpolating
Theorem 2.11 that Z(B,) — Z(y) =1 as n — oo. Let ¢, be the reparametrization func-
tion from [31, Appendix A] and set B, := ,3~n o ¢,. Then, by Theorem 2.12, we have B, — y
in C! for n — oo. Setting B,, := Z(B,)"'B, we obtain as in the proof of Theorem 4.4 that
B, — y in C! for n — oo. Let B, be the arclength parametrization of B,. By Lemma B.3
we finally arrive at 8, — y in C! for n — oco. The biarc curves 8, are only reparametrized
versions of f8, rescaled by the factor .Z (B,)7Y, so that we can show exactly as in the proof
of Theorem 4.4 that B, € B, for n sufficiently large. Moreover, due to the C!-convergence
towards y, the B, are also injective for n large enough. Since B, is scaled to unit length
and parametrized by arclength, we have g, € Cila'l(R/Z, R3) for n sufficiently large. Set
L, := Z(B,). By the scaling property of the discrete tangent-point energy (9) and its pa-

rameter invariance we have

1

(Bn) = % (E)%(By) for any k > 2. (59)

=

(&6)

2d15t( (Si,0) Ry (5,0)5¥ ¥ (51,))

[y (sm,i)= V(snj)‘z
estimate for sufficiently large n € N

Abbreviating x;; : for i,j=0,...,n— 1 with i #j we can write and

2 2 n-1 n-1 %
(€ () 2L (€7)F (B =L k( ku-)
k n) = Lp k n) = Lin Kijhili

1-2 (4L2n(n - 1) ; 1
=L " < n? ) (n(n -1) Z fo’) . (©0)
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Here, we used (7) for B, € B, which can be verified for n sufficiently large exactly as for
the ,55 in Step 4 of the proof of Theorem 4.4; see in particular (52). Now, observe that by [1,

E3.4] applied to the discrete measure u := Z;’:—Ol Z;':_Ol] i 85 psny) With W((R/LZ)?) = n(n—-1)

we have
n-1 n-1 %
. 1 P
khm ) x| = max o x. (61)
- ’ ij=0,....n—1,ij
—o0 \ 11 0 jo0ydi i n-1,i#j

— 1-2 412n(n-1), 1 .
With limg_, o L, (”T)k = L,. we obtain by means of (60), (61), and [30, Lemma 2.5]

for n sufficiently large

1 (60),(61) 2 dist Ry/'(s), y (¢
limsup(£f)*(B,) =< L, max x;<L, su ist(y(s) + Ry (Sz r ()
k=00 i=0,...,1=1,ij sHER/ L5t ly(s) =y (2)] ©2)
1
=L, sup —— =L, R(y).

steRiZst Tep (Y (8), ¥ (2))

Now, let k > n. By virtue of Lemma 5.3 applied to 8, m := k and replacing the index k in
that lemma by # here, we have (5;’)% (By) < (%(2”_1))%_% (5,:“)% (B,,), which leads to

@ﬁmmmM%%%?ﬁyW%Wm@K%%?Byhmw(w

k—o00

for n sufficiently large. Finally, taking the limsup yields the desired limsup inequality

1
L e ALn(n—1)\ 7
limsup(&)) " (B,) < limsup (#) L, REy)=Ry).
n— n— n ——
0 *© —_— > Z(y)=1 O
—1

Proof of Corollary 1.4. Apply Lemma 4.6 to the metric space X = Cila'l(]R/Z, R3) N K with
the metric induced by the C'-norm. Note as in the proof of Corollary 1.2 that according
to [25] the knot class K is stable under C!-convergence. Since R(y) < oo holds, we obtain
by [16, Lemma 2] that y € C'(R/Z,R?). O

Appendix A: Convergence of convolutions in Wz'%'q(R/LZ, R3)
For fixed L > 0, s € (0,1) and p € [1, 0o) define the seminorm [f];, of an L-periodic locally
p-integrable function f : R — R” as

o= | O gy, (64)
R/ILZ JRILZ X = Y|R/17

where |x — y|g/zz denotes the periodic distance on R defined in (13). Then, the peri-
odic fractional* Sobolev space W'**(R/LZ,R") consists of those Sobolev functions f €

4Also known as periodic Sobolev—Slobodecki space.
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WP (R/LZ,R") whose weak derivatives /" have a finite seminorm [f’];,. The norm on
1
WS (R/LZ,R") is given by (|[f [l wie + [f'1sp)? -

Proof of Theorem 4.2 The case p = is treated in [6, Theorem 1.3], so we may assume

from now on that p > %

m

Step 1: According to Morrey—Sobolev embedding [21, Theorem A.2] we have y
CY(R/LZ,R®), which implies that y’ is of vanishing mean oscillation, in short y’' €
VMO(]R/LZ R3), that is lim,_o(Sup,eg;;7 5 ( Jo,00 V' 0) = V', | d9)) = 0, where ', :=
> L B Y '(z) dz denotes the integral mean. Indeed y'is umformly continuous so that
for every & > 0 there exists a § = §(¢) > 0 such that [y’(x) — y'(y)| < 5 for all x € R/LZ and
y € Bs(x). Let 0 < r < and x € R/LZ. Then,

1
> V' 0) =y, dy < sup |V O -v'@]+ ]y ® -7,
7 JB,(x) y€By(x)

=3 _/ |¥'(x) = y'(z)|dz <& foranyx € R/LZ,

thus sup,.g/1z %(fBr(x) l¥'() - ¥',,1 dy) < &, which implies that ' € VMO(R/LZ, R®) since
€ > 0 was arbitrary.
Step 2: For the lengths L, := Z(y.) and L := Z(y) we estimate

L
ILS—Llff [|v.@)| = |y @)||dx < IHVQI—IV/IIICOL—BO, (65)
0 E—>

since y’ € VMO(R/LZ,R?) allows us to apply [6, Theorem 1.1] to deduce that |y/| con-
verges uniformly to |y’| = 1 as ¢ tends to 0. Therefore, there is an g, > 0 such that

1

2

L
L —yl(x)| <2 foranyxeR/LZ,e € (0,5)]. (66)

Step 3: Since the convolutions y, converge to y in C! we obtain by means of (65) that
also the rescalings Ly, /L, converge towards y in C'. According to Lemma B.3 we obtain

I7e =¥llect — 0 ase — 0. (67)

Step 4: It remains to show that [y — y'];, — 0 holds as ¢ — 0, since then, together with

(67), we have established ||, — y || y1+s0 — 0 as &€ — 0. Abbreviating the integrand of the

seminorm by I, (x, y) := 0¥ @) %3,9 'O e want to apply Vitali’s theorem (see, e.g.,

=y l]R/LZ
[1, 3.23]) to prove || I;];1 — 0 as ¢ — 0. Since we have a compact domain it suffices to

show that the sequence (I;).-o is uniformly integrable and converges pointwise to 0 a.e.
on R/LZ x R/LZ. The pointwise convergence I (x,y) — 0 (even for all x # y) follows from
the C!-convergence (67).

Hence, we need to show the uniform integrability. In the obvious inequality

(68)

I (x y) < 2p—1|:|yg x) (y)lp |J/ x) Y (y)lp]

1+sp 1+sp
1% = ¥IR/1z = Ylg1z

we estimate both summands on the right-hand side separately.
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This is easy for the second summand. Fix > 0. Since y is in W'***(R/LZ,R®), we find

a 8; = 81(€) > 0 such that for every measurable subset E C (R/LZ)?* with |E| < §; we obtain

g
1+sp xdy < 2_p (69)
1% = ¥lr)1z,

[ [reror,,
E

Regarding the first summand in (68) we consider the arclength function s.(x) :=
fox |éyg (z)| dz such that s.(0) = 0. From (66) the derivative s (z) = |éyg’ (2)| is uniformly
bounded away from O for all € € (0, &0]. As a consequence, s, is for ¢ € (0, o] invertible.
Let 5, denote the inverse function of s,. As a next step, we will show [s.(x) — 5. (¥)|r/zz >
%|x — ylrz for x,y € R/LZ and ¢ € (0,&]. Let 0 < x < y < L, so that by monotonicity
0 < 5,(x) < 5. () < L. First, assume that |5, (x) — 5 0)lizz = I5:(6) = 5:0)| = 5:9) — 52.%).
Then, we estimate by means of (66)

(66)

YL, 1 1
|Ss(x)_58()’)|R/LZ:/ ’L_Vg(z) dz > E(Y—x)z Elx—th/Lz.

If |s: (%) — s: (V) IRz = L — (s:(y) — se(x)), then again by (66)

X L ,
dz:/0 L—gyg(z) dz

L
L
dz+/
y

R Y.(2)

y
5. =50 =L [ | £

(66) 1 1

> —(L-(y-%) = =|x—ylruz.
2 2

In particular, this yields for the inverse function

[e(%) =3 0)|g 1z < 216 = ylriz  forany x,y € R/LZ ¢ € (0,¢]. (70)

Due to (65) there exists a constant ¢ > 0 such that

P
L
|:1+2p

&

L

21+(1+s),0

P
] <c¢ foranye>0. (71)

&

Now, we estimate pointwise for x #y with Jensen’s inequality and by (70)

W -7 1 Lr @R @ - £y GO0 B -5 0l

]s(xry): s - ~ s s
|x_y|]§;L% IS¢ (x) —580’)|]§Lpz e _J’@Lpz
9 risp| L f’[w;(x)w;(zg(x))—y;@(y))w . |yg<§5(y))|p|s;<x>—sgw}
- L 15 () = 5. 0|2, 13 (%) = 3. 0) |,

Together with |y/| < 1, [s;(x)| = |iyg/(x)| € [3,2] due to (66), [s,(x)| = |L££yg/(§€(x))|71 €
[%, 2] for € € (0, &0, and the estimate
-1 -1

-5, = | £7/6.09)

L .
L—syg (Sa()/))

¥ Be () — 7 B: ()]
VACAEDIACHD]

L
L
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(66)

6
<4/~

[(5:)) = v.(5: D) >

we obtain for all ¢ € (0, &9] the inequality

p
Je(x,y) <217 L 27+ 47| —
L,

cAe (Ve (x,)) (72)

] [y (x)) — Vg(sg(y))lp

1
L, IS¢ (%) = S V) Ig 1%

for A (x,y) := e@-%00° ;1 the transformation Ve : (R/LZ)? — (R/LZ)? sending (x,y) to

1+sp
gLz

(3(x),3:(9)). Observe that by (66), V. is bi-Lipschitz, since det(Dy, (x,y)) = |5.(x)|[s, ()| €
i,éL]. This implies by (72) that

Je(x,y) < 4cA, (Ve (x,9))|det(Dyre(x,5))|  for any e € (0, &).

Let now E C (R/LZ)2. By a change of variables

//]s(x,y) dxdy§4c[/As(wg(x,y))|det(Dwg(x,y))|dxdy
E
= 4c/f y)dxdy forany ¢ € (0, &) (73)

It is well known that the standard convolution y, converges in W!** to y; see, e.g., [13
Lemma 11], which according to Vitali’s theorem implies that the A.(x,y) are uniformly
integrable. In particular, for given & > 0 there exists §; = §,(¢) > 0 such that if [ (E)| < &2,
we have

/ / el y)dxdy < ooz for any ¢ > 0. (74)

Since v, is uniformly Lipschitz continuous for ¢ € (0, &], there exists a 83 > 0 such that
|E| < 83 implies |/:(E)| < 2. Now, set § := min{81, 83} so that for any set E C (R/LZ)? with
|E| < we infer by means of (68), (73), (69), and (74) that

(68),(73 ly'(x
‘//Ig(x,y)dxdy < [4c// A (x,y)dxdy+// | |1+Sp dxdy:|
E e ( x=y

R/LZ
69), o—1
( )<( K 2 46

+ ii| =& foranye € (0,&].
62p+2 2P

Hence, (I;)zc(0,¢0] is uniformly integrable. O

Appendix B: Quantitative analysis of C'-curves
Lemma B.1 (Injective C!-curves are bi-Lipschitz) For any curve y € Cila(R/LZ, R3) there
is a constant c, > 0 such that

|t —slriz <cy |y —y(s)| foranyt,seR. (75)

Proof Using the Taylor expansion

s+h s+h
y(s+h)—y(s) = / y/(2)de = 1/ ()h + / (V) - y'(s) dr (76)
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we choose kg = hy(y) € (0, %] such that w,/ () < % to infer for all s € R

1 1
ly(s+h) —y(s)| = (1 -wy(ho))lhl > §|h| = §|h|R/LZ for any |h| < ho. (77)

On the other hand, since y is injective, we find a constant 8y = §o(y’) > O such that

26 26 L
[y(s+h) ~y(©)| = 8= “ Ikl = = lhlguz foranys e Rohy <kl <, (78)
which implies (75) for ¢, := max{2, 2%30}. (I

LemmaB.2 Lety € Cila(]R/LZ, R3) and h € (0, %] such that w,(h) <1 and h < % Then, for
everys e R,

(y(s+h)—y(s),y'(s) -
ly(s+h)—y(s)

(s + 1) =y (0) (s + )
e =T e S 0

1-w,(h) <

(79)

Proof Since 0 < h < % we have |s + & — s|g/.z = h; see (13). We use the Taylor expansion
(76) to estimate

(r+ M=y’ ©) = 1= swp |y'@)=-y'(6)]] = 1=, 0] &)

T€ls,s+h]

and analogously

(y(s+h)—y(s),y' (s+h)=h[1-w,H)]. (82)

Using the above estimate for the inner product and the Lipschitz estimate |y (s+ /) -y (s)| <

h we can deduce

(yGs+m—y(s)y'(s)) &) h(1l-wy () _ k(1 - o, (k)
lyGs+h) -y~ lyls+h) -yl — h

=1-w,(h).

Applying the Cauchy—-Schwarz inequality yields the right part of inequality (79). Thus,
statement (79) is shown. In the same manner we can conclude the statement (80) with the
Cauchy—Schwarz inequality and estimate (82). d

Lemma B.3 Let y € C'([a,b],R?) satisfy |y'| > v, >0 and Z(y) >0 and let T €
CYH[0,Z(y)],R3) be the arclength parametrization. Suppose that B € C'([a,b],R?) has
equal length, i.e. L(y) = £ (B), and satisfies

v

ly = Bllci(apr3) <€ < > (83)

Then, B possesses an arclength parametrization B € C1([0, £ ()], R3) with

2 (b-a)e (b-a)e 2
”F _B||C1([O,,5f(y)],R3) < V—a)y/ + @y +el 1+ V_ y (84')

y Vy Yy Y




Lagemann and von der Mosel Advances in Continuous and Discrete Models (2023) 20234 Page 31 of 33

where w,, denotes the modulus of continuity of y and w, denotes the modulus of continuity

of the tangent y' of y .

Proof Without loss of generality, we can assume I'(s) = y(¢(s)) for s € [0,.Z(y)], where
t:[0,Z(y)] — [a,b] is the inverse function of the arclength function s(¢) := fat |y (u)| du
for t € [a,b]. Furthermore, the conditions |y’| > v, and (83) imply |8'(¢)| > ‘% > 0 for
all ¢ € [a, b]. Hence, the arclength function of 8, o(¢) := f; |8’ (u)| du is therefore also in-
vertible. Let 7 : [0, Z(y)] — [a, b] be the inverse function of o and define the arclength
parametrization of 8 as B(s) := B(t(s)) for s € [0, Z(y)]. Now, fix an s € [0, Z(y)]. Then,

there exist unique ¢, 7 € [a, b] such that s = s(¢) = o (7). This leads to

0-0(0)-s0)= [ (18] - |yw)du— [ |0 . (85)

Thus, we can estimate

frt|y/<u)|du

Now, we can use (83) and (86) to estimate the distance between I" and B by

(83)
vylt—1| < < eb-a). (86)

2| [ 15w - o] a

IT(s) = BGs)| = [y () - B@)| < [y @) -y ()] + |y () - B(x)|
(83

E)a)y(|t—t|)+8(8§6)w],<(b_a)8)+e. (87)

Yy

: _ 1 _ 1
With 7'() = Sy = e

I(s) = ‘;,Eiggl This leads to

: we obtain B'(s) = B/(t(s))t'(s) = ‘gitg;;‘ and analogously

|T(s) - B'(s)|

REACIN G ‘
TZCIREG]

YO-yo 11
NI *‘”’)“ly’(m @]
Y@ - ! 1
v TP m"w/(rn V)

IA

1 1 £ e (86) 2 (b-a)e
— A= JR— lt— —_ —_ — ’ . 88
ot ot () o). o

Y % % % Vy Vy

With (87) and (88), we deduce (84). a
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