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Abstract
The main objective of this work is two-fold. First, we investigate the stress-rate-type
implicit constitutive relations for solids within the context of strain-limiting theory of
material response. The relations we study are models for generalisations of elastic
bodies whose strain depends on the stress and the stress rate. Secondly, we obtain
travelling-wave solutions for some special cases that are nonlinear in the stress. These
are the first notion of solutions available in the literature for this type of models
describing stress-rate-type materials.
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1 Introduction
The usage of complex materials in technology forces mathematicians to model material
response in such a way that it is not only general enough to explain observed phenom-
ena in experiments, but also as simple as possible from the point of view of mathematical
analysis. Due to the complexity in their material response as well as the presence of the
vast spectrum of possibilities for modelling them, viscoelastic materials have attracted a
serious amount of attention in recent years. In accordance with the requirements of appli-
cations, rate-type viscoelastic models that include information about the current values of
the kinematical quantities are much more favourable over the integral-type models where
one has to keep track of the history of these quantities. The same understanding is valid
both for fluids and solids. From the modelling point of view, on the other hand, the inde-
pendent variables differ depending on whether viscoelastic fluids or solids are modelled.
In this manuscript, we aim to model stress-rate-type solids obeying the requirements of
strain-limiting theory.

It all started when Rajagopal [1] introduced a new perspective for modelling elastic-
material response starting with implicit constitutive relations. The approach attracted a
lot of attention immediately due to the fact that it was possible to explain some experimen-
tally observed phenomena where, after linearisation of the strain under the assumption of
smallness of the deformation gradient, it was possible to obtain a non-linear relationship
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between the linearised strain and the stress, which is not possible to obtain in classical
elasticity. In those models, no restrictions are put on the state of the stress and hence they
are called strain-limiting models. From a classical mechanical point of view, they are more
appropriate for using the stress as a primitive variable supporting the reasoning that the
stress is the cause of the deformation but not the effect.

Many studies exist on implicit constitutive modelling and strain-limiting response of
materials including elastic and viscoelastic solids and fluids (we refer the reader to the re-
view article by Şengül [2] and references therein both for mathematical treatments and
experimental applications). In this context, mathematical analysis for the viscoelastic re-
sponse of solids with strain-rate-type constitutive relations have been investigated in ar-
ticles such as [3–5], and [6]. More recently, the three-dimensional problem with periodic
and Dirichlet boundary data have been studied by Bulíček, et al. in [7] and [8]. From an
application point of view for such strain-rate-type models one can refer to experimental
studies such as [9] where the mechanical behaviour of various types of silk and spider silk
are investigated. Recently, in [10], Erbay and Şengül aimed to investigate models resulting
from implicit constitutive relations depending on the stress and the stress rate. Follow-
ing the approach introduced for fluids by Rajagopal and Srinivasa [11], they introduced
a stress-rate-type model for solids, and showed that it is thermodynamically consistent.
Such rate-type models are suitable for giving explanations to some experimental observa-
tions on various materials such as dragline silk (see e.g. [12]) where, following the approach
of Holzapfel and Simo [13], a stress-type internal variable that obeys an evolution rule is
introduced. As also noted in [6], due to the inherent causal relation modelling of such
phenomena by defining the stress as a primitive variable instead of the strain is therefore
more appropriate, which is one of the motivations to study such mathematical models.

The aim of this note is to develop a general stress-rate-type model for the response of
solids within the context of strain-limiting theory using a thermodynamical point of view.
We start by analysing the general non-linear model and search for heteroclinic travelling-
wave solutions, which reduces the equation of motion to an ordinary differential equation.
Due to having analytical techniques available in the theory of first-order ordinary differ-
ential equations only in the cases where the derivative term is explicitly expressed as a
function of other variables, we pass onto a special case that is linear in the stress rate.
We look at travelling-wave profiles for some special cases of non-linearities chosen to be
consistent with the restrictions we obtain during analysis.

2 Derivation of the model
We provide a brief introduction of the mathematical background covering fundamental
equations that form the basis of continuum mechanics, and the formulation of implicit
constitutive theory. Similar reviews can also be found in [2, 10, 14, 15].

Let u be the displacement of the body at the position x ∈ R
3 of a particle at time t with

respect to the undeformed reference configuration X, that is u = x – X. The motion is
expressed by the deformation map χ (X) = x. The deformation gradient tensor F and the
velocity field v are defined as F = ∂x

∂X and v = ẋ; from these the definitions for linearised
strain tensor, ε, and the symmetric part of the velocity gradient, D, are obtained as

ε =
1
2

(
∂u
∂x

+
(

∂u
∂x

)T)
, D =

1
2

(
∂v
∂x

+
(

∂v
∂x

)T)
. (1)
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The Almasi–Hamel strain tensor A and Cauchy–Green stretch tensor B, which is defined
as B = FFT , are related to ε as follows;

A = ε –
1
2

(
∂u
∂x

)(
∂u
∂x

)T

, A =
1
2
(
I – B–1). (2)

The strain-limiting theory of elastic solids is based on the assumption that

∥∥∥∥∂u
∂x

∥∥∥∥ = O(δ), (3)

in some appropriate norm with δ � 1. This immediately implies that ignoring the higher-
order terms in the definition of A we can approximate it by ε. As a result, by (2), we can
replace the Cauchy–Green tensor B with I+2ε in the constitutive relation for the response
of the material.

This approach has been adopted in several studies investigating the response of elastic
solids (see e.g. [16]) starting from the general implicit relations of the form F (T, B) = 0.
Recently, models for viscoelastic materials have been investigated by Rajagopal and Sacco-
mandi [3] and Erbay and Şengül [4]. In these studies, the response of material is strain-rate
type and hence the general constitutive relation to start with is given by F (T, B, D) = 0. In
this work, on the other hand, we are interested in the stress-rate-type viscoelastic response
and hence the implicit constitutive relation we would like to consider is given by

F (T, Ṫ, B) = 0. (4)

Even though there is a vast literature on rate-type models for material response in the clas-
sical setting, there is no systematic way of generating new models that satisfy the require-
ments of thermodynamics. In [17], Prusa and Rajagopal considered general constitutive
relations for fluids between the histories of the Cauchy stress and the relative deformation
gradient, and showed that fluids defined through such models are in fact generalisations of
rate-type fluids. This was a big step towards understanding new material phenomena by
posing new models that are mechanically meaningful and mathematically tractable at the
same time. Later, in [18], Rajagopal investigated anisotropy for simple materials where the
class of response relations under considerations was implicit relations between the history
of the stress, the history of the density, and the history of the deformation gradient. More
recently, Erbay and Şengül [10] showed that by considering (4), it is possible to obtain
a thermodynamically consistent model for stress-rate-type viscoelastic solids within the
context of strain-limiting theory. This is a big step towards understanding new material
phenomena by posing new models that are mechanically meaningful and mathematically
tractable at the same time. In this work, we would like to generalise the model introduced
in [10] as well as show the existence of travelling-wave solutions under certain conditions
on the non-linearities, which is the first notion of solutions investigated in this context.
More precisely, we would like to consider the constitutive relation

B = H(T, Ṫ). (5)
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As noted by Şengül in [2] (see also [10]) under the assumption of isotropy, from (5) one
obtains

B = α0I + α1T + α2Ṫ + α3T2 + α4Ṫ2 + α5(TṪ + ṪT) + α6
(
T2Ṫ + ṪT2)

+ α7
(
Ṫ2T + TṪ2) + α8

(
T2Ṫ2 + Ṫ2T2), (6)

with the scalar functions αi (i = 0, . . . , 8) depending on the invariants

tr T, tr Ṫ, tr T2, tr Ṫ2, tr T3, tr Ṫ3,

tr(TṪ), tr
(
T2Ṫ

)
, tr

(
Ṫ2T

)
, tr

(
T2Ṫ2).

We would like to follow the approach of smallness of the displacement gradient as in (3).
However, due to having the stress rate rather than the Cauchy–Green tensor in (4), in this
case we need to make the following assumptions;

∥∥∥∥∂u
∂x

∥∥∥∥ = O(δ),
∥∥∥∥∂v
∂x

∥∥∥∥ = O(δ), δ � 1. (7)

Using (7), we are able to replace B with I + 2ε in the constitutive relation (5).

3 Thermodynamical analysis
In the work of Erbay and Şengül [10], thermodynamical analysis of a model obtained from
(5) under the assumptions of (7) was carried out using a Gibbs potential formulation. It
was shown that the model

ε = h(T) – κTt , (8)

where h is the derivative of the complementary free energy satisfying h(0) = 0 and κ is a
non-negative constant, is thermodynamically consistent. This meant that a model with
(8) as the constitutive relation satisfies the first and second laws of thermodynamics in
the form of the Clausius–Duhem inequality. The key idea was that a formulation based
on the complementary free energy (or equivalently Gibbs free energy) was used instead
of the classical formulation based on the Helmholtz energy function so that it was not
necessary to introduce strain-like quantities. As a result, the thermodynamic potentials
depend on the stress and the stress rate.

Without loss of generality, assuming that the density changes due to the propagating
waves are neglected, similar arguments to those in [10] lead to

(∂Tφc – A)Ṫ ≥ 0, (9)

where A = A(T , Ṫ) is the Almasi–Hamel strain tensor and φc is the complementary energy,
which can be shown to be independent of the stress rate, that is, φc = φc(T). This inequality
suggests that A consists of two parts, one that is equal to ∂TφC , and the other, say l(T , Ṫ),
which satisfies

l(T , Ṫ)Ṫ ≥ 0. (10)
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Since l, in general, depends non-linearly on T and Ṫ , it is difficult to draw a conclusion
from (10). However, this is not the case when l depends linearly on the stress rate. There-
fore, we will consider the case when

A(T , Ṫ) = h(T) – γ (T)Ṫ , (11)

where h(T) = ∂Tφc for some scalar function γ . In this case, one can conclude from the
thermodynamic inequality (9) that γ (T) ≥ 0.

4 Travelling-wave solutions
In one-space dimension, the linearised strain can be written as ε = ∂xu(x, t), where u is
the displacement function and ∂x stands for partial differentiation with respect to x. As
expressed in [10], owing to (2), the Almansi–Hamel strain A(x, t) can be rewritten as

A = ε –
1
2

(∂xu)2.

With the small-strain assumption, we are able to replace A by ε in the equations derived
above. Furthermore, in this case, the difference between the quantities measured in the
reference and current configurations disappears and the material time derivatives become
partial derivatives with respect to time. As a result of separating the Almansi–Hamel strain
tensor into elastic and dissipative parts as in the previous section, we consider

ε = h(T) – l(T , Tt). (12)

Using the equation of motion given as utt = ∂xT as well as the fact that in one-space di-
mension the linearised strain is ε = ∂xu, we obtain

(
h(T) – l(T , Tt)

)
tt = ∂xxT . (13)

Passing to the travelling-wave variable ξ = x – ct so that T = T(ξ ) and Tt = –c T ′, from (13)
we obtain the ordinary differential equation given as

T ′′ + c2l′′
(
T , –c T ′) = c2h′′(T), (14)

where ′ stands for differentiation with respect to ξ . We are considering heteroclinic trav-
elling waves taking two constant values at minus and plus infinity, say T–∞ and T+∞, respec-
tively. Therefore, the boundary conditions we require are the following:

T ′(ξ ), T ′′(ξ ) → 0 as ξ → ±∞. (15)

Integrating (14) introduces an integration constant. Using boundary conditions (15), we
find that the integration constant is zero due to

l′
(
T , –cT ′) = lT

(
T , –cT ′)T ′ – clT ′

(
T , –cT ′)T ′′.
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Integrating once more with respect to ξ , and using T–∞ and T+∞ as the two constant states
at infinities in order to find the integration constant explicitly, we obtain

l
(
T , –cT ′) =

1
c2

(
T+∞ + T–∞

2
– T

)
+

(
h(T) –

h(T+∞) + h(T–∞)
2

)

+
l(T+∞, 0) + l(T–∞, 0)

2
.

(16)

Clearly, (16) is a first-order ordinary differential equation that is non-linear in its highest-
order derivative term. Therefore, in order to be able to proceed with the solution, it is
more convenient to look at the case when the non-linearity is linear in the highest-order
derivative term (see also (11)). This means we should have started with the constitutive
relation given by

ε = h(T) – γ (T)Tt . (17)

Here, the stress dependence is non-linear, whereas the stress-rate dependence is linear.
Once again, using the fact that in the one-dimensional setting, ε = ux together with the
equation of motion utt = Tx, we obtain the partial differential equation

h(T)tt –
(
γ (T)Tt

)
tt = Txx. (18)

Looking at the second term on the left-hand side, we can define a function ψ(T) such that
ψ(T)t = γ (T)Tt so that we can rewrite (18) as

h(T)tt – ψ(T)ttt = Txx. (19)

Defining ψ in this manner requires ψT (T) = γ (T), which we will use later. Looking at the
travelling-wave solutions of the form T = T(ξ ) with ξ = x – ct again, we obtain

c2h′′(T) + c3ψ ′′′(T) = T ′′. (20)

Integrating (20) once and using (15) as before to find the corresponding integration con-
stant, say A1, we find that A1 = 0 so that

c2h′(T) + c3ψ ′′(T) = T ′

holds. Integrating one more time we obtain

c2h(T) + c3ψ ′(T) = T + A2, (21)

where A2 is the integration constant of this step. Now, using (15) again, we obtain that
c2h(T±∞) = T±∞ + A2 and adding these equalities we find

A2 =
1
2
(
c2(h

(
T+

∞
)

+ h
(
T–

∞
))

–
(
T+

∞ + T–
∞

))
,
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so that the wave speed c is found to satisfy

c2 =
T–∞ – T+∞

h(T–∞) – h(T+∞)
. (22)

Using the above value of A2 in (21) and writing ψ ′(T) = γ (T)T ′ we obtain

T ′ =
1

c3γ (T)

[
T –

(T+∞ + T–∞)
2

– c2
(

h(T) –
h(T+∞) + h(T–∞)

2

)]
. (23)

Equation (23) is a first-order ordinary differential equation and it possesses solutions
whose implicit form can be found by a single integration. In order to be able to find so-
lutions explicitly, we need to consider the restrictions we might need on the non-linear
functions γ and h. First, it is easy to check that the equilibrium points are T = T±∞. More-
over, considering the constitutive relation (17), when γ (T) = 0 there is no stress-rate part,
which means we must be in the elastic case. Therefore, in this case, we cannot obtain hete-
roclinic travelling-wave solutions. Similarly, when h(T) is linear in T , that is, h(T) = h′(0)T
with h′(0) �= 0, we can only obtain a constant solution.

We can summarise our findings as follows:

Theorem 1 Assume that h ∈ C2, ψ ∈ C3, and the following conditions hold;
(a) ψ : R →R is a strictly increasing function of its variable;
(b) h : R→R is such that h(z) �= h′(0)T with h′(0) �= 0;
(c) T(z) → T+∞ as z → ∞, and T(z) → T–∞ as z → –∞.

Then, equation (18) possesses heteroclinic, travelling-wave solutions T(ξ ) ∈ S with the
travelling-wave variable ξ = x – ct. The two constant states of the waves are given by T+∞
and T–∞, which are also the equilibrium states of the equation, and c is the wave speed given
by (22).

5 Travelling-wave profiles for some special cases
Since heteroclinic travelling waves propagate from one constant state to another when
c2 > 0, using (22) we must have either T–∞ > T+∞ and h(T–∞) > h(T+∞), or T–∞ < T+∞ and
h(T–∞) < h(T+∞). Without loss of generality, we can take the first case and choose

T–
∞ = 1, T+

∞ = 0. (24)

In this case, we find that c2 = 1/h(1) so that (23) reduces to

T ′ =
1

c3γ (T)

[
T –

1
2

– c2
(

h(T) –
h(0) + h(1)

2

)]
. (25)

Assuming that h(0) = 0, this equation reduces to

T ′ =
1

c3γ (T)h(1)
(
h(1)T – h(T)

)
. (26)

Looking at this equation and using (24) as equilibrium points, we can deduce that γ (0) �= 0
and γ (1) �= 0. Finally, one can show that the fact that T(ξ ) is a solution implies that T(ξ + p)
is also a solution, for any p. Hence, without loss of generality, we can choose T(0) = 1/2.
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To find the solution T(ξ ) one can rewrite (26) to obtain

c3γ (T)h(1)T ′

h(1)T – h(T)
= 1 (27)

and integrating with respect to the travelling-wave variable ξ we obtain

c3h(1)
∫

γ (T)T ′

h(1)T – h(T)
dξ = ξ + A3, (28)

where the integration constant A3 depends on the integrated form of the expression on
the left. Letting

�
(
T(ξ )

)
= c3h(1)

∫
γ (T)

h(1)T – h(T)
dT ,

one sees from (28) that

A3 = �
(
T(0)

)
= �(1/2). (29)

Taking all the restrictions we obtained for γ and h into account, in order to illustrate the
travelling-wave profiles, we will first consider when

h(T) = T2 and γ (T) = T2 + 1. (30)

The readers are referred to Appendix A for the calculations leading to the solution given
in the implicit form as

–T – 2 log(T – 1) + log(T) = ξ + A3,

which is plotted in Fig. 1.
These choices of non-linearities clearly satisfy the restrictions required in Theorem 1

and hence they are important.

Figure 1 Travelling wave T (ξ ) for h(T ) = T2, γ (T ) = T2 + 1
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Figure 2 Travelling wave T (ξ ) for h(T ) = T2, γ (T ) = (T – 1
2 )

4

Next, we consider the case when

h(T) = T2 and γ (T) =
(

T –
1
2

)4

. (31)

By keeping h the same and changing only the function γ , we aim to see how dramatically
the travelling-wave profile is effected. Moreover, in this case, γ > 0 is satisfied only for a
certain S rather than the whole real line as in the previous case. For this case, we obtain
the solution given implicitly as

–
T
2

+
T2

2
–

T3

3
–

log(1 – T)
16

+
log(T)

16
= ξ + A3,

for which the calculations are available in Appendix B and the travelling-wave profile is
given in Fig. 2.

Next, we consider the case when

h(T) = T2 and γ (T) = log(T + 2). (32)

This choice of functions is due to checking whether it is possible for the non-linearity γ

to be a transcendental function. It turns out that it is possible to have the existence of a
travelling-wave solution in this case. Here, we obtain

– Li2

(
–

T
2

)
+ Li2

(
1 – T

3

)
– log(3) log(T – 1) + log(2) log(T) = ξ + A3,

for which the travelling-wave profile is shown in Fig. 3. The calculations can be found in
Appendix C.

Our final choice for functions h and γ are

h(T) = T2 and γ (T) = arctan(T) + 1. (33)

This choice of γ makes the linearised strain dependent on the arctangent function, which
is also the case in the strain-rate response of materials analysed in [6]. It is clear that a
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Figure 3 Travelling wave T (ξ ) for h(T ) = T2, γ (T ) = log(T + 2)

Figure 4 Travelling wave T (ξ ) for h(T ) = T2, γ (T ) = arctan(T ) + 1

similar travelling-wave profile is obtained here, in the stress-rate model as well. We refer
to Appendix D for the derivation of the solution that is implicitly expressed as

– log(1 – T) + log(T) +
i
2

Li2(–iT) –
i
2

Li2(iT)

+
i
2

(
Li2

((
1
2

+
i
2

)
(–i + T)

)
+ log

((
–

1
2

–
i
2

)
(T – 1)

)
log(1 + iT)

)

–
i
2

(
Li2

((
1
2

–
i
2

)
(i + T)

)
+ log

((
–

1
2

+
i
2

)
(T – 1)

)
log(1 – iT)

)
,

and is plotted in Fig. 4.

6 Conclusions
In this work, we introduce a stress-rate-type viscoelastic constitutive relation and anal-
yse it from the point of view of thermodynamical consistency as well as the mathematical
analysis of the corresponding heteroclinic travelling-wave solutions. Our findings are im-
portant owing to the fact that this is the first time a stress-rate-type model for material re-



Duman and Şengül Advances in Continuous and Discrete Models          (2023) 2023:6 Page 11 of 15

sponse is shown to admit some notion of solutions. There are still a number of related open
problems concerning the corresponding partial differential equation (18). This equation is
different from classical equations resulting from mechanical theories in two respects, the
first one being that the inertia term is non-linear, and the second one that the unknown
is not the displacement or the deformation, but the stress. As a result, there is no avail-
able way to approach the problem using standard techniques. In the case of the strain-rate
modelling, Erbay, Erkip and Şengül [19] obtained the local-in-time existence of solutions
and Şengül [20] obtained global solutions under some restrictions of the non-linearities
for a slightly related partial differential equation by converting h and hence eliminating
the non-linearity on the inertia term as a result of a series change of variables. It would
be favourable to attack these equations directly rather than trying to put them in classical
form. However, such a mathematical tool does not currently exist. It is also worth men-
tioning that the partial differential equation obtained in the strain-rate case and equation
(18) have completely different behaviours in terms of their stabilities, as shown in [10] in
the very simple case of linear h. Therefore, it is expected that a brand new approach should
be adopted for (18). Hopefully, such a mathematical tool will be introduced as a result of
careful investigations of experimental results on material behaviour.

Appendix A: The case of quadratics
Here, we consider the case when h(T) = T2, γ (T) = T2 + 1. From equation (22) we can
conclude that c = 1. Inserting these into (28) we obtain

∫ T2 + 1
T – T2 dT = ξ + A3,

which implies

∫ (
–1 +

1
T

–
2

T – 1

)
dT = ξ + A3,

and hence –T – 2 log(T – 1) + log(T) = ξ + A3. Inserting T(ξ = 0) = 1/2 we are able to find
the integration constant as A3 = log(2) – 1

2 .

Appendix B: The case of quadratic and quartic
Here, we consider the case when h(T) = T2, γ (T) = (T – 1

2 )4. From equation (22), we have
c = 1 again. Inserting these into (28) we obtain

∫ (T – 1
2 )4

T – T2 dT = ξ + A3,

implying

∫ (T2 – T + 1
4 )2

T – T2 dT = ξ + A3.
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Now, for brevity of calculation we define k := T2 – T . It is important to note that this is
not a change of variables and that the integration variable is still dT . We obtain

∫ (k + 1
4 )2

–k
dT = ξ + A3 ⇔

∫ k2 + 1
2 k + 1

16
–k

dT = ξ + A3

⇔ –
∫

k +
1
2

+
1

16
k–1 dT = ξ + A3.

This gives

–
∫

T2 – T +
1
2

+
1

16
1

T – 1
–

1
16

1
T

dT = ξ + A3.

As a result we obtain

–
T
2

+
T2

2
–

T3

3
–

log(1 – T)
16

+
log(T)

16
= ξ + A3.

Inserting T(ξ = 0) = 1/2 we are able to find the integration constant as A3 = – 1
6 .

Appendix C: The case of quadratic and logarithm
In this case we consider h(T) = T2, γ (T) = log(2 + T). From equation (22), we have c = 1
again. Inserting these into (28) we obtain

∫
log(2 + T)

T – T2 dT = ξ + A3,

which is equivalent to

∫ – log(2 + T)
(T – 1

2 )2 – 1
4

dT = ξ + A3.

This gives

–
∫ – log(2 + T)

T – 1
dT +

∫ – log(2 + T)
T

dT = ξ + A3.

Defining k := 2 + T , the left-hand side becomes
∫ log k

k–3 dk +
∫ – log k

k–2 dk. Since both integrals
are of the form

∫ log x
x–a dx, we evaluate this expression to insert the value for a later. We can

also write the same expression by defining y := x – a as follows:

∫
log(y + a)

y
dy =

∫
log(a( y

a + 1))
y

dy =
∫

log a + log( y
a + 1)

y
dy

= log a log y +
∫

log( y
a + 1)
y

dy.

Now, we can define z = – y
a to obtain log a log y +

∫ log(–z+1)
z dz. Using the polylogarithm

identity

log a log y +
∫ – Li1(z)

z
dz = log a log y – Li2(z) = log a log(x – a) – Li2

(
1 –

x
a

)
.
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Inserting the values in place we obtain

– Li2

(
–

T
2

)
+ Li2

(
1 – T

3

)
– log(3) log(T – 1) + log(2) log(T) = ξ + A3.

Inserting T(ξ = 0) = 1/2 we are able to find the integration constant as A3 = – Li2(– 1
4 ) +

Li2( 1
6 ) – log2(2) – log(3)(– log(2) + iπ ).

Appendix D: The case of quadratic and arctangent
We consider h(T) = T2, γ (T) = arctan(T)+1. From equation (22) we obtain c = 1. Inserting
these into (28) it follows that

∫
arctan T + 1

T – T2 dT = ξ + A3.

We use the complex logarithm form of the inverse tangent function to obtain

∫ i
2 log( i+T

i–T ) + 1
T – T2 dT = ξ + A3,

which can be rewritten as

i
2

∫
log(i + T)

T
+

log(i + T)
1 – T

dT –
i
2

∫
log(i – T)

T

+
log(i – T)

1 – T
dT +

∫ 1
T

+
1

1 – T
dT = ξ + A3.

Calculating the integrals, we obtain

–
1
2

i
(

Li2

((
1
2

–
i
2

)
(i + T)

)
– Li2(1 – iT)

+
(

log

((
–

1
2

+
i
2

)
(T – 1)

)
– log(iT)

)
log(T + i)

)
.

As a result, we obtain

1
2

i
(

Li2

((
1
2

+
i
2

)
(–i + T)

)
– Li2(iT + 1)

+ log(–T + i)
(

log

((
–

1
2

–
i
2

)
(T – 1)

)
– log(–iT)

))

+ log(T) – log(1 – T) = ξ + A3.

With some simplifications we have

1
2

i
(

Li2

((
1
2

+
i
2

)
(–i + T)

)
– Li2(iT + 1)

+ log(–T + i)
(

log

((
–

1
2

–
i
2

)
(T – 1)

)
– log(–iT)

))
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–
1
2

i
(

Li2

((
1
2

–
i
2

)
(i + T)

)
– Li2(1 – iT)

+
(

log

((
–

1
2

+
i
2

)
(T – 1)

)
– log(iT)

)
log(T + i)

)
– log(1 – T) + log(T) = ξ + A3.

Inserting T(0) = 1/2 we are able to find the integration constant as

A3 =
1
8

(
4i

(
– Li2

(
i
2

)
+ Li2

(
–

i
2

)
– Li2

(
3
4

+
i
4

)
+ Li2

(
3
4

–
i
4

))

– π log

(
5
4

)
+ 12 log(2) cot–1(2)

)
.
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