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Abstract
This paper is devoted to dealing with the exponential stabilisation of highly nonlinear
hybrid neutral stochastic differential equation (NSDE) by variable delay feedback
control. There have been so far few results on the stabilization of variable delay
stochastic systems by variable delay feedback control, although the stabilisation of
neutral stochastic systems on the current state has been investigated. Finally, an
illustrative example is provided for verifying our theoretical results.
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1 Introduction
Many dynamical systems not only depend on present and past states but also involve
derivatives with delays. Neutral stochastic differential equations (NSDEs) are often used
to describe such systems. Motivated by wide applications in engineering and sciences,
problems of stability of NSDEs have attracted extensive attention from researchers. For
example, Kolmanovskii et al. [1] established some fundamental theories for NSDEs with
Markovian switching. The almost surely asymptotic stability for a class of hybrid neutral
stochastic differential delay equations (NSDDEs) was investigated by Mao et al. [2]. Chen
et al. [3] studied exponential stability for NSDEs with time-varying delay. Mao and Mao
[4] investigated the existence and uniqueness of solutions to neutral stochastic functional
differential equations with Lévy jumps. Shen et al. [5] explored the boundedness and sta-
bility of highly nonlinear NSDEs with multiple delays. Li and Deng [6] discussed almost
sure stability with general decay rate of highly nonlinear NSDEs with Lévy noise. Some
new criteria for the mean square exponential stability of neutral stochastic functional dif-
ferential equations were given by Ngoc [7]. One of the important issues in the study of the
stability of NSDEs is the design of feedback control. There are also a large number of re-
sults on stabilisation for stochastic delay systems in the previous literature. The pioneering
work of delay feedback control was due to Mao et al. [8]. Since then some further devel-
opments have been made (see, e.g., [9–16]). A common feature of these existing in this
area is that the coefficients are either linear or nonlinear but bounded by linear functions.
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However, in the real world, many stochastic differential equations (SDEs) do not satisfy
linear growth condition (see, e.g., [17–24]). Recently, the work of Lu et al. [25] is the first
to study delay feedback control for highly nonlinear hybrid SDEs. It was later extended to
the stochastic differential delay equations (SDDEs) by Li et al. [26]. Shen et al. [27] is the
first to discuss delay feedback control of highly nonlinear NSDEs. However, the results in
the paper of Shen et al. [27] only can be applied to neutral stochastic systems with constant
delay. Moreover, they did not discuss the convergence rate of the solution. In this paper,
we will extend the work of Shen et al. [27] to highly nonlinear NSDEs with variable delays
for obtaining the exponential stabilisation criterion.

The structure of the paper is arranged as follows. In Sect. 2, some hypotheses are given.
The main results are discussed in Sect. 3. An example is given to illustrate the effectiveness
of our theory in Sect. 4, while the conclusion is made in Sect. 5.

Notations Throughout this paper, unless otherwise specified, we use the following no-
tation. If A is a vector or matrix, then its transpose is denoted by AT . If x ∈ Rn, then
|x| is its Euclidean norm. If A is a matrix, then we let |A| =

√
trace(AT A) be its trace

norm. Let R+ = [0,∞). For δ > 0, denote by C([–δ, 0]; Rn) the family of continuous func-
tions ϕ from [–δ, 0] → Rn with the norm ‖ϕ‖ = sup–δ≤s≤0 |ϕ(s)|. Let (�,F , {Ft}t≥0, P) be
a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions. Let
B(t) = (B1(t), . . . , Bm(t))T be an m-dimensional Brownian motion defined on the probabil-
ity space. Let δ(t) be a differentiable function from R+ → [0, δ] such that δ̇(t) := dδ(t)/dt ≤ δ̄

for all t ≥ 0, where δ̄ ∈ [0, 1). Let r(t) be a right-continuous Markov chain on the probabil-
ity space taking values in a finite state space S = {1, 2, . . . , N} with generator � = (γij)N×N ,
given by

P
{

r(t + �) = j | r(t) = i
}

=

⎧
⎨

⎩
γij� + o(�) if i �= j,

1 + γii� + o(�) if i = j,

where � > 0. Here γij ≥ 0 is the transition rate from i to j if i �= j while γii = –
∑

j �=i γij. We
assume that the Markov chain r(·) is independent of the Brownian motion B(·).

Let C2,1(Rn ×S ×R+; R+) denote the family of nonnegative functions U(x, i, t) defined on
(x, i, t) ∈ Rn × S × R+, which are continuously twice differentiable in x and once in t. For
such a function U , we will let Ut = ∂U

∂t , Ux = ( ∂U
∂x1

, . . . , ∂U
∂xn

), and Uxx = ( ∂2U
∂xk∂xl

)n×n.

2 Hypotheses
Suppose that the unstable system is described by the hybrid NSDE

d
[
X(t) – D

(
X

(
t – δ(t)

))]
= f

(
X(t), X

(
t – δ(t)

)
, r(t), t

)
dt

+ g
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
dB(t)

on t ≥ 0 with the initial data

X(0) = ξ ∈ C
(
[–δ, 0]; Rn) and r(0) = i0 ∈ S, (2.1)

where f : Rn × Rn × S × R+ → Rn and g : Rn × Rn × S × R+ → Rn×m are Borel measurable
functions. We are required to design a variable delay feedback control u(X(t – τ (t)), r(t), t)
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so that the corresponding controlled system

d
[
X(t) – D

(
X

(
t – δ(t)

))]
=

[
f
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
+ u

(
X

(
t – τ (t)

)
, r(t), t

)]
dt

+ g
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
dB(t) (2.2)

becomes exponentially stable. We assume that the controller function u : Rn × S × R+ →
Rn is Borel measurable and τ (t) is a differentiable function from R+ → [0, τ ]. To make
our feedback control analysis more understandable, we will only consider the case where
dτ (t)/dt ≤ δ̄ and τ ≤ δ.

The classical conditions for the existence and uniqueness of the global solution are the
local Lipschitz condition and the linear growth condition. In this paper, we need the lo-
cal Lipschitz condition. Moreover, we impose the following polynomial growth condition
instead of the linear growth condition.

Assumption 2.1 Assume that for any h > 0 there exists a positive constant Kh such that

∣∣f (x, y, i, t) – f (x̄, ȳ, i, t)
∣∣ ∨ ∣∣g(x, y, i, t) – g(x̄, ȳ, i, t)

∣∣ ≤ Kh
(|x – x̄| + |y – ȳ|)

for all x, x̄, y, ȳ ∈ Rn with |x|∨ |x̄|∨ |y|∨ |ȳ| ≤ h and all t ∈ R+. Assume, moreover, that there
exist three constants K > 0, q1 ≥ 1, and q2 ≥ 1 such that

∣∣f (x, y, i, t)
∣∣ ≤ K

(|x| + |x|q1 + |y| + |y|q1
)
,

∣∣g(x, y, i, t)
∣∣ ≤ K

(|x| + |x|q2 + |y| + |y|q2
)

(2.3)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

Assumption 2.2 We assume that there exists a constant κ ∈ (0, 1) such that

∣∣D(a) – D(b)
∣∣ ≤ κ|a – b| (2.4)

for all a, b ∈ Rn and D(0) = 0.

We emphasise that we are interested in highly nonlinear NSDEs which have either q1 > 1
or q2 > 1 in Assumption 2.1 in this paper. We will refer to condition (2.3) as the polynomial
growth condition.

As a standing hypothesis of this paper, we assume that both coefficients f and g are
sufficiently smooth so that NSDE (2.2) with the initial data (2.1) has the unique global
solution X(t) on t ≥ –δ and, moreover, there is a constant q ≥ 2 such that

sup
–δ≤t<∞

E
∣∣X(t)

∣∣q < ∞. (2.5)

For further information on this hypothesis, we refer the reader to the work of Shen et al. [5].

Assumption 2.3 Assume that there exists a positive number β such that

∣∣u(x, i, t) – u(y, i, t)
∣∣ ≤ β|x – y| (2.6)
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for all (x, i, t) ∈ Rn × S × R+. Moreover, for the purpose of stability, we require that
u(0, i, t) = 0.

3 Main results
In this section, we define two segments X̂t := {X(t + s) : –2δ ≤ s ≤ 0} and r̂t := {r(t + s) :
–2δ ≤ s ≤ 0} for t ≥ 0. For X̂t and r̂t to be well defined for 0 ≤ t < 2δ, we set X(s) = ξ (–δ)
for s ∈ [–2δ, –δ) and r(s) = r0 for s ∈ [–2δ, 0). The Lyapunov functional defined in this paper
will be in the form of

V (X̂t , r̂t , t) = Ū
(
X(t) – D

(
X

(
t – δ(t)

))
, r(t), t

)
+ θ

∫ 0

–τ

∫ t

t+s
�(v) dv ds (3.1)

for t ≥ 0, where Ū ∈ C2,1(Rn × S × R+; R+) such that

lim|x|→∞

[
inf

(i,t)∈S×R+
Ū(x, i, t)

]
= ∞,

θ is a positive number to be determined later, and

�(t) = τ
∣∣f

(
X(t), X

(
t – δ(t)

)
, r(t), t

)
+ u

(
X

(
t – τ (t)

)
, r(t), t

)∣∣2

+
∣∣g

(
X(t), X

(
t – δ(t)

)
, r(t), t

)∣∣2.

By the generalized Itô formula (see, e.g., [28]) and the fundamental theory of calculus,
we can have the following lemma.

Lemma 3.1 With the notation above, V (X̂t , r̂t , t) is an Itô process on t ≥ 0 with its Itô
differential

dV (X̂t , r̂t , t) = LV (X̂t , r̂t , t) dt + dM(t), (3.2)

where M(t) is a continuous local martingale with M(0) = 0 [28, Theorem 1.45 on page 48],
and

LV (X̂t , r̂t , t)

= Ūt
(
X(t) – D

(
X(t) – δ(t)

)
, r(t), t

)

+ Ūx
(
X(t) – D

(
X(t) – δ(t)

)
, r(t), t

)[
u
(
X

(
t – τ (t)

)
, r(t), t

)
– u

(
X(t), r(t), t

)]

+ LŪ
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
+ θτ�(t) – θ

∫ t

t–τ

�(v) dv, (3.3)

in which LŪ : Rn × Rn × S × R+ → R is defined by

LŪ(x, y, i, t) = Ūt
(
x – D(y), i, t

)
+ Ūx

(
x – D(y), i, t

)[
f (x, y, i, t) + u(x, i, t)

]

+
1
2

trace
[
gT (x, y, i, t)Ūxx

(
x – D(y), i, t

)
g(x, y, i, t)

]

+
N∑

j=1

γijŪ
(
x – D(y), j, t

)
. (3.4)
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The following inequality will be frequently used when we derive the main results. We
list it here and refer, for example, to [1, 5].

Lemma 3.2 For p ≥ 1, the following classical inequality holds:

∣∣x – D(y)
∣∣p ≤ (1 – κ)1–p|x|p + κ|y|p. (3.5)

Assumption 3.3 For the function Q ∈ C(Rn; R+), there exist two positive constants α1, α2

such that Q(x – D(y)) ≤ α1Q(x) + α2Q(y).

Remark 3.4 Obviously, when λ1, λ2, p, q are positive constants, the function Q(x) =
λ1|x|p + λ2|x|q satisfies Assumption 3.3.

To study the exponential stability of NSDE (2.2), we need to impose a new assumption.

Assumption 3.5 Let Assumption 3.3 hold. Assume that there exist functions Ū ∈
C2,1(Rn × S × R+; R+), u : Rn × S × R+ → Rn and positive numbers θ̄ , βj (j = 1, 2, . . . , 7)
such that

β5 < β4(1 – δ̄), β7 < β6(1 – δ̄), θ̄ |x|2 ≤ Ū(x, i, t) ≤ Q(x), (3.6)

LŪ(x, y, i, t) + β1
∣∣Ūx

(
x – D(y), i, t

)∣∣2 + β2
∣∣f (x, y, i, t)

∣∣2 + β3
∣∣g(x, y, i, t)

∣∣2

≤ –β4|x|2 + β5|y|2 – β6Q(x) + β7Q(y) (3.7)

for all (x, y, i, t) ∈ Rn × Rn × S × R+.

Theorem 3.6 Let Assumptions 2.1, 2.3, and 3.5 hold. Assume that

τ ≤ (1 – κ)2β1β3

β2 ∧ (1 – κ)
√

β1β2

β
and τ <

(1 – κ)
√

2β1(β4(1 – δ̄) – β5)
2β2 . (3.8)

Then, for any given initial data (2.1), the solution of NSDE (2.2) has the property that

lim
t→∞ sup

1
t

log EŪ
(
X(t) – D

(
X

(
t – δ(t)

))
, r(t), t

)
< 0. (3.9)

Proof Fix the initial data ξ ∈ C([–δ, 0]; Rn) and r0 ∈ S arbitrarily. Let k0 > 0 be a sufficiently
large integer such that ‖ξ‖ < k0. For each integer k ≥ k0, define the stopping time

σk = inf
{

t ≥ 0 :
∣∣X(t)

∣∣ ≥ k
}

,

where throughout this paper we set inf∅ = ∞ (as usual, ∅ denotes the empty set). It is easy
to see that σk is increasing as k → ∞ and, by condition (2.5), limk→∞ σk = ∞ a.s. By the
generalised Itô formula, we obtain from Lemma 3.1 that

E
[
eλ(t∧σk )V (X̂t∧σk , r̂t∧σk , t ∧ σk)

]

= V (X̂0, r̂0, 0) + E
∫ t∧σk

0
eλs(λV (X̂s, r̂s, s) + LV (X̂s, r̂s, s)

)
ds (3.10)
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for any t ≥ 0 and k ≥ k0, where λ is a sufficiently small positive number to be determined
later.

We now let θ = β2/(β1(1 – κ)2). By Assumption 3.5 and the Hölder inequality, it is easy
to show that

Ūx
(
X(t) – D

(
X(t) – δ(t)

)
, r(t), t

)[
u
(
X

(
t – τ (t)

)
, r(t), t

)
– u

(
X(t), r(t), t

)]

≤ β1
∣∣Ūx

(
X(t) – D

(
X(t) – δ(t)

)
, r(t), t

)∣∣2 +
β2

4β1

∣∣X(t) – X
(
t – τ (t)

)∣∣2. (3.11)

By condition (3.8), we have θτ 2 ≤ β2 and θτ ≤ β3,

LV (X̂s, r̂s, s) ≤LŪ
(
X(s), X

(
s – δ(s)

)
, r(s), t

)
+ β1

∣∣ŪX
(
X(s) – D

(
X

(
s – δ(s)

))
, r(t), t

)∣∣2

+ β2
∣∣f

(
X(s), X

(
s – δ(s)

)
, r(t), t

)∣∣2 + β3
∣∣g

(
X(s), X

(
s – δ(s)

)
, r(t), t

)∣∣2

+ 2θτ 2β2∣∣X
(
s – τ (s)

)∣∣2 +
β2

4β1

∣∣X(s) – X
(
s – τ (s)

)∣∣2

–
β2

β1(1 – κ)2

∫ t

t–τ

�(v) dv

≤ 2θτ 2β2∣∣X
(
s – τ (s)

)∣∣2 – β4
∣∣X(s)

∣∣2 + β5
∣∣X

(
s – δ(s)

)∣∣2 – β6Q
(
X(s)

)

+ β7Q
(
X

(
s – δ(s)

))
+

β2

4β1

∣∣X(s) – X
(
s – τ (s)

)∣∣2

–
β2

β1(1 – κ)2

∫ s

s–τ

�(v) dv. (3.12)

Substituting this into (3.10) implies

E
[
eλ(t∧σk )V (X̂t∧σk , r̂t∧σk , t ∧ σk)

] ≤ V (X̂0, r̂0, 0) +
λβ2

β1(1 – κ)2 H1

+ H2 + H3 – H4 + H5 – H6 + H7 + H8 – H9,

where

H1 = E
∫ t∧σk

0
eλs

∫ 0

–τ

∫ s

s+u
�(v) dv du ds,

H2 = λE
∫ t∧σk

0
eλsŪ

(
X(s) – D

(
X

(
s – δ(s)

))
, r(s), s

)
ds,

H3 = 2θτ 2β2E
∫ t∧σk

0
eλs∣∣X

(
t – τ (t)

)∣∣2 ds,

H4 = β4E
∫ t∧σk

0
eλs∣∣X(s)

∣∣2 ds, H5 = β5E
∫ t∧σk

0
eλs∣∣X

(
s – δ(s)

)∣∣2 ds,

H6 = β6E
∫ t∧σk

0
eλsQ

(
X(s)

)
ds, H7 = β7E

∫ t∧σk

0
Q

(
X

(
s – δ(s)

))
ds,

H8 =
β2

4β1
E

∫ t∧σk

0
eλs∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds,

H9 =
β2

β1(1 – κ)2 E
∫ t∧σk

0
eλs

∫ s

s–τ

�(v) dv ds.
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It is easy to see that

H1 ≤ τE
∫ t∧σk

0
eλs

∫ s

s–τ

�(v) dv ds.

By inequality (3.5) and Assumption 3.3, we have

E
∫ t∧σk

0
eλsŪ

(
X(s) – D

(
X

(
s – δ(s)

))
, r(s), s

)
ds

≤ E
∫ t∧σk

0
eλs[α1Q

(
X(s)

)
+ α2Q

(
X

(
s – δ(s)

))]
ds.

On the other hand,

E
∫ t∧σk

0
eλsQ

(
X

(
s – δ(s)

))
ds ≤ eλδ

1 – δ̄

∫ 0

–δ

Q
(
ξ (s)

)
ds +

eλδ

1 – δ̄
E

∫ t∧σk

0
eλsQ

(
X(s)

)
ds,

E
∫ t∧σk

0
eλs∣∣X

(
s – δ(s)

)∣∣2 ds ≤ eλδ

1 – δ̄

∫ 0

–δ

∣∣ξ (s)
∣∣2 ds +

eλδ

1 – δ̄
E

∫ t∧σk

0
eλs∣∣X(s)

∣∣2 ds

and

E
∫ t∧σk

0
eλs∣∣X

(
s – τ (t)

)∣∣2 ds ≤ eλδ

1 – δ̄

∫ 0

–δ

∣∣ξ (s)
∣∣2 ds +

eλδ

1 – δ̄
E

∫ t∧σk

0
eλs∣∣X(s)

∣∣2 ds.

Noting that τ < (1–κ)
√

2β1(β4(1–δ̄)–β5)
2β2 , we can now choose a sufficiently small λ such that

2τ 2β4eλδ

β1(1 – κ)2(1 – δ̄)
+

β5eλδ

1 – δ̄
≤ β4,

β7

1 – δ̄
+ λα1 +

λα2

1 – δ̄
≤ β6, and λτ ≤ 1

2
. (3.13)

Then we can obtain

E
[
eλ(t∧σk )V (X̂t∧σk , r̂t∧σk , t ∧ σk)

] ≤ C1 + H8 –
1
2

H9, (3.14)

where C1 is a positive constant. By the well-known Fatou lemma, we can let k → ∞ in
(3.14) to obtain

eλtEV (X̂t , r̂t , t) ≤ C1 + H̄8 –
1
2

H̄9, (3.15)

where

H̄8 =
β2

4β1
E

∫ t

0
eλs∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds,

H̄9 =
β2

β1(1 – κ)2 E
∫ t

0
eλs

∫ s

s–τ

�(v) dv ds.

By the well-known Fubini theorem,

H̄8 =
β2

4β1

∫ t

0
eλsE

∣∣X(s) – X
(
s – τ (s)

)∣∣2 ds.
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For t ∈ [0, τ ], we clearly have

H̄8 ≤ τeλτβ2

β1

(
sup

–τ≤v≤τ

E
∣∣X(v)

∣∣2
)

=: C2.

For t > τ , we have

H̄8 ≤ C2 +
β2

4β1

∫ t

τ

eλsE
∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds.

Note that

∣∣X(s) – X
(
s – τ (s)

)∣∣

≤ ∣∣X(s) – D
(
X

(
s – δ(s)

))
– X

(
s – τ (s)

)
+ D

(
X

(
s – δ(s) – τ (s)

))∣∣

+
∣∣D

(
X

(
s – δ(s)

))
– D

(
X

(
s – δ(s) – τ (s)

))∣∣

≤ κ
∣∣X

(
s – δ(s)

)
– X

(
s – δ(s) – τ (s)

)∣∣ +
∣∣∣∣

∫ s

s–τ

[
f
(
X(v), X

(
v – δ(v)

)
, r(v), v

)

+ u
(
X

(
v – τ (v)

)
, r(v), v

)]
dv +

∫ s

s–τ

g
(
X(v), X

(
v – δ(v)

)
, r(v), v

)
dB(v)

∣∣∣∣.

Therefore, we have

E
∣∣X(s) – X

(
s – τ (s)

)∣∣2

≤ (1 + �)κ2E
∣∣X

(
s – δ(s)

)
– X

(
s – δ(s) – τ (s)

)∣∣2

+
(

1 +
1
�

)
E
∣∣∣∣

∫ s

s–τ

[
f
(
X(v), X

(
v – δ(v)

)
, r(v), v

)
+ u

(
X

(
v – τ (v)

)
, r(v), v

)]
dv

+
∫ s

s–τ

g
(
X(v), X

(
v – δ(v)

)
, r(v), v

)
dB(v)

∣∣∣∣

2

≤ (1 + �)κ2E
∣∣X

(
s – δ(s)

)
– X

(
s – δ(s) – τ (s)

)∣∣2 + 2
(

1 +
1
θ

)
E

∫ s

s–τ

H(v) dv.

Setting � = 1
κ

– 1, then we have

∫ t

τ

E
∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds

≤ κ

∫ t

τ

E
∣∣X

(
s – δ(s)

)
– X

(
s – δ(s) – τ (s)

)∣∣2 ds +
2

1 – κ
E

∫ t

τ

∫ s

s–τ

H(v) dv ds

≤ κ

∫ t

τ–δ

E
∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds +
2

1 – κ
E

∫ t

τ

∫ s

s–τ

H(v) dv ds.

Noting that 0 < κ < 1, it follows that

∫ t

τ

E
∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds

≤ κ

1 – κ

∫ τ

τ–δ

E
∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds +
2

(1 – κ)2 E
∫ t

τ

∫ s

s–τ

H(v) dv ds.
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Noting that
∫ τ

τ–δ

E
∣∣X(s) – X

(
s – τ (s)

)∣∣2 ds ≤ 2E
∫ τ

τ–δ

∣∣X(s)
∣∣2 ds +

∣∣X
(
s – τ (s)

)∣∣2 ds

≤ 4E
∫ δ

–δ

∣∣X(s)
∣∣2 ds ≤ 8δ sup

–δ≤v≤δ

E
∣∣X(v)

∣∣2 := C3.

Hence

H̄8 ≤ 1
2

H̄9 + C2 + C3. (3.16)

Substituting (3.16) into (3.15), we get

EV (X̂t , r̂t , t) ≤ (C1 + C2 + C3)e–λt , t ≥ 0.

It follows from the definition of V (X̂t , r̂t , t) that

EŪ(X(t) – D
(
X

(
t – δ(t)

)
, r(t), t

) ≤ (C1 + C2 + C3)e–λt , (3.17)

which implies assertion (3.9). Thus the proof is complete. �

Corollary 3.7 Let the conditions of Theorem 3.6 hold. Assume, moreover, that κeδ < 1.
Then, for any given initial data (2.1), the solution of NSDE (2.2) satisfies

lim
t→∞ sup

1
t

log
(
E
∣∣X(t)

∣∣q̄) < 0, ∀q̄ ∈ [2, q). (3.18)

That is, NSDE (2.2) is exponentially stable in Lq̄ for q̄ ∈ [2, q).

Proof By condition (2.5),

C4 := sup
–δ≤t<∞

E
∣∣X(t)

∣∣q < ∞.

For T > δ, by (3.5), we have

sup
0≤t≤T

eλtE
∣∣X(t)

∣∣2

≤ 1
1 – κ

sup
0≤t≤T

eλtE
∣∣X(t) – D

(
X

(
t – δ(t)

))∣∣2 + sup
0≤t≤T

κeλt∣∣X
(
t – δ(t)

)∣∣2

≤ 1
1 – κ

sup
0≤t≤T

eλtE
∣∣X(t) – D

(
X

(
t – δ(t)

))∣∣2

+ κeλδ
(

sup
0≤t≤T

eλtE
∣∣X(t)

∣∣2 + sup
–δ≤t≤0

E
∣∣ξ (t)

∣∣2
)

.

This implies

sup
0≤t≤T

eλtE
∣∣X(t)

∣∣2 ≤ 1
(1 – κ)(1 – κeδ)

sup
0≤t≤T

eλtE
∣∣X(t) – D

(
X

(
t – δ(t)

))∣∣2

+
κeλδ

1 – κeδ
sup

–δ≤t≤0
E
∣∣ξ (t)

∣∣2.
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Letting T → ∞, it then follows from (3.6) and (3.9) that

E
∣∣X(t)

∣∣2 ≤ C5e–λt , (3.19)

where C5 is a positive constant. Fix any q̄ ∈ [2, q), for a constant ε ∈ (0, 1), by the Hölder
inequality, we can show

E
∣∣X(t)

∣∣q̄ ≤ (
E
∣∣X(t)

∣∣2)ε(E
∣∣X(t)

∣∣(q̄–2ε)/(1–ε))1–ε .

Letting ε = q–q̄
q–2 , we can obtain

E
∣∣X(t)

∣∣q̄ ≤ (
E
∣∣X(t)

∣∣2)(q–q̄)/(q–2)(E
∣∣X(t)

∣∣q)(q̄–2)/(q–2)

≤ C(q̄–2)/(q–2)
4

(
E
∣∣X(t)

∣∣2)(q–q̄)/(q–2). (3.20)

It follows from (3.19) that

E
∣∣X(t)

∣∣q̄ ≤ C(q̄–2)/(q–2)
4 C(q–q̄)/(q–2)

5 e–λ̄t , (3.21)

where λ̄ = λ(q – q̄)/(q – 2), which implies assertion (3.18). Thus the proof is complete. �

Theorem 3.8 Let the conditions of Corollary 3.7 hold. If, moreover,

2q1 ∨ 2q2 < q,

then the solution of NSDE (2.2) satisfies

lim
t→∞ sup

1
t

log
∣∣X(t)

∣∣ < 0 a.s.

That is, NSDE (2.2) is almost surely exponentially stable.

Proof Let k be any nonnegative integer. By the Hölder inequality and the Doob martingale
inequality, we have

E
(

sup
k≤t≤k+1

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2
)

≤ 3E
∣∣X(k) – D

(
X

(
k – δ(k)

))∣∣2

+ 3E
∫ k+1

k

∣∣f
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
+ u(X

(
t – τ (t), r(t), t

)∣∣2 dt

+ 12E
∫ k+1

k

∣∣g
(
X(t), X

(
t – δ(t)

)
, r(t), t

)∣∣2 dt

≤ C6

∫ k+1

k
E
(∣∣X(t)

∣∣2 +
∣∣X

(
t – δ(t)

)∣∣2 +
∣∣X

(
t – τ (t)

)∣∣2 +
∣∣X(t)

∣∣q̄ +
∣∣X

(
t – δ(t)

)∣∣q̄)dt

+ 6κ2E
∣∣X

(
k – δ(k)

)∣∣2 + 6E
∣∣X(k)

∣∣2,
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where C6 is a positive constant and q̄ = 2q1 ∨ 2q2 ∈ [2, q). By (3.19) and (3.21), we have

E
(

sup
k≤t≤k+1

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2
)

≤ C7e–λ̄k ,

where λ̄ = λ(q – q̄)/(q – 2) and C7 is a positive constant. Consequently,

∞∑

k=0

P
(

sup
k≤t≤k+1

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2 > e–0.5λ̄k
)

≤
∞∑

k=0

C7e–0.5λ̄k < ∞.

By the Borel–Cantelli lemma, we can show that, for almost all ω ∈ �, there is a positive
integer k1 = k1(ω) such that

sup
k≤t≤k+1

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2 ≤ e–0.5λ̄k , k ≥ k1.

In other words, for almost all ω ∈ �,

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2 ≤ e–0.5λ̄t , t ≥ k1.

However, |X(t) – D(X(t – δ(t)))|2 is finite on [0, k1]. Therefore, for almost all ω ∈ �, there
exists a finite number M = M(ω) such that

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2 ≤ Me–0.5λ̄t for all t ≥ 0.

Choose any � ∈ (κ2, 1). By the inequality

∣∣X(t)
∣∣2 ≤ 1

1 – �

∣∣X(t) – D
(
X

(
t – δ(t)

))∣∣2 +
κ2

�

∣∣X
(
t – δ(t)

)∣∣2,

we can show that, for any T > 0,

sup
0≤t≤T

e0.5λ̄t∣∣X(t)
∣∣2 ≤ M

1 – �
+

κ2

�
sup

0≤t≤T
e0.5λ̄t∣∣X

(
t – δ(t)

)∣∣2

≤ M
1 – �

+
κ2

�
sup

–δ≤t≤T
e0.5λ̄t∣∣X(t)

∣∣2.

This implies

lim
t→∞ sup

1
t

log
∣∣X(t)

∣∣ < 0 a.s.,

which is the required assertion. Thus the proof is complete. �

4 An example
In this section we will discuss an example to illustrate our theory.

Example 4.1 Consider a scalar hybrid NSDE

d
[
X(t) – D

(
X

(
t – δ(t)

))]
= f

(
X(t), X

(
t – δ(t)

)
, r(t), t

)
dt

+ g
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
dB(t), (4.1)
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Figure 1 The computer simulation of the sample paths of the Markovian chain and NSDE (4.1) with
δ(t) = 2 – 0.2 cos(t) using the Euler–Maruyama method

where B(t) is a scalar Brownian motion, r(t) is a Markov chain on the state space S = {1, 2}
with its generator

� =

(
–1 1
1 –1

)

, (4.2)

and, moreover, the coefficients f and g are defined by

f (x, y, 1, t) = y – 4x3, f (x, y, 2, t) = y – 5x3,

g(x, y, 1, t) = g(x, y, 2, t) = 0.5y2, D
(
x – D(y)

)
= 0.1y. (4.3)

Before applying our theory, we set δ(t) = 2 – 0.2 cos(t) for all t ≥ 0, the initial data X(v) =
2 + cos(v) for v ∈ [–2, 0], r(0) = 1. The sample paths of the Markov chain and the solution
of the NSDE are plotted in Fig. 1, which indicates that the NSDE is unstable.

Let the control function u : R × S × R+ → R as follows:

u(x, t, 1) = –2x, u(x, t, 2) = –3x. (4.4)

Then the controlled hybrid NSDE has the form

d
[
X(t) – D

(
X

(
t – δ(t)

))]
=

[
f
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
+ u

(
X

(
t – τ (t)

)
, r(t), t

)]
dt

+ g
(
X(t), X

(
t – δ(t)

)
, r(t), t

)
dB(t). (4.5)

Define U(x, i, t) = |x|6 for (x, i, t) ∈ R × S × R+. It is easy to show that

LU(x, y, i, t) + Ux
(
x – D(y), i, t

)
u(z, i, t)

= 6(x – 0.1y)5f (x, y, i, t) + 15(x – 0.1y)4∣∣g(x, y, i, t)
∣∣2 + 6(x – 0.1y)5u(z, i, t)
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for (x, y, i, t) ∈ R × R × S × R+. Applying the inequalities (a + b)p ≤ (1 + ε)p–1(ap + ε1–pbp)
and aβb1–β ≤ βa + (1 – β)b, we can obtain

LU(x, y, i, t) + Ux
(
x – D(y), i, t

)
u(z, i, t)

≤ –10.891x8 + 4.928y8 + 22.876x6 + 3.13y6 + 2.2z6

≤ c1 – 10
(
x8 + 2.2x6) + 5

(
y8 + 2.2y6) +

(
z8 + 2.2z6),

where c1 = supx∈R(45x6 – 0.891x8) < ∞. Thus, we can conclude that the unique global so-
lution of (4.1) has the property that

sup
–δ≤t<∞

E|X|6 < ∞.

Let

Ū(x, i, t) =

⎧
⎨

⎩
1.5x2 + x4 if i = 1,

x2 + x4 if i = 2.

Applying the above inequalities and the Young inequality, we can get

LŪ(x, y, 1, t) ≤ –11.442x6 – 13.592x4 – 4.65x2 + 2.073y6 + 2.918y4 + 1.555y2

and

LŪ(x, y, 2, t) ≤ –14.44x6 – 14.84x4 – 4.15x2 + 2.275y6 + 3.047y4 + 1.155y2.

Moreover,

∣∣Ūx
(
x – D(y), i, t

)∣∣2 =

⎧
⎨

⎩
9(x – D(y))2 + 24(x – D(y))4 + 16(x – D(y))6 if i = 1,

4(x – D(y))2 + 16(x – D(y))4 + 16(x – D(y))6 if i = 2,

≤
⎧
⎨

⎩
10x2 + 32.922x4 + 27.097x6 + 0.9y2 + 2.4y4 + 16y6 if i = 1,

4.445x2 + 21.948x4 + 27.097x6 + 0.4y2 + 1.6y4 + 16y6 if i = 2,

∣∣f (x, y, i, t)
∣∣2 ≤

⎧
⎨

⎩
y2 + 2y4 + 6x4 + 16x6, if i = 1,

y2 + 2.5y4 + 7.5x4 + 25x6, if i = 2,
∣∣g(x, y, 1, t)

∣∣2 =
∣∣g(x, y, 2, t)

∣∣2 = 0.25y4.

Set β1 = 0.1, β2 = 0.2, β3 = 4. This implies

LŪ(x, y, i, t) + β1
∣∣Ūx

(
x – D(y), i, t

)∣∣2 + β2
∣∣f (x, y, i, t)

∣∣2 + β3
∣∣g(x, y, i, t)

∣∣2

≤ –3.5x2 – 9.09x4 – 5.54x6 + 1.85y2 + 4.71y4 + 3.88y6

≤ –2.1x2 + 0.85y2 – 0.7
(
2x2 + 10x4 + 7x6) + 0.5

(
2y2 + 10y4 + 7y6).
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Letting Q(x) = 2x2 + 10x4 + 7x6, we have Ū(x, i, t) ≤ Q(x). Noting that β4 = 2.1, β5 = 0.85,
we get condition (3.7). Moreover, it is easy to check that condition (3.6) holds as well. In
other words, Assumption 3.5 is satisfied. Noting that

∣∣u(x, i, t) – u(y, i, t)
∣∣ ≤ 3|x – y|,

we see that Assumption 2.3 is satisfied with β = 3. Furthermore, condition (3.8) becomes

τ ≤ 0.0203.

By Theorem 3.6, we can therefore conclude that the solution of NSDE (4.1) has the prop-
erties that

lim
t→∞ sup

1
t

log E
(
X2(t) + X4(t)

)
< 0.

Moreover, as X2(t) ≤ X2(t) + X4(t), by Corollary 3.7, we have

lim
t→∞ sup

1
t

log E
∣∣X(t)

∣∣q̄ < 0, ∀q̄ ∈ [2, q) and

lim
t→∞ sup

1
t

log
∣∣X(t)

∣∣ < 0 a.s.

That is, the solution of equation (4.5) is almost surely exponentially stable.
We set the initial data X(v) = 2 + cos(v) for v ∈ [–0.02, 0] and r(0) = 2. Figure 2 shows the

sample paths of the Markov chain and the solution of NSDE (4.5). The computer simula-
tion shows that NSDE (4.5) is stable.

Figure 2 The computer simulation of the sample paths of the Markov chain and NSDE (4.5) with control (4.4)
and τ = 0.02
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5 Conclusion
In this paper, we studied exponential stability of highly nonlinear hybrid NSDEs. Our sig-
nificant contribution in this paper is that the variable delay feedback controls are designed
to stabilize highly nonlinear hybrid NSDEs. The key technique used in this paper is the
method of Lyapunov functional. A significant amount of mathematics has been developed
to deal with the difficulties due to the neutral term. An example with computer simula-
tions has been used to illustrate our theory. Finally, following the work of Fei et al. [29], we
can investigate the stabilisation of G-neutral stochastic differential equations with delay
by the feedback control.
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