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Abstract
In this article, we consider the kinetic derivative nonlinear Schrödinger equation
(KDNLS), which is a one-dimensional nonlinear Schrödinger equation with a cubic
derivative nonlinear term containing the Hilbert transformation. For the Cauchy
problem, both on the real line and on the circle, we apply the short-time Fourier
restriction method to establish a priori estimate for small and smooth solutions in
Sobolev spaces Hs with s > 1/4.
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1 Introduction
In the present article, we continue our study in [1, 2] and consider the kinetic derivative
nonlinear Schrödinger equation (KDNLS) on R and on T := R/2πZ:

∂tu = i∂2
x u + α∂x

(|u|2u
)

+ β∂x
(
H

(|u|2)u
)
, t ∈ (0, T), x ∈R or T, (1.1)

where α,β are real constants and H is the Hilbert transformation. We assume β < 0
throughout this article.

In the periodic case, we proved in [2] that the Cauchy problem has a (forward-in-time)
global solution for any initial data in Hs(T) if s > 1/4, with the solution map u(0) = u0 �→
u(·) being (locally-in-time) continuous in the Hs topology away from the origin u0 = 0.
More precisely, we proved the following claims:

(i) For any s > 1/4 and any R ≥ r > 0, there exist T > 0 and a solution map u0 �→ u on the
set {u0 ∈ Hs(T) : ‖u0‖Hs ≤ R,‖u0‖L2 ≥ r}, which gives a solution u ∈ C([0, T]; Hs(T))
to (1.1) on [0, T] with u(0) = u0 and is continuous in the Hs topology.

(ii) The above (nontrivial) solution u(t) is smooth (especially in H1(T)) for t > 0, and
then it extends to a global solution by means of the H1-upper and L2-lower a priori
bounds, which are obtained for H1 solutions of arbitrary size.

Note that the trivial solution u ≡ 0 is a global solution for u0 = 0. The continuity of the
solution map at the origin can be verified if s > 1/2 ([1]), but it is open for 1/2 ≥ s > 1/4.
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This is because a priori estimates and the local existence time given by the contraction
argument depend on the reciprocal of the L2 norm of solution for 1/2 ≥ s > 1/4. In the
nonperiodic case, local well-posedness of the Cauchy problem in Hs(R) can be proved for
s > 3/2 by the energy method, but no result seems to be currently available below H3/2. To
summarize, on T we have a global solution for s > 1/4, while on R we only have a local
solution for s > 3/2. We also note that these solutions to the Cauchy problem are unique
in CtHs

x if s > 3/2.
The goal of this article is to prove an a priori Hs estimate for small and smooth so-

lutions to (1.1) in the regularity range 1/2 ≥ s > 1/4. In the periodic case, this and an
approximation argument would imply the same estimate for the small (rough) Hs solu-
tions constructed in [2], thus verifying the continuity of the solution map at the origin.
Although our argument in the present paper is applicable to both periodic and nonperi-
odic problems, we will mainly consider the periodic case, which seems technically more
complicated. (See Remark 2.9 for a comment on the nonperiodic case.)

Theorem 1.1 Let M = R or T and s > 1/4. Then there exist δ > 0 and C > 0 such that if 0 <
T ≤ 1 and u ∈ C([0, T]; H∞(M)) is a smooth solution to (1.1) onM satisfying ‖u(0)‖Hs ≤ δ,
then it holds that

‖u‖L∞([0,T];Hs) ≤ C
∥∥u(0)

∥∥
Hs . (1.2)

To establish the Hs a priori bound (1.2), we shall employ the short-time Fourier restric-
tion method. The short-time Xs,b norms were introduced by Ionescu, Kenig, and Tataru
[3]; the idea is to combine the Xs,b analysis implemented in frequency-dependent small
time intervals with an energy-type argument recovering the estimate on the whole inter-
val. The method has been applied to the modified Benjamin–Ono and the derivative NLS
equations by Guo [4] in the nonperiodic case, and in the periodic case by Schippa [5],
who used the Up–V p type spaces instead of Xs,b. The Xs,b type spaces are suitable for de-
tailed analysis on the resonance structure, while the Up–V p type spaces work well with
sharp cut-off functions in time. For our purpose, the Up–V p type spaces seem to be more
convenient. In our argument with the short-time Fourier restriction method, the modi-
fied energy plays a crucial role. Our way of constructing the modified energy is slightly
different from that in [4, 6], and [5] because of the presence of the Hilbert transforma-
tion in the cubic nonlinearity. To be specific, (1.1) has less symmetry than the DNLS, the
cubic NLS, and the modified Benjamin–Ono equations. Moreover, it is known that the
kinetic term β∂x(H(|u|2)u) in (1.1) exhibits a kind of dissipation when β < 0 (e.g., we have
∂t‖u(t)‖2

L2 ≤ 0 for (smooth) solutions of (1.1), while the L2 norm is conserved for the DNLS
equation). This dissipative nature has to be taken into account in the construction and the
estimate of the modified energy since otherwise there would remain some uncanceled
terms with higher order derivatives compared to the corresponding estimate for the non-
linearity α∂x(|u|2u). Here, we do not have to estimate the difference of two solutions, since
we only consider the continuity of the solution map at the origin. So, we do not have to
consider the modified energy for the difference of two solutions, either.

Remark 1.2 (i) In the case of DNLS, a similar a priori Hs estimate was obtained in [4, 5] for
solutions of arbitrary size by using a rescaling argument. Although the same idea may work
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for our problem (1.1), to remove the smallness condition in Theorem 1.1, we will focus on
small solutions in order to keep the argument not too complicated, and also because of
our particular interest in the continuity of the solution map at the origin.

(ii) An adaptation of the theory of low-regularity conservation laws for integrable PDEs
by Killip, Vişan, and Zhang [7] might be another possible approach. For the derivative NLS
on R and on T, the Hs a priori estimate for s > 0 was established in [8] by this method.
Of course, KDNLS is not known to be completely integrable, but the method seems also
useful to some dissipative perturbations of the integrable dispersive equations (e.g., the
KdV–Burgers equation). Unfortunately, this approach has not been successful for KDNLS
up to now.

The plan of the present paper is as follows. In Sect. 2, we describe the definition of func-
tion spaces we work with, the short-time Strichartz estimates and the short-time bilinear
Strichartz estimates. Assuming the trilinear estimates and the modified energy estimate,
which are proved in later sections, we give the proof of our main Theorem 1.1. In Sect. 3,
we give the trilinear estimate on the cubic nonlinearity in terms of short-time norms. In
Sect. 4, we define the modified energy and prove its estimates, which are helpful for the
short-time argument.

We would like to conclude this section with a couple of comments on Jean Ginibre’s work
about nonlinear wave and dispersive equations. Ginibre started to study the scattering
theory in the finite energy class for nonlinear Klein–Gordon and Schrödinger equations
in late 1970s with Giorgio Velo. Since then, he has made the great contribution to non-
linear partial differential equations, specifically nonlinear wave and dispersive equations.
In early 1990s, Bourgain presented the so-called Fourier restriction method to study the
well-posedness of the Cauchy problem for nonlinear dispersive equations such as non-
linear Schrödinger equations and the KdV equation. The Fourier restriction method is
very powerful, but it is rather complicated. In fact, Bourgain’s papers were not very easy
to read. Many people hoped the readable exposition on Bourgain’s work about the Fourier
restriction method. In 1996, Ginibre wrote the nice exposition [9] on the Fourier restric-
tion method, which contained several new and important observations, for example, the
relation between the Fourier restriction norm and the interaction representation in quan-
tum physics. This helped the Fourier restriction method to prevail among the community
of nonlinear wave and dispersive equations.

2 Function spaces, Strichartz estimates
2.1 Definition of function spaces
For 1 ≤ p < ∞ and an interval I = (a, b), –∞ ≤ a < b ≤ ∞, let Up(I), V p(I) be the (L2

x-
valued) �p-atomic space and the space of functions of bounded p-variation, respectively,
on I . For the precise definition of these spaces, see [10] (also [11]) and [12]. Recall that
Up(I), V p(I) are Banach spaces, and their elements are bounded functions from I to L2

x

that have one-sided limits at every point in [a, b]. Moreover, u ∈ Up(I) is right continuous
and satisfies limt→a u(t) = 0. As usual, we write V p

rc(I) := {v ∈ V p(I) : v is right continuous}
and V p

–,rc(I) := {v ∈ V p
rc(I) : limt→a v(t) = 0}, which are closed subspaces of V p(I). We have

Up(I) ⊂ Uq(I) for p < q with continuous inclusion, and similarly for V p(I), V p
rc(I), V p

–,rc(I).
Following [13] (see also [6]), we consider the space DUp(I) := {u′ : u ∈ Up(I)}, where the
derivative is taken in the sense of L2

x-valued distributions on I . For each f ∈ DUp(I),
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there is unique u ∈ Up(I) satisfying f = u′, and hence DUp(I) is a Banach space equipped
with the norm ‖f ‖DUp(I) = ‖u‖Up(I). Finally, we write Up

�(I) := {v : ei(–·)∂2
x v(·) ∈ Up(I)} with

‖v‖Up
�(I) := ‖ei(–·)∂2

x v(·)‖Up(I), and similarly for V p
�(I), V p

rc,�(I), V p
–,rc,�(I), and DUp

�(I). Note
that DUp

�(I) = {(∂t – i∂2
x )u : u ∈ Up

�(I)}.
We collect some basic properties of these spaces.

Lemma 2.1 Let I = (a, b) be any interval.
(i) [Continuous embeddings] For any 1 ≤ p < q < ∞, we have

Up
�(I) ↪→ V p

–,rc,�(I) ↪→ Uq
�(I) ↪→ L∞(

I; L2), V p
rc,�(I) ↪→ L∞(

I; L2).

(ii) [Duality] For 1 < p < ∞, we have L1(I; L2) ↪→ DUp
�(I) and

‖f ‖DUp
�(I) =

∥
∥∥
∥

∫ t

a
ei(t–t′)∂2

x f
(
t′)dt′

∥
∥∥
∥

Up
�(I)

= sup

{∣∣∣
∣

∫

I

∫
f v̄ dx dt

∣∣∣
∣ : v ∈ V p′

rc,�(I),‖v‖
V p′

� (I)
≤ 1

}

� ‖f ‖L1(I;L2)

for f ∈ L1(I; L2).
(iii) [Extension] Let n ≥ 1 and T : (L2

x)n → L1
loc,x be an operator such that it is either

linear or conjugate linear in each variable. Let 1 ≤ p, q ≤ ∞, and assume that the
map (φ1, . . . ,φn) �→ [t �→ T(eit∂2

x φ1, . . . , eit∂2
x φn)] is bounded from (L2

x)n to Lp
t (I; Lq

x):

∥
∥T

(
eit∂2

x φ1, . . . , eit∂2
x φn

)∥∥
Lp

t (I;Lq
x) ≤ A

n∏

j=1

‖φj‖L2
x

for some A > 0. Then T can be regarded as a map from (Up
�(R))n to Lp

t (I; Lq
x) by

(u1, . . . , un) �→ [t �→ T(u1(t), . . . , un(t))], and it is bounded:

∥
∥T(u1, . . . , un)

∥
∥

Lp
t (I;Lq

x ) ≤ A
n∏

j=1

‖uj‖Up
�(R).

Here, Up
�(R) is replaced by L∞

t (R; L2
x) if p = ∞.

(iv) [Interpolation] Let 1 ≤ p < q < ∞, E be a Banach space, and T : Uq
�(I) → E be a

bounded, linear, or conjugate linear operator such that ‖T‖Uq
�(I)→E ≤ Cq,

‖T‖Up
�(I)→E ≤ Cp for some 0 < Cp ≤ Cq < ∞. Then we have

‖T‖V p
–,rc,�(I)→E �

(
1 + log

Cq

Cp

)
Cp.

Proof (i) See, e.g., [10, Propositions 2.2, 2.4, Corollary 2.6].
(ii) The first equality holds by definition. If f ∈ L1(I, L2), the function t �→

∫ t
a e–it′∂2

x f (t′) dt′ ∈ L2 is absolutely continuous and of bounded variation on I . Then the
second equality follows, e.g., from [10, Theorem 2.8, Propositions 2.9, 2.10]. The last in-
equality follows from the Hölder inequality and the embedding V p′

rc,�(I) ↪→ L∞(I; L2).
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(iii) See, e.g., [10, Proposition 2.19].
(iv) See, e.g., [10, Proposition 2.20]. �

Now, we define the short-time norms. In this article, we use capital letters N , K , . . . for
dyadic integers 1, 2, 4, 8, . . . .

Definition 2.2 First of all, we fix a bump function

η ∈ C∞
0 (R) even, monotone on [0,∞), and χ[–4/3,4/3] ≤ η ≤ χ[–5/3,5/3],

where χ denotes the characteristic function of a set . Define {ψN }N≥1 ⊂ C∞
0 (R) by

ψ1(ξ ) := η(ξ ), ψN (ξ ) := η(ξ /N) – η(2ξ /N) for N ≥ 2,

so that 1 =
∑

N≥1 ψN (ξ ) and supp(ψN ) ⊂ IN , where

I1 := [–2, 2], IN := [–2N , 2N] \ (–N/2, N/2) for N ≥ 2.

We define the corresponding Littlewood–Paley projections PN := F–1
ξ ψNFx.

Next, we define frequency-localized short-time norms FN (T), GN (T) for functions u :
[0, T] → L2 with supp(û(t, ξ )) ⊂ [0, T] × IN by

‖u‖FN (T) := sup
I=[a,b)⊂[0,T],|I|≤N–1

‖χIu‖U2
�(R),

‖u‖GN (T) := sup
I=(a,b)⊂[0,T],|I|≤N–1

‖u|I‖DU2
�(I).

In the definition of the FN (T) norm, we regard χIu as a function on R by extending it by
zero outside I . Here, we consider half-open intervals I = [a, b) so that χIu can be right
continuous, and we avoid writing the norm ‖χIu‖U2

�(R) as ‖u‖U2
�((a,b)) since the U2

�((a, b))
norm can be defined only for functions satisfying limt→a+0 u(t) = 0. The short-time U2

�-
type space on [0, T] with spatial regularity s ∈R is defined by

Fs(T) :=
{

u ∈ C
(
[0, T]; Hs) : ‖u‖Fs(T) :=

∥
∥Ns∥∥PN u‖FN (T)‖�2

N
< ∞}

.

To measure the nonlinearity, the following short-time norm is used:

‖u‖Gs(T) :=
∥∥Ns∥∥PN u‖GN (T)‖�2

N
.

We also need the following energy norm:

‖u‖Es(T) :=
∥∥Ns∥∥PN u‖L∞([0,T];L2)‖�2

N
.

2.2 Proof of the main theorem
It is known (e.g., [13, Lemma 3.1]) that the norms defined above satisfy the basic linear
estimate

‖u‖Fs(T) � ‖u‖Es(T) +
∥∥(

∂t – i∂2
x
)
u
∥∥

Gs(T)
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for any s ∈R. Then, what we need to show is the trilinear estimate

∥∥∂x
(|u|2u

)∥∥
Gs(T) +

∥∥∂x
(
H

(|u|2)u
)∥∥

Gs(T) � ‖u‖3
Fs(T)

and the energy estimate

‖u‖Es(T) �
∥
∥u(0)

∥
∥

Hs + ‖u‖3
Fs(T).

We will prove the trilinear estimate for general functions u ∈ Fs(T) in Sect. 3, and the
energy estimate for smooth solutions of (1.1) with small initial data in Sect. 4. Both of these
estimates require s > 1/4 and also have the constants uniform for T ∈ (0, 1] but growing
for T > 1.

Let us admit these estimates and prove Theorem 1.1. For 0 < T ′ ≤ T and a smooth so-
lution u with initial data small in Hs, define

Xs
(
T ′) := ‖u‖Es(T ′) +

∥∥∂x
(|u|2u

)∥∥
Gs(T ′) +

∥∥∂x
(
H

(|u|2)u
)∥∥

Gs(T ′).

The above three estimates show that

Xs
(
T ′)�

∥
∥u(0)

∥
∥

Hs + Xs
(
T ′)3.

On the other hand, it is easy to show (e.g., for u ∈ C([0, T]; Hs+1+)) that Xs(T ′) is continuous
in T ′ and

lim sup
T ′→+0

Xs
(
T ′) �

∥∥u(0)
∥∥

Hs .

Hence, by a bootstrap argument, we have

Xs
(
T ′)�

∥∥u(0)
∥∥

Hs , 0 < T ′ ≤ T .

Since ‖u‖L∞([0,T];Hs) � ‖u‖Es(T), this concludes the proof of Theorem 1.1.

2.3 Short-time L6 and bilinear Strichartz estimates
Most of Strichartz-type estimates for the nonperiodic Schrödinger equation are known to
hold for the periodic problem in the short-time setting, and these estimates will be used
as basic tools to prove the trilinear and energy estimates. We begin with the following L6

Strichartz estimate.

Lemma 2.3 For N ≥ 1 and 0 < δ � N–1, we have

∥
∥P≤N eit∂2

x φ
∥
∥

L6([0,δ];L6(T)) � ‖φ‖L2 .

As a consequence, we have

‖P≤N u‖L6(I;L6(T)) � ‖χIu‖U6
�(R)

for any interval I = [a, b) ⊂Rwith |I|� N–1 and any u : I → L2 such that the zero extension
χIu belongs to U6

�(R).
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Proof The first estimate was shown in [14, Proposition 2.9]. To obtain the second claim,
we use Lemma 2.1(iii) with the operator T : φ �→ P≤Nφ and apply the resulting estimate
to χIu ∈ U6

�(R). �

As a counterpart of the bilinear Strichartz estimate of Ozawa and Tsutsumi [15, Theo-
rem 2 (1)], we have the following short-time bilinear Strichartz estimate on T. A Fourier
analytic proof was given in [16], which we will recall below for completeness.

Lemma 2.4 For K ≥ 1 and δ > 0, we have

∥
∥PK

(
eit∂2

x φ1eit∂2
x φ2

)∥∥
L2([0,δ];L2(T)) �

(
1 + Kδ

K

)1/2

‖φ1‖L2‖φ2‖L2 . (2.1)

In particular, if N1 � N2 ≥ 1 and φ1,φ2 satisfy supp(φ̂j) ⊂ INj , then for 0 < δ � N–1
1 we

have

∥
∥eit∂2

x φ1eit∂2
x φ2

∥
∥

L2([0,δ];L2(T)) � N–1/2
1 ‖φ1‖L2‖φ2‖L2 . (2.2)

Remark 2.5 The latter estimate (2.2) clearly holds regardless of the complex conjugation,
while this is not the case for the former estimate (2.1). For the product without conjugation
of two functions of comparable frequencies, we can deduce, for instance, the following
result from (2.1): if |ξ1 – ξ2| ∼ K for any ξj ∈ supp(φ̂j), j = 1, 2, then

∥
∥eit∂2

x φ1eit∂2
x φ2

∥
∥

L2([0,δ];L2(T)) �
(

1 + Kδ

K

)1/2

‖φ1‖L2‖φ2‖L2 .

Remark 2.6 As for the L6 Strichartz estimate, from (2.1) and Lemma 2.1(iii) we immedi-
ately obtain the corresponding bilinear estimates in U2

�: for I = [a, b) with |I| � K–1, we
have

∥
∥PK (uv̄)

∥
∥

L2(I;L2(T)) � K–1/2‖χIu‖U2
�(R)‖χIv‖U2

�(R).

A similar extension is valid also for Lemmas 2.7 and 2.8. On the other hand, by the Bern-
stein and Hölder inequalities and the assumption |I|� K–1, together with the embedding
Up

� ↪→ L∞L2, we have

∥∥PK (uv̄)
∥∥

L2(I;L2(T)) � K1/2|I|1/2‖uv̄‖L∞(R;L1(T)) � ‖u‖U2
�(R)‖v‖U4

�(R).

By applying Lemma 2.1(iv) to the operator v �→ PK (uv̄) with these estimates, we have

∥
∥PK (uv̄)

∥
∥

L2(I;L2(T)) � K–1/2(1 + log K)‖χIu‖U2
�(R)‖χIv‖V 2

�(R)

for u, v : I → L2 such that χIu ∈ U2
�(R) and χIv ∈ V 2

–,rc,�(R).

Proof of Lemma 2.4 If K = 1, the claim follows from the Hölder inequality in t and the
Bernstein inequality in x.
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Assume K > 1. We observe that

PK
(
eit∂2

x φ1eit∂2
x φ2

)
=

∑

n1,n2

ei(n1–n2)xei(–n2
1+n2

2)tψK (n1 – n2)φ̂1(n1)φ̂2(n2)

=
∑

n
einxψK (n)e–in2t

∑

n2

φ̂1(n + n2)φ̂2(n2)e–2inn2t .

By the Plancherel theorem and the change of variable t′ = –2nt, we have

∥∥PK
(
eit∂2

x φ1eit∂2
x φ2

)∥∥2
L2([0,δ];L2(T))

=
∫ δ

0

∑

n

∣∣ψK (n)
∣∣2

∣
∣∣
∣
∑

n2

φ̂1(n + n2)φ̂2(n2)e–2inn2t
∣
∣∣
∣

2

dt

=
∑

n

∣
∣ψK (n)

∣
∣2 1

–2n

∫ –2nδ

0

∣∣
∣∣
∑

n2

φ̂1(n + n2)φ̂2(n2)ein2t′
∣∣
∣∣

2

dt′

�
∑

n

1 + Kδ

K

∫ 2π

0

∣
∣∣
∣
∑

n2

φ̂1(n + n2)φ̂2(n2)ein2t′
∣
∣∣
∣

2

dt′.

Since the last term is equal to 1+Kδ
K ‖φ1‖2

L2‖φ2‖2
L2 by the Plancherel theorem, the claimed

estimate follows. �

To deal with the nonlinearity of (1.1) including the Hilbert transformation, we prepare
the next two lemmas. These estimates can be shown in the same manner as Lemma 2.4.

Lemma 2.7 Let φ1,φ2,φ3 ∈ L2(T) satisfy supp(φ̂j) ⊂ INj , and assume that N1 � N2, N3.
Then, for 0 < δ � N–1

1 , we have

∥
∥eit∂2

x φ1 · H
(
eit∂2

x φ2eit∂2
x φ3

)∥∥
L2([0,δ];L2(T)) �

(
N2 ∧ N3

N1

)1/2

‖φ1‖L2‖φ2‖L2‖φ3‖L2 .

The same estimate holds if eit∂2
x φ1 is replaced by eit∂2

x φ1 and also if H is replaced by any
Fourier multiplier with bounded symbol (such as P≤N ).

Proof Since H(uv̄) = H(ūv), we may assume N2 ≤ N3. We observe that

eit∂2
x φ1 · H

(
eit∂2

x φ2eit∂2
x φ3

)

=
∑

n1,n2,n3

ei(n1+n2–n3)xei(–n2
1–n2

2+n2
3)t(–i)sgn(n2 – n3)φ̂1(n1)φ̂2(n2)φ̂3(n3)

= –i
∑

n
einx

∑

n2

e–i(n2
2+(n–n2)2)tφ̂2(n2)

×
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)φ̂3(n3)e–2in3(n–n2)t ,

and hence

∥∥eit∂2
x φ1 · H

(
eit∂2

x φ2eit∂2
x φ3

)∥∥2
L2([0,δ];L2(T))
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=
∫ δ

0

∑

n

∣∣∣
∣
∑

n2

e–i(n2
2+(n–n2)2)tφ̂2(n2)

×
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)φ̂3(n3)e–2in3(n–n2)t
∣∣
∣∣

2

dt

≤
∫ δ

0

∑

n

[∑

n2

∣
∣φ̂2(n2)

∣
∣
∣∣
∣∣
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)φ̂3(n3)e–2in3(n–n2)t
∣∣
∣∣

]2

dt

≤
[∑

n2

∣
∣φ̂2(n2)

∣
∣
(∑

n

∫ δ

0

∣∣
∣∣
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)

× φ̂3(n3)e–2in3(n–n2)t
∣∣
∣∣

2

dt
)1/2]2

,

where in the last step we have used the Minkowski inequality to replace the L2
t �

2
n�

1
n2 norm

by �1
n2�

2
nL2

t . Now, for fixed |n| ∼ N1 and n2 ∈ IN2 , we have |2(n – n2)δ|� 2π , and thus

∫ δ

0

∣∣∣
∣
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)φ̂3(n3)e–2in3(n–n2)t
∣∣∣
∣

2

dt

=
1

–2(n – n2)

∫ –2(n–n2)δ

0

∣
∣∣
∣
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)φ̂3(n3)ein3t′
∣
∣∣
∣

2

dt′

� N–1
1

∫ 2π

0

∣∣
∣∣
∑

n3

sgn(n2 – n3)φ̂1(n – n2 + n3)φ̂3(n3)ein3t′
∣∣
∣∣

2

dt′

� N–1
1

∑

n3

∣∣φ̂1(n – n2 + n3)
∣∣2∣∣φ̂3(n3)

∣∣2.

Hence, we have

∥
∥eit∂2

x φ1 · H
(
eit∂2

x φ2eit∂2
x φ3

)∥∥2
L2([0,δ];L2(T))

�
[∑

n2

∣∣φ̂2(n2)
∣∣
(∑

n
N–1

1

∑

n3

∣∣φ̂1(n – n2 + n3)
∣∣2∣∣φ̂3(n3)

∣∣2
)1/2]2

� N2
∑

n2

∣∣φ̂2(n2)
∣∣2 ∑

n
N–1

1

∑

n3

∣∣φ̂1(n – n2 + n3)
∣∣2∣∣φ̂3(n3)

∣∣2

� N–1
1 N2‖φ1‖2

L2‖φ2‖2
L2‖φ3‖2

L2 ,

as desired. �

Lemma 2.8 Let φ1,φ2,φ3 ∈ L2(T) satisfy supp(φ̂j) ⊂ INj , and assume that N1 ∼ N2 � N3.
Further, assume K � N1. Then, for 0 < δ � N–1

1 , we have

∥∥HP≤K
(
eit∂2

x φ1eit∂2
x φ2

)
eit∂2

x φ3
∥∥

L2([0,δ];L2(T)) �
(

K
N1

)1/2

‖φ1‖L2‖φ2‖L2‖φ3‖L2 .

The same estimate holds if eit∂2
x φ3 is replaced by eit∂2

x φ3 and also if H is replaced by any
Fourier multiplier with bounded symbol.
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Proof By an almost orthogonality argument, we can restrict the frequencies of φ1 and φ2

onto intervals of length K . Then the same argument as for the preceding lemma can be
used. �

Remark 2.9 We note that all the above short-time L6 and bilinear Strichartz estimates
(Lemmas 2.3, 2.4, 2.7, and 2.8) are true in the nonperiodic case as well. In fact, these es-
timates hold on R without restricting to a frequency-dependent short time interval (i.e.,
with the L6

t,x or L2
t,x norm over R×R on the left-hand side). Concerning Lemmas 2.7 and

2.8, this can be shown by a slight modification of the proofs for the periodic estimates
given above.

3 Trilinear estimate in the short-time norms
In this section, we shall prove the following trilinear estimate in the Gs(T) norm.

Proposition 3.1 For s > 1/4 and 0 < T ≤ 1, we have

∥
∥∂x(u1ū2u3)

∥
∥

Gs(T) +
∥
∥∂x

(
H(u1ū2)u3

)∥∥
Gs(T) � ‖u1‖Fs(T)‖u2‖Fs(T)‖u3‖Fs(T).

Proof We only consider the second term on the left-hand side with the Hilbert transfor-
mation. The first term (for DNLS) was treated in [4, 5]; in fact, it can be dealt with in a
similar manner but more easily.

We apply dyadic decompositions as

H(u1ū2)u3 =
∑

N1,...,N4≥1
N∗

1 ∼N∗
2

PN4

(
H(PN1 u1PN2 ū2)PN3 u3

)
,

where we write N∗
1 , . . . , N∗

4 to denote the numbers N1, . . . , N4 rearranged in decreasing or-
der. It then suffices to show for each N = (N1, . . . , N4) the localized estimate

∥
∥∂xPN4

(
H(PN1 u1PN2 ū2)PN3 u3

)∥∥
GN4 (T)

� C(N)‖PN1 u1‖FN1 (T)‖PN2 u2‖FN2 (T)‖PN3 u3‖FN3 (T)

(3.1)

with some C(N) satisfying

C(N) � Ns
1Ns

2Ns
3

Ns
4

(
N∗

3
)0–.

(Since N∗
1 ∼ N∗

2 , the factor (N∗
3 )0– allows us to restore the claimed estimate by summing

up (3.1) in N .) We will actually obtain (3.1) with smaller C(N), which satisfies

C(N) �
(

N1N2N3

N∗
1

)(1/4)+

. (3.2)

From the definition of the FN (T), GN (T) norms, we need to prove

sup
I4=(a,b)⊂[0,T],|I4|≤N–1

4

∥
∥∂xPN4

(
H(PN1 u1PN2 ū2)PN3 u3

)∥∥
DU2

�(I4)
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� C(N)
3∏

j=1

sup
Ij=[a,b)⊂[0,T],|Ij|≤N–1

j

‖χIj PNj uj‖U2
�(R).

Since ∂xPN4 (H(PN1 u1PN2 ū2)PN3 u3) ∈ L1([0, T]; L2) for u1, u2, u3 ∈ Fs(T) ⊂ C([0, T]; Hs), by
Lemma 2.1(ii) it suffices to prove either

∥
∥∂xPN4

(
H(PN1 u1PN2 ū2)PN3 u3

)∥∥
L1(I4;L2)

� C(N)
3∏

j=1

sup
Ij=[a,b)⊂[0,T],|Ij|≤N–1

j

‖χIj PNj uj‖U2
�(R)

(3.3)

or
∣∣
∣∣

∫

I4

∫
H(PN1 u1PN2 ū2)PN3 u3 · ∂xPN4 ū4 dx dt

∣∣
∣∣

� C(N)‖u4‖V 2
�(I4)

3∏

j=1

sup
Ij=[a,b)⊂[0,T],|Ij|≤N–1

j

‖χIj PNj uj‖U2
�(R)

(3.4)

for any I4 = (a, b) ⊂ [0, T], |I4| ≤ N–1
4 and any u4 ∈ V 2

rc,�(I4).
When N4 � N∗

1 , the time scale on the right-hand side is finer than that on the left-hand
side, and therefore we need to first divide I4 into subintervals of size ≤ (N∗

1 )–1, the number
of which is O(N∗

1 /N4). Then, to verify (3.3), we need to show

(
N∗

1
)1/2∥∥PN4

(
H(PN1 u1PN2 ū2)PN3 u3

)∥∥
L2(I;L2)

� C(N)
3∏

j=1

‖χIPNj uj‖U2
�(R)

(3.5)

for any interval I with

I = [a, b) ⊂ [0, T], |I| ≤ (
N∗

1
)–1.

In fact, (3.5) implies (3.3) by the Schwarz inequality in t and the Bernstein inequality in x.
From now on, we write simply uj for PNj uj.

Case (I) N4 ∼ N∗
1 .

(Ia) [high×high×high→high] N1 ∼ N2 ∼ N3 ∼ N4.
We simply use the L6 Strichartz estimate (Lemma 2.3) for each function:

(
N∗

1
)1/2∥∥H(u1ū2)u3

∥∥
L2(I;L2) �

(
N∗

1
)1/2

3∏

j=1

‖uj‖L6(I;L6) �
(
N∗

1
)1/2

3∏

j=1

‖χIuj‖U2
�(R).

This shows (3.5) with C(N) = (N∗
1 )1/2, which satisfies (3.2).

(Ib) [high×high×low→high] N∗
1 ∼ N∗

3 � N∗
4 .

(i) N1 ∼ N2 � N3. In this case, we apply the standard bilinear Strichartz estimate
(Lemma 2.4) to the product u1ū2, on which we may put P∼N∗

1
. Using the L∞ embedding

‖u3‖L∞(I;L∞) � N1/2
3 ‖u3‖L∞(I;L2) � N1/2

3 ‖χIu3‖U2
�(R),

we have (3.5) with C(N) = N1/2
3 , which satisfies (3.2).
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(ii) N2 ∼ N3 � N1. Noticing that H(u1ū2) = u1H(ū2), we apply Lemma 2.4 to the product
H(ū2)u3 and follow the argument in the preceding case to obtain (3.5) with C(N) = N1/2

1 ,
which again satisfies (3.2).

(iii) N1 ∼ N3 � N2. In this case, we need to consider the dual estimate (3.4), because
we cannot use Lemma 2.4 to the product H(u1)u3 (in the form of Remark 2.5) when the
Fourier supports of u1 and u3 are overlapping. We first replace u4 ∈ V 2

rc,�(I4) with its ex-
tension ũ4 ∈ V 2

–,rc,�(R) defined by ũ4(a) := limt→a+0 u4(t) and ũ4(t) := 0 for t /∈ [a, b) (recall
that I4 = (a, b)). Next, we decompose I4 into subintervals of length ≤ (N∗

1 )–1, the number
of which is O(1). Then, for each integral on a subinterval I = [a′, b′), we apply Lemma 2.4
(in the form obtained in Remark 2.6) to the product u3∂xũ4 (on which we may put P∼N∗

1
),

bound the remaining functions H(u1), ū2 in the L∞(I; L2) and the L2(I; L∞) norms respec-
tively, and finally derive the factor (N∗

1 )–1/2N1/2
2 from the last one by the Hölder inequality

in t and the Bernstein inequality in x. The resulting bound is

∣
∣∣
∣

∫

I

∫
H(u1u2)u3∂xũ4 dx dt

∣
∣∣
∣

�
(
N∗

1
)–(1/2)+N4

(
N∗

1
)–1/2N1/2

2 ‖χI ũ4‖V 2
�(R)

3∏

j=1

‖χIuj‖U2
�(R).

(Since we have to bound ũ4 in V 2
�, the bilinear Strichartz estimate is accompanied by a

factor (N∗
1 )0+.) Now, it is verified directly from the definition of the V 2

� norm that

‖χI ũ4‖V 2
�(R) ≤ ‖ũ4‖V 2

�(R) ≤ √
2‖u4‖V 2

�(I4).

As a result, we obtain (3.4) with C(N) = (N∗
1 )0+N1/2

2 , which satisfies (3.2).
(Ic) [high×low×low→high] N∗

1 ∼ N∗
2 � N∗

3 .
We show (3.5) with C(N) � (N∗

4 )1/2. If N1 or N2 ∼ N∗
1 (so that N1 � N2), we can put H

on a single function. Then, similarly to the case (Ib-i), we apply Lemma 2.4 to the product
of functions corresponding to N∗

1 and N∗
3 and use the L∞ embedding for the other one

corresponding to N∗
4 to obtain the desired bound. In the remaining case, i.e., if N3 ∼ N4 �

N1, N2, we apply the first modified bilinear Strichartz estimate (Lemma 2.7) to the left-
hand side of (3.5), which gives the same bound.

Case (II) N4 � N∗
1 .

(IIa) [high×high×high→low] N1 ∼ N2 ∼ N3 � N4.
We follow the argument in the case (Ia) to obtain (3.5) with C(N) = (N∗

1 )1/2, which sat-
isfies (3.2).

(IIb) [high×high×low→low] N∗
1 � N∗

3 .
(i) If N4 � min{N1, N2, N3}, then we show (3.5) with C(N) � min{N1, N2, N3}1/2 by con-

sidering the following two cases separately.
• If N3 ∼ N∗

1 (which implies N1 � N2), then we first bound the left-hand side of (3.5) by

(
N∗

1
)1/2N1/2

4
∥
∥H(u1ū2)u3

∥
∥

L2(I;L1)

and then apply Lemma 2.4 to u1ū2 (on which we may put P∼N∗
1

). This implies (3.5)
with C(N) = N1/2

4 .
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• If N3 � N∗
1 (which implies N1 ∼ N2 ∼ N∗

1 ), then we may put P�N3 on u1ū2. Using the
second modified bilinear Strichartz estimate (Lemma 2.8), we obtain (3.5) with
C(N) = N1/2

3 .
(ii) If N4 � min{N1, N2, N3}, then we consider the dual estimate (3.4). Note that we can
always put H on a single function since N3 � N4 and

∫

I4

∫
H(u1u2)u3∂xu4 dx dt = –

∫

I4

∫
u1u2H(u3∂xu4) dx dt.

Then the argument is parallel to the case (Ib-iii). This time we decompose I4 into subin-
tervals of length ≤ (N∗

1 )–1, the number of which is O(N∗
1 /N4), and apply Lemma 2.4 to

the product of functions corresponding to N∗
1 and N∗

3 (= N4). Further, we bound the re-
maining functions corresponding to N∗

2 and N∗
4 in the L∞(I; L2) and the L2(I; L∞) norms,

respectively. We then obtain (3.4) with

C(N) � N∗
1

N4
· (N∗

1
)–(1/2)+N4

(
N∗

1
)–1/2(N∗

4
)1/2 �

(
N∗

1
)0+(

N∗
4
)1/2,

which satisfies (3.2).
We have seen all the possible cases, and this completes the proof of the localized estimate

(3.1) with (3.2). �

4 Energy estimate
In this section, we shall prove the following a priori estimate.

Proposition 4.1 Assume 0 < T ≤ 1 and that u ∈ C([0, T]; H∞) is a solution to (1.1) on the
time interval [0, T]. Then, for s > 1/4, there exist δ > 0 and C > 0 (independent of u) such
that if ‖u(0)‖L2 ≤ δ then we have

‖u‖2
Es(T) ≤ C

(∥∥u(0)
∥
∥2

Hs + ‖u‖6
Fs(T)

)
.

In fact, this is the main part of the proof of Theorem 1.1. Recall that the Es(T) norm takes
L∞

t before the �2 summation over dyadic frequency blocks, and so it is fairly stronger than
the L∞

t Hs
x norm.

4.1 A reduction
First of all, we reduce Proposition 4.1 to the following estimate on a “modified energy”.

Proposition 4.2 Let 0 < T ≤ 1 and u ∈ C([0, T]; H∞) be a solution to (1.1) on the time
interval [0, T]. Let s > 1/4, and assume that a smooth symbol a ∈ C∞(R) has the following
properties:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a is positive, even, nondecreasing in [0,∞), constant on [–1, 1],

a(2ξ ) � a(ξ ) for any ξ > 0,
a(N1)
a(N2) � ( N1

N2
)1/2 for any N1 > N2 ≥ 1,

|∂ j
ξ a(ξ )|� 〈ξ 〉–ja(ξ ) for any ξ ∈R and 1 ≤ j ≤ 5.

(4.1)
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Then there exist δ > 0 and C > 0 depending on s and the implicit constants in (4.1) (but not
on u) such that if ‖u(0)‖L2 ≤ δ then we have

Ea
0
(
u(t)

)
:=

∥∥
√

a(D)u(t)
∥∥2

L2

≤ C
(

Ea
0
(
u(0)

)
+ ‖u‖4

Fs(T)

∑

N≥1

a(N)‖PN u‖2
FN (T)

)
, t ∈ [0, T].

Remark 4.3 (i) The Sobolev weight a(ξ ) = 〈ξ 〉2s (s ≥ 1/4) satisfies conditions (4.1) (af-
ter modifying on [–1, 1]). With this choice of a, we can obtain from Proposition 4.2 an
L∞([0, T]; Hs) a priori estimate. This is, however, weaker than what we want to prove in
Proposition 4.1.

(ii) To obtain an Es(T) bound, one may consider estimating localized Hs norms
N2s‖ψN (D)u(t)‖2

L2 for dyadic numbers N ≥ 1 and summing them up. This is indeed the
approach taken in [3]. On the other hand, we will improve the bound by adding a correc-
tion term to the energy functional. For this purpose, it will be convenient to introduce a
modified energy ‖√a(D)u(t)‖2

L2 and estimate it instead of the localized Hs norms, where
a symbol a(ξ ) is chosen so that it is positive everywhere and its derivatives are controlled
by itself as |∂ j

ξ a(ξ )| � 〈ξ 〉–ja(ξ ). Such a modified energy has been used for the cubic NLS
in [6] and for the modified Benjamin–Ono (and also the DNLS) equation in [4, 5].

(iii) Our choice of a(ξ ) is slightly simpler than that in [4–6] (see the proof of Proposi-
tion 4.1). Indeed, the modified energies in these papers are defined from a sequence of
positive numbers {βN } depending on the initial data, but we do not use such a sequence.

Proof of Proposition 4.1 from Proposition 4.2 Let s > 1/4, ε := s – 1/4 > 0. For each dyadic
integer N , we define the positive sequence {aN

N }N≥1 by

aN
N := N2s

(
N
N

∧ N
N

)ε

=

⎧
⎨

⎩
N–εN2s+ε (N ≤ N),

NεN2s–ε (N ≥ N).

It is clear that {aN
N } is increasing in N . In fact, the growth of {aN

N } is controlled as

22s–ε ≤ aN
2N

aN
N

≤ 22s+ε (N ≥ 1).

Now, define the smooth symbol aN ∈ C∞(R) by

aN (ξ ) :=
∑

N≥1

aN
NψN (ξ ).

It is easy to see that aN satisfies all the properties in (4.1) with implicit constants inde-
pendent of N . Applying Proposition 4.2 and restricting the left-hand side of the resulting
estimate to the target frequency {〈ξ 〉 ∼ N}, we have

sup
t∈[0,T]

N2s∥∥PN u(t)
∥
∥2

L2 �
∑

N≥1

(
N
N

∧ N
N

)ε

N2s[∥∥PN u(0)
∥
∥2

L2 + ‖u‖4
Fs(T)‖PN u‖2

FN (T)
]
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for any smooth solution u ∈ C([0, T]; H∞) to (1.1) with ‖u(0)‖L2 sufficiently small. Sum-
ming up in N , we obtain the claimed estimate. �

4.2 Construction of the modified energies
Now, we start proving Proposition 4.2. The argument is very similar to the estimate of
the modified energy with correction terms in the I-method, where an important role is
played by various cancelations after symmetrization of the energy functionals (see, e.g.,
Colliander, Keel, Staffilani, Takaoka, and Tao [17]). However, there are fewer symmetries
compared to the DNLS case, and more delicate analysis is required. In particular, some of
the highest order terms cannot be canceled out, and we need to recognize these terms to
be nonpositive by making use of the dissipative nature of the equation.

Let a ∈ C∞(R) be a symbol satisfying (4.1). Hereafter, the notation ξij... = ξi + ξj + · · · will
be frequently used. Our proof will be designed for the periodic problem; however, in view
of Remark 2.9, the same argument can be applied in the nonperiodic setting. For a smooth
solution u of (1.1), we have

∂t û(ξ ) = –iξ 2û(ξ ) + iαξ
∑

ξ=ξ123

û(ξ1) ˆ̄u(ξ2)û(ξ3) + βξ
∑

ξ=ξ123

sgn(ξ12)û(ξ1) ˆ̄u(ξ2)û(ξ3),

∂t ˆ̄u(ξ ) = iξ 2 ˆ̄u(ξ ) + iαξ
∑

ξ=ξ123

ˆ̄u(ξ1)û(ξ2) ˆ̄u(ξ3) + βξ
∑

ξ=ξ123

sgn(ξ23) ˆ̄u(ξ1)û(ξ2) ˆ̄u(ξ3).

The derivative of Ea
0(u(t)) =

∑
ξ12=0 a(ξ1)û(ξ1) ˆ̄u(ξ2) is computed as

d
dt

Ea
0
(
u(t)

)
= iα

∑

ξ1234=0

[
a(ξ123)ξ123 + a(ξ1)ξ234

]
û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4)

+ β
∑

ξ1234=0

[
a(ξ123)ξ123sgn(ξ12) + a(ξ1)ξ234sgn(ξ34)

]
û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4).

The first term is the same as that appearing in the DNLS case, and it is symmetrized as
follows:

α

2i
∑

ξ1234=0

[
ξ1a(ξ1) + ξ2a(ξ2) + ξ3a(ξ3) + ξ4a(ξ4)

]
û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4).

We observe that the multiplier part ξ1a(ξ1) + · · · + ξ4a(ξ4) vanishes for the resonant fre-
quencies:

ξ1234 = 0, ξ 2
1 – ξ 2

2 + ξ 2
3 – ξ 2

4 = –2ξ12ξ23 = 0.

Then this quadrilinear term can be canceled with the leading term of the derivative of the
quadrilinear functional

–
α

2i
∑

ξ1234=0
ξ12ξ23 �=0

ξ1a(ξ1) + ξ2a(ξ2) + ξ3a(ξ3) + ξ4a(ξ4)
–i(ξ 2

1 – ξ 2
2 + ξ 2

3 – ξ 2
4 )

û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4),

which can be used as an appropriate correction term to Ea
0(u).
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In the following, we assume α = 0 for simplicity and consider the term

β
∑

ξ1234=0

[
a(ξ123)ξ123sgn(ξ12) + a(ξ1)ξ234sgn(ξ34)

]
û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4).

This term has less symmetry due to the sign functions. In fact, this is symmetrized as

β

2
∑

ξ1234=0

[(
ξ1a(ξ1) + ξ2a(ξ2)

)
sgn(ξ12) +

(
ξ3a(ξ3) + ξ4a(ξ4)

)
sgn(ξ34)

]
û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4),

and the multiplier part does not vanish when ξ23 = 0 �= ξ12 (in this case sgn(ξ34) =
–sgn(ξ12) �= 0). Now, we observe that the function ξ �→ ξa(ξ ) is odd and strictly increasing
on R, and hence

(
ξ1a(ξ1) + ξ2a(ξ2)

)
sgn(ξ12) =

∣∣ξ1a(ξ1) + ξ2a(ξ2)
∣∣ > 0

for any ξ1, ξ2 ∈R with ξ12 �= 0. Then we decompose this term as

β
∑

ξ1234=0

√∣∣ξ1a(ξ1) + ξ2a(ξ2)
∣∣
√∣∣ξ3a(ξ3) + ξ4a(ξ4)

∣∣û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4)

+
β

2
∑

ξ1234=0

[√∣∣ξ1a(ξ1) + ξ2a(ξ2)
∣∣ –

√∣∣ξ3a(ξ3) + ξ4a(ξ4)
∣∣]2û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4)

=: Q1 + Q2.

On the one hand, for β < 0, we have

Q1 = β
∑

ξ

∣
∣∣
∣
∑

ξ12=ξ

√∣∣ξ1a(ξ1) + ξ2a(ξ2)
∣∣û(ξ1) ˆ̄u(ξ2)

∣
∣∣
∣

2

≤ 0.

On the other hand, it will turn out that the multiplier part of Q2 vanishes when ξ12 = 0
and also when ξ23 = 0. Q2 is then canceled out by adding the correction term

Ea
1(u) :=

∑

ξ1234=0
ξ12ξ23 �=0

ba
4(ξ1, ξ2, ξ3, ξ4)sgn(ξ12)û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4)

to the modified energy Ea
0(u), where

ba
4(ξ1, ξ2, ξ3, ξ4) := –

β

2
[
√|ξ1a(ξ1) + ξ2a(ξ2)| –

√|ξ3a(ξ3) + ξ4a(ξ4)|]2

2iξ12ξ23sgn(ξ12)
.

We can show that ba
4 is extended to a smooth function on �4, where

�m =
{

(ξj)1≤j≤m : ξ12...m = 0
}

(we put sgn(ξ12) outside to make ba
4 smooth). Moreover, ξ12ξ23 = 0 implies ba

4(ξ1, ξ2, ξ3, ξ4) =
0 (and hence the restriction ξ12ξ23 �= 0 for the sum in Ea

1(u) can be disregarded). In fact,
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noticing that

q(ξ1, ξ2) :=
ξ1a(ξ1) + ξ2a(ξ2)

ξ1 + ξ2
> 0 (ξ1, ξ2 ∈R, ξ12 �= 0),

on �4 ∩ {ξ12ξ23 �= 0}, we compute it as

ba
4(ξ1, ξ2, ξ3, ξ4) =

iβ
4ξ23

[√
|ξ1a(ξ1) + ξ2a(ξ2)|

|ξ12| –

√
|ξ3a(ξ3) + ξ4a(ξ4)|

|ξ34|
]2

=
iβ

4ξ23

[√
q(ξ1, ξ2) –

√
q(ξ3, ξ4)

]2

=
iβ

4ξ23

[
q(ξ1, ξ2) – q(ξ1 + ξ23, ξ2 – ξ23)

√
q(ξ1, ξ2) +

√
q(ξ3, ξ4)

]2

=
iβξ23

4
[
∫ 1

0 (∂1q – ∂2q)(ξ1 + ξ23t, ξ2 – ξ23t) dt]2

[
√

q(ξ1, ξ2) +
√

q(ξ3, ξ4)]2
,

while q(ξ1, ξ2) is actually positive and smooth on R
2, as we see in the following lemma.

Lemma 4.4 q(ξ1, ξ2) can be extended to a smooth positive function on R
2. Moreover, the

following hold (with ξmax := |ξ1| ∨ |ξ2|):
(i) q(ξ1, ξ2) ∼ a(ξmax), |[∂γ1

1 ∂
γ2
2 q](ξ1, ξ2)|� 〈ξ1〉–γ1〈ξ2〉–γ2 a(ξmax) (1 ≤ |γ | ≤ 3);

(ii) |[∂γ1
1 ∂

γ2
2 (∂1 – ∂2)q](ξ1, ξ2)|� 〈ξ1〉–γ1〈ξ2〉–γ2〈ξmax〉–1a(ξmax) (0 ≤ |γ | ≤ 3).

Proof For (ξ1, ξ2) ∈R
2 \ {ξ12 = 0}, we have

q(ξ1, ξ2) =
ξ1a(ξ1) + ξ2a(ξ2)

ξ1 + ξ2
(4.2)

=
ξ1a(ξ1) – (–ξ2)a(–ξ2)

ξ1 – (–ξ2)
=

∫ 1

0

(
ξa(ξ )

)′(–ξ2 + ξ12t) dt. (4.3)

Since a is smooth and (ξa(ξ ))′ = a(ξ ) + ξa′(ξ ) ≥ a(ξ ) ≥ a(0) > 0 (ξ ∈ R), (4.3) defines a
positive smooth function on R

2.
To show q(ξ1, ξ2) ∼ a(ξmax), it suffices to consider the following three cases. If ξmax ≤

1, then q(ξ1, ξ2) = a(0) = a(ξmax). If ξmax > 1 and |ξ12| ∼ ξmax, then the claim follows from
expression (4.2) (and some more arguments). If ξmax > 1 and |ξ12| � ξmax, then we have
| – ξ2 + ξ12t| ∼ |ξ2| ∼ ξmax for t ∈ [0, 1], and the claim follows from (4.3) since (ξa(ξ ))′ =
a(ξ ) + ξa′(ξ ) ∼ a(ξ ).

For the derivatives of q, we may focus on the case ξmax > 1. In the case |ξ12| ∼ ξmax, we
first observe that

∣∣∂γ1
1 ∂

γ2
2

[
ξ–1

12
]∣∣� 〈ξmax〉–1–|γ |.

On the other hand, using the property |∂ j
ξ a(ξ )|� 〈ξ 〉–ja(ξ ) for j ≤ 5, we have

∣∣∂ j
ξ

(
ξa(ξ )

)∣∣� 〈ξ 〉1–ja(ξ ),
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which implies that

∣∣∂γ1
1 ∂

γ2
2

(
ξ1a(ξ1) + ξ2a(ξ2)

)∣∣

⎧
⎪⎪⎨

⎪⎪⎩

� 〈ξ1〉1–ja(ξmax)
(
γ = (j, 0)

)
,

� 〈ξ2〉1–ja(ξmax)
(
γ = (0, j)

)
,

= 0 (γ1 ≥ 1 and γ2 ≥ 1).

The claimed estimate follows from these estimates and expression (4.2). When |ξ12| �
ξmax, we deduce from expression (4.3) that

[
∂

γ1
1 ∂

γ2
2 q

]
(ξ1, ξ2) =

∫ 1

0
tγ1 (t – 1)γ2

[
∂

1+|γ |
ξ

(
ξa(ξ )

)]
(–ξ2 + ξ12t) dt.

Recalling that | – ξ2 + ξ12t| ∼ ξmax for t ∈ [0, 1], we have

∣
∣[∂γ1

1 ∂
γ2
2 q

]
(ξ1, ξ2)

∣
∣� 〈ξmax〉–|γ |a(ξmax) � 〈ξ1〉–γ1〈ξ2〉–γ2 a(ξmax).

This proves (i). For (ii), we compute

(∂1q – ∂2q)(ξ1, ξ2) =
a(ξ1) – a(ξ2)

ξ12
+

ξ1a′(ξ1) – ξ2a′(ξ2)
ξ12

=
∫ 1

0

(
ξa(ξ )

)′′(–ξ2 + ξ12t) dt.

Using these expressions instead of (4.2)–(4.3), the desired estimate is verified by an argu-
ment similar to (i). �

We have the following estimate on Ea
1(u(t)) for each t.

Lemma 4.5 We have

∣
∣Ea

1(f )
∣
∣� ‖f ‖2

L2 Ea
0(f )

for any f ∈ L2
x such that Ea

0(f ) < ∞.

Proof Let us begin with the dyadic decomposition:

∣∣Ea
1(f )

∣∣�
∑

N1,...,N4≥1

∑

�4

∣∣ba
4(ξ1, ξ2, ξ3, ξ4)

∣∣ · ψN1 (ξ1)
∣∣f̂ (ξ1)

∣∣ · · ·ψN4 (ξ4)
∣∣ ˆ̄f (ξ4)

∣∣.

We can show that

∣∣ba
4(ξ1, ξ2, ξ3, ξ4)

∣∣� a(N∗
1 )

N∗
1

on (IN1 × · · · × IN4 ) ∩ �4,

where we renumber N1, . . . , N4 as N∗
1 , . . . , N∗

4 such that N∗
1 ≥ N∗

2 ≥ N∗
3 ≥ N∗

4 . (We will
actually prove a stronger result including estimates on derivatives of ba

4 in the proof of
Lemma 4.7.) Then, by Hölder we have

∣∣Ea
1(f )

∣∣�
∑

N∗
1 ∼N∗

2 ≥N∗
3 ≥N∗

4 ≥1

a(N∗
1 )

N∗
1

(
N∗

3 N∗
4
)1/2

4∏

j=1

‖PN∗
j

f ‖L2



Kishimoto and Tsutsumi Advances in Continuous and Discrete Models         (2023) 2023:10 Page 19 of 29

� ‖f ‖2
L2

∑

N∗
1 ∼N∗

2

a
(
N∗

1
)‖PN∗

1
f ‖L2‖PN∗

2
f ‖L2

� ‖f ‖2
L2

∑

N

a(N)‖PN f ‖2
L2

� ‖f ‖2
L2 Ea

0(f ),

as desired. �

By differentiating Ea
1(u(t)) in t and substituting the equation, we obtain

d
dt

(
Ea

0
(
u(t)

)
+ Ea

1
(
u(t)

))
= Q1 + β

∑

�6

û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4)û(ξ5) ˆ̄u(ξ6)

× [
–ba

4(ξ123, ξ4, ξ5, ξ6)sgn(ξ56)ξ123sgn(ξ12)

– ba
4(ξ1, ξ234, ξ5, ξ6)sgn(ξ56)ξ234sgn(ξ34)

+ ba
4(ξ1, ξ2, ξ345, ξ6)sgn(ξ12)ξ345sgn(ξ34)

+ ba
4(ξ1, ξ2, ξ3, ξ456)sgn(ξ12)ξ456sgn(ξ56)

]

= : Q1 + β(R1 + · · · + R4).

Here, it turns out that R1 = R3 = R2 = R4. To see this, we start with R1 and first change
variables as (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) �→ (ξ3, ξ4, ξ5, ξ6, ξ1, ξ2) to obtain R3. We then see R1 = R4

and R2 = R3 by taking the complex conjugate, using û(ξ ) = ˆ̄u(–ξ ) and changing variables
as (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) �→ (–ξ6, –ξ5, –ξ4, –ξ3, –ξ2, –ξ1). Therefore, it suffices to consider

R(u) := –R1

=
∑

�6

ba
4(ξ123, ξ4, ξ5, ξ6)ξ123sgn(ξ12)sgn(ξ56)û(ξ1) ˆ̄u(ξ2)û(ξ3) ˆ̄u(ξ4)û(ξ5) ˆ̄u(ξ6),

which satisfies

d
dt

(
Ea

0
(
u(t)

)
+ Ea

1
(
u(t)

))
= Q1

(
u(t)

)
– 4β�R

(
u(t)

)
.

We need to prove the following estimate on the remainder term R(u), which is the hard-
est part in the overall proof of the main theorem.

Proposition 4.6 Let s > 1/4. For 0 < T ≤ 1, we have

∣
∣∣∣

∫ T

0
R

(
u(t)

)
dt

∣
∣∣∣� ‖u‖4

Fs(T)

∑

N≥1

a(N)‖PN u‖2
FN (T).

Let us postpone the proof of this proposition and verify Proposition 4.2.

Proof of Proposition 4.2 By Lemma 4.5, Proposition 4.6, and the fact that any smooth so-
lution of (1.1) reduces its L2 norm, we have

sup
t∈[0,T]

Ea
0
(
u(t)

)
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≤ Ea
0(u0) + sup

t∈[0,T]

∣∣Ea
1
(
u(t)

)∣∣ + C‖u‖4
Fs(T)

∑

N≥1

a(N)‖PN u‖2
FN (T)

≤ Ea
0(u0) + C

∥∥u(0)
∥∥2

L2 sup
t∈[0,T]

Ea
0
(
u(t)

)
+ C‖u‖4

Fs(T)

∑

N≥1

a(N)‖PN u‖2
FN (T).

Assuming ‖u(0)‖L2 � 1, this yields the claimed estimate. �

4.3 Estimate on the remainder term
It remains to prove Proposition 4.6. A difficulty here is that we cannot directly apply point-
wise bounds on the multipliers (as we did in the proof of Lemma 4.5), because u ∈ Fs(T)
does not in general imply F–1

ξ [|û(t, ξ )|] ∈ Fs(T). Indeed, linear solutions u = eit∂2
x u0 can be

considered as counterexamples.
We prepare the following lemma, which allows us to separate variables in the multiplier

ba
4. This idea has also been used in [5, 6, 18].

Lemma 4.7 Let N1, . . . , N4 be dyadic integers such that N∗
1 ∼ N∗

2 , where N∗
1 , . . . , N∗

4 denote
the numbers N1, . . . , N4 rearranged in decreasing order. Let ψ̃1, . . . , ψ̃4 ∈ C∞

0 (R) be bump
functions such that supp(ψ̃j(·/Nj)) ⊂ INj , with INj defined as in Definition 2.2 (i.e., ψ̃j is
supported in [–2, 2] if Nj = 1 and in [–2, 2] \ (– 1

2 , 1
2 ) if Nj > 1).

Then there is a sequence ĉ ∈ �1(Z4) such that

ba
4(ξ1, ξ2, ξ3, ξ4)ξ1 · ψ̃1

(
ξ1

N1

)
ψ̃2

(
ξ2

N2

)
ψ̃3

(
ξ3

N3

)
ψ̃4

(
ξ4

N4

)

=
∑

k1,...,k4∈Z
ĉ(k1, k2, k3, k4)ei( k1

N1
ξ1+ k2

N2
ξ2+ k3

N3
ξ3+ k4

N4
ξ4), (ξ1, . . . , ξ4) ∈ �4

and

∑

k1,...,k4∈Z

∣∣ĉ(k1, k2, k3, k4)
∣∣� N1

a(N∗
1 )

N∗
1

.

Proof Following the argument in [18], we first construct a smooth function b̃a
4(ξ1, . . . , ξ4)

on IN1 × · · · × IN4 , which extends ba
4(ξ1, . . . , ξ4) (defined on �4) and satisfies

∣
∣∂γ1

1 ∂
γ2
2 ∂

γ3
3 ∂

γ4
4 b̃a

4(ξ1, ξ2, ξ3, ξ4)
∣
∣ � 1

Nγ1
1 Nγ2

2 Nγ3
3 Nγ4

4

a(N∗
1 )

N∗
1

(
0 ≤ |γ | ≤ 3

)
. (4.4)

We use the following extensions of ba
4:

b̃1(ξ1, ξ2, ξ3, ξ4) =
iβ

4ξ23

[q(ξ1, ξ2) – q(ξ3, ξ4)]2

[
√

q(ξ1, ξ2) +
√

q(ξ3, ξ4)]2

(
on R

4 \ {ξ23 = 0}),

b̃2(ξ1, ξ2, ξ3, ξ4) =
iβξ23

4ξ 2
12

[q(ξ2, ξ3) – q(ξ1, ξ4)]2

[
√

q(ξ1, ξ2) +
√

q(ξ3, ξ4)]2

(
on R

4 \ {ξ12 = 0}),

b̃3(ξ1, ξ2, ξ3, ξ4) =
iβξ23

4
[
∫ 1

0 (∂1q – ∂2q)(ξ1 + ξ23t, ξ2 – ξ23t) dt]2

[
√

q(ξ1, ξ2) +
√

q(ξ3, ξ4)]2

(
on R

4).
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From Lemma 4.4, we can show that

•
∣
∣∣
∣∣
∂

γ1
1 ∂

γ2
2 ∂

γ3
3 ∂

γ4
4

(
[q(ξ1, ξ2) – q(ξ3, ξ4)]2

[q(ξ2, ξ3) – q(ξ1, ξ4)]2

)∣
∣∣
∣∣
� a(N∗

1 )2

Nγ1
1 Nγ2

2 Nγ3
3 Nγ4

4
;

• ∣∣∂γ1
1 ∂

γ2
2

√
q(ξ1, ξ2)

∣∣� 〈ξ1〉–γ1〈ξ2〉–γ2
√

a
(|ξ1| ∨ |ξ2|

)
(ξ1, ξ2 ∈R);

• ∣
∣∂γ1

1 ∂
γ2
2 ∂

γ3
3 ∂

γ4
4

[√
q(ξ1, ξ2) +

√
q(ξ3, ξ4)

]–2∣∣� 1
Nγ1

1 Nγ2
2 Nγ3

3 Nγ4
4 a(N∗

1 )
;

• If N1 ∼ N2 ∼ N∗
1 and |ξ23| � N∗

1 , then
∣∣
∣∣∂

γ1
1 ∂

γ2
2 ∂

γ3
3 ∂

γ4
4

[∫ 1

0
(∂1q – ∂2q)(ξ1 + ξ23t, ξ2 – ξ23t) dt

]2∣∣
∣∣ �

a(N∗
1 )2

(N∗
1 )2+|γ | .

Using these bounds, we see that the desired estimates (4.4) hold:
• for b̃1 if |ξ23| ∼ N∗

1 ;
• for b̃2 if |ξ12| ∼ N∗

1 ;
• for b̃3 if N1 ∼ N2 ∼ N∗

1 and |ξ23| � N∗
1 .

Note that |ξ12| ∨ |ξ23| � N∗
1 implies N1 ∼ N2 ∼ N3 ∼ N∗

1 under the hypothesis N∗
1 ∼ N∗

2 .
Therefore, we can define b̃a

4 by

b̃a
4 :=

[
1–η

(
ξ23

1
100 N∗

1

)]
b̃1 +

[
1–η

(
ξ12

1
100 N∗

1

)]
η

(
ξ23

1
100 N∗

1

)
b̃2 +η

(
ξ12

1
100 N∗

1

)
η

(
ξ23

1
100 N∗

1

)
b̃3,

for instance, where η is defined as in Definition 2.2. It is clear that the above defined b̃a
4

coincides with ba
4 on �4 and satisfies (4.4).

Now, we define

c(η1,η2,η3,η4) := b̃a
4(N1η1, N2η2, N3η3, N4η4)N1η1 · ψ̃1(η1)ψ̃2(η2)ψ̃3(η3)ψ̃4(η4),

which is a smooth function supported in [–2, 2]4 and thus can be extended to a 2π-
periodic smooth function on R

4. Let ĉ(k1, k2, k3, k4) be the Fourier coefficients of c, then
the claimed identity follows from the Fourier series expansion and the restriction onto �4.
Moreover, we deduce from (4.4) that

‖c‖C3([–π ,π ]4) := max
η∈[–π ,π ]4,|γ |≤3

∣∣∂γ1
1 ∂

γ2
2 ∂

γ3
3 ∂

γ4
4 c(η1,η2,η3,η4)

∣∣� N1
a(N∗

1 )
N∗

1
,

which then implies that

‖ĉ‖�1(Z4) � N1
a(N∗

1 )
N∗

1
.

This completes the proof. �

We are now in a position to prove Proposition 4.6.

Proof of Proposition 4.6 As usual, we decompose the sum into dyadic pieces:

∫ T

0
R

(
u(t)

)
dt



Kishimoto and Tsutsumi Advances in Continuous and Discrete Models         (2023) 2023:10 Page 22 of 29

=
∑

N1,...,N6,N≥1

∫ T

0

∑

�6

ba
4(ξ123, ξ4, ξ5, ξ6)ξ123ψN (ξ123)ψ̃N4 (ξ4)ψ̃N5 (ξ5)ψ̃N6 (ξ6)

× sgn(ξ12)sgn(ξ56)(ψN1 û)(t, ξ1)(ψN2
ˆ̄u)(t, ξ2) · · · (ψN6

ˆ̄u)(t, ξ6) dt,

where for j = 4, 5, 6, ψ̃Nj (ξj) := ψ̃j(ξj/Nj) and ψ̃j ∈ C∞
0 (R) is chosen so that ψ̃j(·/Nj) ≡ 1

on supp(ψNj ) and supp(ψ̃j(·/Nj)) ⊂ INj , with ψNj , INj defined as in Definition 2.2. In the
following, we write N∗

1 , . . . , N∗
6 to denote the numbers N1, . . . , N6 rearranged in decreasing

order. Note that the range of N1, . . . , N6, N can be restricted to

N∗
1 ∼ N∗

2 and N � min
{
max{N1, N2, N3}, max{N4, N5, N6}

}
. (4.5)

Applying Lemma 4.7 for each (N , N4, N5, N6), we have

∫ T

0
R

(
u(t)

)
dt

=
∑

N1,...,N6,N≥1

∑

k,k4,k5,k6∈Z
ĉN ,N4,N5,N6 (k, k4, k5, k6)

∫ T

0

∑

�6

sgn(ξ12)sgn(ξ56)

× ei( k
N ξ1+ k

N ξ2+ k
N ξ3+ k4

N4
ξ4+ k5

N5
ξ5+ k6

N6
ξ6)û1(t, ξ1) ˆ̄u2(t, ξ2) · · · ˆ̄u6(t, ξ6) dt,

where we write uj = PNj u for brevity, j = 1, . . . , 6, and

∑

k,k4,k5,k6∈Z

∣
∣ĉN ,N4,N5,N6 (k, k4, k5, k6)

∣
∣� Na(max{N , N4, N5, N6})

max{N , N4, N5, N6} . (4.6)

Since multiplication by eiθξ on the Fourier side does not change the FNj (T) norm of uj, the
proof is reduced to estimating

∣
∣∣
∣

∫ T

0

∑

�6

sgn(ξ12)sgn(ξ56)û1(t, ξ1) ˆ̄u2(t, ξ2) · · · ˆ̄u6(t, ξ6) dt
∣
∣∣
∣

=
∣
∣∣∣

∫ T

0

∫

T

H(u1ū2)u3ū4H(u5ū6) dx dt
∣
∣∣∣.

To obtain a bound with the short-time norms, we have to divide the time interval into
small subintervals of length ≤ (N∗

1 )–1 (denoted by I), which gives a factor of O(N∗
1 ). The

strategy in the previous results on DNLS [4, 5] is to use two bilinear Strichartz and two L∞

embeddings if N∗
1 ∼ N∗

2 � N∗
3 or N∗

1 ∼ N∗
3 � N∗

4 ; one bilinear Strichartz, one L∞ embed-
ding, and three L6 Strichartz if N∗

1 ∼ N∗
4 � N∗

5 or N∗
1 ∼ N∗

5 � N∗
6 ; and six L6 Strichartz

if N∗
1 ∼ N∗

6 . For KDNLS, there are some cases where the same argument does not work
due to the presence of the Hilbert transformations. For instance, we cannot use the stan-
dard bilinear Strichartz estimate (Lemma 2.4) with only one of u1 and u2 involved. We can
indeed use the modified bilinear Strichartz estimates (Lemmas 2.7, 2.8) instead, but the
argument will be even more complicated.
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The goal is to prove

R.H.S. of (4.6) × N∗
1

∣
∣∣
∣

∫

I

∫

T

H(u1ū2)u3ū4H(u5ū6) dx dt
∣
∣∣
∣

� a
(
N∗

1
)(

N∗
3 N∗

4 N∗
5 N∗

6
) 1

4 +
6∏

j=1

‖χIuj‖U2
�(R)

(4.7)

for each N1, . . . , N6, N ≥ 1 satisfying (4.5) and each interval I = [a, b) ⊂ [0, T] with |I| ≤
(N∗

1 )–1. In fact, this is enough to carry out the summations in N1, . . . , N6 when s > 1/4. For
summability in N , notice that either N ∼ N∗

1 or N � N∗
3 holds.

In the rest of the proof, we shall establish (4.7), dividing into the following five cases:

(I) N∗
1 ∼ N∗

6 ; (II) N∗
1 ∼ N∗

5 � N∗
6 ; (III) N∗

1 ∼ N∗
4 � N∗

5 ;

(IV) N∗
1 ∼ N∗

3 � N∗
4 ; (V) N∗

1 ∼ N∗
2 � N∗

3 .

We will estimate the right-hand side of (4.6) roughly by a(N∗
1 ), except for a subcase (Vd)

of Case (V). For simplicity, we will see in detail only Case (III) and Case (V).1 Case (I) is
the easiest, and it is treated by the L6 Strichartz estimate (Lemma 2.3). Case (II) is a little
more involved, and we need the bilinear Strichartz estimate (Lemma 2.4). In Case (IV) we
also use the first modified bilinear Strichartz estimate (Lemma 2.7), but the argument is
similar to that in Case (III).

Case (III) N∗
1 ∼ N∗

4 � N∗
5 . We consider the following three subcases, according to which

two frequencies are smaller than N∗
1 .

(IIIa) Each of {N1, N2}, {N3, N4}, {N5, N6} contains at most one frequency � N∗
1 . Con-

sider the case N∗
5 = N1 and N∗

6 = N3 for instance, but the other cases can be treated simi-
larly. Then we apply Lemma 2.4 to H(u1ū2), Lemma 2.3 to u4, u5, u6, and L∞ embedding
to u3, which yields

I :=
∣∣
∣∣

∫

I

∫

T

H(u1ū2)u3ū4H(u5ū6) dx dt
∣∣
∣∣

� 1
N1/2

2
N1/2

3

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R).

(IIIb) {N∗
5 , N∗

6 } = {N1, N2} or {N5, N6}. Consider the former case, for instance. We apply
the first modified bilinear Strichartz estimate (Lemma 2.7) for H(u1ū2)u3 and Lemma 2.3
for the other three ujs to obtain

I � (N1 ∧ N2)1/2

N1/2
3

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R).

(IIIc) {N∗
5 , N∗

6 } = {N3, N4}. Without loss of generality, we assume N∗
5 = N3 and N∗

6 = N4.

1An extended version of this article can be found in https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1967.pdf, where
we keep a complete proof for the reader’s convenience.

https://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1967.pdf
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(IIIc-i) N3 ∼ N4. In this case, we divide H(u1ū2) into two parts as follows:

H(u1ū2) = HP�N3 (u1ū2) + HP�N3 (u1ū2).

For the first term, we can eliminate the Hilbert transformations by the fact that the fre-
quency for H(u5ū6) must be much bigger than that of u3ū4:

∫

I

∫

T

HP�N3 (u1ū2)u3ū4H(u5ū6) dx dt

= –
∫

I

∫

T

P�N3 (u1ū2)H
[
u3ū4H(u5ū6)

]
dx dt

= –
∫

I

∫

T

P�N3 (u1ū2)u3ū4H2(u5ū6) dx dt

=
∫

I

∫

T

P�N3 (u1ū2)u3ū4u5ū6 dx dt.

Now, the desired bound can be obtained by applying Lemma 2.4 to u3u5, L∞ embed-
ding to u4, and Lemma 2.3 to the others, for instance. To estimate the contribution from
the second term, we use the second modified bilinear Strichartz estimate (Lemma 2.8)
for HP�N3 (u1ū2)u3 and Lemma 2.3 for u4, u5, u6. In each case, we obtain the factor
a(N∗

1 )(N∗
1 N∗

6 )1/2 ∼ a(N∗
1 )(N∗

3 · · ·N∗
6 )1/4.

(IIIc-ii) N3 � N4. In this case, we make a finer decomposition:

H(u1ū2)u3ū4H(u5ū6)

= HP�N3 (u1ū2)u3ū4H(u5ū6) + H(u1ū2)u3ū4HP�N3 (u5ū6)

– HP�N3 (u1ū2)u3ū4HP�N3 (u5ū6)

+ HP�N3 (u1ū2)u3ū4HP�N3 (u5ū6) + HP∼N3 (u1ū2)u3ū4HP�N3 (u5ū6).

There is no contribution from the third term, while the estimate for the fourth term is
exactly the same as the first term in Case (IIIc-i) since in the integral we can replace
P�N3 (u5ū6) by u5ū6. For the first two terms, we can separate two functions of high fre-
quency from the Hilbert transformation; for instance,

∫

I

∫

T

HP�N3 (u1ū2)u3ū4H(u5ū6) dx dt

= –
∫

I

∫

T

H
[
HP�N3 (u1ū2)u3ū4

]
u5ū6 dx dt

= –
∫

I

∫

T

HP�N3 (u1ū2)(Hu3)ū4u5ū6 dx dt.

This can again be treated similarly to the first term in Case (IIIc-i). To estimate the contri-
bution from the last term, we first notice that the frequency for u5ū6 must stay ∼ N3 in the
integral; hence let us write it as P̃∼N3 (u5ū6). We estimate the integral in two ways. First, we
apply Lemma 2.4 to P∼N3 (u1ū2) and P̃∼N3 (u5ū6) and L∞ embedding to u3, u4, which yields

∣∣
∣∣

∫

I

∫

T

HP∼N3 (u1ū2)u3ū4HP̃∼N3 (u5ū6) dx dt
∣∣
∣∣�

1
N1/2

3

1
N1/2

3
N1/2

3 N1/2
4

6∏

j=1

‖χIuj‖U2
�(R).



Kishimoto and Tsutsumi Advances in Continuous and Discrete Models         (2023) 2023:10 Page 25 of 29

Next, applying Lemma 2.8 to HP∼N3 (u1ū2)u3 and HP̃∼N3 (u5ū6)ū4, we have

∣
∣∣
∣

∫

I

∫

T

HP∼N3 (u1ū2)u3ū4HP̃∼N3 (u5ū6) dx dt
∣
∣∣
∣�

N1/2
3

N1/2
1

N1/2
3

N1/2
5

6∏

j=1

‖χIuj‖U2
�(R).

Interpolating these estimates, we obtain

∣
∣∣∣

∫

I

∫

T

HP∼N3 (u1ū2)u3ū4HP̃∼N3 (u5ū6) dx dt
∣
∣∣∣�

N1/4
3 N1/4

4
(N∗

1 )1/2

6∏

j=1

‖χIuj‖U2
�(R)

∼ (N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R),

as desired.
Case (V) N∗

1 ∼ N∗
2 � N∗

3 . Let us divide into the following four cases.
(Va) One of {N1, N2} and one of {N5, N6} are comparable to N∗

1 . In this case, we can
break the binding by the Hilbert transformation between u1 and ū2 and between u5 and
ū6. Applying Lemma 2.4 twice to the pairs (N∗

1 , N∗
3 ) and (N∗

2 , N∗
4 ) and the L∞ embedding

to the functions corresponding to N∗
5 , N∗

6 , we obtain

I � (N∗
5 N∗

6 )1/2

N∗
1

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R).

(Vb) One of {N1, N2, N5, N6} and one of {N3, N4} are comparable to N∗
1 . Assume, say,

N1 ∼ N3 ∼ N∗
1 . We can deal with u1 and ū2 of H(u1ū2) separately, which allows us to treat

two cases N2 ≥ N4 and N2 ≤ N4 in a parallel manner (let us assume N2 ≤ N4, say). Apply
Lemma 2.4 to u3ū4, Lemma 2.7 to (Hu1)H(u5ū6), and L∞ embedding to ū2, then we have

I � 1
N1/2

3

(N5 ∧ N6)1/2

N1/2
1

N1/2
2

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R).

(Vc) N3 ∼ N4 ∼ N∗
1 . It suffices to apply Lemma 2.7 twice to H(u1ū2)u3 and ū4H(u5ū6),

which gives

I � (N1 ∧ N2)1/2

N1/2
3

(N5 ∧ N6)1/2

N1/2
4

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R).

(Vd) N1 ∼ N2 ∼ N∗
1 or N5 ∼ N6 ∼ N∗

1 . This is the hardest case, and let us focus on the
former situation N1 ∼ N2 � N3, . . . , N6. First, using conditions (4.1) on a and (4.5) on N ,
we deduce that

R.H.S. of (4.6) � a
(
N∗

1
)
(

N∗
3

N∗
1

)1/2

. (4.8)

(In fact, it is only in the case N1 ∼ N2 ∼ N∗
1 that we need to exploit the growth condition

on a—the third line in (4.1).) In the following, we only consider the case N3 ≥ N4, N5 ≥ N6;
the other cases are parallel, though.
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(Vd-i) N∗
3 � N∗

4 , namely, only one of N3, . . . , N6 is much bigger than the others. In this
case, we can move the Hilbert transformation on u1ū2 to one of u3, . . . , u6; if N3 = N∗

3 we
have

∫

I

∫

T

H(u1ū2)u3ū4H(u5ū6) dx dt = –
∫

I

∫

T

u1ū2H(u3)ū4H(u5ū6) dx dt,

and if N5 = N∗
3 we have

∫

I

∫

T

H(u1ū2)u3ū4H(u5ū6) dx dt = –
∫

I

∫

T

u1ū2u3ū4H2(u5)ū6 dx dt

=
∫

I

∫

T

u1ū2u3ū4u5ū6 dx dt.

Then we can obtain

I � (N∗
6 N∗

4 )1/2

N∗
1

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
3 · · ·N∗

6 )1/4

N∗
1

6∏

j=1

‖χIuj‖U2
�(R)

by using Lemmas 2.4 and 2.7 when N3 = N∗
3 , or Lemma 2.4 twice when N5 = N∗

3 . Note that
we do not actually need the improved bound (4.8) in this subcase.

(Vd-ii) N∗
3 ∼ N∗

6 . In this case, we use Lemma 2.8 for H(u1ū2)u3 (noticing that u1ū2 may
be replaced by P�N∗

3
(u1ū2)), Lemma 2.3 for the others to obtain

I � (N∗
3 )1/2

(N∗
1 )1/2

6∏

j=1

‖χIuj‖U2
�(R).

Combining it with (4.8), we have the desired estimate.
(Vd-iii) N∗

3 ∼ N∗
4 � N∗

6 and N5 � N6. In this case H(u5ū6) = (Hu5)ū6, so that we can
separate u3, . . . , u6.

(Vd-iii-1) If N∗
3 ∼ N∗

4 � N∗
5 , then we use Lemma 2.8 for H(u1ū2)u∗

3, Lemma 2.4 for u∗
4u∗

5,
and the L∞ embedding for u∗

6, where u∗
j means the function corresponding to N∗

j . The
resulting estimate is

I � (N∗
3 )1/2

(N∗
1 )1/2

1
(N∗

4 )1/2

(
N∗

6
)1/2

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
5 N∗

6 )1/4

(N∗
1 )1/2

6∏

j=1

‖χIuj‖U2
�(R),

which is sufficient together with (4.8).
(Vd-iii-2) If N∗

3 ∼ N∗
5 � N∗

6 , by the assumption we have N3 ∼ N4 ∼ N5 � N6. In this
case, we make the decomposition

u3ū4 = P�N3 (u3ū4) + P∼N3 (u3ū4).

For the first term, we can separate u1 and u2 as

∫

I

∫

T

H(u1ū2)P�N3 (u3ū4)H(u5)ū6 dx dt = –
∫

I

∫

T

u1ū2H
[
P�N3 (u3ū4)H(u5)ū6

]
dx dt
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=
∫

I

∫

T

u1ū2P�N3 (u3ū4)u5ū6 dx dt.

Hence, this is similar to Case (Vd-i) and easily treated by applying Lemmas 2.4 and 2.7.
For the second term, we use Lemma 2.8 for H(u1ū2)H(u5), Lemma 2.4 for P∼N3 (u3ū4), and
L∞ embedding for ū6 to obtain

I � N1/2
3

N1/2
1

1
N1/2

3
N1/2

6

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
5 N∗

6 )1/4

(N∗
1 )1/2

6∏

j=1

‖χIuj‖U2
�(R),

which is again sufficient.
(Vd-iv) N∗

3 ∼ N∗
4 � N∗

6 and N5 ∼ N6.
(Vd-iv-1) If N3 � N5, so N3 ∼ N4 � N5 ∼ N6, we use Lemma 2.8 for H(u1ū2)u3 and

Lemma 2.7 for ū4H(u5ū6). We obtain

I � N1/2
3

N1/2
1

N1/2
5

N1/2
4

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
5 N∗

6 )1/4

(N∗
1 )1/2

6∏

j=1

‖χIuj‖U2
�(R).

(Vd-iv-2) If N5 � N3 ∼ N4, namely, N5 ∼ N6 � N3 ∼ N4, we make a decomposition sim-
ilar to that in Case (Vdiii-2):

H(u5ū6) = HP�N3 (u5ū6) + HP�N3 (u5ū6).

For the first term, we can separate u1 and u2 as in Case (Vd-iii-2) since
H[u3ū4HP�N3 (u5ū6)] = u3ū4H2P�N3 (u5ū6). The estimate is then easy and similar to Case
(Vd-i). For the second term, we can put P�N3 also on H(u1ū2). Applying Lemma 2.8 to
HP�N3 (u1ū2)u3 and Lemma 2.3 to the others, we have

I � N1/2
3

N1/2
1

6∏

j=1

‖χIuj‖U2
�(R) �

(N∗
5 N∗

6 )1/4

(N∗
1 )1/2

6∏

j=1

‖χIuj‖U2
�(R).

(Vd-iv-3) The only remaining case is N5 � N3 � N4, namely, either N5 ∼ N6 ∼ N3 � N4

or N5 ∼ N6 � N3 � N4. We make a slightly finer decomposition

H(u5ū6) = HP�N3 (u5ū6) +
∑

N3�K�N5

HPK (u5ū6).

The first term is again easy to treat since we can separate u1 and u2 by the identity
H[u3ū4HP�N3 (u5ū6)] = (Hu3)ū4HP�N3 (u5ū6). For the second term, for each K , we can put
P�K on H(u1ū2). Hence, by applying Lemma 2.8 to HP�K (u1ū2)u3 and using Lemma 2.4
for HPK (u5ū6), L∞ embedding for ū4, we obtain

I �
∑

N3�K�N5

K1/2

N1/2
1

1
K1/2 N1/2

4

6∏

j=1

‖χIuj‖U2
�(R) �

(
N∗

3
)0+ (N∗

5 N∗
6 )1/4

(N∗
1 )1/2

6∏

j=1

‖χIuj‖U2
�(R),

which together with (4.8) shows the desired estimate (4.7).
We have thus completed the case-by-case analysis for the proof of (4.7). �
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5 Conclusion
We have proved a priori estimates for solutions in a neighborhood of the origin in Hs,
s > 1/4. As a result, we have proved the continuous dependence of solutions on initial data
at the origin in Hs, s > 1/4, which constitutes a part of the well-posedness for the Cauchy
problem of (1.1).
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