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Abstract
This paper considers a one-dimensional thermoelastic Timoshenko beam system
with suspenders, general weak internal damping with time varying coefficient, and
time-varying delay terms. Under suitable conditions on the nonlinear terms, we prove
a general stability result for the beam model, where exponential and polynomial
decay are special cases. We also gave some examples to illustrate our theoretical
finding.

MSC: 35D30; 74K10; 74H20; 74H40; 65M60; 65M15

Keywords: General decay; Timoshenko beam; Thermoelasticity; Suspenders; Time
delay

1 Introduction
In this paper, we consider a thermoelastic Timoshenko beam with suspension cables, weak
internal damping, and a time-varying delay damping of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρutt(x, t) – αuxx(x, t) – λ(ϕ – u)(x, t)

+ γ1a(t)g1(ut(x, t)) + γ2a(t)g2(ut(x, t – τ (t))) = 0,

ρ1ϕtt(x, t) – k(ϕx + ψ)x(x, t) + λ(ϕ – u)(x, t) + γ3ϕt(x, t) = 0,

ρ2ψtt(x, t) – bψxx(x, t) + k(ϕx + ψ)(x, t) – mθx(x, t) = 0,

ρ3θt(x, t) – βθxx(x, t) – mψxt(x, t) = 0,

(1.1)

where (x, t) ∈ (0, 1) × (0,∞), ϕ represents the transverse displacement (in vertical direc-
tion) of the beam cross section, ψ is the angle of rotation of a cross-section. The vertical
displacement of the vibrating spring (the cable) is represented by the function u, θ depicts
the thermal moment of the beam, λ > 0 is the common stiffness of the string, and α > 0 is
the elastic modulus of the string (holding the cable to the deck). The positive constants ρ ,
ρ1, ρ2 are the density of the mass material of the cable, the mass density, and the moment of
mass inertia of the beam, respectively. Also, b, k, β , m represent the rigidity coefficient of
the cross-section, the shear modulus of elasticity, the thermal diffusivity, and the coupling
coefficient which depends on the material properties, respectively. The function τ (t) > 0
is the time-varying delay, γ1 and γ2 are real positive damping constants, g1 and g2 are the
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damping functions, and a(t) is a nonlinear weight function. We supplement (1.1) with the
boundary conditions

⎧
⎨

⎩

u(0, t) = ϕx(0, t) = ψ(0, t) = θx(0, t) = 0, t > 0,

u(1, t) = ϕ(1, t) = ψx(1, t) = θ (1, t) = 0, t > 0,
(1.2)

and the initial data

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x),

ψ(x, 0) = ψ0(x), θ (x, 0) = θ0(x), in (0, 1),

ut(x, 0) = u1(x), ϕt(x, 0) = ϕ1(x),

ψt(x, 0) = ψ1(x), in (0, 1),

ut(x, t – τ (0)) = f0(x, t – τ (0)), in (0, 1) × (0, τ (0)).

(1.3)

The stability of the above thermoelastic Timoshenko system with suspension cables would
be our penultimate focus in this work. The Timoshenko beam model is arguably very
popular and most used when the vibration of a beam exhibits significant transverse shear
strain. A model to describe this phenomenon was introduced by Timoshenko [35] in 1921,
see also [15, 18]. The nonlinear vibration of suspension bridges have captured the atten-
tion of different researchers and a number of research articles were written on the topic.
The somewhat unpredictable large oscillations of suspension bridges have been modeled
in diverse ways, one may see [1, 14, 25]. In any attempt to adequately describe the com-
plicated dynamics of a suspension bridge, a robust model would be one with a consider-
able amount of degrees of freedom. Without prejudice, some simplified models have been
considered, but do not account for a number of realistic behavior of suspension bridges,
e.g., torsional oscillations. Of an advantage is the fact that rigorous mathematical analy-
sis is easily carried out with such simpler models. A typical simplified model is the one-
dimensional vibrating beam model, where torsional motion is neglected by ignoring sec-
tional dimensions of the beam when they are negligible compared to length of the beam.
The emergence of string-beam systems which model a nonlinear coupling of a beam and
main cable (the string) were born out of the pioneering works of Lazer, McKenna, and
Walter [23, 25, 26] (see also [7] and its references). Though initially modeled through the
classic Euler–Bernoulli beam theory, the Timoshenko beam theory is also proven to per-
form better in predicting a beam response to vibrations than a model based on the classi-
cal Euler–Bernoulli beam theory. Indeed, the Timoshenko beam theory takes into account
both rotary inertia and shear deformation effects, these are often neglected when applying
Euler–Bernoulli beam theory.

In the Timoshenko beam with suspenders which is modeled by (1.1), the suspenders are
cables which are elastic in nature and are attached to the beam with elastic springs. The
temperature dissipation here is assumed to be governed by the Fourier law of heat conduc-
tion. For a(t) ≡ 1, g1(s) ≡ s and γ2 ≡ 0, g2 ≡ 0 in system (1.1), Bochichio et al. [6] proved a
well-posedness and an exponential stability result. A number of works have been done on
different thermoelastic Timoshenko models without suspenders (see [10, 12, 16, 17, 28]
and references in them). Time delays occur in systems modeling many phenomena in ar-
eas such as biosciences, medicine, physics, robotics, economics, chemical, thermal, and
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structural engineering. These phenomena depend on both present and some past history
of occurrences, see [8, 9, 13, 21, 34] and the examples therein. In the case of constant delay
and constant weight, the delay term usually accounts for the past history of strain, only up
to some finite time τ (t) ≡ τ .

A step further involves results in the literature about constant weights (γ1a(t) ≡ γ1,
γ2a(t) ≡ γ2 constants) and time-varying delay τ (t). Works presenting the exponential sta-
bility result for wave equation with boundary or internal time-varying delay appeared in
Nicaise et al. [32, 33]. Enyi and Mukiawa in [11] presented a general decay result for a vis-
coelastic plate equation under the condition |γ2| < |γ1|√(1 – d). Furthermore, in [4, 24],
the authors presented some existence and stability results for wave equation with inter-
nal time-varying delay and time-varying weights; and for suspension bridge models, see
Mukiawa [3, 27, 29, 30].

Motivated by the works in [3, 6, 29], in the current paper, we are concerned with the
stability result for the thermoelastic Timoshenko system with suspension cables, time-
varying internal feedback, and time-varying weight given in (1.1)–(1.3). The result in [6]
is a particular case of our result in this paper.

We arrange this paper in the following manner. In Sect. 2, we state the needed assump-
tions. In Sect. 3, we present the proof of some technical and needed lemmas for our main
result. In the last Sect. 4, we present and prove our main stability result. Throughout this
paper, c and ci, i = 1, 2, . . . , are generic positive constants, which are not necessarily the
same from line to line.

2 Functional settings and assumptions
In this section, we state some needed assumptions on the damping coefficients, nonlinear
functions, and the time-varying delay. As in [5, 32, 33], we assume the following condi-
tions:

(A1) Function a : [0, +∞) → (0, +∞) is a nonincreasing C1-function such that there ex-
ists a positive constant C satisfying

∣
∣a′(t)

∣
∣ ≤ Ca(t),

∫ +∞

0
a(t) dt = +∞. (2.1)

(A2) Fuction g1 : R → R is a nondecreasing C0-function such that there exist positive
constants C1, C2, r and a convex increasing function χ ∈ C1([0, +∞))∩C2((0, +∞))
satisfying χ (0) = 0 or χ is a nonlinear strictly convex C2-function on (0, r] with
χ ′(0),χ ′′ > 0 such that

s2 + g2
1 (s) ≤ χ–1(sg1(s)

)
, for all |s| ≤ r, (2.2)

C1s2 ≤ sg1(s) ≤ C2s2, for all |s| ≥ r. (2.3)

Function g2 : R →R is an increasing and odd C1-function such that for some posi-
tive constants C3, α1, α2,

∣
∣g ′

2(s)
∣
∣ ≤ C3, (2.4)

α1
(
sg2(s)

) ≤ G(s) ≤ α2
(
sg1(s)

)
, (2.5)
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where

G(s) =
∫ s

0
g2(r) dr. (2.6)

(A3) There exist τ0, τ1 > 0 such that

0 < τ0 ≤ τ (t) ≤ τ1, ∀t > 0, (2.7)

τ ∈ W 2,∞(0, T), ∀T > 0, (2.8)

τ ′(t) ≤ d < 1, ∀t > 0. (2.9)

(A4) The damping coefficients satisfy

γ2α2(1 – dα1) < α1(1 – d)γ1. (2.10)

Remark 2.1 Using the monotonicity of g2 and the mean value theorem for integrals, we
deduce that

G(s) =
∫ s

0
g2(r) dr < sg2(s). (2.11)

It follows from (2.5) that α1 < 1.

Similarly, as in Nicaise and Pignotti [31], we introduce the following change of variable:

z(x,σ , t) = ut
(
x, t – τ (t)σ

)
, for (x,σ , t) ∈ (0, 1) × (0, 1) × (0,∞). (2.12)

It follows that

τ (t)zt(x,σ , t) +
(
1 – τ ′(t)σ

)
zσ (x,σ , t) = 0. (2.13)

Therefore, system (1.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρutt(x, t) – αuxx(x, t) – λ(ϕ – u)(x, t) + γ1a(t)g1(ut(x, t))

+ γ2a(t)g2(z(x, 1, t)) = 0,

ρ1ϕtt(x, t) – k(ϕx + ψ)x(x, t) + λ(ϕ – u)(x, t) + γ3ϕt(x, t) = 0,

ρ2ψtt(x, t) – bψxx(x, t) + k(ϕx + ψ)(x, t) – mθx(x, t) = 0,

ρ3θt(x, t) – βθxx(x, t) – mψxt(x, t) = 0,

τ (t)zt(x,σ , t) + (1 – τ ′(t)σ )zσ (x,σ , t) = 0,

(2.14)

subjected to the boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

u(0, t) = ϕx(0, t) = ψ(0, t) = θx(0, t) = 0, t > 0,

u(1, t) = ϕ(1, t) = ψx(1, t) = θ (1, t) = 0, t > 0,

z(x, 0, t) = ut(x, t), x ∈ (0, 1), t > 0,

(2.15)
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and initial data

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, 0) = u0(x), ϕ(x, 0) = ϕ0(x),

ψ(x, 0) = ψ0(x), θ (x, 0) = θ0(x), in (0, 1),

ut(x, 0) = u1(x), ϕt(x, 0) = ϕ1(x),

ψt(x, 0) = ψ1(x), in (0, 1),

z(x,σ , 0) = ut(x, –τ (0)σ ) = f0(x, –τ (0)σ ), in (0, 1) × (0, 1).

(2.16)

We introduce the following spaces:

H1
a(0, 1) =

{
φ ∈ H1(0, 1) : φ(0) = 0

}
,

H1
b (0, 1) =

{
φ ∈ H1(0, 1) : φ(1) = 0

}
,

H2
a(0, 1) =

{
φ ∈ H2(0, 1) : φx ∈ H1

a (0, 1)
}

,

H2
b (0, 1) =

{
φ ∈ H2(0, 1) : φx ∈ H1

b (0, 1)
}

.

For completeness, we state without proof the existence and uniqueness result for prob-
lem (1.1)–(1.3). The result can be established using the Faedo–Galerkin approximation
method, see [5] or standard nonlinear semigroup method, see [19, 20].

Theorem 2.1 Let

(u0,ϕ0,ψ0, θ0) ∈ H2(0, 1) ∩ H1
0 (0, 1) × H2

a(0, 1) ∩ H1
b (0, 1) × H2

b (0, 1)

∩ H1
a (0, 1) × H2

a (0, 1) ∩ H1
b (0, 1)

and

(u1,ϕ1,ψ1) ∈ H1
0 (0, 1) × H1

a (0, 1) × H1
b (0, 1), f0

(·, –τ (0)
) ∈ H1

0
(
(0, 1); H1(0, 1)

)

be given such that

f0(·, 0) = u1.

Suppose conditions (A1)–(A4) hold. Then, problem (1.1)–(1.3) has a unique global weak
solution in the class

u ∈ L∞(
[0, +∞); H2(0, 1) ∩ H1

0 (0, 1)
)
, ut ∈ L∞(

[0, +∞); H1
0 (0, 1)

)
,

utt ∈ L∞(
(0, +∞); L2(0, 1)

)
,

ϕ ∈ L∞(
[0, +∞); H2

a (0, 1) ∩ H1
b (0, 1)

)
, ϕt ∈ L∞(

[0, +∞); H1
b (0, 1)

)
,

ϕtt ∈ L∞(
(0, +∞); L2(0, 1)

)
,

ψ ∈ L∞(
[0, +∞); H2

b (0, 1) ∩ H1
a(0, 1)

)
, ψt ∈ L∞(

[0, +∞); H1
a (0, 1)

)
,

ψtt ∈ L∞(
(0, +∞); L2(0, 1)

)
,

θ ∈ L∞(
[0, +∞); H2

a(0, 1) ∩ H1
b (0, 1)

)
, θt ∈ L∞(

(0, +∞); L2(0, 1)
)
.
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3 Technical lemmas
In this section, we prove some important lemmas which will be essential in establishing
the main result. Let μ̄ be a positive constant satisfying

γ2(1 – α1)
α1(1 – d)

< μ̄ <
γ1 – γ2α2

α2
(3.1)

and set

μ(t) = μ̄a(t).

The energy functional of system (2.14)–(2.16) is defined by

E(t) =
1
2

∫ 1

0

[
ρu2

t + ρ1ϕ
2
t + ρ2ψ

2
t + αu2

x + k(ϕx + ψ)2 + bψ2
x + λ(ϕ – u)2]dx

+
1
2

∫ 1

0
ρ3θ

2 dx + μ(t)τ (t)
∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx.

(3.2)

Lemma 3.1 Let (u,ϕ,ψ , θ , z) be the solution of system (2.14)–(2.16). Then, the energy func-
tional (3.2) satisfies

dE(t)
dt

≤ – a(t)[γ1 – μ̄α2 – γ2α2]
∫ 1

0
utg1(ut) dx

– a(t)
[
μ̄

(
1 – τ ′(t)

)
α1 – γ2(1 – α1)

]
∫ 1

0
z(x, 1, t)g2

(
z(x, 1, t)

)
dx

– γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx

≤ 0, ∀t ≥ 0.

(3.3)

Proof Multiplying (2.14)1 by ut , (2.14)2 by ϕt , (2.14)3 by ψt , and (2.14)4 by θ , integrating
the outcome over (0, 1), and applying integration by parts and the boundary conditions,
we get

1
2

d
dt

∫ 1

0

[
ρu2

t + αu2
x + λ(ϕ – u)2]dx

= λ

∫ 1

0
ϕt(ϕ – u) dx – γ1a(t)

∫ 1

0
utg1(ut) dx – γ2a(t)

∫ 1

0
utg2

(
z(x, 1, t)

)
dx,

(3.4)

1
2

d
dt

∫ 1

0

[
ρ1ϕ

2
t + k(ϕx + ψ)2]dx

= –γ3

∫ 1

0
ϕ2

t dx – λ

∫ 1

0
ϕt(ϕ – u) dx + k

∫ 1

0
ψt(ϕx + ψ) dx,

(3.5)

1
2

d
dt

∫ 1

0

[
ρ2ψ

2
t + bψ2

x
]

dx = m
∫ 1

0
ψtθx dx – k

∫ 1

0
ψt(ϕx + ψ) dx, (3.6)

1
2

∫ 1

0
ρ3θ

2 dx = –β

∫ 1

0
θ2

x dx – m
∫ 1

0
ψtθx dx. (3.7)
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Adding (3.4)–(3.7), we arrive at

1
2

∫ 1

0

(
ρu2

t + αu2
x + λ(ϕ – u)2 + ρ1ϕ

2
t + k(ϕx + ψ)2 + ρ2ψ

2
t + bψ2

x + ρ3θ
2)dx

= –γ1a(t)
∫ 1

0
utg1(ut) dx – γ2a(t)

∫ 1

0
utg2

(
z(x, 1, t)

)
dx

– γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx.

(3.8)

Now, multiplying equation (2.14)5 by μ(t)g2(z(x,σ , t)) and integrating over (0, 1) × (0, 1),
we obtain

μ(t)τ (t)
∫ 1

0

∫ 1

0
zt(x,σ , t)g2

(
z(x,σ , t)

)
dσ dx

+ μ(t)
∫ 1

0

∫ 1

0

(
1 – τ ′(t)σ

)
zσ (x,σ , t)g2

(
z(x,σ , t)

)
dσ dx = 0.

(3.9)

On account of (2.6), we can write

∂

∂σ

[
G

(
z(x,σ , t)

)]
= zσ (x,σ , t)g2

(
z(x,σ , t)

)
. (3.10)

Therefore, (3.9) becomes

μ(t)τ (t)
∫ 1

0

∫ 1

0
zt(x,σ , t)g2

(
z(x,σ , t)

)
dσ dx

= –μ(t)
∫ 1

0

∫ 1

0

(
1 – τ ′(t)σ

) ∂

∂σ

[
G

(
z(x,σ , t)

)]
dσ dx.

(3.11)

It follows that

d
dt

(

μ(t)τ (t)
∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx

)

= –μ(t)
∫ 1

0

∫ 1

0

∂

∂σ

[(
1 – τ ′(t)σ

)
G

(
z(x,σ , t)

)]
dσ dx

+ μ′(t)τ (t)
∫ l

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx

= μ(t)
∫ 1

0

(
G

(
z(x, 0, t)

)
– G

(
z(x, 1, t)

))
dx + μ(t)τ ′(t)

∫ 1

0
G

(
z(x, 1, t)

)
dx

+ μ′(t)τ (t)
∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx

= μ(t)
∫ 1

0
G

(
ut(x, t)

)
dx – μ(t)

(
1 – τ ′(t)

)
∫ 1

0
G(z(x, 1, t) dx

+ μ′(t)τ (t)
∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx.

(3.12)
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Recalling the definition of the energy functional (3.2), and adding (3.8) and (3.12), we ob-
tain

dE(t)
dt

= – γ1a(t)
∫ 1

0
utg1(ut) dx – γ2a(t)

∫ 1

0
utg2

(
z(x, 1, t)

)
dx

+ μ(t)
∫ 1

0
G

(
ut(x, t)

)
dx – μ(t)

(
1 – τ ′(t)

)
∫ 1

0
G(z(x, 1, t) dx

– γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx + μ′(t)τ (t)
∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx.

(3.13)

On the account of (A1) and (2.5), we get

dE(t)
dt

≤ –
(
γ1a(t) – μ(t)α2

)
∫ 1

0
utg1(ut) dx – γ2a(t)

∫ 1

0
utg2

(
z(x, 1, t)

)
dx

– μ(t)
(
1 – τ ′(t)

)
∫ 1

0
G(z(x, 1, t) dx – γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx.
(3.14)

Now, we consider the convex conjugate of G defined by

G∗(s) = s
(
G′)–1(s) – G

((
G′)–1(s)

)
, ∀s ≥ 0, (3.15)

which satisfies the generalized Young inequality (see [2])

AB ≤ G∗(A) + G(B), ∀A, B > 0. (3.16)

Using (2.5) and the definition of G, we get

G∗(s) = sg–1
2 (s) – G

(
g–1

2 (s)
)
, ∀s ≥ 0. (3.17)

Therefore, on account of (2.5) and (3.17), we have

G∗(g2
(
z(x, 1, t)

))
= z(x, 1, t)g2

(
z(x, 1, t)

)
– G

(
z(x, 1, t)

)

≤ (1 – α1)z(x, 1, t)g2
(
z(x, 1, t)

)
.

(3.18)

A combination of (3.14), (3.16), and (3.18) leads to

dE(t)
dt

≤ –
(
γ1a(t) – μ(t)α2

)
∫ 1

0
utg1(ut) dx

+ γ2a(t)
∫ 1

0
(G(ut) + G∗(g2

(
z(x, 1, t)

))
dx

– μ(t)
(
1 – τ ′(t)

)
∫ 1

0
G(z(x, 1, t) dx – γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx

≤ –
(
γ1a(t) – μ(t)α2

)
∫ 1

0
utg1(ut) dx + γ2a(t)α2

∫ 1

0
utg1(ut) dx

+ γ2a(t)(1 – α1)
∫ 1

0
z(x, 1, t)g2

(
z(x, 1, t)

)
dx (3.19)
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– μ(t)
(
1 – τ ′(t)

)
∫ 1

0
G(z(x, 1, t) dx – γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx

≤ –
(
γ1a(t) – μ(t)α2 – γ2a(t)α2

)
∫ 1

0
utg1(ut) dx

–
(
μ(t)

(
1 – τ ′(t)

)
α1 – γ2a(t)(1 – α1)

)
∫ 1

0
z(x, 1, t)g2

(
z(x, 1, t)

)
dx

– γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx.

Recalling that μ(t) = μ̄a(t), it follows from (3.19) that

dE(t)
dt

≤ – a(t)[γ1 – μ̄α2 – γ2α2]
∫ 1

0
utg1(ut) dx

– a(t)
[
μ̄

(
1 – τ ′(t)

)
α1 – γ2(1 – α1)

]
∫ 1

0
z(x, 1, t)g2

(
z(x, 1, t)

)
dx

– γ3

∫ 1

0
ϕ2

t dx – β

∫ 1

0
θ2

x dx.

(3.20)

Using (2.9) and (3.1), we obtain the desired result. This finishes the proof. �

Lemma 3.2 The functional F1, defined by

F1(t) := –ρ2ρ3

∫ 1

0
ψt

∫ x

0
θ (y, t) dy dx,

satisfies, along the solution of system (2.14)–(2.16) and for any ε1, ε2 > 0, the estimate

F ′
1(t) ≤ –

mρ2

2

∫ 1

0
ψ2

t dx + ε1

∫ 1

0
ψ2

x dx + ε2

∫ 1

0
(ϕx + ψ)2 dx

+ c
(

1 +
1
ε1

+
1
ε2

)∫ 1

0
θ2

x dx.
(3.21)

Proof Differentiating F1, using (2.14)3 and (2.14)4, then integrating by parts and exploiting
the boundary conditions lead to

F ′
1(t) = bρ3

∫ 1

0
ψxθ dx + kρ3

∫ 1

0
(ϕx + ψ)

∫ x

0
θ (y, t) dy dx

+ mρ3

∫ 1

0
θ2 dx – ρ2β

∫ 1

0
ψtθx dx – ρ2m

∫ 1

0
ψ2

t dx.
(3.22)

Making use of Cauchy–Schwarz, Young’s, and Poincaré’s inequalities, we get (3.21). �

Lemma 3.3 The functional F2, defined by

F2(t) :=
∫ 1

0

(

ρuut + ρ1ϕϕt + ρ2ψψt +
γ3

2
ϕ2

)

dx,
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satisfies, along the solution of system (2.14)–(2.16), the estimate

F ′
2(t) ≤ –

∫ 1

0

(
α

2
u2

x + λ(ϕ – u)2 + k(ϕx + ψ)2 +
b
2
ψ2

x

)

dx

+
∫ 1

0

(
ρu2

t + ρ1ϕ
2
t + ρ2ψ

2
t
)

dx + c
∫ 1

0
θ2

x dx

+ c
∫ 1

0

∣
∣g1(ut)

∣
∣2 dx + c

∫ 1

0

∣
∣g2

(
z(x, 1, t)

)∣
∣2 dx, ∀t ≥ 0.

(3.23)

Proof Directly differentiating F2, using (2.14)1, (2.14)2, and (2.14)3, then applying integra-
tion by parts and boundary conditions, we obtain

F ′
2(t) = –

∫ 1

0

(
αu2

x + λ(ϕ – u)2 + k(ϕx + ψ)2 + bψ2
x
)

dx

+
∫ 1

0

(
ρu2

t + ρ1ϕ
2
t + ρ2ψ

2
t
)

dx + m
∫ 1

0
ψθx dx

– γ1a(t)
∫ 1

0
ug1(ut) dx – γ2a(t)

∫ 1

0
ug2

(
z(x, 1, t)

)
dx.

(3.24)

Using (A1), Young’s and Poincaré’s inequalities, we obtain (3.23). �

Lemma 3.4 The functional

F3(t) := μ̄τ (t)
∫ 1

0

∫ 1

0
e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx,

satisfies, along the solution of system (2.14)–(2.16), the estimate

F ′
3(t) ≤ – 2F3(t) +

μ̄α2

2

∫ 1

0

(
u2

t +
∣
∣g1(ut)

∣
∣2)dx, ∀t ≥ 0. (3.25)

Proof Differentiating F3, we get

F ′
3(t) = μ̄τ ′(t)

∫ 1

0

∫ 1

0
e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx

– 2μ̄τ (t)τ ′(t)
∫ 1

0

∫ 1

0
σ e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx

+ μ̄τ (t)
∫ 1

0

∫ 1

0
e–2τ (t)σ zt(x,σ , t)g2

(
z(x,σ , t)

)
dσ dx.

(3.26)

Using the last equation in (2.14), we can express the last term on the right hand-side of
(3.26) as

τ (t)
∫ 1

0

∫ 1

0
e–2τ (t)σ zt(x,σ , t)g2

(
z(x,σ , t)

)
dσ dx

=
∫ 1

0

∫ 1

0
e–2τ (t)σ (

τ ′(t)σ – 1
)
zσ (x,σ , t)g2

(
z(x,σ , t)

)
dσ dx
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=
∫ 1

0

∫ 1

0

∂

∂σ

[
e–2τ (t)σ (

τ ′(t)σ – 1
)
G

(
z(x,σ , t)

)]
dσ dx

+ 2τ (t)
∫ 1

0

∫ 1

0
e–2τ (t)σ (

τ ′(t)σ – 1
)
G

(
z(x,σ , t)

)
dσ dx

– τ ′(t)
∫ 1

0

∫ 1

0
e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx

(3.27)

= –
(
1 – τ ′(t)

)
e–2τ (t)

∫ 1

0
G

(
z(x, 1, t)

)
dx +

∫ l

0
G(ut) dx

+ 2τ (t)
∫ 1

0

∫ 1

0
e–2τ (t)σ (

τ ′(t)σ – 1
)
G

(
z(x,σ , t)

)
dσ dx

– τ ′(t)
∫ 1

0

∫ 1

0
e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx.

Substituting (3.27) into (3.26), we arrive at

F ′
3(t) = – 2μ̄τ (t)

∫ 1

0

∫ 1

0
e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx + μ̄

∫ 1

0
G(ut) dx

–
(
1 – τ ′(t)

)
e–2τ (t)

∫ 1

0
G

(
z(x, 1, t)

)
dx.

(3.28)

Using condition (2.5) and Young’s inequality, we obtain (3.26). �

Lemma 3.5 Let (u,ϕ,ψ , θ , z) be the solution of system (2.14)–(2.16). Then, for N , N1, N2 > 0
sufficiently large, the Lyapunov functional L, defined by

L(t) := NE(t) + N1F1(t) + N2F2(t) + F3(t), (3.29)

satisfies, for some positive constants c1, c2, η,

c1E(t) ≤ L(t) ≤ c2E(t), ∀t ≥ 0, (3.30)

and

L′(t) ≤ –ηE(t) + c
∫ 1

0

(
u2

t +
∣
∣g1(ut)

∣
∣2)dx + c

∫ 1

0

∣
∣g2

(
z(x, 1, t)

)∣
∣2 dx, ∀t ≥ 0. (3.31)

Proof Applying Cauchy–Schwarz, Young’s, and Poincaré’s inequalities, we have

∣
∣L(t) – NE(t)

∣
∣ ≤ N1

∣
∣
∣
∣–ρ2

∫ 1

0
ψt

∫ x

0
θ (y, t) dy dx

∣
∣
∣
∣

+ N2

∣
∣
∣
∣

∫ 1

0

(

ρuut + ρ1ϕϕt + ρ2ψψt +
γ3

2
ϕ2

)

dx
∣
∣
∣
∣

+
∣
∣
∣
∣μ̄τ (t)

∫ 1

0

∫ 1

0
e–2τ (t)σ G

(
z(x,σ , t)

)
dσ dx

∣
∣
∣
∣

≤ N2ρ

2

∫ 1

0
u2

t dx +
N2ρ1

2

∫ 1

0
ϕ2

t dx +
(N1 + N2)ρ2

2

∫ 1

0
ψ2

t dx (3.32)
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+
N2γ3

2

∫ 1

0
ϕ2 dx +

N2ρ

2

∫ 1

0
u2

x dx +
N2ρ1

2

∫ 1

0
ϕ2

x dx

+
N2ρ2

2

∫ 1

0
ψ2

x dx +
N1ρ2

2

∫ 1

0

(∫ x

0
θ (y, t) dy

)2

dx

+ μ̄τ (t)
∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx.

Using the relations

∫ 1

0
ϕ2 dx ≤ 2

∫ l

0
(ϕ – u)2 dx + 2

∫ 1

0
u2

x dx,

∫ 1

0
ϕ2

x dx ≤ 2
∫ 1

0
(ϕx + ψ)2 dx + 2

∫ 1

0
ψ2

x dx,

we arrive at

∣
∣L(t) – NE(t)

∣
∣ ≤ N2ρ

2

∫ 1

0
u2

t dx +
N2ρ1

2

∫ 1

0
ϕ2

t dx +
(N1 + N2)ρ2

2

∫ 1

0
ψ2

t dx

+ N2γ3

∫ l

0
(ϕ – u)2 dx +

(

N2γ3 +
N2ρ

2

)∫ 1

0
u2

x dx

+ N2ρ1

∫ 1

0
(ϕx + ψ)2 dx +

(
N2(ρ1 + ρ2)

2

)∫ 1

0
ψ2

x dx

+
N1ρ2

2

∫ 1

0
θ2 dx + μ̄τ (t)

∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx.

(3.33)

From (3.33), we obtain

∣
∣L(t) – NE(t)

∣
∣ ≤ c̄E(t). (3.34)

By choosing N large enough such that

c1 = N – c̄ > 0, c2 = N + c̄ > 0, (3.35)

estimate (4.14) follows. Next, we establish (3.31). Using Lemmas 3.1–3.4, we get

L′(t) ≤ – ρ

∫ 1

0
u2

t dx – [Nγ3 – N2ρ1]
∫ 1

0
ϕ2

t dx –
[

N1
mρ2

2
– N2ρ2

]∫ 1

0
ψ2

t dx

–
N2α

2

∫ 1

0
u2

x dx – N2λ

∫ 1

0
(ϕ – u)2 dx – [N2k – N1ε2]

∫ 1

0
(ϕx + ψ)2 dx

–
[

N2
b
2

– N1ε1

]∫ 1

0
ψ2

x dx –
[

Nβ – N1c
(

1 +
1
ε1

+
1
ε2

)

– N2c
]∫ 1

0
θ2

x dx

–
2e–2τ1

a(0)
μ(t)τ (t)

∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx +

[

ρ + N2ρ +
μ̄α2

2

]∫ 1

0
u2

t dx

+
[

cN2 +
μ̄α2

2

]∫ 1

0

∣
∣g1(ut)

∣
∣2 dx + cN2

∫ 1

0

∣
∣g2

(
z(x, 1, t)

)∣
∣2 dx.
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Choosing

N2 = 1, ε1 =
N2b
4N1

, ε2 =
N2k
2N1

,

we arrive at

L′(t) ≤ – ρ

∫ 1

0
u2

t dx – [Nγ3 – ρ1]
∫ 1

0
ϕ2

t dx –
[

N1
mρ2

2
– ρ2

]∫ 1

0
ψ2

t dx

–
α

2

∫ 1

0
u2

x dx – λ

∫ 1

0
(ϕ – u)2 dx –

k
2

∫ 1

0
(ϕx + ψ)2 dx

–
b
4

∫ 1

0
ψ2

x dx –
[

Nβ – N1c
(

1 +
4N1

b
+

2N1

k

)

– c
]∫ 1

0
θ2

x dx

–
2e–2τ1

a(0)
μ(t)τ (t)

∫ 1

0

∫ 1

0
G

(
z(x,σ , t)

)
dσ dx +

[

2ρ +
μ̄α2

2

]∫ 1

0
u2

t dx

+
[

c +
μ̄α2

2

]∫ 1

0

∣
∣g1(ut)

∣
∣2 dx + c

∫ 1

0

∣
∣g2

(
z(x, 1, t)

)∣
∣2 dx.

(3.36)

Now, we choose N1 large such that

N1
mρ2

2
– ρ2 > 0.

Next, we select N very large so that (4.14) remains true and

Nγ3 – ρ1 > 0, Nβ – N1c
(

1 +
4N1

b
+

2N1

k

)

– c > 0.

Therefore, using the energy functional defined by (3.2), we obtain (3.31). �

4 Stability result
In this section, we are concerned with the main stability result, and is stated as follows.

Theorem 4.1 Let (u,ϕ,ψ , θ , z) be the solution of system (2.14)–(2.16) and assume (A1)–
(A4) hold. Then, for some positive constants δ1, δ2, δ3, and r0, the energy functional (3.2)
satisfies

E(t) ≤ δ1χ
–1
1

(

δ2

∫ t

0
a(s) ds + δ3

)

, t ≥ 0, (4.1)

where

χ1(t) =
∫ 1

t

1
χ0(s)

ds and χ0(t) = tχ ′(r0t).

Proof We divide the proof into two cases:
Case I: χ is linear. Using (A2), we get

C1|s| ≤
∣
∣g1(s)

∣
∣ ≤ C2|s|, ∀s ∈R.
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Thus,

g2
1 (s) ≤ C2sg1(s), ∀s ∈R. (4.2)

Therefore, multiplying (3.31) by a(t) and using (3.3) and (4.2), we conclude that

a(t)L′(t) ≤ – ηa(t)E(t) + ca(t)
∫ 1

0
utg1(ut) dx + ca(t)

∫ 1

0
z(x, 1, t)g2

(
z(x, 1, t)

)
dx

≤ – ηa(t)E(t) – cE′(t), ∀t ∈R
+.

Exploiting (A2) and (3.30), it follows that

L0(t) := a(t)L(t) + cE(t) ∼ E(t) (4.3)

and, for some constant η1 > 0, the functional L0 satisfies

L′
0(t) ≤ –η1a(t)L0(t), ∀t ≥ 0. (4.4)

A simple integration of (4.4) over (0, t), using (4.3), yields

E(t) ≤ δ1 exp

(

–δ2

∫ t

0
a(s) ds

)

= δ1χ
–1
1

(

δ2

∫ t

0
a(s) ds

)

, ∀t ≥ 0. (4.5)

Case II: χ is nonlinear on [0, r]. Here, as in [22], we select 0 < r1 ≤ r so that

sg1(s) ≤ min
{

r,χ (r)
}

, ∀|s| ≤ r1. (4.6)

On account of (A2) and the continuity of g1 with the fact that |g1(s)| > 0, for s �= 0, we
conclude that

⎧
⎨

⎩

s2 + g2
1 (s) ≤ χ–1(sg1(s)), ∀|s| ≤ r1,

C′
1|s| ≤ |g1(s)| ≤ C′

2|s|, ∀|s| ≥ r1.
(4.7)

Now, we introduce the following partitions:

I1 =
{

x ∈ (0, 1) : |ut| ≤ r1
}

, I2 =
{

x ∈ (0, 1) : |ut| > r1
}

,

Ĩ1 =
{

x ∈ (0, 1) :
∣
∣z(x, 1, t)

∣
∣ ≤ r1

}
, Ĩ2 =

{
x ∈ (0, 1) :

∣
∣z(x, 1, t)

∣
∣ > r1

}

and the functional h, defined by

h(t) =
∫

I1

utg1(ut) dx.

Using the fact that χ–1 is concave and Jensen’s inequality, it follows that

χ–1(h(t)
) ≥ c

∫

I1

χ–1(utg1(ut)
)

dx. (4.8)



Mukiawa et al. Advances in Continuous and Discrete Models          (2023) 2023:7 Page 15 of 19

Combining (4.7) and (4.8), we have

a(t)
∫ 1

0

(
u2

t + g2
1 (ut)

)
dx = a(t)

∫

I1

(
u2

t + g2
1 (ut)

)
dx + a(t)

∫

I2

(
u2

t + g2
1 (ut)

)
dx

≤ a(t)
∫

I1

χ–1(utg1(ut)
)

dx + ca(t)
∫

I2

utg1(ut) dx

≤ ca(t)χ–1(h(t)
)

– cE′(t). (4.9)

and

a(t)
∫ 1

0
g2

2
(
z(x, 1, t)

)
dx = a(t)

∫

Ī1

g2
2
(
z(x, 1, t)

)
dx + a(t)

∫

Ī2

g2
2
(
z(x, 1, t)

)
dx

≤ ca(t)
∫

Ī1

z(x, 1, t)g2
(
z(x, 1, t)

)
dx

+ a(t)
∫

Ī2

z(x, 1, t)g2
(
z(x, 1, t)

)
dx

≤ – cE′(t).

(4.10)

Multiplying (3.31) by a(t) and using (4.9) and (4.10), we obtain

a(t)L′(t) + cE′(t) ≤ –ηa(t)E(t) + ca(t)χ–1(h(t)
)
. (4.11)

It follows from (A1) that

L′
1(t) ≤ –ηa(t)E(t) + ca(t)χ–1(h(t)

)
, (4.12)

where

L1(t) = a(t)L(t) + cE(t) ∼ E(t) by virtue of (3.30). (4.13)

Let r0 < r and η0 > 0 to be specified later. Then, combining (4.12) and the fact that

E′ ≤ 0, χ ′ > 0, χ ′′ > 0 on (0, r],

the functional L2, defined by

L2(t) := χ ′
(

r0
E(t)
E(0)

)

L1(t) + η0E(t),

satisfies

κ1L2(t) ≤ E(t) ≤ κ2L2(t) (4.14)

for some positive constants κ1, κ2, and

L′
2(t) = r0

E′(t)
E(0)

χ ′′
(

r0
E(t)
E(0)

)

L1(t) + χ ′
(

r0
E(t)
E(0)

)

L′
1(t) + η0E′(t)
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≤ –ηa(t)E(t)χ ′
(

r0
E(t)
E(0)

)

+ ca(t)χ ′
(

r0
E(t)
E(0)

)

χ–1(h(t)
)

︸ ︷︷ ︸
A

+η0E′(t). (4.15)

To estimate the term A in (4.15), we consider the convex conjugate of χ denoted by χ∗,
defined by

χ∗(y) = y
(
χ ′)–1(y) – χ

[(
χ ′)–1(y)

] ≤ y
(
χ ′)–1(y), if y ∈ (0,χ ′(r)], (4.16)

and which satisfies the generalized Young’s inequality

XY ≤ χ∗(X) + χ (Y ), if X ∈ (
0,χ ′(r)

]
, Y ∈ (0, r]. (4.17)

Taking X = χ ′(r0
E(t)
E(0) ) and Y = χ–1(h(t)) and recalling Lemma 3.1 and (4.6), then (4.15)–

(4.17) lead to

L′
2(t) ≤ – ηa(t)E(t)χ ′

(

r0
E(t)
E(0)

)

+ ca(t)
[

χ ∗
(

χ ′
(

r0
E(t)
E(0)

))

+ χ
(
χ–1(h(t)

))
]

+ η0E′(t)

= – ηa(t)E(t)χ ′
(

r0
E(t)
E(0)

)

+ ca(t)χ ∗
(

χ ′
(

r0
E(t)
E(0)

))

+ ca(t)h(t) + η0E′(t)

≤ – ηa(t)E(t)χ ′
(

r0
E(t)
E(0)

)

+ cr0a(t)
(

E(t)
E(0)

)

χ ′
(

r0
E(t)
E(0)

)

– cE′(t) + η0E′(t)

≤ –
(
ηE(0) – cr0

)
a(t)

(
E(t)
E(0)

)

χ ′
(

r0
E(t)
E(0)

)

+ (η0 – c)E′(t).

(4.18)

By choosing r0 = ηE(0)
2c , η0 = 2c, and recalling that E′(t) ≤ 0, we arrive at

L′
2(t) ≤ – η1a(t)

E(t)
E(0)

χ ′
(

r0
E(t)
E(0)

)

= –η1a(t)χ0

(
E(t)
E(0)

)

, (4.19)

where η1 > 0 and χ0(t) = tχ ′(r0t). Now, since χ is strictly convex on (0, r], we conclude that
χ0(t) > 0, χ ′

0(t) > 0 on (0, 1]. Using (4.14) and (4.19), it follows that the functional

L3(t) =
κ1L2(t)

E(0)

satisfies

L3(t) ∼ E(t) (4.20)

and, for some δ2 > 0,

L′
3(t) ≤ –δ2a(t)χ0

(
L3(t)

)
, (4.21)
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which yields

[
χ1

(
L3(t)

)]′ ≥ δ2a(t), (4.22)

where

χ1(t) =
∫ 1

t

1
χ0(s)

ds, t ∈ (0, 1].

Integrating (4.22) over [0, t], keeping in mind the properties of χ0, and the fact that χ1 is
strictly decreasing on (0, 1], we obtain

L3(t) ≤ χ–1
1

(

δ2

∫ t

0
a(s) ds + δ3

)

, ∀t ∈ R
+, (4.23)

for some δ3 > 0. Using (4.20) and (4.23), the proof of Theorem 4.1 is completed. �

5 Examples
We end this section by giving some examples to illustrate the obtained result.

Let

g0 ∈ C2([0, +∞)
)

be a strictly increasing function such that g0(0) = 0 and, for some positive constants c1, c2

and r, the function g1 satisfies

g0
(|s|) ≤ ∣

∣g1(s)
∣
∣ ≤ g–1

0
(|s|), ∀|s| ≤ r,

c1s2 ≤ sg1(s) ≤ c2s2, ∀|s| ≥ r.
(5.1)

We consider the function

χ (s) =
(√

s
2

)

g0

(√
s
2

)

. (5.2)

It follows that χ is a C2-strictly convex function on (0, r] when g0 is nonlinear and therefore
satisfies condition (A2). Now, we give some examples of g0 such that g1 satisfies (5.1) near
0.

1. Let g0(s) = λs, where λ > 0 a constant, then χ (s) = λ̄s, where λ̄ = λ
2 satisfies (A2) near 0

and from (4.1), we get

E(t) ≤ δ̄ exp

(

–δ2

∫ t

0
a(s) ds

)

, ∀t ≥ 0.

2. Let g0(s) = 1
s e– 1

s2 , then χ (s) = e– 2
s satisfies (A2) in the neighborhood of 0 and from

(4.1), we obtain

E(t) ≤ δ1

(

ln

(

δ2

∫ t

0
a(s) ds + δ3

))–1

, ∀t ≥ 0. (5.3)
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3. Let g0(s) = e– 1
s , then χ (s) =

√ s
2 e–

√
2
s satisfies (A2) near 0 and using (4.1), we obtain

E(t) ≤ δ1

(

ln

(

δ2

∫ t

0
a(s) ds + δ3

))–2

, ∀t ≥ 0. (5.4)

6 Conclusion
In this work, we obtained some general decay results for a thermoelastic Timoshenko
beam system with suspenders, general weak internal damping, time-varying coefficient,
and time-varying delay terms. The damping structure in system (2.14)–(2.16) is sufficient
enough to stabilize the system without any additional conditions on the coefficient param-
eters as it is the case with many Timoshenko beam systems in the literature. The result of
the present paper generalizes the one established in Bochichio et al. [6] and allows a large
class of functions that satisfy condition (A2). We also gave some examples to illustrate our
theoretical finding.
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