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1 Introduction
In the present article, we continue our study inJ, 2] and consider the kinetic derivative
nonlinear Schrédinger equation (KDNLS) oRR and onT :=R/2 Z:

wu=i2u+ Jufu+ xH]u?u, t (OT)x RorT, (1.1)

where , are real constants andH is the Hilbert transformation. We assume <0
throughout this article.
In the periodic case, we proved ind] that the Cauchy problem has a (forward-in-time)
global solution for any initial data inHS(T) if s> 1/4, with the solution mapu(0) = ug
u(-) being (locally-in-time) continuous in theHs topology away from the origin @ = 0.
More precisely, we proved the following claims:
(i) Foranys>1/4andany R r >0, thereexist T >0andasolutionmapuy uonthe
set{up HST): up s R, uUg (2 r}, which givesasolutionu C([0,T];H(T))
to (1.1) on [0, T] with u(0) = ug and is continuous in the H* topology.
(i) The above (nontrivial) solution u(t) is smooth (especially in H(T)) for t > 0, and
then it extends to a global solution by means of the H*-upper and L?-lower a priori
bounds, which are obtained for H* solutions of arbitrary size.
Note that the trivial solutionu 0 is a global solution forug = 0. The continuity of the
solution map at the origin can be veri‘ed ifs> 1/2 ([1]), but it is open for 1/2 s> 1/4.
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This is because priori estimates and the local existence time given by the contraction
argument depend on the reciprocal of th&? norm of solution for 1/2 s> 1/4. In the
nonperiodic case, local well-posedness of the Cauchy problentdf(R) can be proved for
s> 3/2 by the energy method, but no result seems to be currently available beld®?. To
summarize, onT we have a global solution fos> 1/4, while onR we only have a local
solution for s> 3/2. We also note that these solutions to the Cauchy problem are unique
in CiHy if s>3/2.

The goal of this article is to prove ara priori H® estimate for small and smooth so-
lutions to (1.1) in the regularity range 1/2 s> 1/4. In the periodic case, this and an
approximation argument would imply the same estimate for the small (rough)® solu-
tions constructed in 2], thus verifying the continuity of the solution map at the origin.
Although our argument in the present paper is applicable to both periodic and nonperi-
odic problems, we will mainly consider the periodic case, which seems technically more
complicated. (See Remark.9for a comment on the nonperiodic case.)

Theorem 1.1 Let M =R orT and s> 1/4.Then there exist > 0and C > 0such that if0 <
T landu C([0,T];H (M))isasmoothsolutiontdl.l)on M satisfying u(0) ps
then it holds that

uc qmms € u() . (1.2)

To establish theHs a priori bound (1.2), we shall employ the short-time Fourier restric-
tion method. The short-time XS norms were introduced by lonescu, Kenig, and Tataru
[3]; the idea is to combine theXs® analysis implemented in frequency-dependent small
time intervals with an energy-type argument recovering the estimate on the whole inter-
val. The method has been applied to the modi“ed Benjamin...Ono and the derivative NLS
equations by Guo 4] in the nonperiodic case, and in the periodic case by Schippal,[
who used theUP..VP type spaces instead ofS°. The XS type spaces are suitable for de-
tailed analysis on the resonance structure, while théP..\VP type spaces work well with
sharp cut-o functions in time. For our purpose, theUP..\VP type spaces seem to be more
convenient. In our argument with the short-time Fourier restriction method, the modi-
“ed energy plays a crucial role. Our way of constructing the modi“ed energy is slightly
di erent from that in [ 4, 6], and [5] because of the presence of the Hilbert transforma-
tion in the cubic nonlinearity. To be speci“c, (.1) has less symmetry than the DNLS, the
cubic NLS, and the modi“ed Benjamin...Ono equations. Moreover, it is known that the
kinetic term  (H(Ju|?)u) in (1.1) exhibits a kind of dissipation when <0 (e.g., we have

¢ u(t) fz 0 for (smooth) solutions of (..1), while theL? norm is conserved for the DNLS
equation). This dissipative nature has to be taken into account in the construction and the
estimate of the modi“ed energy since otherwise there would remain some uncanceled
terms with higher order derivatives compared to the corresponding estimate for the non-
linearity  «(Ju|?u). Here, we do not have to estimate the di erence of two solutions, since
we only consider the continuity of the solution map at the origin. So, we do not have to
consider the modi“ed energy for the di erence of two solutions, either.

Remarkl.2 (i) Inthe case of DNLS, a simila priori H ® estimate was obtained ir4, 5] for
solutions of arbitrary size by using a rescaling argument. Although the same idea may work
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for our problem (1.1), to remove the smallness condition in Theorert.1, we will focus on
small solutions in order to keep the argument not too complicated, and also because of
our particular interest in the continuity of the solution map at the origin.

(ii) An adaptation of the theory of low-regularity conservation laws for integrable PDEs
by Killip, Vi an, and Zhang [7] might be another possible approach. For the derivative NLS
on R and onT, the HS a priori estimate fors> 0 was established ing] by this method.

Of course, KDNLS is not known to be completely integrable, but the method seems also
useful to some dissipative perturbations of the integrable dispersive equations (e.g., the
KdV...Burgers equation). Unfortunately, this approach has not been successful for KDNLS
up to now.

The plan of the present paper is as follows. In Se2t.we describe the de“nition of func-
tion spaces we work with, the short-time Strichartz estimates and the short-time bilinear
Strichartz estimates. Assuming the trilinear estimates and the modi“ed energy estimate,
which are proved in later sections, we give the proof of our main Theorehil In Sect.3,
we give the trilinear estimate on the cubic nonlinearity in terms of short-time norms. In
Sect.4, we de“ne the modi“ed energy and prove its estimates, which are helpful for the
short-time argument.

We would like to conclude this section with a couple of comments on Jean Ginibrees work
about nonlinear wave and dispersive equations. Ginibre started to study the scattering
theory in the “nite energy class for nonlinear Klein...Gordon and Schrddinger equations
in late 1970s with Giorgio Velo. Since then, he has made the great contribution to non-
linear partial di erential equations, speci“cally nonlinear wave and dispersive equations.
In early 1990s, Bourgain presented the so-called Fourier restriction method to study the
well-posedness of the Cauchy problem for nonlinear dispersive equations such as non-
linear Schrddinger equations and the KdV equation. The Fourier restriction method is
very powerful, but it is rather complicated. In fact, Bourgaines papers were not very easy
to read. Many people hoped the readable exposition on Bourgaines work about the Fourier
restriction method. In 1996, Ginibre wrote the nice expositiond] on the Fourier restric-
tion method, which contained several new and important observations, for example, the
relation between the Fourier restriction norm and the interaction representation in quan-
tum physics. This helped the Fourier restriction method to prevail among the community
of nonlinear wave and dispersive equations.

2 Function spaces, Strichartz estimates

2.1 De"nition of function spaces

Forl p< andanintervall =(a,b), ... a<b , let UP(1),VP(1) be the (2-

valued) P-atomic space and the space of functions of boundgelvariation, respectively,
on |. For the precise de“nition of these spaces, seH] (also [L1]) and [12]. Recall that
UP(I), VP(1) are Banach spaces, and their elements are bounded functions froto L2

that have one-sided limits at every point ind, b]. Moreover,u  UP(l) is right continuous

and satis“eslim; 4 u(t) = 0. As usual, we write&/2(1) :={v  VP(l): vis right continuous}

and VP (1) :={v V&():lim; ,Vv(t) =0}, which are closed subspaces ¥P(l). We have
UP(I)  U9() for p <q with continuous inclusion, and similarly forVP(l), Vie(l), VP (1).

Following [13] (see also §]), we consider the spac®UP(1) :={u :u UP(I)}, where the
derivative is taken in the sense df2-valued distributions onl. For eachf DUP(l),
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there is uniqueu  UP(l) satisfyingf = u, and henceDUP(I) is a Banach space equipped
with the norm f puegy = U ueqy. Finally, we writeUP (1) :={v: () £v(-)  UP(1)} with
that DUP(1)={( ¢ ..i Ju:u UP()}.

We collect some basic properties of these spaces.

Lemma 2.1 Let|=(a,b) be any interval
(i) [Continuous embeddingoranyl p<qg< ,we have

uPmy  vPo Uiy L LA, vRE ) Lo,

(ii) [Duality] Forl<p< ,we haveL'(l;L?) DU"(l)and

t
fowpgy=  ECDEFt dt
a uPm

=sup | fvdxdt :v VrF:;’ M, v vP () 1

5 f Li;L2)
forf LY(I;L?).

(i) [ExtensiohlLetn landT :(L2)" L&,QX be an operator such that it is either
linear or conjugate linear in each variableetl p,q , and assume that the
map( 1,...,n) [t T % 1,...6 % )]isbounded from{L2)" to LP(I;LY):

it 2 it 2
T el x 1,...,e' X n L{’(I;Lﬂ)

for someA > 0. ThenT can be regarded as a map frofo® (R))" to L{(I; L) by
(Ug,...un) [t T(ug(t),...un())], anditis bounded

n

T(Ul, A ,Un) L{J(I;Lg) A UJ‘ Up(]R)'
=1

Here UP (R) is replaced by, (R;L2)ifp=
(iv) [Interpolatior]Letl p<q< ,EbeaBanachspacandT:U%(1) Ebea
bounded linear, or conjugate linear operator such thal’ a, ¢ Cq,
T ooy e Cpforsomeéd<C, Cq< .Thenwe have

< G
T V.’?.r,c, O ES 1+log C, Cp.
Proof (i) See, e.g. [0, Propositions 2.2, 2.4, Corollary 2.6].

(i) The “rst equality holds by de“nition. If f  L(,L?), the function t

et ff(t)dt L2 is absolutely continuous and of bounded variation oh Then the
second equality follows, e.g., fronlp, Theorem 2.8, Propositions 2.9, 2.10]. The last in-
equality follows from the Holder inequality and the embedding,% 1 L ;L.
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(iii) See, e.g., 10, Proposition 2.19].
(iv) See, e.g. 10, Proposition 2.20]. O

Now, we de“ne the short-time norms. In this article, we use capital lettefs,K, ... for
dyadic integers 1,2,4,8,....

Definition 2.2 First of all, we “x a bump function
Cy (R) even, monotoneon [0, ), and [ 4343 [...5/3,5/3]
where  denotes the characteristic function of a set. De*ne{ n}n 1 C; (R) by
1():= (), n():= (IN)... (2 IN) forN 2,
sothatl=  ;, n~()andsupp(n) Zn,where
7;:=[...2,2], In:=[...N,2N]\ ((.N/2,N/2) forN 2.

We de“ne the corresponding Littlewood...Paley projectioRy := F 1 nFx.
Next, we de“ne frequency-localized short-time norm&y (T), Gn(T) for functions u :
[0,T]  L*with supp(u(t, )) [0,T]x Zn by

U (= sup 1u UZ(R)7
I=[ab) [0,T]|I] N-1

U gn() == sup U|| DU2 ()"
I=(a,b) [0,T]]I] N--1

In the de“nition of the Fy(T) norm, we regard ,u as a function onR by extending it by
zero outsidel. Here, we consider half-open intervalk = [a,b) so that u can be right
continuous, and we avoid writing the norm U 2y as U y2 (), Since theU? ((a, b))
norm can be de“ned only for functions satisfyindim; a+ou(t) = 0. The short-time U?-
type space on [OT ] with spatial regularitys R is de“ned by

F(T):= u C[O,TLH® : u psry:= N° Pyu gy 2 <
To measure the nonlinearity, the following short-time norm is used:
U gsry = N° Pyu gym 2-
We also need the following energy norm:
U esmyi= N PaU L oy 2
2.2 Proof of the main theorem
It is known (e.g., L3, Lemma 3.1]) that the norms de“ned above satisfy the basic linear

estimate

P2
u FS(T)S, U gsy + t--d g u GS(T)
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foranys R. Then, what we need to show is the trilinear estimate
U gyt H U U ey S U B

and the energy estimate
UesmS U0) s+ U By

We will prove the trilinear estimate for general functionas F5(T) in Sect.3, and the
energy estimate for smooth solutions ofl(1) with small initial data in Sect4. Both of these
estimates requires> 1/4 and also have the constants uniform fof (0, 1] but growing
for T >1.

Let us admit these estimates and prove Theoreinl For0<T T and a smooth so-
lution u with initial data small in HS, de“ne

XsT = Ugsry+ x|ul’u « H [u? u

o)t o(T )’
The above three estimates show that

XsT S UO) s+ X T °

Onthe other hand, itis easy to show (e.g., far C([0, T]; H3"*)) that X«(T ) is continuous
inT and

limsupXs T
T +0

S U s

~

Hence, by a bootstrap argument, we have

Xs T < u(0) . O<T T.

~

Since u | qo11Hy S U ES(r), this concludes the proof of Theoreni. 1

2.3 Short-time L® and bilinear Strichartz estimates

Most of Strichartz-type estimates for the nonperiodic Schrédinger equation are known to
hold for the periodic problem in the short-time setting, and these estimates will be used
as basic tools to prove the trilinear and energy estimates. We begin with the followltfy
Strichartz estimate.

Lemma2.3 ForN land0< <N-lwe have

2

it
PNEX oo sy S 12

As a consequence/e have
P N u |_6(| ;LG(T)) S |U UG(R)

foranyintervall=[a,b) Rwith|l| <N-landanyu:l L2suchthatthe zeroextension
1u belongs to Y (R).
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Proof The “rst estimate was shown in 14, Proposition 2.9]. To obtain the second claim,
we use Lemma2. 1(iii) with the operator T : P n and apply the resulting estimate
to ju USR). O

As a counterpart of the bilinear Strichartz estimate of Ozawa and Tsutsuniig, Theo-
rem 2 (1)], we have the following short-time bilinear Strichartz estimate oh. A Fourier
analytic proof was given in16], which we will recall below for completeness.

Lemma2.4 ForK 1and >0,we have

L2 T 1+K 2
PK ét x let% 2 L2([O, ];LZ(']I‘))'S T 1 L2 2 L2- (21)

In particular, if Ny Np  1and i, »satisfysupp( ;) Zy;, thenfor0< < N;~twe
have

L2 T
eltx letg

2 L2, 1:L2(T))§Ni”1/2 112 2.2 (2.2)

Remark2.5 The latter estimate 2.2) clearly holds regardless of the complex conjugation,
while this is not the case for the former estimate(1). For the product without conjugation

of two functions of comparable frequencies, we can deduce, for instance, the following
result from (2.1:if| ;... o] Kforany ; supp(;),j=1,2,then

2 i 2 1+K 12
gtx etx, Lo, 12m) S TR 112 2 L2

Remark2.6 As for theL® Strichartz estimate, from 2.1) and Lemma2.1(jii) we immedi-
ately obtain the corresponding bilinear estimates ib?: for | = [a,b) with [I| <K we
have

PK(U\_/) L2(1:L2(T)) ,S K12 u U2 (R) v U2 (R)"
A similar extension is valid also for Lemma2.7and 2.8 On the other hand, by the Bern-

stein and Holder inequalities and the assumptiojh| < K% together with the embedding
UP L L2 wehave

Pk (uv) Lz(,;Lz(T))5K1/2|||l/2 WL mmy) S U uze) v ute):

By applying LemmaR2.1(iv) to the operatorv Pk (uv) with these estimates, we have
POUY) 220y S K AL +I0gK) iU pogy 1V ve

foruv:l L?suchthat ju U?(R)and v VZ . (R).

Proof of Lemma2.4 If K =1, the claim follows from the Hdlder inequality int and the
Bernstein inequality inx.
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AssumeK > 1. We observe that
Pe % jet?, = glm-n2xgl(-ogendt k(N ..n2) 1(n1) 2(n2)
ng.n2

€™ (ne™  (n+np) a(n)e- M2
n ny

By the Plancherel theorem and the change of varialtle= ... 2t, we have

2

2 a7,
P € X 1€ % 2 o oy

2
= «(n) 1(n+ny) 2(n)e-M2 dt

0 n ng

2 1 ...h - 2

= k(n) "— 1(n+1ny) 2(np)e?  dt

) 2o

1+K 2 — it
S K 1(n+ny) o(n2)e dt.
0
n

n2

Since the last term is equal td’% 1 fz 2 Ez by the Plancherel theorem, the claimed
estimate follows. O

To deal with the nonlinearity of (L.1) including the Hilbert transformation, we prepare
the next two lemmas. These estimates can be shown in the same manner as Lewdha

Lemma 2.7 Let 1, 5, 3 L?*T)satisfysupp(j) Zy;, and assume that N N2,Ns.
Then for0< <Nj;-1we have

N, Na 1/2

it 2 it 2 . 2
ét X 1-H ét X Zet% 3 LZ([O, ];LZ(T))S Tl 1 L2 2 L2 3 2.

The same estimate holds ift& ; is replaced byet £ ; and also if H is replaced by any
Fourier multiplier with bounded symbo(such as Py).
Proof SinceH (uv) = H(uv), we may assumé&l, N3. We observe that

) L2 2
étx 1'H étx getx 3

= g2 09X 030 Dysgngy ..ng) 1(N) 2(N2) 3(Ns)
n12n3

=i gnx e i(n3+(n..n2)A)t 2(n2)

n n2

x  sgnf..Nn3) 1(n..ny+n3) g(ng)e-M3mnt
n3

and hence

t2 tg gtz . 2
X1 HE X 80 5 00 12

Page 8 of 29
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_ e in3+(n..n2)2)t 2(n2)
0

n ny
_ 2
x sgnfyz ..n3) 1(n..ny+nz) S(ns)e...mg(n..nz)t dt
n3
_— 2
2(n2) sgnf, ..N3) 1(n..No+ng) z(ng)e-Ms-mt g
O n n2 n3
2(n2) sgnfy ..n3) 1(n..nz+ng)
n2 n O n3

2 1/2 2
x 3(n3)e...m3(n..n2)t dt ,

where in the last step we have used the Minkowski inequality to replace tife ; 7, norm

by 1, aLZ. Now, for“xed [n| Niandn, Zy,, we havg2(n..n;) | $2 , and thus

2
sgn, ..Nn3) 1(N..Ny+n3) z(ng)e-M3M-nAt gt
0 n3
1 ... 20..02) — it 2
= sgnf, ..n3) 1(n..ny+n3) 3(nz)d™t  dt
Zﬁ ..n2) 0 ng
2 . 2
<Njt sgn, ..n3) 1(n ..y +nz) 3(ng)d™t  dt
~ N gnnz..Nn3) 1 2+tn3) 3(N3
0
< N:-1 2 2
<SN; 1i(n..na+n3) " a3(nz) .
n3
Hence, we have
L2 L2 T 2
X 1 H € oE s g )
1/2 2
< o A 2 2
S 2(n2) Nj 1i(n..nz+n3) " 3(n3)
no n n3
2 2 2
<N 2(n2) N;-t 1(n..n2+nz) ” 3(n3)
n2 n n3
SNi"Nz 1 Ez 2 Ez 3 Ez,
as desired. m

Lemma 2.8 Let 1, », 3 L%(T) satisfysupp( i) INj,and assumethatN N, Ns.
Further,assume K Nj.Then forO< < Ni--l,we have

K 1/2

t2 7 gt 2
HP « €% 1815 2 €' % 5 500 112y S Ny Loz s

The same estimate holds ifte 3 is replaced byet £ sandalsoif H is replaced by any
Fourier multiplier with bounded symbal
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Proof By an almost orthogonality argument, we can restrict the frequencies afand »
onto intervals of lengthK. Then the same argument as for the preceding lemma can be
used. 0

Remark2.9 We note that all the above short-time.® and bilinear Strichartz estimates
(Lemmas2.3 2.4, 2.7, and 2.8) are true in the nonperiodic case as well. In fact, these es-
timates hold onR without restricting to a frequency-dependent short time interval (i.e.,
with the L?, or LZ, norm over R x R on the left-hand side). Concerning Lemma2.7and
2.8 this can be shown by a slight modi“cation of the proofs for the periodic estimates
given above.

3 Trilinear estimate in the short-time norms
In this section, we shall prove the following trilinear estimate in th&S(T) norm.

Proposition 3.1 Fors>1/4and0<T 1,we have

X(U]_JgUg) GS(T)+ X H(ulJZ)UQ: GX(T) 5 Uz FS(T) uz FS(T) usz FS(T)-

Proof We only consider the second term on the left-hand side with the Hilbert transfor-
mation. The “rst term (for DNLS) was treated in B, 5]; in fact, it can be dealt with in a
similar manner but more easily.

We apply dyadic decompositions as

H(uiuz)us = Pn, H(PnjUiPn,U2)PasUs

N1,..Ng 1
Np N

where we writeN,, ... N, to denote the numbersNy, ... N4 rearranged in decreasing or-
der. It then su ces to show for eachN = (Ny, ... Ny) the localized estimate

xPng H(PnyU1Pn,U2)PrgUs G, (T)
¢ (3.1)

S CN) Puyua my, ) PhoUz Ry, M) PrsUs Ry
with some C(N) satisfying

NIN3N3

0...
TN

CN) <
(SinceN;  N,, the factor (N;)%allows us to restore the claimed estimate by summing
up (3.2) in N.) We will actually obtain @.1) with smaller C(N), which satis“es

NNoNa @4+
C(N) < % : 3.2)
1

From the de“nition of the Fy(T), Gn(T) norms, we need to prove

sup «Png H(Pn, U1Pn, U2)PrgUs

DUZ (I
la=(ab) OTLIlal Nyt 9
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3

SCN) sup leNjuJ U2 (R)"
j=1 lj=[ab) [O.T1IYl Nj'“l

Since xPn,(H (Pn,U1Pn,U2)Pyzus)  LY([0,T1;L?) for ug,up,us  FX(T)  C([0,T];HS), by
Lemma2.1(ii) it su ces to prove either
xPgy H (P UiPr,U2)PhaUs g, 2

3 (3.3)
SCN) sup Ij PNjui U2 (R)
j=1 lj=[ab) [O,TLIlj] Nj'“l

or

H (Pn; U1P,Uz)PrgUs - <Py, Ug dxdt
I4

3 (3.4)

SCIN) ug 2, sup PN U u2 ()
j=1 li=lab) [0,T11j| ijl

foranyls=(a,b) [0, T], [ls] Nji'andanyus VZ (la).

WhenNs Ny, the time scale on the right-hand side is “ner than that on the left-hand
side, and therefore we need to “rst dividé, into subintervals of size (N, ) the number
of which is O(N;/N4). Then, to verify 3.3), we need to show

1/2 —
N]_ PN4 H (PNlulPNz UZ)PN3U3 |_2(| ;|_2)
3 (3.5)

SC(N) |PNJ-U]' U2 (R)
=1

for any intervall with
I=[ab) [T, NI N~
In fact, (3.5 implies (3.3) by the Schwarz inequality it and the Bernstein inequality irx.
From now on, we write simplyu; for Py, ;.
Case ()N N;.
(la) [highx highx high  high] N3 N2 Nz Ng.
We simply use thel.® Strichartz estimate (Lemma.3) for each function:

3 / 3
1/2
Ui L8(1:L6) 5 Nl 1uj y2 ®)
=1 =1

1/2 — 1/2
N]_ H(U1U2)U3 |_2(|;|_2)S Nl

This shows 8.5 with C(N) = (N,)Y?, which satis“es 8.2).

(Ib) [highx highx low high]N; N3 N,.

(i) N2 N2 Nas. In this case, we apply the standard bilinear Strichartz estimate
(Lemma2.4) to the product u;uy, on which we may putP N, - Using theL  embedding

1/2 1/2
Uz Lo ) SN Us Lo SN3° U3 g2

we have 8.5 with C(N) = N3, which satis“es @.2.
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(i) N2 Nz Nj.Noticing that H (u;u,) = u;H(uy), we apply Lemma.4to the product
H (uz)uz and follow the argument in the preceding case to obtai3.6) with C(N) = Nll’z,
which again satis“es§.2).

@ii) N7y Nz Na. In this case, we need to consider the dual estimatg4), because
we cannot use Lemma.4to the product H(u;)us (in the form of Remark2.5 when the
Fourier supports ofu; and uz are overlapping. We “rst replaceu, V,ZCY (I4) with its ex-
that 1, = (a,b)). Next, we decomposg, into subintervals of length (N, ) the number
of which is O(1). Then, for each integral on a subintervadl=[a,b), we apply Lemma2.4
(in the form obtained in Remark2.6) to the product uz xus (on which we may putP Ny )
bound the remaining functionsH (u,), Uz inthe L (I;L?) and theL?(I;L ) norms respec-
tively, and “nally derive the factor (\Il)---l’ff\lzl’2 from the last one by the Holder inequality
in t and the Bernstein inequality inx. The resulting bound is

H(u1lz)us xUsdxdt

3
(112 BRY,
S Ny TN N NG o, V2(R) Ui u2 g
=1

(Since we have to boundi, in V2, the bilinear Strichartz estimate is accompanied by a
factor (N;)°*.) Now, it is veri“ed directly from the de“nition of the V2 norm that

1Ug VZ(R) U VZ(]R) 2 Ug V2(|4)'

As aresult, we obtain8.4) with C(N) = (N;)°*N2/2, which satis“es 8.2.

(Ic) [highx lowx low high] N; N,  Nj.

We show (3.5 with C(N) < (N,)¥2.1f Ny or N, N, (sothatN;  Nj), we can putH
on a single function. Then, similarly to the case (Ib-i), we apply Lemr2atto the product
of functions corresponding toN; and N; and use theL embedding for the other one
corresponding toN, to obtain the desired bound. In the remaining case, i.e.N§ N4
N1, N2, we apply the “rst modi“ed bilinear Strichartz estimate (Lemma.7) to the left-
hand side of 8.5), which gives the same bound.

Case (DN Nj.

(lla) [highx highx high  low] Ny Nz Nz Nj.

We follow the argument in the case (la) to obtain3.5) with C(N) = (N, )¥2, which sat-
is“es (3.2.

(Ilb) [highx highx low low] N;  Nj.

(i) If N4 < min{N1, N>, N3}, then we show 8.5 with C(N) < min{N1, N5, N3}**? by con-
sidering the following two cases separately.

« If N3 N; (which implies Ny Ny), then we first bound the left-hand side of (3.5) by

1/2

N; "N H(uitz)ug L20.LY)

and then apply Lemma 2.4 to u;u; (on which we may put P N, )- This implies (3.5)
with C(N) = N;/2,
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* IfN3 N (whichimpliesN; N2 N;), then we may put P<y, on u;us. Using the
second modified bilinear Strichartz estimate (Lemma 2.8), we obtain (3.5) with
C(N)=N22,

(i) If N min{Ny, N5, N3}, then we consider the dual estimate3(4). Note that we can
always putH on a single function sinceN3 N4 and

H(uiUuz)uz uzdxdt=... uiUzH (usz xUg) dxdt.
l4 lg

Then the argument is parallel to the case (Ib-iii). This time we decompokginto subin-

tervals of length  (N,)% the number of which isO(N,/Ny), and apply Lemma2.4to

the product of functions corresponding toN; and N5 (= N4). Further, we bound the re-
maining functions corresponding taN, andN, inthe L (I;L?) and theL?(I;L ) norms,

respectively. We then obtaing.4) with

1/2 0+ 1/2

N
C(N),SN—l' N, "'(1/2)N4 N, ...1/2N4 <N N, 2
4
which satis“es 8.2).
We have seen all the possible cases, and this completes the proof of the localized estimate
(3.2) with (3.2. O

4 Energy estimate
In this section, we shall prove the following priori estimate.

Proposition 4.1 AssumeD<T landthatu C([0,T];H )isasolutionto(1.1) onthe
time interval [0, T]. Then, for s> 1/4, there exist >0and C > 0 (independent of )isuch
thatif u(0) |2 then we have

2
UZm C u0) s+ U & -

In fact, this is the main part of the proof of Theoreni.1 Recall that theE3(T) norm takes
L, beforethe 2summation over dyadic frequency blocks, and so it s fairly stronger than
the L, HZ norm.

4.1 Areduction
First of all, we reduce Propositiort.1to the following estimate on a *modi‘ed energyZ

Proposition 4.2 LetO<T landu C([0,T];H ) be a solution to(1.1) on the time
interval [0, T]. Let s> 1/4, and assume that a smooth symbol aC (R) has the following
properties

a is positive even nondecreasing ifi0, ), constanton...1, 1],
a2 )sa() forany >0,

gg“g Z (@M foranyNi>N, 1,

| 'a( )< “a() forany Randl | 5.

(4.1)
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Then there exist > 0and C> 0depending on s and the implicit constants {@.1) (but not
on u) such thatif u(0) 2 then we have

Eu®) = aDu()

N 1

Remark4.3 (i) The Sobolev weigh( )= (s 1/4) satis“es conditions 4.1) (af-
ter modifying on [...1, 1]). With this choice o&, we can obtain from Propositior4.2 an
L ([0,T];HS) a priori estimate. This is, however, weaker than what we want to prove in
Proposition4.1

(i) To obtain an EXT) bound, one may consider estimating localizet® norms
N2 (D)u(t) fz for dyadic numbersN 1 and summing them up. This is indeed the
approach taken in B]. On the other hand, we will improve the bound by adding a correc-
tion term to the energy functional. For this purpose, it will be convenient to introduce a
modi“ed energy  a(D)u(t) EZ and estimate it instead of the localize#l® norms, where
a symbola( ) is chosen so that it is positive everywhere and its derivatives are controlled
by itself as| J'a( )< Ha( ). Such a modi“ed energy has been used for the cubic NLS
in [6] and for the modi“ed Benjamin...Ono (and also the DNLS) equation i, B].

(iii) Our choice of a( ) is slightly simpler than that in ..6] (see the proof of Proposi-
tion 4.1). Indeed, the modi“ed energies in these papers are de“ned from a sequence of
positive numbers{ n} depending on the initial data, but we do not use such a sequence.

Proof of Propositior.1from Proposition4.2 Let s> 1/4, :=s... 1/4> 0. For each dyadic
integerN, we de“ne the positive sequencial }n 1 by

TNZO (N N),
NZS... (N N)

zZ|Z|
|

- N
ay =N -

Z|| 2

Itis clear that{aﬁ} is increasing inN . In fact, the growth of{aﬁ} is controlled as

s B g (N 1)

N
an

Now, de“ne the smooth symbobN C (R) by

aV()=a n().
N 1

It is easy to see thagN satis“es all the properties in 4.1) with implicit constants inde-
pendent ofN. Applying Proposition4.2and restricting the left-hand side of the resulting
estimate to the target frequency N}, we have

N
N

2 2 N 2
sup N Pﬁu(t) LZ/S ﬁ NZS PNU(O) |_2+ u éS(T) Pnu ;Z:N(T)

t [0,T] N 1
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for any smooth solutionu C([0,T];H ) to (1.2) with u(0) .2 su ciently small. Sum-
ming up in N, we obtain the claimed estimate. O

4.2 Construction of the modi“ed energies
Now, we start proving Proposition4.2 The argument is very similar to the estimate of
the modi“ed energy with correction terms in thel-method, where an important role is
played by various cancelations after symmetrization of the energy functionals (see, e.g.,
Colliander, Keel, Sta lani, Takaoka, and Tao]7]). However, there are fewer symmetries
compared to the DNLS case, and more delicate analysis is required. In particular, some of
the highest order terms cannot be canceled out, and we need to recognize these terms to
be nonpositive by making use of the dissipative nature of the equation.

Leta C (R)beasymbolsatisfyingd.1). Hereafter, the notation j_= ;+ j+--- will
be frequently used. Our proof will be designed for the periodic problem; however, in view
of Remark2.9, the same argument can be applied in the nonperiodic setting. For a smooth
solution u of (1.1), we have

()= 2u()+i u( Ju( 2u( 3) + sgn( 12)u( Ju( 2u( 3),

() =i 20( ) +i u( u( Ju( ) + sgn(za)u( Ju( 2u( ).

=123 =123

The derivative ofEj(u(t)) = a( 1)u( pu( ») is computed as

12=0
SEIU0 =i alie) et al ) zse U DI (L
1234=0
+ a( 123) 12359N( 12) +a( 1) 23459n( 34) U( )U( 2)u( )u( 4).
1234=0

The “rst term is the same as that appearing in the DNLS case, and it is symmetrized as
follows:

— 18( 1)+ 2a( 2)+ sa( 3)+ 4a( 4) u( Yu( 2u( 3)u( 4).
1234=0

We observe that the multiplier part ;a( 1) +---+ 4a( 4) vanishes for the resonant fre-
guencies:

— 2 2 2 —
1234=0, 1--2%F 3...4—...212 23=0.

Then this quadrilinear term can be canceled with the leading term of the derivative of the
quadrilinear functional

1@( 1)+ 2a( 2)+ za( 3)+ sa( 4)
(2. 5+ 20D

u( u( 2u( 3)u( 4),

1234=0
12 2370

which can be used as an appropriate correction term &g (u).
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In the following, we assume = 0 for simplicity and consider the term

a( 123) 12359N(12) +a( 1) 23459N(34) U( 2)u( 2)u( )u( 4).
1234=0

This term has less symmetry due to the sign functions. In fact, this is symmetrized as

3 18( 1)+ 2a( 2) sgn(12)+ sa( 3)+ 4a( 4) sgn(a4) u( Yu( 2)u( 3)u( 4),
12340

and the multiplier part does not vanish when o3 = 0 = 15 (in this case sgn(zs) =
...sgn(2) = 0). Now, we observe that the function a( ) is odd and strictly increasing
on R, and hence

18( 1)+ 2a( 2) sgn(12)= ia( 1)+ 2a(2) >0

forany ;, » Rwith 1,=0. Then we decompose this term as

1a( 1)+ 2a(2)  sa( 3)+ aa( 4) u( Yu( 2u( s)u( 4)

1234=0
t3 @)+ 2a(2) . sa(3)* 4a(4) “u( 1)U( 2u( 3)a( 4)
1234=0
=191+ Qo.

On the one hand, for <0, we have

. 2
0= 1@( 1)+ 2a( 2)u( Ju( 2) 0.

12=

On the other hand, it will turn out that the multiplier part of Q, vanishes when,=0
and also when »3=0. Q5 is then canceled out by adding the correction term

Ef(u) = bi( 1, 2, 3, 4)SgN(12)u( u( 2u( 3)u( 4)
12340
12 23=0

to the modi“ed energyE§(u), where

b3 ( )= L Taa()+ 2a(2)l - | 3a( )+ sa( P
Az 3 HTy 2i 12 2389N( 12) '

We can show thatbj is extended to a smooth function on 4, where
m= ()1jm: 12m=0

(we put sgn( 1) outside to makebg smooth). Moreover, 12 23=0impliesbi( 1, 2, 3, 4) =
0 (and hence the restriction 1, 23 = 0 for the sum in E{(u) can be disregarded). In fact,



Kishimoto and TsutsumAdvances in Continuous and Discrete Models (2023) 2023:10 Page 17 of 29

noticing that

1a( 1)+ 2a( 2)

q( 1, 2) = T+,

>0 (11 2 R; 12:0)1

on 4 { 12 23=0}, we compute it as

i ha()+ ea( o)l | 3a( 3)+ sa( 4)] 2
4 o3 | 12] | 24l

b?l( 1y 2y 3 4):

=— q1 2 A3 4
3

i q(1 2)9( 1+ 23 2...23) °

23 a( 1, 2+ a(s, 4)
_i sl g (10 20)( 1+ 23ty 2. 23t)dt]?
4 [ a(1 2+ d(s )2

while g( 1, ») is actually positive and smooth ofiR?, as we see in the following lemma.

Lemma 4.4 q( 1, 2) can be extended to a smooth positive function BA. Moreover the
following hold(with ax :=1] 1| | 2):
Ma( 1 2) almads Il 2" 2% IS 170 228(ma) (X | | 3);
("2 (1-2d(n IS 170 272 a8 ma) O | | 3).

Proof For (1, ») R?\{ 1,=0}, we have

1a( 1)+ 2a( 2)
1t 2

1
L 1)1"':.(('.'2);"(“'2): ) a() (...o+ 1t)dt. (4.3)

a( 1, 2) (4.2)

Sinceais smoothand (a( )) =a( )+ a() a() al0)>0( R), (4.3 de“nesa
positive smooth function onR?.

To showq( 1, 2) a( max), it SU ces to consider the following three cases. If .«
1,thenq( 1, 2) =a(0) =a( max). If max > 1 and| 1o max, then the claim follows from
expression 4.2) (and some more arguments). If,.x > 1 and| 12 max» then we have
| ..o+ 1ot] | 2] max fort [0,1], and the claim follows from 4.3) since (a( )) =
a( )+ a() a().

For the derivatives ofg, we may focus on the casg,.x > 1. In the casq 12 max, WeE
“rst observe that

On the other hand, using the property J'a( < a( )forj 5, we have

ba() 5 Ma(),
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which implies that

5 1 l]a( max) = (JIO) '
11 22 la( l)+ Za( 2) 5 2 l”j'a( max) = (O’J) )
=0 (1 land , 1)

The claimed estimate follows from these estimates and expressidr2. When | 12|
max, We deduce from expressior(3) that

1
(1 )= 1Y M a() (Lot )t

Recalling that] ... 2+ 15t] nax fort [0, 1], we have

11 22q ( 1y 2) 5 max < la( max)s 1 ol 2 ”'Za( max)-
This proves (i). For (ii), we compute

_a(y)-a(2) , 1a(a)...2a(2)
12 12
1

= . a() (..ot pot)dt.

(29...20)( 1, 2)

Using these expressions instead of.9)...4.3), the desired estimate is veri“ed by an argu-
ment similar to (i). d

We have the following estimate oifeS'(u(t)) for eacht.

Lemma 4.5 We have

Eif) S f LES()
forany f L2 such that B§(f) <

Proof Let us begin with the dyadic decomposition:

EX(f) < b3 1 20 3 4) -+ Na( D) F(2) - na(a)F(a).
N1,..Ng 1 4

We can show that

a(N;)

ba 1y 21 3 <
4( 1, 2, 3 4) ~ Nl

on(Ing X -++x Iny) 4

where we renumberNy, ... Ng asN;,... N, such thatN; N, N3 N,. (We will
actually prove a stronger result including estimates on derivativestif in the proof of
Lemmad4.7.) Then, by Holder we have

B <
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A

f2 aN; Pyf 2 Pyf 2
Ny Ny

Sf 52 a(N) Pnf Ez
N

< f RE),
as desired. O

By di erentiating E3(u(t)) in t and substituting the equation, we obtain

ES u(t) +E u(t) =091+ u( Du( 2)u( s)u( 2)u( s)u( e)

6

&l

x .bi( 123 4, 5 6)SAN(s6) 12359N( 12)

~b3( 1, 234 5, 6)S9N(56) 23459N( 34)

+b3( 1, 2, 345 6)SON(12) 34559N( 34)

+b3( 1, 2, 3, 456)S9N( 12) 456S9N( 56)

=101+ (Ri+--+Ra).

Here, it turns out that R, = R3 = R, = R4. To see this, we start withR 1 and “rst change
variables as (@, 2, 3, 4 5 6) (3, 4 5, 6 1, 2) 10 Obtain R3. We then seeR; = R4
and R, = R by taking the complex conjugate, using( ) = U(...) and changing variables
as (1, 2o 3 4, 5 6) (-1 +-+5y---4, --+3, -..2, ...1). Therefore, it su ces to consider

R(u):=.Ry

= b3( 123 4 5 6) 12359N(12)sgN(s6)u( 1)U( 2)u( 3)u( 2)u( s)u( s),

which satis“es

% Ej u(t) +E u(t) =91 u(t) ...4 R u(t).

We need to prove the following estimate on the remainder terfR(u), which is the hard-
est part in the overall proof of the main theorem.

Proposition 4.6 Lets>1/4.ForO<T 1,we have
T 4 2
, Rout) dt < Ugsry  a(N) Pnu g -
N 1

Let us postpone the proof of this proposition and verify Propositiof.2

Proof of Propositior.2 By Lemma4.5, Proposition4.6, and the fact that any smooth so-
lution of (1.1) reduces itsL? norm, we have

sup E3 u(t)

t [0,T]
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ES(UO)‘*tS[lSI;] Ef ut) +C u fq aN) Puu &
’ N 1

2
E5(uo) + C u(0) ths[l(l)I;]Eg ut) +C u gsry  a(N) Pyu £ ).
' N 1

Assuming u(0) 2 1, this yields the claimed estimate. O

4.3 Estimate on the remainder term
It remains to prove Propositiord.6. A di culty here is that we cannot directly apply point-
wise bounds on the multipliers (as we did in the proof of Lemm&.5), becausau F3(T)
does not in general implyFf|u(t, )|]] FXT). Indeed, linear solutionsi = €' xzuo can be
considered as counterexamples.

We prepare the following lemma, which allows us to separate variables in the multiplier
bg. This idea has also been used iB,[6, 18].

Lemma 4.7 LetNy,... N4 be dyadicintegers suchthatN N,,whereN,... N, denote
the numbers N, ... N4 rearranged in decreasing orddret 4,..., 4 Cy (R) be bump
functions such thatsupp( j(/Nj))  Zy;, with Zy; de“ned as in De*nition 2.2(i.e., jis
supported in[...2,2]fN; =1andin[...2,2} (..3,3) if N; > 1).

Then there is a sequence  1(Z*) such that

S T W S T
4(1234)1 lNl ZN2 3N3 4N4
.k k: k: k.
= oy ko ke, ke (M 1N 27N NG )y,
Ki,...ka Z
and
a(N
c(ka, ko, k3, Ka) SNl%-
Kivka Z 1

Proof Following the argument in L8], we “rst construct a smooth functionbj( 1, ..., 4)
onZy, x ---%x ZIy,, Which extendsbi( 4,..., 4) (de“ned on 4) and satis“es

< 1 a(N;)
~NINGNGNGY Ny

12?3 i 20 s 4) o] | 3. (4.4)

We use the following extensions db}:

i_ [a( 1, 2)-.0( 3, 4)]?
423[ g(1, 2+ d( 3 4)?

23 [ 2, 3)..a( 1, 2)?
4510 a(n 2+ a(3 2)?
i 23l o(10...20)( 1+ 2at, 2...2at)dt]?
4 [ a(1, 20+ (s, )2

Pi( 1, 20 3, 4) = onR*\{ =0},

onR*\{ 1,=0},

[
bo( 1, 2, 3, 4)=

onR* .

ba( 1, 2, 3, 4)=
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From Lemma4.4, we can show that

€ 1 2 3 4 [q( 1, Z)Q( 3 4)]2 < a(Nl)2 .
Y28 a( e 8) (1 12 7 NGENGENGEN,Y

€ ' a(1n2S 1t 22 alal | 2 (, 2 Ry

1
€ 122 a2+ (s a) 7S ;
vz bz o N;"N,*Ng*Ny*a(N; )
€If N:1 N> Nl andl 23| Nl' then
1 2 2
a(N,)
1 2 3 4 < 1
123 a 0(1Q---2Q)(1+ 23t, 2. 23t)dt SN2 T

Using these bounds, we see that the desired estimatég) hold:

e for bl Ifl 23| Nl;

o for b2 Ifl 12| Nl;

e forbzifN;y Nz Njand]| 23] Nj.
Notethat| 12] | 23] N; impliesN; N> Nz N; under the hypothesidN; N,.
Therefore, we can de“nebj by

12 23

N, 755Ny ANy

for instance, where is de“ned as in De“nition 2.2 It is clear that the above de“nedy
coincides withbj on 4 and satis“es 4.4).
Now, we de“ne

o 1, 2, 3, 4):=b3(N1 1,N2 2,N3 3,Nz )Nz 1+ 1( 1) 2( 2) 3( 3) 4( 4)

which is a smooth function supported in [...2,2Jand thus can be extended to a 2
periodic smooth function onR*. Let c(ky, ko, ks, ks) be the Fourier coe cients of ¢, then
the claimed identity follows from the Fourier series expansion and the restriction ontq.
Moreover, we deduce from4.4) that

a(N,)
C 3 4 =  max V2% 001 2 s 4) SN
c3(..., 1% Lo st 28 e N,
which then implies that
a(N,)
c <N .
1(Z4)N 1 Nl
This completes the proof. O

We are now in a position to prove Propositiort.6.

Proof of Propositio.6 As usual, we decompose the sum into dyadic pieces:

.
R u(t) dt
0

Page 21 of 29



Kishimoto and TsutsumAdvances in Continuous and Discrete Models (2023) 2023:10 Page 22 of 29

T
= b3( 123 4, 5, 6) 123 N( 129 Ng( 4) nNs(5) Ng( 6)
Ni,..NeN 1 O ¢

% sgn(12)sgn(se)( N U, 1)( NU)(E, 2)---( ngUN(E, 6)d,

where forj=4,5,6, n(j) = j(j/Nj)and j C; (R)ischosen so that j(-/N;) 1
on supp( n;) and supp( j(/N;j))  Zn;, with n;, Zy, de“ned as in De“nition 2.2 In the
following, we write N, ... Ng to denote the numbersN;, ... Ng rearranged in decreasing
order. Note that the range o4, ... Ng,N can be restricted to

N, N, and N <min max{Nj, N2, N3}, max{Ns, Ns,Ng} . (4.5)

Applying Lemmad4.7for each (N, N4, Ns,Ng), we have

g
R u(t) dt
0

.
= ON NaNs Ng (K, Ka, Ks, Ke) sgn( 12)sgn( se)
Ni,..NeN Lkkiksks Z 0

Sk Kk K K, ki Ky
x (N AT 2T SN 4R ST Oy (1, 1)p(t, o) - Gt o)

where we writeu; = Py;u for brevity,j=1,...,6, and

Na(max{N,Ng4, N5, Ng})

k1 !k ) S
O Ny NsNe (K Ka K, ke) S max{N, N, Ns, Ne}

kkaks.ke Z

(4.6)

Since multiplication bye  on the Fourier side does not change they; (T) norm of uj, the
proof is reduced to estimating

sgn( 12)sgn(se)us(t, 1)ua(t, 2)---ue(t, ¢)dt

T

= H(UlLTQ)U3LT4H(U5LT5)dXd'[ .
o T

To obtain a bound with the short-time norms, we have to divide the time interval into
small subintervals of length (N, )-1(denoted byl), which gives a factor o©O(N; ). The
strategy in the previous results on DNLSI| 5] is to use two bilinear Strichartz and twd.
embeddingsifN; N, NjorN; N; N,;onebilinear Strichartz, ond.  embed-
ding, and threeL® StrichartzifN; N, NgorN; Ng Ng;and sixL® Strichartz
if N, Ng. For KDNLS, there are some cases where the same argument does not work
due to the presence of the Hilbert transformations. For instance, we cannot use the stan-
dard bilinear Strichartz estimate (Lemma.4) with only one ofu; andu, involved. We can
indeed use the modi“ed bilinear Strichartz estimates (Lemmas?, 2.8) instead, but the
argument will be even more complicated.
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The goal is to prove

R.H.S. of 46) X Nl H(U]_LTz)Ungz;H (Usie) dxdt
I T

o 4.7)
SaN; N3NgNgNg * Ui 2w
=1

for eachNy,... Ng,N 1 satisfying 4.5 and each intervall =[a,b) [0,T] with [I]
(N;) In fact, this is enough to carry out the summations iM, ... Ng whens> 1/4. For
summability in N, notice that eitherN N, or N < N3 holds.

In the rest of the proof, we shall establisi(7), dividing into the following “ve cases:

M Ny Ngi () Ny Ny Ng; () N Ny o N
V) Ny Ny N (V) N N, Ny

We will estimate the right-hand side of 4.6) roughly bya(N, ), except for a subcase (Vd)
of Case (V). For simplicity, we will see in detail only Case (Ill) and Case &\Gase (I) is
the easiest, and it is treated by thi® Strichartz estimate (Lemma.3). Case (1l) is a little
more involved, and we need the bilinear Strichartz estimate (Lemr2a). In Case (V) we
also use the “rst modi“ed bilinear Strichartz estimate (Lemma.7), but the argument is
similar to that in Case (lll).

Case(lllN N, Ng.We consider the following three subcases, according to which
two frequencies are smaller thai, .

(INa) Each of{N1, N2}, {N3,Na}, {Ns,Ng} contains at most one frequency N,. Con-
sider the caséNg = N1 and Ng = N3 for instance, but the other cases can be treated simi-
larly. Then we apply Lemm&.4to H(u;U;), LemmaZ2.3to ug4,Us,Us, andL  embedding
to ug, which yields

I:= H (u1uz)uzugH (usue) dx dt
I T
6 6
1 (N -+ -Ng)
NWNE%Z 1Uj u2(R)§N—16 1Uj y2 gy

j:]_ j=1

(b) {N5,Ng} ={N1,N2} or {Ns, Ne}. Consider the former case, for instance. We apply
the “rst modi“ed bilinear Strichartz estimate (Lemma2.7) for H(u,u,)uz and Lemma2.3
for the other threeu;s to obtain

6 6
(Nl N2)1/2 (N3 . N6)l/4
g N2 Ui u2(R) S N 1Uj y2®y-
3 j=1 1 =1

(lllc) {N5,Ng} ={N3,N4}. Without loss of generality, we assumi; = N3z and Ng = Na.

LAn extended version of this article can be found in https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1967.pdf, where
we keep a complete proof for the reader’s convenience.
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(Ilc-i)) N3 Ng. In this case, we dividéd (u;Uy) into two parts as follows:
H(uzuz) = HP ng(uilz) + HP<n,(UgUy).

For the “rst term, we can eliminate the Hilbert transformations by the fact that the fre-
guency forH (usug) must be much bigger than that ofizuy:

HP N3(U1J2)U364H(U5JG)dth
I T

=... P N3(U1G2)H U3lT4H(U5lje) dxdt
T

=... P N3(U1LT2)U3LT4H2(U5J§) dxdt
T

P N3(U152)U3J4U5ljedth.

I T
Now, the desired bound can be obtained by applying Lemn2a4 to usus, L embed-
ding to u4, and Lemma2.3to the others, for instance. To estimate the contribution from
the second term, we use the second modi“ed bilinear Strichartz estimate (Lem\&)
for HP§N3(U162)U3 and Lemma?2.3 for u4,Us,Us. INn each case, we obtain the factor
a(N;)(N;Ng)Y2  a(N;)(Ng ---Ng)4.

(Illc-ii) N3 Ng4. In this case, we make a “ner decomposition:

H (uzuz)ususH (Ususe)
=HP n,(uiuz)ususH (usue) + H(uiuz)ususHP i, (Usue)
HP n;(uuz)ususHP g (Usus)
+HP N, (UrU2)ususHP > (UsUs) + HP g (UgU2)usugHP >, (UsUs).
There is no contribution from the third term, while the estimate for the fourth term is
exactly the same as the “rst term in Case (llic-i) since in the integral we can replace

P>n;(UsUs) by usug. For the “rst two terms, we can separate two functions of high fre-
qguency from the Hilbert transformation; for instance,

HP NS(Ulsz)U3l74H (U5lTG) dxdt
T

H HP n;(uiU2)usus usugdxdt
I

HP N3(U1l72)(HU3)lT4U5JG dxdt.
T

This can again be treated similarly to the “rst term in Case (llic-i). To estimate the contri-
bution from the last term, we “rst notice that the frequency folusug must stay Ngz in the
integral; hence letus write it a$ n,(usUs). We estimate the integral in two ways. First, we
apply Lemma2.4to P y,(uqu2) andP n,(usus) andL  embedding tous, us, which yields
6

1 1 1/2

HP N3(U1l72)U3lT4HP N3(U5JG)dth 5 —N§/2N4 |Uj UZ(R)'
T

172 \y112
I N3 N3 =1
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Next, applying Lemma2.8to HP n,(uiuz)us andHP n;(usug)us, we have

o _ 3%/2 N%’Z 6
HP NS(U1U2)U3U4HP N3(U5u6)dth S WW 1Uj U2 (R)*
T 1 5 j=1

Interpolating these estimates, we obtain

14N 1/4 6
3 Nj

| THP N3(U1LTQ)U3lT4HP N3(U5LTG)dth 5 W 14; U2 ®)
=1

6
(N3 ---Ng)™ U2
i u2w):
Ny

as desired.

Case (V)N N, Nj.Letus divide into the following four cases.

(Va) One of {N1,N,} and one of{Ns,Ng} are comparable toN, . In this case, we can
break the binding by the Hilbert transformation betweem; and u, and betweenus and
us. Applying Lemmaz2.4twice to the pairs (N;,N3) and (N,,N,) and theL embedding
to the functions corresponding toNg, Ng, we obtain

6 6
(N N6)1/2 (N3 . N6)1/4
I§5T 1Yj UZ(R)§N7 1Y y2 (g
1 =1 1 j=1
(Vb) One of {N1,N2,Ns,Ng} and one of{N3,N4} are comparable toN,. Assume, say,
N1 Nz N;.We candeal withu; andu; of H(uju,) separately, which allows us to treat
two casedN, NgandNz Ny in aparallel manner (let us assumi; Ny, say). Apply

Lemma2.4to usus, Lemma2.7to (Hu;)H(usug), andL embedding tou,, then we have

6 (N3 ___N6)1/4 6

1/2 _ .
N; U y2@) < N 1Uj g2 Ry
=1 1 =1

7< L (Ns Ng)*2
NNéL/Z N]Z!./Z

(V) N3 Ns N,. Itsucestoapply Lemma 2.7 twice to H(ujuz)us and usH (usue),
which gives

6 6
T< (Nl N2)1/2 (N5 N6)1/2 < (N3 . N6)1/4
~ N2 N2 i u2@) R N Y u2@®):
3 4 =1 1 j=1

(V)N N Nj;orNs Ng Nj.Thisis the hardest case, and let us focus on the
former situation N3 N,  Nag,... Ng. First, using conditions 4.1) onaand 4.5 on N,
we deduce that

N 1/2
R.H.S.of 4.6 <a N, N—3 . (4.8)
1
(Infact, itis only inthe caseN; N, N, that we need to exploit the growth condition
ona,the thirdlinein ( 4.1).) Inthe following, we only consider the casds N4,Ns Ng;
the other cases are parallel, though.
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(vd-i) N3 N4, namely, only one olNg, ... Ng is much bigger than the others. In this
case, we can move the Hilbert transformation omyu; to one ofus, ... us; if N3 = N5 we
have

H(UlLTz)U3IT4H (U5LTG) dxdt=... UlLTzH (U3)J4H (U5JG) dxdt,
I T I T

and if Ns = N; we have
H (Ulaz)U3LT4H (U5LTG) dxdt=... U1J2U3LT4H2(U5)J6 dxdt
I T I T

= U1L72U3J4U5LTG dxdt.
I T

Then we can obtain

6
(N3 ---Ng)™
1] UZ(R)giN 1Uj y2(R)
1 j=1

7 < NNy °
~ TN, .
by using Lemmag.4and2.7whenN3z = N5, or Lemmaz2.4twice whenNs = N. Note that
we do not actually need the improved bound4(8) in this subcase.
(Vd-ii) N3 Ng. Inthis case, we use Lemma8for H(uiuz)us (noticing that u,u, may
be replaced b)PSNS(ulu_z)), Lemma2.3for the others to obtain

12 6
S (N3)1/2 Ui u2 gy
(Nl) j=1

Combining it with (4.8), we have the desired estimate.

(Vd-iii) N5 N, NgandNs Ng. In this caseH (usug) = (Hus)us, So that we can
separateus, . . . Us.

(Vd-iii-1)If N; N,  Ng, thenwe use Lemma.8for H(uiuz)u;, Lemma2.4for u,us,
and theL embedding forug, whereu; means the function corresponding td\; . The
resulting estimate is

N-N 14 6
1] UZ(R)S% Ui u2 gy
1 =1

< (NgY2 1 112

S———5-—-5 N
(N1)1/2 (N4)1/2 6 1

which is su cient together with (4.8).

(Vd-iii-2) If N3 Ng  Ng, by the assumption we havélz; Ns Ns  Ne. In this
case, we make the decomposition

UsUs =P ny(UsUs) + P ng(Usus).
For the “rst term, we can separatel; and u, as

H(uiuz)P ny(usua)H (us)ugdxdt = ... uruzH P N, (usua)H (us)ug dxdt
T I T
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= uu,P N3(U3J4)U5LTG dxdt.
I T
Hence, this is similar to Case (Vd-i) and easily treated by applying Lemn2agdand 2.7.
For the second term, we use Lemn8for H (u;u2)H (us), Lemma2.4for P n,(usus), and
L embedding forug to obtain

6 6
- N%/Z 1 (N5N6)1/4

1/2 . <L X 2 97 i
IS NN s Uuze S TN W u2 @)
1 3 j=1 1 =1

which is again su cient.

(Vd-iv) N; N, NgandNs Ne.

(vd-iv-1) If N3 Ns,soNz Nz Ns Ng, we use Lemma2.8for H(uiu,)uz and
Lemmaz2.7for usH (usue). We obtain

N?}’Z N51/2 6 (N5N6)1’4 6
v S TNy U ver
1 =1

IS —=5—5
le-./z Nj./Z 1
(Vd-iv-2) If Ns 2 N3 Ng,namelyNs Ng N3 Ny, we make a decomposition sim-
ilar to that in Case (Vdiii-2):

H(usus) = HP N, (Usus) + HP<y,(UsUs).

For the “rst term, we can separateu; and u, as in Case (Vd-iii-2) since
H[ususHP n,(Usls)] = UglsH?P 5 (UsUs). The estimate is then easy and similar to Case
(Vd-i). For the second term, we can puP<y, also onH(u;uz). Applying Lemma2.8to
HP<y,(u1U2)us and Lemma2.3to the others, we have

Nél./Z 6 ! < (N5N6)1/4 6 !
Mivzmw ~ g2 Mz m®)-
(Nl) j=1

T< 3 _
~ 1/2
N; =1
(Vd-iv-3) The only remaining case ifNs > N3 Ng4, namely, eitheMNs Ng N3z Ny
orNs Ng N3z Ny We make a slightly “ner decomposition

H(usug) = HP n,(Usug) + HPx (Usus).
N3<K<Ns

The “rst term is again easy to treat since we can separate and u, by the identity
H[ususHP N, (usue)] = (Hug)usHP N, (usue). For the second term, for eacK , we can put
P<k on H(uzuz). Hence, by applying Lemma.8to HP< (u;Uz)uz and using Lemma2.4
for HPk (usug), L embedding foru,, we obtain

< K¥2 1 1/2 ° 0+(NsN6)l/4 °

~ - . < WsWNe)™ .
~ 12 K12 4 i y2@) S N (N,)12 Ui y2(r),
Na<K<Ng 1 j=1 1 j=1

which together with (4.8) shows the desired estimatel(7).
We have thus completed the case-by-case analysis for the proofhf), O
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5 Conclusion

We have proveda priori estimates for solutions in a neighborhood of the origin i3,

s> 1/4. As aresult, we have proved the continuous dependence of solutions on initial data
at the origin in HS, s> 1/4, which constitutes a part of the well-posedness for the Cauchy
problem of (1.1).
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