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Abstract
In this paper, we investigate the problem of pth-moment stability of stochastic
functional differential equations with Markovian switching and impulsive control via
comparison principle. Employing stochastic analysis theory and an impulsive delay
differential inequality, we establish a new comparison principle for stochastic
functional differential equations with Markovian switching and impulsive control.
Using the comparison principle, we derive sufficient conditions for stochastic
functional differential equations with Markovian switching and impulsive control by
the stability of impulsive delay differential equations. An example is provided to show
the effectiveness of the proposed results.
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1 Introduction
The stochastic functional differential equations with Markovian switching and impulsive
control provide very important mathematical modes for many real phenomena and pro-
cesses in the field of biological and neural networks; see [1–7] and the references therein.
In the recent years, pth-moment stability of stochastic functional differential equations
with Markovian switching and impulsive control has attracted a considerable attention of
researchers in the study of many interesting problems in neural networks, and some crite-
ria of exponential stability for stochastic functional differential equations with Markovian
switching and impulsive control have been given [3–7]. For example, Zhu [3], Gao [4],
and Kao et al. [5] studied the pth-moment exponential stability of stochastic functional
differential equations with Markovian switching and impulsive control by using Lyapunov
functionals and Razumikhin technique. Wu et al. [6], discussed the pth-moment exponen-
tial stability of stochastic functional differential equations with Markovian switching and
impulsive control by using a Razumikhin-type method. Li [7] obtained the pth-moment
exponential stability of stochastic functional differential equations with impulsive control.

Motivated by the aforementioned discussions, in the present paper, we further study
the comparison principle for stochastic functional differential equations with Markovian
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switching and impulsive control. It is well known that the comparison principle as an im-
portant method has been successfully used in stability analysis for impulsive delay dif-
ferential equations [8, 9]. In this paper, we first establish a new comparison principle for
impulsive stochastic delayed reaction–diffusion equations. Then using this comparison
principle, we obtained some stability criteria for stochastic functional differential equa-
tions with Markovian switching and impulsive control, such as mean square stability, mean
square uniform stability, mean square asymptotical stability, and mean square exponential
stability. Therefore the comparison principle proposed in the paper is convenient for the
study of stability of stochastic functional differential equations with Markovian switching
and impulsive control. We summarize the main contributions of the work as follows:

(1) A novel approach, i.e., a comparison principle is established for stochastic func-
tional differential equations with Markovian switching and impulsive control and impul-
sive functional differential equation. Meanwhile, bases on the comparison principle, we
can easily obtain the pth-moment stability of stochastic functional differential equations
with Markovian switching and impulsive control.

(2) Differently from the existing results [3–7], which focus only on the exponential sta-
bility for stochastic functional differential equations with Markovian switching and im-
pulsive control, in this work, we obtain some stability criteria for such systems, including
the pth-moment stability, pth-moment asymptotic stability, and pth-moment exponential
stability.

The rest of the paper is organized as follows. In Sect. 2, we present our mathematical
model of stochastic functional differential equations with Markovian switching and im-
pulsive control. Moreover, we give some useful notations and definitions. In Sect. 3, we
establish a new comparison principle for stochastic functional differential equations with
Markovian switching and impulsive control. In Sect. 4, we give some sufficient conditions
for stochastic functional differential equations with Markovian switching and impulsive
control by employing the comparison principle. In Sect. 5, we provide an example to il-
lustrate the effectiveness of the obtained results.

2 Model description and preliminaries
Let R = (–∞, +∞) and Z+ = {1, 2, . . . , n}, let Rn and R

n×m denote the n-dimensional Eu-
clidean space and the set of n×m real matrices, respectively; PC([–τ , 0];Rn) stands for the
set of piecewise right-continuous functions ψ from [–τ , 0] to R

n with the norm ‖ψ‖τ =
sup–τ≤θ≤0 |ψ(θ )|. Let (�,F , {Ft}t≥t0 ,P) be a complete probability space with filtration
{Ft}t≥t0 . By w(t) we denote an m-dimensional Brownian motion on (�,F , {Ft}t≥t0 ,P) and
by PCb

Ft ([–τ , 0];Rn) the family of Ft-measurable PC([–τ , 0];Rn)-valued stochastic pro-
cesses φ = {φ(θ ) : –τ ≤ θ ≤ 0} such that sup–τ≤θ≤0 E|φ(θ )|p < ∞, where E is the mathemat-
ical expectation. Let r(t) be a right-continuous Markov chain defined on (�,F , {Ft}t≥t0 ,P)
and taking values in the finite state space S = {1, 2, . . . , N} with generator � = (γij)N×N given
by

P
{
γ (t + �) = j|γ (t) = i

}
=

⎧
⎨

⎩
γij� + o(�) if i �= j,

1 + γii� + o(�) if i = j,
(2.1)

where � > 0, and lim�→0
o(�)
� = 0. If j �= i, γij ≥ 0 is the transition rate from i to j, and

γii = –	j �=iγij.
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Consider the following stochastic functional differential equations with Markovian
switching and impulsive control:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = f (t, x(t), xt , r(t)) dt + g(t, x(t), xt , r(t)) dw(t), t �= tk ,

x(tk) = Ik(tk , x(t–
k )), k ∈ Z+,

xt0 (θ ) = φ(θ ) ∈ PCb
Ft0

([–τ , 0];Rn),

(2.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))T , xt = {x(t + θ ), –τ ≤ θ ≤ 0, τ > 0}, f : R+ × R
n ×

PC([–τ , 0];Rn) × S → R
n and g : R+ × R

n × PC([–τ , 0];Rn) × S → R
n×m are nonlinear

functions, and Ik(tk , x(t–
k )) : R+ × R

n → R
n stands for impulsive perturbations of x at the

time tk . The times tk represent the impulsive moments satisfying 0 ≤ t0 < t1 < · · · < tk < · · ·
and limk→∞ tk = +∞. Moreover, we assume that f (t, 0, 0, i) ≡ 0 and g(t, 0, 0, i) ≡ 0. Then
system (2.1) has a trivial solution x ≡ 0.

Definition 2.1 A function V : [t0 – τ , +∞) ×R
n × S →R

+ belongs to the class V0 if
(i) the function V is continuously differentiable in t and twice differentiable in x in each

of the sets [tk–1, tk) ×R
n × S, k ∈ Z+. In addition, V (t, 0, i) = 0 for t ≥ t0.

(ii) V (t, x, i) is locally Lipschitzian in x ∈R
n;

(iii) lim(t,z,i)→(t–
k ,x,i) V (t, z, i) = V (t–

k , x, i), and lim(t,z,i)→(t+
k ,x,i) V (t, z, i) = V (t+

k , x, i).

For any V ∈ V0 and (t, xt , i) ∈ [tk , tk+1) × PCb
Ft ([–τ , 0];Rn) × S, we define the operator

LV as follows:

LV (t, xt , i) = V
(
t, x(t), i

)
+ Vx

(
t, x(t), i

)
f
(
t, x(t), xt , i

)

+
1
2

trace
[
gT(

t, x(t),φ, i
)
Vxxg

(
t, x(t), xt , i

)]
.

(2.3)

Definition 2.2 The trivial solution x(t) ≡ 0 of system (2.2) is said to be
(i) pth-moment stable if for all ε > 0 and t0 ∈ R+, there exists a constant δ = δ(t0, ε) > 0

such that E|x(t,φ)|p < ε for t ≥ t0 whenever sup–τ≤θ≤0 E|φ(θ )|p ≤ δ.
(ii) pth-moment asymptotically stable if it is stable in mean square and for all ε > 0 and

t0 ∈ R+, there exist δ > 0 and T = T(t0, ε) > 0 such that E|x(t,φ)|p < ε for t ≥ T + t0 when-
ever sup–τ≤θ≤0 E|φ(θ )|p ≤ δ.

(iii) pth-moment exponentially stable if there exist two positive constants λ and K such
that

E
∥∥x(t,φ)

∥∥p ≤ K sup
–τ≤θ≤0

E
∣∣φ(θ )

∣∣pe–λ(t–t0), t ≥ t0.

Definition 2.3 A function b(r) is said to belong to the class K if b ∈ C(R+,R+), b(0) =
0, and b(r) is strictly increasing in r. A function b(r) is said to belong to the class VK
if it is a K-class convex function. A function a(t, r) is said to belong to the class CK if
a ∈ C(R+ × R+,R+), a(t, 0) ≡ 0, and a(t, r) is concave and strictly increasing in r for each
t ≥ t0 ∈R+.
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3 Comparison principle
Consider the following impulsive functional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

y′(t) = h(t, y(t), yt), t �= tk , t ≥ t0,

y(tk) = Hk(y(t–
k )), k ∈ Z

+,

yt0 (θ ) = ξ (θ ), θ ∈ [–τ , 0],

(3.1)

where yt(θ ) = y(t + θ ), θ ∈ [–τ , 0], the initial value ξ (θ ) is a bounded PC([–τ , 0],R+)-valued
function, Hk : R+ → R+ is nondecreasing, and Hk(t) ≤ t for all k ∈ Z+. Let Hk(0) ≡ 0.
Therefore system (3.1) admits a trivial solution y(t) ≡ 0. We assume that system (3.1) has
a solution for any initial value function ξ .

Theorem 3.1 (Comparison principle) Assume that there exists a function V ∈ V0 satisfy-
ing

(i) ELV (t, xt , i) ≤ h(t,EV (t, x(t), i),EVt), t ≥ t0, t �= tk , where Vt = V (t + θ , x(t + θ ), i), θ ∈
[–τ , 0];

(ii) EV (tk , Ik(tk , x(t–
k ))) ≤ Hk(EV (tk , x(t–

k ), i)), k ∈ Z+.
Then

EV
(
t, x(t), i

) ≤ r
(
t; t0, ξ (θ )

)
, t ∈ [t0,∞),

provided that EV (t0 + s, x(t0 + θ ), i) ≤ ξ (θ ) for θ ∈ [–τ , 0], where r(t; t0, ξ (θ )) is the maximal
solution of (3.1).

Proof For any t ∈ [tk–1, tk) and �t > 0 sufficiently small satisfying t + �t < tk , from Itô’s
formula and condition (i) we get

EV
(
t + �t, x(t + �t), i

)
– EV

(
t, x(t), i

) ≤
∫ t+�t

t
ELV (s, xt , i) ds

≤
∫ t+�t

t
h
(
s,EV

(
s, x(s), i

)
,EVs

)
ds.

(3.2)

Dividing both sides of Eq. (3.2) by �t and taking the limit superior as �t → 0+, we get

D+m(t) ≤ h
(
t, m(t), mt(θ )

)
, t ∈ [tk–1, tk), (3.3)

where m(t) = EV (t, x(t), i), mt(θ ) = EV (t + θ , x(t + θ ), i), and θ ∈ [–τ , 0].
On the one hand, from Theorem 8.1.4 in [10] we can obtain

EV
(
t, x(t), i

) ≤ r
(
t; t0, ξ (θ )

)
, t ∈ [tk–1, tk), (3.4)

when EV (t0 + θ ,φ, i) = EV (t0 + θ , x(t0 + θ ), i) ≤ ξ (θ ).
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On the other hand, at the impulsive moments tk , from condition (ii) we get

EV
(
tk , x(tk), i

)
= EV

(
tk , Ik

(
tk , x

(
t–
k
))

, i
)

≤ Hk
(
EV

(
tk , x

(
t–
k
)
, i
))

≤ Hk
(
r
(
t; t0, ξ (θ )

))

≤ r
(
t; t0, ξ (θ )

)
.

(3.5)

Therefore from the above proof we get

⎧
⎪⎪⎨

⎪⎪⎩

D+m(t) ≤ h(t, m(t), mt), t �= tk , t ∈ [t0,∞),

m(tk) ≤ Hk(m(t–
k )), k ∈ Z+,

mt0 (θ ) = EV (t0 + θ ,φ(θ ), i), θ ∈ [–τ , 0].

(3.6)

Obviously, from Theorem 3.1 in [8] we immediately get

EV
(
t, x(t), i

) ≤ r
(
t; t0, ξ (θ )

)
, t ∈ [t0, +∞), (3.7)

when EV (t0 + s, x(t0 + θ ), i) ≤ ξ (θ ). �

4 Stability analysis of stochastic functional differential equations with
Markovian switching and impulsive control

Theorem 4.1 Let conditions (i) and (ii) of Theorem 3.1 hold, and assume that there exist
V (t, x(t), i) ∈ V0, b ∈ VK, and a ∈ CK satisfying

(iii)

b
(∣∣x(t)

∣∣p) ≤ V
(
t, x(t), i

) ≤ a
(
t,

∣∣x(t)
∣∣p). (4.1)

Then the trivial solution of system (2.2) is pth-moment stable if the trivial solution of
(3.1) is stable. The trivial solution of system (2.2) is pth-moment asymptotically stable if
the trivial solution of (3.1) is asymptotically stable.

Proof Since the trivial solution of (3.1) is stable, for any given ε > 0, there exists δ =
δ(t0, ε) > 0 with δ < b(ε) such that when ‖ξ‖τ < δ,

∣∣y
(
t; t0, ξ (θ )

)∣∣ < b(ε) ∀t ≥ t0. (4.2)

Since conditions (i) and (ii) of Theorem 3.1 are satisfied, by this theorem we get

EV
(
t, x(t), i

) ≤ r
(
t; t0, ξ (θ )

)
< b(ε) ∀t ≥ t0. (4.3)

Using condition (iii), we get

0 ≤ b
(
E

∣∣x(t)
∣∣p) ≤ Eb

(∣∣x(t)
∣∣p) ≤ EV

(
t, x(t), i

)
, t ≥ t0. (4.4)
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Combining (4.3) and (4.4), we get

b
(
E

∣∣x(t)
∣∣p) ≤ b(ε), t ≥ t0. (4.5)

Because the function b belongs to VK, we get

E
∣∣x(t)

∣∣p ≤ ε, t ≥ t0. (4.6)

Hence we the trivial solution of system (2.2) is pth-moment stable if the trivial solution
of (3.1) is stable.

Next, we prove that the trivial solution of system (2.2) is attractive in the pth moment.
Since the trivial solution y(t; t0, ξ (s)) of (3.1) is attractive, for any given ε > 0, there exist
δ2 = δ2(t0, ε) and T = T(t0, δ2) such that when ‖ξ‖τ < δ2,

∣∣y
(
t; t0, ξ (θ )

)∣∣ < b(ε), for t ≥ T + t0. (4.7)

Since the function a belongs to CK, we obtain

EV
(
t0 + θ , x(t0 + θ ), i

) ≤ Ea
(
t0 + θ ,

∣∣x(t0 + θ )
∣∣p)

≤ a
(
t0 + θ ,E

∣∣x(t0 + θ )
∣∣p) ∀θ ∈ [–τ , 0].

(4.8)

For any θ ∈ [–τ , 0], we set ξ (θ ) = a(t0 + θ ,E|x(t0 + θ )|p). From (4.8) it follows that EV (t0 +
θ , x(t0 + θ ), i) ≤ ξ (θ ). Obviously, Theorem 3.1 holds. Consequently, we can find δ3 > 0 such
that, simultaneously,

sup
–τ≤θ≤0

E
∣∣x(t0 + θ )

∣∣p < δ3 and ‖ξ‖τ < δ2. (4.9)

From Eq. (4.7), Eq. (4.8), and Theorem 3.1 we derive that

b
(
E

∣∣x(t)
∣∣p) ≤ Eb

(∣∣x(t)
∣∣p) ≤ EV

(
t, x(t), i

)

≤ r
(
t; t0, ξ (s)

)
< b(ε) ∀t ≥ T + t0.

Because the function b belongs to VK, we get

E
∣∣x(t)

∣∣p < ε for t ≥ T + t0. (4.10)

Thus the trivial solution of system (2.2) is attractive in the pth moment. By the above
discussion the trivial solution of system (2.2) is asymptotically stable in the pth moment
if the trivial of solution of (3.1) is asymptotically stable. �

Theorem 4.2 Let conditions (i) and (ii) of Theorem 3.1 hold, and assume that there exists
V (t, x(t), i) ∈ V0 satisfying

(iii)′

λ1
∣∣x(t)

∣∣p ≤ V
(
t, x(t), i

) ≤ λ2
∣∣x(t)

∣∣p, (4.11)

where λ1 > 0 and λ2 > 0.
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Then the trivial solution of system (2.2) is exponentially stable in the pth moment if the
trivial solution of (3.1) is exponentially stable.

Proof Since the trivial solution of (3.1) is exponentially stable, there exist two positive
constants λ and k such that |y(t; t0, ξ (s))| ≤ k‖ξ‖τ e–λt for t ≥ t0, which implies that

r
(
t; t0, ξ (s)

) ≤ k‖ξ‖τ e–λt ∀t ≥ t0. (4.12)

From (4.11) we obtain that

EV
(
t0 + θ , x(t0 + θ ), i

) ≤ λ2E
∣∣x(t0 + θ )

∣∣p ∀θ ∈ [–τ , 0]. (4.13)

For any θ ∈ [–τ , 0], we choose ξ (θ ) = λ2E|x(t0 + θ )|p = λ2E|φ(θ )|p. From (4.13) we obtain
EV (t0 + θ , x(t0 + θ ), i) ≤ ξ (θ ). Obviously, Theorem 3.1 holds.

From Eq. (4.12), Eq. (4.13), and Theorem 3.1 we get

λ1E
∣∣x(t)

∣∣p ≤ EV
(
t, x(t), i

) ≤ r
(
t; t0, ξ (s)

) ≤ kλ2e–λt sup
–τ≤θ≤0

(
E

∣∣φ(θ )
∣∣p), (4.14)

from which we get that

E
∣∣x(t)

∣∣p ≤ Ke–λt sup
–τ≤θ≤0

(
E

∣∣φ(θ )
∣∣p), (4.15)

where K = kλ2
λ1

.
Hence from (4.15) we derive that the trivial solution of system (2.2) is exponentially

stable in the pth moment. �

5 Example
Example 5.1 Consider the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = [A(r(t))x(t) + B(r(t))x(t – τ )] dt + [C(r(t))x(t) + D(r(t))x(t – τ )] dw(t),

t �= tk ,

x(tk) = Ik(x(t–
k )), tk ∈ Z

+,

x(θ ) = φ(θ ), –τ ≤ θ ≤ 0,
(5.1)

where x(t) = (x1, x2)T , w(t) is a two-dimensional normalized Brownian motion defined on
a complete probability space, {r(t), t ≥ 0} is the Markov process taking values in S = {1, 2}
with generator � = (qij)2×2. |Ik(x(t–

k ))| ≤ μk|x(t–
k )|,μk > 0.

Choose V (t, x(t), i) = pi|x(t)|2, where pi (i = 1, 2) are positive constants. Then we have

min{p1, p2}
∣∣x(t)

∣∣2 ≤ V
(
t, x(t), i

) ≤ max{p1, p2}
∣∣x(t)

∣∣2, (5.2)
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ELV
(
t, x(t), i

)
= 2xT (x)pi

[
A(i)x(t) + B(i)x(t – τ )

]
+

2∑

j=1

γijxT pjx(t)

+ pi
[
xT CT (i)C(i)x(t) + 2xT DT (i)D(i)x(t – τ )

+ xT(
t – δ(t)

)
DT (i)D(i)x(t – τ )

]

≤ xT pi

[

AT (i) + A(i) +

(

1 +
1
pi

2∑

j=1

qijpj

)

E + 2CT (i)C(i)

]

x(t)

+ xT (t – τ )pi
[
BT (i)B(i) + 2DT (i)D(i)

]
x(t – τ ).

(5.3)

Namely,

max
1≤i≤2

ELV
(
t, x(t), i

)

≤ max{λmax(H(1)),λmax(H(2))}
min{p1, p2} min

1≤i≤2
EV

(
t, x(t), i

)

+
max{λmax(G(1)),λmax(G(2))}

min{p1, p2} min
1≤i≤2

EV
(
t – τ , x(t – τ ), i

)
,

(5.4)

where H(i) = pi[AT (i) + A(i) + (1 + 1
pi

∑2
j=1 qijpj)E + 2CT (i)C(i)], and G(i) = pi[BT (i)B(i) +

2DT (i)D(i)] (i = 1, 2).
On the other hand,

EV
(
t, x(t), i

) ≤ max{p1, p2}
∣∣x(tk)

∣∣2 = max{p1, p2}
∣∣Ik

(
x
(
t–
k
))∣∣2

≤ max{p1, p2}μ2
k
∣∣x

(
t–
k
)∣∣2 ≤ max{p1, p2}μ2

k
min{p1, p2} EV

(
t–
k , x

(
t–
k
)
, i
)
.

(5.5)

Let a = – max{λmax(H(1)),λmax(H(2))}
min{p1,p2} , b = max{λmax(G(1)),λmax(G(2))}

min{p1,p2} , and c = max{p1,p2}μ2
k

min{p1,p2} . Thus the
comparison system of system (5.1) is

⎧
⎪⎪⎨

⎪⎪⎩

y′(t) = –ay(t) + by(t – τ ), t ≥ t0, t �= tk ,

y(tk) = cy(t–
k ), k ∈ Z+,

yt0 = ξ (θ ), θ ∈ [–τ , 0].

(5.6)

By Corollary 3.2 in [11] we obtain that system (5.6) is exponentially stable if the following
conditions are satisfied:

tk – tk–1 ≥ μ, |b| < a, max
{

1, c2} < eλμ, (5.7)

where λ satisfies λ – 2c + |b| + |b|eλτ .
By Theorem 4.2 we conclude that the trivial solution of system (5.1) is exponentially

stable in mean square if (5.7) holds.

6 Conclusion
In the paper, we have established a comparison principle to study the pth-moment sta-
bility of stochastic functional differential equations with Markovian switching and impul-
sive control. The established comparison principle can be applied to investigate stability
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of stochastic functional differential equations with Markovian switching and impulsive
control. We can see from our theorems and an example that sufficient conditions are eas-
ily obtained by employing the comparison principle together with the stability criteria for
impulsive functional differential equations. We believe that the comparison principle is
quite general and can be used to analyze other important problems.
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