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Abstract

In this article, we consider the kinetic derivative nonlinear Schrödinger equation
(KDNLS), which is a one-dimensional nonlinear Schrödinger equation with a cubic
derivative nonlinear term containing the Hilbert transformation. For the Cauchy
problem, both on the real line and on the circle, we apply the short-time Fourier
restriction method to establisha prioriestimate for small and smooth solutions in
Sobolev spacesHs with s> 1/4.
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1 Introduction
In the present article, we continue our study in [1, 2] and consider the kinetic derivative

nonlinear Schrödinger equation (KDNLS) onR and onT := R/2� Z:

� tu = i� 2
x u + �� x

�
|u|2u

�
+ �� x

�
H

�
|u|2

�
u

�
, t � (0,T),x � R or T, (1.1)

where � , � are real constants andH is the Hilbert transformation. We assume� < 0

throughout this article.

In the periodic case, we proved in [2] that the Cauchy problem has a (forward-in-time)

global solution for any initial data inHs(T) if s> 1/4, with the solution mapu(0) = u0 ��

u(·) being (locally-in-time) continuous in theHs topology away from the origin u0 = 0.

More precisely, we proved the following claims:

(i) For any s> 1/4 and any R� r > 0, there exist T > 0and a solution map u0 �� u on the
set {u0 � Hs(T) : � u0� Hs � R,� u0� L2 � r}, which gives a solution u � C([0,T ];Hs(T))

to (1.1) on [0,T ] with u(0) = u0 and is continuous in the Hs topology.
(ii) The above (nontrivial) solution u(t) is smooth (especially in H1(T)) for t > 0, and

then it extends to a global solution by means of the H1-upper and L2-lower a priori

bounds, which are obtained for H1 solutions of arbitrary size.
Note that the trivial solution u � 0 is a global solution foru0 = 0. The continuity of the

solution map at the origin can be veri“ed ifs> 1/2 ([1]), but it is open for 1/2 � s> 1/4.
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This is becausea priori estimates and the local existence time given by the contraction

argument depend on the reciprocal of theL2 norm of solution for 1/2 � s> 1/4. In the

nonperiodic case, local well-posedness of the Cauchy problem inHs(R) can be proved for

s> 3/2 by the energy method, but no result seems to be currently available belowH3/2. To

summarize, onT we have a global solution fors> 1/4, while onR we only have a local

solution for s> 3/2. We also note that these solutions to the Cauchy problem are unique

in CtHs
x if s> 3/2.

The goal of this article is to prove ana priori H s estimate for small and smooth so-

lutions to (1.1) in the regularity range 1/2� s > 1/4. In the periodic case, this and an

approximation argument would imply the same estimate for the small (rough)Hs solu-

tions constructed in [2], thus verifying the continuity of the solution map at the origin.

Although our argument in the present paper is applicable to both periodic and nonperi-

odic problems, we will mainly consider the periodic case, which seems technically more

complicated. (See Remark2.9for a comment on the nonperiodic case.)

Theorem 1.1 LetM = R or T and s> 1/4.Then there exist� > 0and C > 0such that if0 <

T � 1and u � C([0,T ];H	 (M)) is a smooth solution to(1.1) onM satisfying� u(0)� Hs � � ,

then it holds that

� u� L	 ([0,T ];Hs) � C
�
� u(0)

�
�

Hs. (1.2)

To establish theHs a priori bound (1.2), we shall employ the short-time Fourier restric-

tion method. The short-time Xs,b norms were introduced by Ionescu, Kenig, and Tataru

[3]; the idea is to combine theXs,b analysis implemented in frequency-dependent small

time intervals with an energy-type argument recovering the estimate on the whole inter-

val. The method has been applied to the modi“ed Benjamin…Ono and the derivative NLS

equations by Guo [4] in the nonperiodic case, and in the periodic case by Schippa [5],

who used theUp…V p type spaces instead ofXs,b. The Xs,b type spaces are suitable for de-

tailed analysis on the resonance structure, while theUp…V p type spaces work well with

sharp cut-o� functions in time. For our purpose, theUp…V p type spaces seem to be more

convenient. In our argument with the short-time Fourier restriction method, the modi-

“ed energy plays a crucial role. Our way of constructing the modi“ed energy is slightly

di�erent from that in [ 4, 6], and [5] because of the presence of the Hilbert transforma-

tion in the cubic nonlinearity. To be speci“c, (1.1) has less symmetry than the DNLS, the

cubic NLS, and the modi“ed Benjamin…Ono equations. Moreover, it is known that the

kinetic term �� x(H(|u|2)u) in (1.1) exhibits a kind of dissipation when� < 0 (e.g., we have

� t � u(t)� 2
L2 � 0 for (smooth) solutions of (1.1), while theL2 norm is conserved for the DNLS

equation). This dissipative nature has to be taken into account in the construction and the

estimate of the modi“ed energy since otherwise there would remain some uncanceled

terms with higher order derivatives compared to the corresponding estimate for the non-

linearity �� x(|u|2u). Here, we do not have to estimate the di�erence of two solutions, since

we only consider the continuity of the solution map at the origin. So, we do not have to

consider the modi“ed energy for the di�erence of two solutions, either.

Remark1.2 (i) In the case of DNLS, a similara priori H s estimate was obtained in [4,5] for

solutions of arbitrary size by using a rescaling argument. Although the same idea may work
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for our problem (1.1), to remove the smallness condition in Theorem1.1, we will focus on

small solutions in order to keep the argument not too complicated, and also because of

our particular interest in the continuity of the solution map at the origin.

(ii) An adaptation of the theory of low-regularity conservation laws for integrable PDEs

by Killip, Vi�an, and Zhang [7] might be another possible approach. For the derivative NLS

on R and on T, the Hs a priori estimate fors> 0 was established in [8] by this method.

Of course, KDNLS is not known to be completely integrable, but the method seems also

useful to some dissipative perturbations of the integrable dispersive equations (e.g., the

KdV…Burgers equation). Unfortunately, this approach has not been successful for KDNLS

up to now.

The plan of the present paper is as follows. In Sect.2, we describe the de“nition of func-

tion spaces we work with, the short-time Strichartz estimates and the short-time bilinear

Strichartz estimates. Assuming the trilinear estimates and the modi“ed energy estimate,

which are proved in later sections, we give the proof of our main Theorem1.1. In Sect.3,

we give the trilinear estimate on the cubic nonlinearity in terms of short-time norms. In

Sect.4, we de“ne the modi“ed energy and prove its estimates, which are helpful for the

short-time argument.

We would like to conclude this section with a couple of comments on Jean Ginibre•s work

about nonlinear wave and dispersive equations. Ginibre started to study the scattering

theory in the “nite energy class for nonlinear Klein…Gordon and Schrödinger equations

in late 1970s with Giorgio Velo. Since then, he has made the great contribution to non-

linear partial di�erential equations, speci“cally nonlinear wave and dispersive equations.

In early 1990s, Bourgain presented the so-called Fourier restriction method to study the

well-posedness of the Cauchy problem for nonlinear dispersive equations such as non-

linear Schrödinger equations and the KdV equation. The Fourier restriction method is

very powerful, but it is rather complicated. In fact, Bourgain•s papers were not very easy

to read. Many people hoped the readable exposition on Bourgain•s work about the Fourier

restriction method. In 1996, Ginibre wrote the nice exposition [9] on the Fourier restric-

tion method, which contained several new and important observations, for example, the

relation between the Fourier restriction norm and the interaction representation in quan-

tum physics. This helped the Fourier restriction method to prevail among the community

of nonlinear wave and dispersive equations.

2 Function spaces, Strichartz estimates
2.1 De“nition of function spaces
For 1 � p < 	 and an intervalI = (a,b), …	 � a < b � 	 , let Up(I ),V p(I ) be the (L2

x-

valued)� p-atomic space and the space of functions of boundedp-variation, respectively,

on I . For the precise de“nition of these spaces, see [10] (also [11]) and [12]. Recall that

Up(I ), V p(I ) are Banach spaces, and their elements are bounded functions fromI to L2
x

that have one-sided limits at every point in [a,b]. Moreover,u � Up(I ) is right continuous

and satis“eslimt � a u(t) = 0. As usual, we writeV p
rc(I ) := {v � V p(I ) : v is right continuous}

and V p
…,rc(I ) := {v � V p

rc(I ) : limt � a v(t) = 0}, which are closed subspaces ofV p(I ). We have

Up(I ) 
 Uq(I ) for p < q with continuous inclusion, and similarly forV p(I ), V p
rc(I ), V p

…,rc(I ).

Following [13] (see also [6]), we consider the spaceDUp(I ) := {u� : u � Up(I )}, where the

derivative is taken in the sense ofL2
x-valued distributions on I . For eachf � DUp(I ),
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there is uniqueu � Up(I ) satisfyingf = u�, and henceDUp(I ) is a Banach space equipped

with the norm � f � DUp(I ) = � u� Up(I ). Finally, we writeUp
� (I ) := {v : ei(…·)� 2

x v(·) � Up(I )} with

� v� Up
� (I ) := � ei(…·)� 2

x v(·)� Up(I ), and similarly forV p
� (I ), V p

rc,� (I ), V p
…,rc,� (I ), andDUp

� (I ). Note

that DUp
� (I ) = {(� t …i� 2

x )u : u � Up
� (I )}.

We collect some basic properties of these spaces.

Lemma 2.1 Let I = (a,b) be any interval.

(i) [Continuous embeddings] For any1 � p < q < 	 , we have

Up
� (I ) 	� V p

…,rc,� (I ) 	� Uq
� (I ) 	� L	 �

I ;L2�
, V p

rc,� (I ) 	� L	 �
I ;L2�

.

(ii) [Duality] For1 <p < 	 , we haveL1(I ;L2) 	� DUp
� (I ) and

� f � DUp
� (I ) =

�
�
�
�

� t

a
ei(t…t�)� 2

x f
�
t �� dt�

�
�
�
�

Up
� (I )

= sup

� �
�
�
�

�

I

�
f v̄ dx dt

�
�
�
� : v � V p�

rc,� (I ), � v�
Vp�

� (I )
� 1

�

� � f � L1(I ;L2)

for f � L1(I ;L2).
(iii) [Extension] Letn � 1 and T : (L2

x)n � L1
loc,x be an operator such that it is either

linear or conjugate linear in each variable. Let1 � p,q � 	 , and assume that the

map (
 1, . . . ,
 n) �� [t �� T (eit � 2
x 
 1, . . . ,eit � 2

x 
 n)] is bounded from(L2
x)n to Lp

t (I ;Lq
x):

�
� T

�
eit � 2

x 
 1, . . . ,eit � 2
x 
 n

� ��
Lp

t (I ;Lq
x) � A

n	

j=1

� 
 j � L2
x

for someA > 0. ThenT can be regarded as a map from(Up
� (R))n to Lp

t (I ;Lq
x) by

(u1, . . . ,un) �� [t �� T (u1(t), . . . ,un(t))], and it is bounded:

�
� T (u1, . . . ,un)

�
�

Lp
t (I ;Lq

x) � A
n	

j=1

� uj � Up
� (R).

Here, Up
� (R) is replaced byL	

t (R;L2
x) if p = 	 .

(iv) [Interpolation] Let1 � p < q < 	 , E be a Banach space, and T : Uq
� (I ) � E be a

bounded, linear, or conjugate linear operator such that� T � Uq
� (I )� E � Cq,

� T � Up
� (I )� E � Cp for some0 <Cp � Cq < 	 . Then we have

� T � Vp
…,rc,� (I )� E �



1 + log

Cq

Cp

�
Cp.

Proof (i) See, e.g., [10, Propositions 2.2, 2.4, Corollary 2.6].

(ii) The “rst equality holds by de“nition. If f � L1(I ,L2), the function t ��
� t

a e…it � � 2
x f (t �) dt� � L2 is absolutely continuous and of bounded variation onI . Then the

second equality follows, e.g., from [10, Theorem 2.8, Propositions 2.9, 2.10]. The last in-

equality follows from the Hölder inequality and the embeddingV p�

rc,� (I ) 	� L	 (I ;L2).
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(iii) See, e.g., [10, Proposition 2.19].
(iv) See, e.g., [10, Proposition 2.20]. �

Now, we de“ne the short-time norms. In this article, we use capital lettersN,K, . . . for
dyadic integers 1,2,4,8, . . . .

Definition 2.2 First of all, we “x a bump function

� � C	
0 (R) even, monotone on [0,	 ), and� […4/3,4/3]� � � � […5/3,5/3],

where� 
 denotes the characteristic function of a set
 . De“ne {� N }N� 1 
 C	
0 (R) by

� 1(� ) := � (� ), � N (� ) := � (� /N) …� (2� /N) for N � 2,

so that 1 =



N� 1 � N (� ) and supp(� N ) 
 IN , where

I1 := […2,2], IN := […2N,2N] \ (…N/2,N/2) for N � 2.

We de“ne the corresponding Littlewood…Paley projectionsPN :=F…1
� � NFx.

Next, we de“ne frequency-localized short-time normsFN (T), GN (T) for functions u :
[0,T ] � L2 with supp(�u(t, � )) 
 [0,T ] × IN by

� u� FN (T) := sup
I=[a,b)
 [0,T ],|I |� N…1

� � I u� U2
� (R),

� u� GN (T) := sup
I=(a,b)
 [0,T ],|I |� N…1

� u|I � DU2
� (I ).

In the de“nition of the FN (T) norm, we regard� I u as a function onR by extending it by
zero outsideI . Here, we consider half-open intervalsI = [a,b) so that � I u can be right
continuous, and we avoid writing the norm� � I u� U2

� (R) as� u� U2
� ((a,b)) since theU2

� ((a,b))
norm can be de“ned only for functions satisfyinglimt � a+0 u(t) = 0. The short-timeU2

� -
type space on [0,T ] with spatial regularitys� R is de“ned by

Fs(T) :=
�
u � C

�
[0,T ];Hs� : � u� Fs(T) :=

�
� Ns

�
� PN u� FN (T)� � 2

N
< 	

�
.

To measure the nonlinearity, the following short-time norm is used:

� u� Gs(T) :=
�
� Ns

�
� PN u� GN (T)� � 2

N
.

We also need the following energy norm:

� u� Es(T) :=
�
� Ns

�
� PN u� L	 ([0,T ];L2)� � 2

N
.

2.2 Proof of the main theorem
It is known (e.g., [13, Lemma 3.1]) that the norms de“ned above satisfy the basic linear
estimate

� u� Fs(T) � � u� Es(T) +
�
� �

� t …i� 2
x

�
u

�
�

Gs(T)
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for any s� R. Then, what we need to show is the trilinear estimate

�
� � x

�
|u|2u

� ��
Gs(T) +

�
� � x

�
H

�
|u|2

�
u

� ��
Gs(T) � � u� 3

Fs(T)

and the energy estimate

� u� Es(T) �
�
� u(0)

�
�

Hs + � u� 3
Fs(T).

We will prove the trilinear estimate for general functionsu � Fs(T) in Sect.3, and the
energy estimate for smooth solutions of (1.1) with small initial data in Sect.4. Both of these
estimates requires> 1/4 and also have the constants uniform forT � (0, 1] but growing
for T > 1.

Let us admit these estimates and prove Theorem1.1. For 0 <T � � T and a smooth so-
lution u with initial data small in Hs, de“ne

Xs
�
T �� := � u� Es(T �) +

�
� � x

�
|u|2u

� ��
Gs(T �) +

�
� � x

�
H

�
|u|2

�
u

� ��
Gs(T �).

The above three estimates show that

Xs
�
T �� �

�
� u(0)

�
�

Hs + Xs
�
T �� 3

.

On the other hand, it is easy to show (e.g., foru � C([0,T ];Hs+1+)) that Xs(T �) is continuous
in T � and

lim sup
T�� +0

Xs
�
T �� �

�
� u(0)

�
�

Hs.

Hence, by a bootstrap argument, we have

Xs
�
T �� �

�
� u(0)

�
�

Hs, 0 <T � � T .

Since� u� L	 ([0,T ];Hs) � � u� Es(T), this concludes the proof of Theorem1.1.

2.3 Short-time L6 and bilinear Strichartz estimates
Most of Strichartz-type estimates for the nonperiodic Schrödinger equation are known to
hold for the periodic problem in the short-time setting, and these estimates will be used
as basic tools to prove the trilinear and energy estimates. We begin with the followingL6

Strichartz estimate.

Lemma 2.3 For N � 1 and 0 <� � N…1, we have

�
� P� N eit � 2

x 

�
�

L6([0,� ];L6(T)) � � 
 � L2.

As a consequence, we have

� P� N u� L6(I ;L6(T)) � � � I u� U6
� (R)

for any interval I = [a,b) 
 R with |I | � N…1and any u: I � L2 such that the zero extension
� I u belongs to U6� (R).
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Proof The “rst estimate was shown in [14, Proposition 2.9]. To obtain the second claim,

we use Lemma2.1(iii) with the operator T : 
 �� P� N 
 and apply the resulting estimate

to � I u � U6
� (R). �

As a counterpart of the bilinear Strichartz estimate of Ozawa and Tsutsumi [15, Theo-

rem 2 (1)], we have the following short-time bilinear Strichartz estimate onT. A Fourier

analytic proof was given in [16], which we will recall below for completeness.

Lemma 2.4 For K � 1 and � > 0,we have

�
� PK

�
eit � 2

x 
 1eit � 2
x 
 2

� ��
L2([0,� ];L2(T)) �



1 + K�

K

� 1/2

� 
 1� L2� 
 2� L2. (2.1)

In particular, if N1 � N2 � 1 and 
 1, 
 2 satisfysupp(�
 j ) 
 INj , then for 0 < � � N…1
1 we

have

�
� eit � 2

x 
 1eit � 2
x 
 2

�
�

L2([0,� ];L2(T)) � N…1/2
1 � 
 1� L2� 
 2� L2. (2.2)

Remark2.5 The latter estimate (2.2) clearly holds regardless of the complex conjugation,

while this is not the case for the former estimate (2.1). For the product without conjugation

of two functions of comparable frequencies, we can deduce, for instance, the following

result from (2.1): if |� 1 …� 2| 
 K for any � j � supp(�
 j), j = 1,2, then

�
� eit � 2

x 
 1eit � 2
x 
 2

�
�

L2([0,� ];L2(T)) �



1 + K�
K

� 1/2

� 
 1� L2� 
 2� L2.

Remark2.6 As for theL6 Strichartz estimate, from (2.1) and Lemma2.1(iii) we immedi-

ately obtain the corresponding bilinear estimates inU2
� : for I = [a,b) with |I | � K…1, we

have

�
� PK(uv̄)

�
�

L2(I ;L2(T)) � K…1/2� � I u� U2
� (R)� � I v� U2

� (R).

A similar extension is valid also for Lemmas2.7and2.8. On the other hand, by the Bern-

stein and Hölder inequalities and the assumption|I | � K…1, together with the embedding

Up
� 	� L	 L2, we have

�
� PK(uv̄)

�
�

L2(I ;L2(T)) � K1/2|I |1/2� uv̄� L	 (R;L1(T)) � � u� U2
� (R)� v� U4

� (R).

By applying Lemma2.1(iv) to the operatorv �� PK(uv̄) with these estimates, we have

�
� PK(uv̄)

�
�

L2(I ;L2(T)) � K…1/2(1 + log K)� � I u� U2
� (R)� � I v� V2

� (R)

for u,v : I � L2 such that� I u � U2
� (R) and � I v � V 2

…,rc,� (R).

Proof of Lemma2.4 If K = 1, the claim follows from the Hölder inequality int and the

Bernstein inequality inx.
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AssumeK > 1. We observe that

PK
�
eit � 2

x 
 1eit � 2
x 
 2

�
=

�

n1,n2

ei(n1…n2)xei(…n2
1+n2

2)t � K (n1 …n2) �
 1(n1) �
 2(n2)

=
�

n

einx� K (n)e…in2t
�

n2

�
 1(n + n2) �
 2(n2)e…2inn2t .

By the Plancherel theorem and the change of variablet � = …2nt, we have

�
� PK

�
eit � 2

x 
 1eit � 2
x 
 2

� �� 2
L2([0,� ];L2(T))

=
� �

0

�

n

�
�� K (n)

�
�2

�
�
�
�
�

n2

�
 1(n + n2) �
 2(n2)e…2inn2t

�
�
�
�

2

dt

=
�

n

�
�� K (n)

�
�2 1

…2n

� …2n�

0

�
�
�
�
�

n2

�
 1(n + n2) �
 2(n2)ein2t�
�
�
�
�

2

dt�

�
�

n

1 + K�
K

� 2�

0

�
�
�
�
�

n2

�
 1(n + n2) �
 2(n2)ein2t�
�
�
�
�

2

dt�.

Since the last term is equal to1+K�
K � 
 1� 2

L2� 
 2� 2
L2 by the Plancherel theorem, the claimed

estimate follows. �

To deal with the nonlinearity of (1.1) including the Hilbert transformation, we prepare
the next two lemmas. These estimates can be shown in the same manner as Lemma2.4.

Lemma 2.7 Let 
 1, 
 2, 
 3 � L2(T) satisfysupp(�
 j) 
 INj , and assume that N1 � N2,N3.
Then, for 0 <� � N…1

1 , we have

�
� eit � 2

x 
 1 · H
�
eit � 2

x 
 2eit � 2
x 
 3

� ��
L2([0,� ];L2(T)) �



N2 � N3

N1

� 1/2

� 
 1� L2� 
 2� L2� 
 3� L2.

The same estimate holds if eit � 2
x 
 1 is replaced byeit � 2

x 
 1 and also if H is replaced by any
Fourier multiplier with bounded symbol(such as P� N ).

Proof SinceH(uv̄) = H(ūv), we may assumeN2 � N3. We observe that

eit � 2
x 
 1 · H

�
eit � 2

x 
 2eit � 2
x 
 3

�

=
�

n1,n2,n3

ei(n1+n2…n3)xei(…n2
1…n2

2+n2
3)t (…i)sgn(n2 …n3) �
 1(n1) �
 2(n2) �
 3(n3)

= …i
�

n

einx
�

n2

e…i(n2
2+(n…n2)2)t �
 2(n2)

×
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3) �
 3(n3)e…2in3(n…n2)t ,

and hence

�
� eit � 2

x 
 1 · H
�
eit � 2

x 
 2eit � 2
x 
 3

� �� 2
L2([0,� ];L2(T))
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=
� �

0

�

n

�
�
�
�
�

n2

e…i(n2
2+(n…n2)2)t �
 2(n2)

×
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3) �
 3(n3)e…2in3(n…n2)t

�
�
�
�

2

dt

�
� �

0

�

n

� �

n2

�
� �
 2(n2)

�
�
�
�
�
�
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3) �
 3(n3)e…2in3(n…n2)t

�
�
�
�

� 2

dt

�
� �

n2

�
� �
 2(n2)

�
�

 �

n

� �

0

�
�
�
�
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3)

× �
 3(n3)e…2in3(n…n2)t

�
�
�
�

2

dt
� 1/2� 2

,

where in the last step we have used the Minkowski inequality to replace theL2
t � 2

n� 1
n2

norm

by � 1
n2

� 2
nL2

t . Now, for “xed |n| 
 N1 andn2 � IN2, we have|2(n …n2)� | � 2� , and thus

� �

0

�
�
�
�
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3) �
 3(n3)e…2in3(n…n2)t

�
�
�
�

2

dt

=
1

…2(n …n2)

� …2(n…n2)�

0

�
�
�
�
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3) �
 3(n3)ein3t�
�
�
�
�

2

dt�

� N…1
1

� 2�

0

�
�
�
�
�

n3

sgn(n2 …n3) �
 1(n …n2 + n3) �
 3(n3)ein3t�
�
�
�
�

2

dt�

� N…1
1

�

n3

�
� �
 1(n …n2 + n3)

�
�2�

� �
 3(n3)
�
�2

.

Hence, we have

�
� eit � 2

x 
 1 · H
�
eit � 2

x 
 2eit � 2
x 
 3

� �� 2
L2([0,� ];L2(T))

�
� �

n2

�
� �
 2(n2)

�
�

 �

n

N…1
1

�

n3

�
� �
 1(n …n2 + n3)

�
�2�

� �
 3(n3)
�
�2

� 1/2� 2

� N2

�

n2

�
� �
 2(n2)

�
�2 �

n

N…1
1

�

n3

�
� �
 1(n …n2 + n3)

�
�2�

� �
 3(n3)
�
�2

� N…1
1 N2� 
 1� 2

L2� 
 2� 2
L2� 
 3� 2

L2,

as desired. �

Lemma 2.8 Let 
 1, 
 2, 
 3 � L2(T) satisfysupp(�
 j) 
 INj , and assume that N1 
 N2 � N3.

Further, assume K� N1. Then, for 0 < � � N…1
1 , we have

�
� HP� K

�
eit � 2

x 
 1eit � 2
x 
 2

�
eit � 2

x 
 3
�
�

L2([0,� ];L2(T)) �



K
N1

� 1/2

� 
 1� L2� 
 2� L2� 
 3� L2.

The same estimate holds if eit � 2
x 
 3 is replaced byeit � 2

x 
 3 and also if H is replaced by any

Fourier multiplier with bounded symbol.
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Proof By an almost orthogonality argument, we can restrict the frequencies of
 1 and 
 2

onto intervals of lengthK. Then the same argument as for the preceding lemma can be

used. �

Remark2.9 We note that all the above short-timeL6 and bilinear Strichartz estimates

(Lemmas2.3, 2.4, 2.7, and2.8) are true in the nonperiodic case as well. In fact, these es-

timates hold onR without restricting to a frequency-dependent short time interval (i.e.,

with the L6
t,x or L2

t,x norm over R × R on the left-hand side). Concerning Lemmas2.7and

2.8, this can be shown by a slight modi“cation of the proofs for the periodic estimates

given above.

3 Trilinear estimate in the short-time norms
In this section, we shall prove the following trilinear estimate in theGs(T) norm.

Proposition 3.1 For s> 1/4 and 0 <T � 1,we have

�
� � x(u1ū2u3)

�
�

Gs(T) +
�
� � x

�
H(u1ū2)u3

� ��
Gs(T) � � u1� Fs(T)� u2� Fs(T)� u3� Fs(T).

Proof We only consider the second term on the left-hand side with the Hilbert transfor-

mation. The “rst term (for DNLS) was treated in [4, 5]; in fact, it can be dealt with in a

similar manner but more easily.

We apply dyadic decompositions as

H(u1ū2)u3 =
�

N1,...,N4� 1
N�

1 
 N�
2

PN4

�
H(PN1u1PN2ū2)PN3u3

�
,

where we writeN�
1 , . . . ,N�

4 to denote the numbersN1, . . . ,N4 rearranged in decreasing or-

der. It then su�ces to show for eachN = (N1, . . . ,N4) the localized estimate

�
� � xPN4

�
H(PN1u1PN2ū2)PN3u3

� ��
GN4(T)

� C(N)� PN1u1� FN1(T)� PN2u2� FN2(T)� PN3u3� FN3(T)

(3.1)

with someC(N) satisfying

C(N) � Ns
1Ns

2Ns
3

Ns
4

�
N�

3

� 0…
.

(SinceN�
1 
 N�

2 , the factor (N�
3 )0…allows us to restore the claimed estimate by summing

up (3.1) in N.) We will actually obtain (3.1) with smallerC(N), which satis“es

C(N) �



N1N2N3

N�
1

� (1/4)+

. (3.2)

From the de“nition of the FN (T), GN (T) norms, we need to prove

sup
I4=(a,b)
 [0,T ],|I4|� N…1

4

�
� � xPN4

�
H(PN1u1PN2ū2)PN3u3

� ��
DU2

� (I4)
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� C(N)
3	

j=1

sup
Ij=[a,b)
 [0,T ],|Ij |� N…1

j

� � Ij PNj uj � U2
� (R).

Since� xPN4(H(PN1u1PN2ū2)PN3u3) � L1([0,T ]; L2) for u1,u2,u3 � Fs(T) 
 C([0,T ];Hs), by
Lemma2.1(ii) it su�ces to prove either

�
� � xPN4

�
H(PN1u1PN2ū2)PN3u3

� ��
L1(I4;L2)

� C(N)
3	

j=1

sup
Ij=[a,b)
 [0,T ],|Ij |� N…1

j

� � Ij PNj uj � U2
� (R)

(3.3)

or
�
�
�
�

�

I4

�
H(PN1u1PN2ū2)PN3u3 · � xPN4ū4 dx dt

�
�
�
�

� C(N)� u4� V2
� (I4)

3	

j=1

sup
Ij=[a,b)
 [0,T ],|Ij |� N…1

j

� � Ij PNj uj � U2
� (R)

(3.4)

for any I4 = (a,b) 
 [0,T ], |I4| � N…1
4 and anyu4 � V 2

rc,� (I4).
When N4 � N�

1 , the time scale on the right-hand side is “ner than that on the left-hand
side, and therefore we need to “rst divideI4 into subintervals of size� (N�

1 )…1, the number
of which is O(N�

1 /N4). Then, to verify (3.3), we need to show

�
N�

1

� 1/2�
� PN4

�
H(PN1u1PN2ū2)PN3u3

� ��
L2(I ;L2)

� C(N)
3	

j=1

� � I PNj uj � U2
� (R)

(3.5)

for any interval I with

I = [a,b) 
 [0,T ], |I | �
�
N �

1

� …1
.

In fact, (3.5) implies (3.3) by the Schwarz inequality int and the Bernstein inequality inx.
From now on, we write simplyuj for PNj uj .

Case (I) N4 
 N�
1 .

(Ia) [high× high× high� high] N1 
 N2 
 N3 
 N4.
We simply use theL6 Strichartz estimate (Lemma2.3) for each function:

�
N�

1

� 1/2�
� H(u1ū2)u3

�
�

L2(I ;L2) �
�
N �

1

� 1/2
3	

j=1

� uj � L6(I ;L6) �
�
N �

1

� 1/2
3	

j=1

� � I uj � U2
� (R).

This shows (3.5) with C(N) = (N�
1 )1/2, which satis“es (3.2).

(Ib) [high× high× low� high] N�
1 
 N�

3 � N�
4 .

(i) N1 
 N2 � N3. In this case, we apply the standard bilinear Strichartz estimate
(Lemma2.4) to the product u1ū2, on which we may putP
 N�

1
. Using theL	 embedding

� u3� L	 (I ;L	 ) � N1/2
3 � u3� L	 (I ;L2) � N1/2

3 � � I u3� U2
� (R),

we have (3.5) with C(N) = N1/2
3 , which satis“es (3.2).
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(ii) N2 
 N3 � N1. Noticing that H(u1ū2) = u1H(ū2), we apply Lemma2.4to the product

H(ū2)u3 and follow the argument in the preceding case to obtain (3.5) with C(N) = N1/2
1 ,

which again satis“es (3.2).

(iii) N1 
 N3 � N2. In this case, we need to consider the dual estimate (3.4), because

we cannot use Lemma2.4to the product H(u1)u3 (in the form of Remark2.5) when the

Fourier supports ofu1 and u3 are overlapping. We “rst replaceu4 � V 2
rc,� (I4) with its ex-

tension �u4 � V 2
…,rc,� (R) de“ned by �u4(a) := limt � a+0 u4(t) and �u4(t) := 0 for t /� [a,b) (recall

that I4 = (a,b)). Next, we decomposeI4 into subintervals of length� (N�
1 )…1, the number

of which is O(1). Then, for each integral on a subintervalI = [a�,b�), we apply Lemma2.4

(in the form obtained in Remark2.6) to the product u3� x �u4 (on which we may putP
 N�
1
),

bound the remaining functionsH(u1), ū2 in the L	 (I ;L2) and theL2(I ;L	 ) norms respec-

tively, and “nally derive the factor (N�
1 )…1/2N1/2

2 from the last one by the Hölder inequality

in t and the Bernstein inequality inx. The resulting bound is

�
�
�
�

�

I

�
H(u1u2)u3� x �u4 dx dt

�
�
�
�

�
�
N �

1

� …(1/2)+
N4

�
N�

1

� …1/2
N1/2

2 � � I �u4� V2
� (R)

3	

j=1

� � I uj � U2
� (R).

(Since we have to bound�u4 in V 2
� , the bilinear Strichartz estimate is accompanied by a

factor (N�
1 )0+.) Now, it is veri“ed directly from the de“nition of the V 2

� norm that

� � I �u4� V2
� (R) � � �u4� V2

� (R) �
�

2� u4� V2
� (I4).

As a result, we obtain (3.4) with C(N) = (N�
1 )0+N1/2

2 , which satis“es (3.2).

(Ic) [high× low× low� high] N�
1 
 N�

2 � N�
3 .

We show (3.5) with C(N) � (N�
4 )1/2. If N1 or N2 
 N�

1 (so thatN1 � N2), we can putH

on a single function. Then, similarly to the case (Ib-i), we apply Lemma2.4to the product

of functions corresponding toN�
1 and N�

3 and use theL	 embedding for the other one

corresponding toN�
4 to obtain the desired bound. In the remaining case, i.e., ifN3 
 N4 �

N1,N2, we apply the “rst modi“ed bilinear Strichartz estimate (Lemma2.7) to the left-

hand side of (3.5), which gives the same bound.

Case (II) N4 � N�
1 .

(IIa) [high× high× high� low] N1 
 N2 
 N3 � N4.

We follow the argument in the case (Ia) to obtain (3.5) with C(N) = (N�
1 )1/2, which sat-

is“es (3.2).

(IIb) [high× high× low� low] N�
1 � N�

3 .

(i) If N4 � min{N1,N2,N3}, then we show (3.5) with C(N) � min{N1,N2,N3}1/2 by con-

sidering the following two cases separately.

• If N3 
 N�
1 (which implies N1 � N2), then we first bound the left-hand side of (3.5) by

�
N �

1

� 1/2
N1/2

4

�
� H(u1ū2)u3

�
�

L2(I ;L1)

and then apply Lemma 2.4 to u1ū2 (on which we may put P
 N�
1
). This implies (3.5)

with C(N) = N1/2
4 .
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• If N3 � N�
1 (which implies N1 
 N2 
 N�

1 ), then we may put P�N3 on u1ū2. Using the
second modified bilinear Strichartz estimate (Lemma 2.8), we obtain (3.5) with
C(N) = N1/2

3 .
(ii) If N4 � min{N1,N2,N3}, then we consider the dual estimate (3.4). Note that we can

always putH on a single function sinceN3 � N4 and

�

I4

�
H(u1u2)u3� xu4 dx dt = …

�

I4

�
u1u2H(u3� xu4)dx dt.

Then the argument is parallel to the case (Ib-iii). This time we decomposeI4 into subin-

tervals of length� (N�
1 )…1, the number of which isO(N�

1 /N4), and apply Lemma2.4 to

the product of functions corresponding toN�
1 and N�

3 (= N4). Further, we bound the re-

maining functions corresponding toN�
2 andN�

4 in the L	 (I ;L2) and theL2(I ;L	 ) norms,

respectively. We then obtain (3.4) with

C(N) � N�
1

N4
·
�
N�

1

� …(1/2)+
N4

�
N�

1

� …1/2�
N�

4

� 1/2 �
�
N �

1

� 0+�
N�

4

� 1/2
,

which satis“es (3.2).

We have seen all the possible cases, and this completes the proof of the localized estimate

(3.1) with (3.2). �

4 Energy estimate
In this section, we shall prove the followinga priori estimate.

Proposition 4.1 Assume0 <T � 1 and that u � C([0,T ];H	 ) is a solution to(1.1) on the

time interval [0,T ]. Then, for s> 1/4, there exist� > 0 and C > 0 (independent of u) such

that if � u(0)� L2 � � then we have

� u� 2
Es(T) � C

� �� u(0)
�
� 2

Hs + � u� 6
Fs(T)

�
.

In fact, this is the main part of the proof of Theorem1.1. Recall that theEs(T) norm takes

L	
t before the� 2 summation over dyadic frequency blocks, and so it is fairly stronger than

the L	
t Hs

x norm.

4.1 A reduction
First of all, we reduce Proposition4.1to the following estimate on a •modi“ed energyŽ.

Proposition 4.2 Let 0 < T � 1 and u � C([0,T ];H	 ) be a solution to(1.1) on the time

interval [0,T ]. Let s> 1/4,and assume that a smooth symbol a� C	 (R) has the following

properties:

�
������

������

a is positive, even, nondecreasing in[0,	 ), constant on[…1,1],

a(2� ) � a(� ) for any� > 0,
a(N1)
a(N2) � (N1

N2
)1/2 for any N1 > N2 � 1,

|� j
� a(� )| � � � �…ja(� ) for any� � R and 1 � j � 5.

(4.1)
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Then there exist� > 0and C > 0depending on s and the implicit constants in(4.1) (but not

on u) such that if � u(0)� L2 � � then we have

Ea
0

�
u(t)

�
:=

�
�
�

a(D)u(t)
�
� 2

L2

� C



Ea
0

�
u(0)

�
+ � u� 4

Fs(T)

�

N� 1

a(N)� PNu� 2
FN (T)

�
, t � [0,T ].

Remark4.3 (i) The Sobolev weighta(� ) = � � � 2s (s � 1/4) satis“es conditions (4.1) (af-

ter modifying on […1,1]). With this choice ofa, we can obtain from Proposition4.2 an

L	 ([0,T ];Hs) a priori estimate. This is, however, weaker than what we want to prove in

Proposition4.1.

(ii) To obtain an Es(T) bound, one may consider estimating localizedHs norms

N2s� � N (D)u(t)� 2
L2 for dyadic numbersN � 1 and summing them up. This is indeed the

approach taken in [3]. On the other hand, we will improve the bound by adding a correc-

tion term to the energy functional. For this purpose, it will be convenient to introduce a

modi“ed energy�
�

a(D)u(t)� 2
L2 and estimate it instead of the localizedHs norms, where

a symbola(� ) is chosen so that it is positive everywhere and its derivatives are controlled

by itself as|� j
� a(� )| � � � �…ja(� ). Such a modi“ed energy has been used for the cubic NLS

in [6] and for the modi“ed Benjamin…Ono (and also the DNLS) equation in [4, 5].

(iii) Our choice of a(� ) is slightly simpler than that in [4…6] (see the proof of Proposi-

tion 4.1). Indeed, the modi“ed energies in these papers are de“ned from a sequence of

positive numbers{� N } depending on the initial data, but we do not use such a sequence.

Proof of Proposition4.1from Proposition4.2 Let s> 1/4, � := s… 1/4 > 0. For each dyadic

integerN, we de“ne the positive sequence{aN
N }N� 1 by

aN
N := N2s



N

N
�

N
N

� �

=

�
�

�
N

…�
N2s+� (N � N),

N
�
N2s…� (N � N).

It is clear that {aN
N } is increasing inN. In fact, the growth of{aN

N} is controlled as

22s…� �
aN

2N

aN
N

� 22s+� (N � 1).

Now, de“ne the smooth symbolaN � C	 (R) by

aN(� ) :=
�

N� 1

aN
N � N (� ).

It is easy to see thataN satis“es all the properties in (4.1) with implicit constants inde-

pendent ofN. Applying Proposition4.2and restricting the left-hand side of the resulting

estimate to the target frequency{� � � 
 N}, we have

sup
t � [0,T ]

N
2s�� PN u(t)

�
� 2

L2 �
�

N� 1



N

N
�

N
N

� �

N2s� �� PN u(0)
�
� 2

L2 + � u� 4
Fs(T)� PN u� 2

FN (T)

�
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for any smooth solutionu � C([0,T ];H	 ) to (1.1) with � u(0)� L2 su�ciently small. Sum-

ming up in N, we obtain the claimed estimate. �

4.2 Construction of the modi“ed energies
Now, we start proving Proposition4.2. The argument is very similar to the estimate of

the modi“ed energy with correction terms in theI -method, where an important role is

played by various cancelations after symmetrization of the energy functionals (see, e.g.,

Colliander, Keel, Sta�lani, Takaoka, and Tao [17]). However, there are fewer symmetries

compared to the DNLS case, and more delicate analysis is required. In particular, some of

the highest order terms cannot be canceled out, and we need to recognize these terms to

be nonpositive by making use of the dissipative nature of the equation.

Let a � C	 (R) be a symbol satisfying (4.1). Hereafter, the notation� ij ... = � i + � j + · · · will

be frequently used. Our proof will be designed for the periodic problem; however, in view

of Remark2.9, the same argument can be applied in the nonperiodic setting. For a smooth

solution u of (1.1), we have

� t �u(� ) = …i� 2 �u(� ) + i��
�

� =� 123

�u(� 1) �̄u(� 2) �u(� 3) + ��
�

� =� 123

sgn(� 12) �u(� 1) �̄u(� 2) �u(� 3),

� t �̄u(� ) = i� 2 �̄u(� ) + i��
�

� =� 123

�̄u(� 1) �u(� 2) �̄u(� 3) + ��
�

� =� 123

sgn(� 23) �̄u(� 1) �u(� 2) �̄u(� 3).

The derivative ofEa
0(u(t)) =



� 12=0 a(� 1) �u(� 1) �̄u(� 2) is computed as

d
dt

Ea
0

�
u(t)

�
= i�

�

� 1234=0

�
a(� 123)� 123 + a(� 1)� 234

�
�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4)

+ �
�

� 1234=0

�
a(� 123)� 123sgn(� 12) + a(� 1)� 234sgn(� 34)

�
�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4).

The “rst term is the same as that appearing in the DNLS case, and it is symmetrized as

follows:

�
2i

�

� 1234=0

�
� 1a(� 1) + � 2a(� 2) + � 3a(� 3) + � 4a(� 4)

�
�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4).

We observe that the multiplier part� 1a(� 1) + · · · + � 4a(� 4) vanishes for the resonant fre-

quencies:

� 1234= 0, � 2
1 …� 2

2 + � 2
3 …� 2

4 = …2� 12� 23 = 0.

Then this quadrilinear term can be canceled with the leading term of the derivative of the

quadrilinear functional

…
�
2i

�

� 1234=0
� 12� 23�=0

� 1a(� 1) + � 2a(� 2) + � 3a(� 3) + � 4a(� 4)
…i(� 2

1 …� 2
2 + � 2

3 …� 2
4 )

�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4),

which can be used as an appropriate correction term toEa
0(u).



Kishimoto and TsutsumiAdvances in Continuous and Discrete Models        (2023) 2023:10 Page 16 of 29

In the following, we assume� = 0 for simplicity and consider the term

�
�

� 1234=0

�
a(� 123)� 123sgn(� 12) + a(� 1)� 234sgn(� 34)

�
�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4).

This term has less symmetry due to the sign functions. In fact, this is symmetrized as

�
2

�

� 1234=0

��
� 1a(� 1) + � 2a(� 2)

�
sgn(� 12) +

�
� 3a(� 3) + � 4a(� 4)

�
sgn(� 34)

�
�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4),

and the multiplier part does not vanish when� 23 = 0 �= � 12 (in this case sgn(� 34) =

…sgn(� 12) �= 0). Now, we observe that the function� �� � a(� ) is odd and strictly increasing

on R, and hence

�
� 1a(� 1) + � 2a(� 2)

�
sgn(� 12) =

�
�� 1a(� 1) + � 2a(� 2)

�
� > 0

for any � 1, � 2 � R with � 12 �= 0. Then we decompose this term as

�
�

� 1234=0

� �
�� 1a(� 1) + � 2a(� 2)

�
�
� �

�� 3a(� 3) + � 4a(� 4)
�
� �u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4)

+
�
2

�

� 1234=0

� � �
�� 1a(� 1) + � 2a(� 2)

�
� …

� �
�� 3a(� 3) + � 4a(� 4)

�
�� 2 �u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4)

=:Q1 + Q2.

On the one hand, for� < 0, we have

Q1 = �
�

�

�
�
�
�
�

� 12=�

� �
�� 1a(� 1) + � 2a(� 2)

�
� �u(� 1) �̄u(� 2)

�
�
�
�

2

� 0.

On the other hand, it will turn out that the multiplier part of Q2 vanishes when� 12 = 0

and also when� 23 = 0.Q2 is then canceled out by adding the correction term

Ea
1(u) :=

�

� 1234=0
� 12� 23�=0

ba
4(� 1, � 2, � 3, � 4)sgn(� 12) �u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4)

to the modi“ed energyEa
0(u), where

ba
4(� 1, � 2, � 3, � 4) := …

�
2

[
�

|� 1a(� 1) + � 2a(� 2)| …
�

|� 3a(� 3) + � 4a(� 4)|]2

2i� 12� 23sgn(� 12)
.

We can show thatba
4 is extended to a smooth function on� 4, where

� m =
�
(� j)1� j� m : � 12...m = 0

�

(we put sgn(� 12) outside to makeba
4 smooth). Moreover,� 12� 23 = 0 impliesba

4(� 1, � 2, � 3, � 4) =

0 (and hence the restriction� 12� 23 �= 0 for the sum in Ea
1(u) can be disregarded). In fact,



Kishimoto and TsutsumiAdvances in Continuous and Discrete Models        (2023) 2023:10 Page 17 of 29

noticing that

q(� 1, � 2) :=
� 1a(� 1) + � 2a(� 2)

� 1 + � 2
> 0 (� 1, � 2 � R,� 12 �= 0),

on � 4 � { � 12� 23 �= 0}, we compute it as

ba
4(� 1, � 2, � 3, � 4) =

i�
4� 23

� �
|� 1a(� 1) + � 2a(� 2)|

|� 12|
…

�
|� 3a(� 3) + � 4a(� 4)|

|� 34|

� 2

=
i�

4� 23

� �
q(� 1, � 2) …

�
q(� 3, � 4)

� 2

=
i�

4� 23

�
q(� 1, � 2) …q(� 1 + � 23, � 2 …� 23)�

q(� 1, � 2) +
�

q(� 3, � 4)

� 2

=
i�� 23

4

[
� 1

0 (� 1q …� 2q)(� 1 + � 23t, � 2 …� 23t)dt]2

[
�

q(� 1, � 2) +
�

q(� 3, � 4)]2
,

while q(� 1, � 2) is actually positive and smooth onR2, as we see in the following lemma.

Lemma 4.4 q(� 1, � 2) can be extended to a smooth positive function onR2. Moreover, the

following hold(with � max := |� 1| � | � 2|):

(i) q(� 1, � 2) 
 a(� max), |[� � 1
1 � � 2

2 q](� 1, � 2)| � � � 1�…� 1� � 2�…� 2a(� max) (1 � | � | � 3);

(ii) |[� � 1
1 � � 2

2 (� 1 …� 2)q](� 1, � 2)| � � � 1�…� 1� � 2�…� 2� � max�…1a(� max) (0 � | � | � 3).

Proof For (� 1, � 2) � R2 \ { � 12 = 0}, we have

q(� 1, � 2) =
� 1a(� 1) + � 2a(� 2)

� 1 + � 2
(4.2)

=
� 1a(� 1) … (…� 2)a(…� 2)

� 1 … (…� 2)
=

� 1

0

�
� a(� )

� �
(…� 2 + � 12t)dt. (4.3)

Sincea is smooth and (� a(� ))� = a(� ) + � a�(� ) � a(� ) � a(0) > 0 (� � R), (4.3) de“nes a

positive smooth function onR2.

To show q(� 1, � 2) 
 a(� max), it su�ces to consider the following three cases. If� max �

1, then q(� 1, � 2) = a(0) = a(� max). If � max > 1 and|� 12| 
 � max, then the claim follows from

expression (4.2) (and some more arguments). If� max > 1 and|� 12| � � max, then we have

| …� 2 + � 12t| 
 | � 2| 
 � max for t � [0, 1], and the claim follows from (4.3) since (� a(� ))� =

a(� ) + � a�(� ) 
 a(� ).

For the derivatives ofq, we may focus on the case� max > 1. In the case|� 12| 
 � max, we

“rst observe that

�
�� � 1

1 � � 2
2

�
� …1

12

� �� � � � max�…1…|� |.

On the other hand, using the property|� j
� a(� )| � � � �…ja(� ) for j � 5, we have

�
�� j

�

�
� a(� )

� �� � � � � 1…ja(� ),
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which implies that

�
�� � 1

1 � � 2
2

�
� 1a(� 1) + � 2a(� 2)

� ��

�
���

���

� � � 1� 1…ja(� max)
�
� = (j, 0)

�
,

� � � 2� 1…ja(� max)
�
� = (0,j)

�
,

= 0 (� 1 � 1 and� 2 � 1).

The claimed estimate follows from these estimates and expression (4.2). When |� 12| �
� max, we deduce from expression (4.3) that

�
� � 1

1 � � 2
2 q

�
(� 1, � 2) =

� 1

0
t � 1(t … 1)� 2

�
� 1+|� |

�

�
� a(� )

��
(…� 2 + � 12t)dt.

Recalling that| …� 2 + � 12t| 
 � max for t � [0, 1], we have

�
�� � � 1

1 � � 2
2 q

�
(� 1, � 2)

�
� � � � max�…|� |a(� max) � � � 1�…� 1� � 2�…� 2a(� max).

This proves (i). For (ii), we compute

(� 1q …� 2q)(� 1, � 2) =
a(� 1) …a(� 2)

� 12
+

� 1a�(� 1) …� 2a�(� 2)
� 12

=
� 1

0

�
� a(� )

� ��
(…� 2 + � 12t)dt.

Using these expressions instead of (4.2)…(4.3), the desired estimate is veri“ed by an argu-
ment similar to (i). �

We have the following estimate onEa
1(u(t)) for eacht.

Lemma 4.5 We have

�
�Ea

1(f )
�
� � � f � 2

L2Ea
0(f )

for any f � L2
x such that Ea

0(f ) < 	 .

Proof Let us begin with the dyadic decomposition:

�
�Ea

1(f )
�
� �

�

N1,...,N4� 1

�

� 4

�
�ba

4(� 1, � 2, � 3, � 4)
�
� · � N1(� 1)

�
� �f (� 1)

�
� · · · � N4(� 4)

�
� �̄f (� 4)

�
�.

We can show that

�
�ba

4(� 1, � 2, � 3, � 4)
�
� � a(N�

1 )
N�

1
on (IN1 × · · · × IN4) � � 4,

where we renumberN1, . . . ,N4 as N�
1 , . . . ,N�

4 such that N�
1 � N�

2 � N�
3 � N�

4 . (We will
actually prove a stronger result including estimates on derivatives ofba

4 in the proof of
Lemma4.7.) Then, by Hölder we have

�
�Ea

1(f )
�
� �

�

N�
1 
 N�

2 � N�
3 � N�

4 � 1

a(N�
1 )

N�
1

�
N�

3N�
4

� 1/2
4	

j=1

� PN�
j
f � L2
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� � f � 2
L2

�

N�
1 
 N�

2

a
�
N�

1

�
� PN�

1
f � L2� PN�

2
f � L2

� � f � 2
L2

�

N

a(N)� PN f � 2
L2

� � f � 2
L2Ea

0(f ),

as desired. �

By di�erentiating Ea
1(u(t)) in t and substituting the equation, we obtain

d
dt

�
Ea

0

�
u(t)

�
+ Ea

1

�
u(t)

��
= Q1 + �

�

� 6

�u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4) �u(� 5) �̄u(� 6)

×
�
…ba

4(� 123, � 4, � 5, � 6)sgn(� 56)� 123sgn(� 12)

…ba
4(� 1, � 234, � 5, � 6)sgn(� 56)� 234sgn(� 34)

+ ba
4(� 1, � 2, � 345, � 6)sgn(� 12)� 345sgn(� 34)

+ ba
4(� 1, � 2, � 3, � 456)sgn(� 12)� 456sgn(� 56)

�

= :Q1 + � (R1 + · · · + R4).

Here, it turns out thatR1 = R3 = R2 = R4. To see this, we start withR1 and “rst change
variables as (� 1, � 2, � 3, � 4, � 5, � 6) �� (� 3, � 4, � 5, � 6, � 1, � 2) to obtain R3. We then seeR1 = R4

andR2 = R3 by taking the complex conjugate, using�u(� ) = �̄u(…� ) and changing variables
as (� 1, � 2, � 3, � 4, � 5, � 6) �� (…� 6,…� 5,…� 4,…� 3,…� 2,…� 1). Therefore, it su�ces to consider

R(u) := …R1

=
�

� 6

ba
4(� 123, � 4, � 5, � 6)� 123sgn(� 12)sgn(� 56) �u(� 1) �̄u(� 2) �u(� 3) �̄u(� 4) �u(� 5) �̄u(� 6),

which satis“es

d
dt

�
Ea

0

�
u(t)

�
+ Ea

1

�
u(t)

��
= Q1

�
u(t)

�
… 4� � R

�
u(t)

�
.

We need to prove the following estimate on the remainder termR(u), which is the hard-
est part in the overall proof of the main theorem.

Proposition 4.6 Let s> 1/4.For0 <T � 1,we have

�
�
�
�

� T

0
R

�
u(t)

�
dt

�
�
�
� � � u� 4

Fs(T)

�

N� 1

a(N)� PNu� 2
FN (T).

Let us postpone the proof of this proposition and verify Proposition4.2.

Proof of Proposition4.2 By Lemma4.5, Proposition4.6, and the fact that any smooth so-
lution of (1.1) reduces itsL2 norm, we have

sup
t � [0,T ]

Ea
0

�
u(t)

�
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� Ea
0(u0) + sup

t � [0,T ]

�
�Ea

1

�
u(t)

� �� + C� u� 4
Fs(T)

�

N� 1

a(N)� PNu� 2
FN (T)

� Ea
0(u0) + C

�
� u(0)

�
� 2

L2 sup
t � [0,T ]

Ea
0

�
u(t)

�
+ C� u� 4

Fs(T)

�

N� 1

a(N)� PN u� 2
FN (T).

Assuming� u(0)� L2 � 1, this yields the claimed estimate. �

4.3 Estimate on the remainder term
It remains to prove Proposition4.6. A di�culty here is that we cannot directly apply point-

wise bounds on the multipliers (as we did in the proof of Lemma4.5), becauseu � Fs(T)

does not in general implyF…1
� [| �u(t, � )|] � Fs(T). Indeed, linear solutionsu = eit � 2

x u0 can be

considered as counterexamples.

We prepare the following lemma, which allows us to separate variables in the multiplier

ba
4. This idea has also been used in [5, 6, 18].

Lemma 4.7 Let N1, . . . ,N4 be dyadic integers such that N�1 
 N�
2 , where N�

1 , . . . ,N�
4 denote

the numbers N1, . . . ,N4 rearranged in decreasing order. Let �� 1, . . . , �� 4 � C	
0 (R) be bump

functions such thatsupp( �� j(·/Nj)) 
 INj , with INj de“ned as in De“nition 2.2 (i.e., �� j is

supported in[…2,2]if Nj = 1 and in […2,2]\ (…1
2, 1

2) if Nj > 1).

Then there is a sequence�c � � 1(Z4) such that

ba
4(� 1, � 2, � 3, � 4)� 1 · �� 1



� 1

N1

�
�� 2



� 2

N2

�
�� 3



� 3

N3

�
�� 4



� 4

N4

�

=
�

k1,...,k4� Z

�c(k1,k2,k3,k4)ei( k1
N1

� 1+ k2
N2

� 2+ k3
N3

� 3+ k4
N4

� 4), (� 1, . . . ,� 4) � � 4

and

�

k1,...,k4� Z

�
� �c(k1,k2,k3,k4)

�
� � N1

a(N�
1 )

N�
1

.

Proof Following the argument in [18], we “rst construct a smooth function �ba
4(� 1, . . . ,� 4)

on IN1 × · · · × IN4, which extendsba
4(� 1, . . . ,� 4) (de“ned on � 4) and satis“es

�
�� � 1

1 � � 2
2 � � 3

3 � � 4
4

�ba
4(� 1, � 2, � 3, � 4)

�
� � 1

N� 1
1 N� 2

2 N� 3
3 N� 4

4

a(N�
1 )

N�
1

�
0 � | � | � 3

�
. (4.4)

We use the following extensions ofba
4:

�b1(� 1, � 2, � 3, � 4) =
i�

4� 23

[q(� 1, � 2) …q(� 3, � 4)]2

[
�

q(� 1, � 2) +
�

q(� 3, � 4)]2

�
on R4 \ { � 23 = 0}

�
,

�b2(� 1, � 2, � 3, � 4) =
i�� 23

4� 2
12

[q(� 2, � 3) …q(� 1, � 4)]2

[
�

q(� 1, � 2) +
�

q(� 3, � 4)]2

�
on R4 \ { � 12 = 0}

�
,

�b3(� 1, � 2, � 3, � 4) =
i�� 23

4

[
� 1

0 (� 1q …� 2q)(� 1 + � 23t, � 2 …� 23t)dt]2

[
�

q(� 1, � 2) +
�

q(� 3, � 4)]2

�
on R4�

.
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From Lemma4.4, we can show that

€

�
�
�
�
�
� � 1

1 � � 2
2 � � 3

3 � � 4
4

�
[q(� 1, � 2) …q(� 3, � 4)]2

[q(� 2, � 3) …q(� 1, � 4)]2

� �
�
�
�
�
� a(N�

1 )2

N� 1
1 N� 2

2 N� 3
3 N� 4

4
;

€
�
�� � 1

1 � � 2
2

�
q(� 1, � 2)

�
� � � � 1�…� 1� � 2�…� 2

�
a
�
|� 1| � | � 2|

�
(� 1, � 2 � R);

€
�
�� � 1

1 � � 2
2 � � 3

3 � � 4
4

� �
q(� 1, � 2) +

�
q(� 3, � 4)

� …2�� � 1
N� 1

1 N� 2
2 N� 3

3 N� 4
4 a(N�

1 )
;

€ If N1 
 N2 
 N�
1 and|� 23| � N�

1 , then
�
�
�
��

� 1
1 � � 2

2 � � 3
3 � � 4

4

� � 1

0
(� 1q …� 2q)(� 1 + � 23t, � 2 …� 23t)dt

� 2�
�
�
� � a(N�

1 )2

(N�
1 )2+|� |

.

Using these bounds, we see that the desired estimates (4.4) hold:
• for �b1 if |� 23| 
 N�

1 ;
• for �b2 if |� 12| 
 N�

1 ;
• for �b3 if N1 
 N2 
 N�

1 and |� 23| � N�
1 .

Note that |� 12| � | � 23| � N�
1 implies N1 
 N2 
 N3 
 N�

1 under the hypothesisN�
1 
 N�

2 .
Therefore, we can de“ne�ba

4 by

�ba
4 :=

�
1…�



� 23

1
100N�

1

��
�b1+

�
1…�



� 12

1
100N�

1

��
�



� 23
1

100N�
1

�
�b2+�



� 12

1
100N�

1

�
�



� 23
1

100N�
1

�
�b3,

for instance, where� is de“ned as in De“nition 2.2. It is clear that the above de“ned�ba
4

coincides withba
4 on � 4 and satis“es (4.4).

Now, we de“ne

c(� 1, � 2, � 3, � 4) := �ba
4(N1� 1,N2� 2,N3� 3,N4� 4)N1� 1 · �� 1(� 1) �� 2(� 2) �� 3(� 3) �� 4(� 4),

which is a smooth function supported in […2,2]4 and thus can be extended to a 2� -
periodic smooth function onR4. Let �c(k1,k2,k3,k4) be the Fourier coe�cients of c, then
the claimed identity follows from the Fourier series expansion and the restriction onto� 4.
Moreover, we deduce from (4.4) that

� c� C3([…� ,� ]4) := max
� � […� ,� ]4,|� |� 3

�
�� � 1

1 � � 2
2 � � 3

3 � � 4
4 c(� 1, � 2, � 3, � 4)

�
� � N1

a(N�
1 )

N�
1

,

which then implies that

� �c� � 1(Z4) � N1
a(N�

1 )
N�

1
.

This completes the proof. �

We are now in a position to prove Proposition4.6.

Proof of Proposition4.6 As usual, we decompose the sum into dyadic pieces:

� T

0
R

�
u(t)

�
dt
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=
�

N1,...,N6,N� 1

� T

0

�

� 6

ba
4(� 123, � 4, � 5, � 6)� 123� N (� 123) �� N4(� 4) �� N5(� 5) �� N6(� 6)

× sgn(� 12)sgn(� 56)(� N1 �u)(t, � 1)(� N2
�̄u)(t, � 2) · · · (� N6

�̄u)(t, � 6)dt,

where for j = 4,5,6, �� Nj (� j ) := �� j(� j /Nj) and �� j � C	
0 (R) is chosen so that �� j(·/Nj) � 1

on supp(� Nj ) and supp(�� j(·/Nj)) 
 INj , with � Nj , INj de“ned as in De“nition 2.2. In the

following, we writeN�
1 , . . . ,N�

6 to denote the numbersN1, . . . ,N6 rearranged in decreasing

order. Note that the range ofN1, . . . ,N6,N can be restricted to

N�
1 
 N�

2 and N � min
�
max{N1,N2,N3},max{N4,N5,N6}

�
. (4.5)

Applying Lemma4.7for each (N,N4,N5,N6), we have

� T

0
R

�
u(t)

�
dt

=
�

N1,...,N6,N� 1

�

k,k4,k5,k6� Z

�cN,N4,N5,N6(k,k4,k5,k6)
� T

0

�

� 6

sgn(� 12)sgn(� 56)

× ei( k
N � 1+ k

N � 2+ k
N � 3+ k4

N4
� 4+

k5
N5

� 5+
k6
N6

� 6) �u1(t, � 1) �̄u2(t, � 2) · · · �̄u6(t, � 6)dt,

where we writeuj = PNj u for brevity, j = 1, . . . , 6, and

�

k,k4,k5,k6� Z

�
� �cN,N4,N5,N6(k,k4,k5,k6)

�
� � Na(max{N,N4,N5,N6})

max{N,N4,N5,N6}
. (4.6)

Since multiplication byei� � on the Fourier side does not change theFNj (T) norm of uj , the

proof is reduced to estimating

�
�
�
�

� T

0

�

� 6

sgn(� 12)sgn(� 56) �u1(t, � 1) �̄u2(t, � 2) · · · �̄u6(t, � 6)dt

�
�
�
�

=

�
�
�
�

� T

0

�

T

H(u1ū2)u3ū4H(u5ū6)dx dt

�
�
�
�.

To obtain a bound with the short-time norms, we have to divide the time interval into

small subintervals of length� (N�
1 )…1(denoted byI ), which gives a factor ofO(N�

1 ). The

strategy in the previous results on DNLS [4, 5] is to use two bilinear Strichartz and twoL	

embeddings ifN�
1 
 N�

2 � N�
3 or N�

1 
 N�
3 � N�

4 ; one bilinear Strichartz, oneL	 embed-

ding, and threeL6 Strichartz if N�
1 
 N�

4 � N�
5 or N�

1 
 N�
5 � N�

6 ; and sixL6 Strichartz

if N�
1 
 N�

6 . For KDNLS, there are some cases where the same argument does not work

due to the presence of the Hilbert transformations. For instance, we cannot use the stan-

dard bilinear Strichartz estimate (Lemma2.4) with only one ofu1 andu2 involved. We can

indeed use the modi“ed bilinear Strichartz estimates (Lemmas2.7, 2.8) instead, but the

argument will be even more complicated.



Kishimoto and TsutsumiAdvances in Continuous and Discrete Models        (2023) 2023:10 Page 23 of 29

The goal is to prove

R.H.S. of (4.6) × N�
1

�
�
�
�

�

I

�

T

H(u1ū2)u3ū4H(u5ū6)dx dt

�
�
�
�

� a
�
N�

1

��
N�

3N�
4N�

5N�
6

� 1
4+

6	

j=1

� � I uj � U2
� (R)

(4.7)

for eachN1, . . . ,N6,N � 1 satisfying (4.5) and each intervalI = [a,b) 
 [0,T ] with |I | �

(N�
1 )…1. In fact, this is enough to carry out the summations inN1, . . . ,N6 whens> 1/4. For

summability in N, notice that eitherN 
 N�
1 or N � N�

3 holds.

In the rest of the proof, we shall establish (4.7), dividing into the following “ve cases:

(I) N�
1 
 N�

6 ; (II) N�
1 
 N�

5 � N�
6 ; (III) N�

1 
 N�
4 � N�

5 ;

(IV) N�
1 
 N�

3 � N�
4 ; (V) N�

1 
 N�
2 � N�

3 .

We will estimate the right-hand side of (4.6) roughly bya(N�
1 ), except for a subcase (Vd)

of Case (V). For simplicity, we will see in detail only Case (III) and Case (V).1 Case (I) is

the easiest, and it is treated by theL6 Strichartz estimate (Lemma2.3). Case (II) is a little

more involved, and we need the bilinear Strichartz estimate (Lemma2.4). In Case (IV) we

also use the “rst modi“ed bilinear Strichartz estimate (Lemma2.7), but the argument is

similar to that in Case (III).

Case (III) N�
1 
 N�

4 � N�
5 . We consider the following three subcases, according to which

two frequencies are smaller thanN�
1 .

(IIIa) Each of{N1,N2}, {N3,N4}, {N5,N6} contains at most one frequency� N�
1 . Con-

sider the caseN�
5 = N1 and N�

6 = N3 for instance, but the other cases can be treated simi-

larly. Then we apply Lemma2.4to H(u1ū2), Lemma2.3to u4,u5,u6, andL	 embedding

to u3, which yields

I :=

�
�
�
�

�

I

�

T

H(u1ū2)u3ū4H(u5ū6)dx dt

�
�
�
�

� 1

N1/2
2

N1/2
3

6	

j=1

� � I uj � U2
� (R) � (N�

3 · · · N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R).

(IIIb) {N�
5 ,N�

6 } = {N1,N2} or {N5,N6}. Consider the former case, for instance. We apply

the “rst modi“ed bilinear Strichartz estimate (Lemma2.7) for H(u1ū2)u3 and Lemma2.3

for the other threeujs to obtain

I � (N1 � N2)1/2

N1/2
3

6	

j=1

� � I uj � U2
� (R) � (N�

3 · · · N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R).

(IIIc) {N�
5 ,N�

6 } = {N3,N4}. Without loss of generality, we assumeN�
5 = N3 andN�

6 = N4.

1An extended version of this article can be found in https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1967.pdf, where
we keep a complete proof for the reader’s convenience.

https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1967.pdf
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(IIIc-i) N3 
 N4. In this case, we divideH(u1ū2) into two parts as follows:

H(u1ū2) = HP� N3(u1ū2) + HP�N3(u1ū2).

For the “rst term, we can eliminate the Hilbert transformations by the fact that the fre-
quency forH(u5ū6) must be much bigger than that ofu3ū4:

�

I

�

T

HP� N3(u1ū2)u3ū4H(u5ū6)dx dt

= …
�

I

�

T

P� N3(u1ū2)H
�
u3ū4H(u5ū6)

�
dx dt

= …
�

I

�

T

P� N3(u1ū2)u3ū4H2(u5ū6)dx dt

=
�

I

�

T

P� N3(u1ū2)u3ū4u5ū6 dx dt.

Now, the desired bound can be obtained by applying Lemma2.4 to u3u5, L	 embed-
ding to u4, and Lemma2.3to the others, for instance. To estimate the contribution from
the second term, we use the second modi“ed bilinear Strichartz estimate (Lemma2.8)
for HP�N3(u1ū2)u3 and Lemma 2.3 for u4,u5,u6. In each case, we obtain the factor
a(N�

1 )(N�
1N�

6 )1/2 
 a(N�
1 )(N�

3 · · ·N�
6 )1/4.

(IIIc-ii) N3 � N4. In this case, we make a “ner decomposition:

H(u1ū2)u3ū4H(u5ū6)

= HP� N3(u1ū2)u3ū4H(u5ū6) + H(u1ū2)u3ū4HP� N3(u5ū6)

…HP� N3(u1ū2)u3ū4HP� N3(u5ū6)

+ HP� N3(u1ū2)u3ū4HP�N3(u5ū6) + HP
 N3(u1ū2)u3ū4HP�N3(u5ū6).

There is no contribution from the third term, while the estimate for the fourth term is
exactly the same as the “rst term in Case (IIIc-i) since in the integral we can replace
P�N3(u5ū6) by u5ū6. For the “rst two terms, we can separate two functions of high fre-
quency from the Hilbert transformation; for instance,

�

I

�

T

HP� N3(u1ū2)u3ū4H(u5ū6)dx dt

= …
�

I

�

T

H
�
HP� N3(u1ū2)u3ū4

�
u5ū6 dx dt

= …
�

I

�

T

HP� N3(u1ū2)(Hu3)ū4u5ū6 dx dt.

This can again be treated similarly to the “rst term in Case (IIIc-i). To estimate the contri-
bution from the last term, we “rst notice that the frequency foru5ū6 must stay
 N3 in the
integral; hence let us write it as�P
 N3(u5ū6). We estimate the integral in two ways. First, we
apply Lemma2.4to P
 N3(u1ū2) and �P
 N3(u5ū6) andL	 embedding tou3,u4, which yields

�
�
�
�

�

I

�

T

HP
 N3(u1ū2)u3ū4H �P
 N3(u5ū6)dx dt

�
�
�
� � 1

N1/2
3

1

N1/2
3

N1/2
3 N1/2

4

6	

j=1

� � I uj � U2
� (R).
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Next, applying Lemma2.8to HP
 N3(u1ū2)u3 andH �P
 N3(u5ū6)ū4, we have

�
�
�
�

�

I

�

T

HP
 N3(u1ū2)u3ū4H �P
 N3(u5ū6)dx dt

�
�
�
� � N1/2

3

N1/2
1

N1/2
3

N1/2
5

6	

j=1

� � I uj � U2
� (R).

Interpolating these estimates, we obtain

�
�
�
�

�

I

�

T

HP
 N3(u1ū2)u3ū4H �P
 N3(u5ū6)dx dt

�
�
�
� � N1/4

3 N1/4
4

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R)



(N�

3 · · ·N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R),

as desired.
Case (V) N�

1 
 N�
2 � N�

3 . Let us divide into the following four cases.
(Va) One of {N1,N2} and one of{N5,N6} are comparable toN�

1 . In this case, we can
break the binding by the Hilbert transformation betweenu1 and ū2 and betweenu5 and
ū6. Applying Lemma2.4twice to the pairs (N�

1 ,N�
3 ) and (N�

2 ,N�
4 ) and theL	 embedding

to the functions corresponding toN�
5 ,N�

6 , we obtain

I � (N�
5N�

6 )1/2

N�
1

6	

j=1

� � I uj � U2
� (R) � (N�

3 · · ·N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R).

(Vb) One of {N1,N2,N5,N6} and one of{N3,N4} are comparable toN�
1 . Assume, say,

N1 
 N3 
 N�
1 . We can deal withu1 andū2 of H(u1ū2) separately, which allows us to treat

two casesN2 � N4 and N2 � N4 in a parallel manner (let us assumeN2 � N4, say). Apply
Lemma2.4to u3ū4, Lemma2.7to (Hu1)H(u5ū6), andL	 embedding toū2, then we have

I � 1

N1/2
3

(N5 � N6)1/2

N1/2
1

N1/2
2

6	

j=1

� � I uj � U2
� (R) � (N�

3 · · ·N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R).

(Vc) N3 
 N4 
 N�
1 . It su�ces to apply Lemma 2.7twice to H(u1ū2)u3 and ū4H(u5ū6),

which gives

I � (N1 � N2)1/2

N1/2
3

(N5 � N6)1/2

N1/2
4

6	

j=1

� � I uj � U2
� (R) � (N�

3 · · · N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R).

(Vd) N1 
 N2 
 N�
1 or N5 
 N6 
 N�

1 . This is the hardest case, and let us focus on the
former situation N1 
 N2 � N3, . . . ,N6. First, using conditions (4.1) on a and (4.5) on N,
we deduce that

R.H.S. of (4.6) � a
�
N�

1

�



N�
3

N�
1

� 1/2

. (4.8)

(In fact, it is only in the caseN1 
 N2 
 N�
1 that we need to exploit the growth condition

on a„the third line in ( 4.1).) In the following, we only consider the caseN3 � N4, N5 � N6;
the other cases are parallel, though.
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(Vd-i) N�
3 � N�

4 , namely, only one ofN3, . . . ,N6 is much bigger than the others. In this

case, we can move the Hilbert transformation onu1ū2 to one of u3, . . . ,u6; if N3 = N�
3 we

have

�

I

�

T

H(u1ū2)u3ū4H(u5ū6)dx dt = …
�

I

�

T

u1ū2H(u3)ū4H(u5ū6)dx dt,

and if N5 = N�
3 we have

�

I

�

T

H(u1ū2)u3ū4H(u5ū6)dx dt = …
�

I

�

T

u1ū2u3ū4H2(u5)ū6 dx dt

=
�

I

�

T

u1ū2u3ū4u5ū6 dx dt.

Then we can obtain

I � (N�
6N�

4 )1/2

N�
1

6	

j=1

� � I uj � U2
� (R) � (N�

3 · · ·N�
6 )1/4

N�
1

6	

j=1

� � I uj � U2
� (R)

by using Lemmas2.4and2.7whenN3 = N�
3 , or Lemma2.4twice whenN5 = N�

3 . Note that

we do not actually need the improved bound (4.8) in this subcase.

(Vd-ii) N�
3 
 N�

6 . In this case, we use Lemma2.8for H(u1ū2)u3 (noticing that u1ū2 may

be replaced byP�N�
3
(u1ū2)), Lemma2.3for the others to obtain

I � (N�
3 )1/2

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R).

Combining it with (4.8), we have the desired estimate.

(Vd-iii) N�
3 
 N�

4 � N�
6 and N5 � N6. In this caseH(u5ū6) = (Hu5)ū6, so that we can

separateu3, . . . ,u6.

(Vd-iii-1) If N�
3 
 N�

4 � N�
5 , then we use Lemma2.8for H(u1ū2)u�

3, Lemma2.4for u�
4u�

5,

and the L	 embedding foru�
6, whereu�

j means the function corresponding toN�
j . The

resulting estimate is

I � (N�
3 )1/2

(N�
1 )1/2

1
(N�

4 )1/2

�
N�

6

� 1/2
6	

j=1

� � I uj � U2
� (R) � (N�

5N�
6 )1/4

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R),

which is su�cient together with ( 4.8).

(Vd-iii-2) If N�
3 
 N�

5 � N�
6 , by the assumption we haveN3 
 N4 
 N5 � N6. In this

case, we make the decomposition

u3ū4 = P� N3(u3ū4) + P
 N3(u3ū4).

For the “rst term, we can separateu1 andu2 as

�

I

�

T

H(u1ū2)P� N3(u3ū4)H(u5)ū6 dx dt = …
�

I

�

T

u1ū2H
�
P� N3(u3ū4)H(u5)ū6

�
dx dt
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=
�

I

�

T

u1ū2P� N3(u3ū4)u5ū6 dx dt.

Hence, this is similar to Case (Vd-i) and easily treated by applying Lemmas2.4and 2.7.
For the second term, we use Lemma2.8for H(u1ū2)H(u5), Lemma2.4for P
 N3(u3ū4), and

L	 embedding forū6 to obtain

I � N1/2
3

N1/2
1

1

N1/2
3

N1/2
6

6	

j=1

� � I uj � U2
� (R) � (N�

5N�
6 )1/4

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R),

which is again su�cient.
(Vd-iv) N�

3 
 N�
4 � N�

6 andN5 
 N6.

(Vd-iv-1) If N3 � N5, so N3 
 N4 � N5 
 N6, we use Lemma2.8 for H(u1ū2)u3 and

Lemma2.7for ū4H(u5ū6). We obtain

I � N1/2
3

N1/2
1

N1/2
5

N1/2
4

6	

j=1

� � I uj � U2
� (R) � (N�

5N�
6 )1/4

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R).

(Vd-iv-2) If N5 � N3 
 N4, namely,N5 
 N6 � N3 
 N4, we make a decomposition sim-

ilar to that in Case (Vdiii-2):

H(u5ū6) = HP� N3(u5ū6) + HP�N3(u5ū6).

For the “rst term, we can separate u1 and u2 as in Case (Vd-iii-2) since

H[u3ū4HP� N3(u5ū6)] = u3ū4H2P� N3(u5ū6). The estimate is then easy and similar to Case
(Vd-i). For the second term, we can putP�N3 also onH(u1ū2). Applying Lemma2.8 to

HP�N3(u1ū2)u3 and Lemma2.3to the others, we have

I � N1/2
3

N1/2
1

6	

j=1

� � I uj � U2
� (R) � (N�

5N�
6 )1/4

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R).

(Vd-iv-3) The only remaining case isN5 � N3 � N4, namely, eitherN5 
 N6 
 N3 � N4

or N5 
 N6 � N3 � N4. We make a slightly “ner decomposition

H(u5ū6) = HP� N3(u5ū6) +
�

N3�K�N5

HPK(u5ū6).

The “rst term is again easy to treat since we can separateu1 and u2 by the identity

H[u3ū4HP� N3(u5ū6)] = (Hu3)ū4HP� N3(u5ū6). For the second term, for eachK, we can put

P�K on H(u1ū2). Hence, by applying Lemma2.8to HP�K(u1ū2)u3 and using Lemma2.4

for HPK(u5ū6), L	 embedding forū4, we obtain

I �
�

N3�K�N5

K1/2

N1/2
1

1
K1/2

N1/2
4

6	

j=1

� � I uj � U2
� (R) �

�
N �

3

� 0+ (N�
5N�

6 )1/4

(N�
1 )1/2

6	

j=1

� � I uj � U2
� (R),

which together with (4.8) shows the desired estimate (4.7).

We have thus completed the case-by-case analysis for the proof of (4.7). �
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5 Conclusion
We have proveda priori estimates for solutions in a neighborhood of the origin inHs,

s> 1/4. As a result, we have proved the continuous dependence of solutions on initial data

at the origin in Hs, s> 1/4, which constitutes a part of the well-posedness for the Cauchy

problem of (1.1).
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