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Abstract

In this paper, we investigate the problem of pth-moment stability of stochastic
functional differential equations with Markovian switching and impulsive control via
comparison principle. Employing stochastic analysis theory and an impulsive delay
differential inequality, we establish a new comparison principle for stochastic
functional differential equations with Markovian switching and impulsive control.
Using the comparison principle, we derive sufficient conditions for stochastic
functional differential equations with Markovian switching and impulsive control by
the stability of impulsive delay differential equations. An example is provided to show
the effectiveness of the proposed results.
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1 Introduction
The stochastic functional di�erential equations with Markovian switching and impulsive

control provide very important mathematical modes for many real phenomena and pro-

cesses in the “eld of biological and neural networks; see [1…7] and the references therein.

In the recent years,pth-moment stability of stochastic functional di�erential equations

with Markovian switching and impulsive control has attracted a considerable attention of

researchers in the study of many interesting problems in neural networks, and some crite-

ria of exponential stability for stochastic functional di�erential equations with Markovian

switching and impulsive control have been given [3…7]. For example, Zhu [3], Gao [4],

and Kao et al. [5] studied the pth-moment exponential stability of stochastic functional

di�erential equations with Markovian switching and impulsive control by using Lyapunov

functionals and Razumikhin technique. Wu et al. [6], discussed thepth-moment exponen-

tial stability of stochastic functional di�erential equations with Markovian switching and

impulsive control by using a Razumikhin-type method. Li [7] obtained thepth-moment

exponential stability of stochastic functional di�erential equations with impulsive control.

Motivated by the aforementioned discussions, in the present paper, we further study

the comparison principle for stochastic functional di�erential equations with Markovian
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switching and impulsive control. It is well known that the comparison principle as an im-
portant method has been successfully used in stability analysis for impulsive delay dif-
ferential equations [8, 9]. In this paper, we “rst establish a new comparison principle for
impulsive stochastic delayed reaction…di�usion equations. Then using this comparison
principle, we obtained some stability criteria for stochastic functional di�erential equa-
tions with Markovian switching and impulsive control, such as mean square stability, mean
square uniform stability, mean square asymptotical stability, and mean square exponential
stability. Therefore the comparison principle proposed in the paper is convenient for the
study of stability of stochastic functional di�erential equations with Markovian switching
and impulsive control. We summarize the main contributions of the work as follows:

(1) A novel approach, i.e., a comparison principle is established for stochastic func-
tional di�erential equations with Markovian switching and impulsive control and impul-
sive functional di�erential equation. Meanwhile, bases on the comparison principle, we
can easily obtain thepth-moment stability of stochastic functional di�erential equations
with Markovian switching and impulsive control.

(2) Di�erently from the existing results [3…7], which focus only on the exponential sta-
bility for stochastic functional di�erential equations with Markovian switching and im-
pulsive control, in this work, we obtain some stability criteria for such systems, including
the pth-moment stability, pth-moment asymptotic stability, andpth-moment exponential
stability.

The rest of the paper is organized as follows. In Sect.2, we present our mathematical
model of stochastic functional di�erential equations with Markovian switching and im-
pulsive control. Moreover, we give some useful notations and de“nitions. In Sect.3, we
establish a new comparison principle for stochastic functional di�erential equations with
Markovian switching and impulsive control. In Sect.4, we give some su�cient conditions
for stochastic functional di�erential equations with Markovian switching and impulsive
control by employing the comparison principle. In Sect.5, we provide an example to il-
lustrate the e�ectiveness of the obtained results.

2 Model description and preliminaries
Let R = (…∞, +∞) and Z+ = {1,2, . . . ,n}, let Rn andR

n×m denote then-dimensional Eu-
clidean space and the set ofn×m real matrices, respectively; PC([…τ , 0];Rn) stands for the
set of piecewise right-continuous functionsψ from […τ , 0] to R

n with the norm ‖ψ‖τ =
sup…τ≤θ≤0 |ψ(θ )|. Let (�,F ,{Ft}t≥t0,P) be a complete probability space with “ltration
{Ft}t≥t0. Byw(t) we denote anm-dimensional Brownian motion on (�,F ,{Ft}t≥t0,P) and
by PCb

Ft ([…τ , 0];Rn) the family of Ft-measurable PC([…τ , 0];Rn)-valued stochastic pro-
cessesφ = {φ(θ ) : …τ ≤ θ ≤ 0} such thatsup…τ≤θ≤0E|φ(θ )|p < ∞, whereE is the mathemat-
ical expectation. Letr(t) be a right-continuous Markov chain de“ned on (�,F ,{Ft}t≥t0,P)
and taking values in the “nite state spaceS = {1,2, . . . ,N} with generator� = (γij)N×N given
by

P
{
γ (t + �) = j|γ (t) = i

}
=

⎧
⎨

⎩
γij� + o(�) if i �= j,

1 +γii� + o(�) if i = j,
(2.1)

where � > 0, and lim�→0
o(�)
� = 0. If j �= i, γij ≥ 0 is the transition rate from i to j, and

γii = …	j �=iγij.
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Consider the following stochastic functional di�erential equations with Markovian

switching and impulsive control:

⎧
⎪⎪⎨

⎪⎪⎩

dx(t) = f (t,x(t),xt,r(t))dt + g(t,x(t),xt,r(t))dw(t), t �= tk,

x(tk) = Ik(tk,x(t…
k )), k ∈ Z+,

xt0(θ ) = φ(θ ) ∈ PCb
Ft0

([…τ , 0];Rn),

(2.2)

where x(t) = (x1(t),x2(t), . . . ,xn(t))T , xt = {x(t + θ ),…τ ≤ θ ≤ 0,τ > 0}, f : R+ × R
n ×

PC([…τ , 0];Rn) × S → R
n and g : R+ × R

n × PC([…τ , 0];Rn) × S → R
n×m are nonlinear

functions, andIk(tk,x(t…
k )) :R+ × R

n → R
n stands for impulsive perturbations ofx at the

time tk . The timestk represent the impulsive moments satisfying 0≤ t0 < t1 < · · · < tk < · · ·
and limk→∞ tk = +∞. Moreover, we assume thatf (t, 0, 0,i) ≡ 0 and g(t, 0, 0,i) ≡ 0. Then

system (2.1) has a trivial solutionx ≡ 0.

Definition 2.1 A function V : [t0 …τ , +∞) ×R
n × S →R

+ belongs to the classV0 if

(i) the function V is continuously di�erentiable in t and twice di�erentiable in x in each

of the sets [tk…1,tk) ×R
n × S, k ∈ Z+. In addition, V (t, 0,i) = 0 for t ≥ t0.

(ii) V (t,x, i) is locally Lipschitzian inx ∈R
n;

(iii) lim(t,z,i)→(t…
k ,x,i) V (t,z, i) = V (t…

k ,x, i), andlim(t,z,i)→(t+
k ,x,i) V (t,z, i) = V (t+

k ,x, i).

For anyV ∈ V0 and (t,xt, i) ∈ [tk,tk+1) × PCb
Ft ([…τ , 0];Rn) × S, we de“ne the operator

LV as follows:

LV (t,xt, i) = V
(
t,x(t),i

)
+ Vx

(
t,x(t),i

)
f
(
t,x(t),xt, i

)

+
1
2

trace
[
gT(

t,x(t),φ, i
)
Vxxg

(
t,x(t),xt, i

)]
.

(2.3)

Definition 2.2 The trivial solution x(t) ≡ 0 of system (2.2) is said to be

(i) pth-moment stable if for allε > 0 andt0 ∈ R+, there exists a constantδ = δ(t0,ε) > 0

such thatE|x(t,φ)|p < ε for t ≥ t0 wheneversup…τ≤θ≤0E|φ(θ )|p ≤ δ.

(ii) pth-moment asymptotically stable if it is stable in mean square and for allε > 0 and

t0 ∈ R+, there existδ > 0 andT = T(t0,ε) > 0 such thatE|x(t,φ)|p < ε for t ≥ T + t0 when-

eversup…τ≤θ≤0E|φ(θ )|p ≤ δ.

(iii) pth-moment exponentially stable if there exist two positive constantsλ andK such

that

E
∥∥x(t,φ)

∥∥p ≤ K sup
…τ≤θ≤0

E
∣∣φ(θ )

∣∣pe…λ(t…t0), t ≥ t0.

Definition 2.3 A function b(r) is said to belong to the classK if b ∈ C(R+,R+), b(0) =

0, and b(r) is strictly increasing inr. A function b(r) is said to belong to the classVK
if it is a K-class convex function. A functiona(t,r) is said to belong to the classCK if

a ∈ C(R+ × R+,R+), a(t, 0)≡ 0, anda(t,r) is concave and strictly increasing inr for each

t ≥ t0 ∈R+.
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3 Comparison principle
Consider the following impulsive functional di�erential equation:

⎧
⎪⎪⎨

⎪⎪⎩

y′(t) = h(t,y(t),yt), t �= tk,t ≥ t0,

y(tk) = Hk(y(t…
k )), k ∈ Z

+,

yt0(θ ) = ξ (θ ), θ ∈ […τ , 0],

(3.1)

whereyt(θ ) = y(t + θ ), θ ∈ […τ , 0], the initial valueξ (θ ) is a bounded PC([…τ , 0],R+)-valued

function, Hk : R+ → R+ is nondecreasing, andHk(t) ≤ t for all k ∈ Z+. Let Hk(0) ≡ 0.

Therefore system (3.1) admits a trivial solutiony(t) ≡ 0. We assume that system (3.1) has

a solution for any initial value functionξ .

Theorem 3.1 (Comparison principle) Assume that there exists a function V ∈ V0 satisfy-
ing

(i) ELV (t,xt, i) ≤ h(t,EV (t,x(t),i),EVt), t ≥ t0, t �= tk , where Vt = V (t + θ ,x(t + θ ),i), θ ∈
[…τ , 0];

(ii) EV (tk,Ik(tk,x(t…
k ))) ≤ Hk(EV (tk,x(t…

k ),i)), k ∈ Z+.

Then

EV
(
t,x(t),i

) ≤ r
(
t;t0,ξ (θ )

)
, t ∈ [t0,∞),

provided that EV (t0 + s,x(t0 + θ ),i) ≤ ξ (θ ) for θ ∈ […τ , 0],where r(t;t0,ξ (θ )) is the maximal
solution of (3.1).

Proof For any t ∈ [tk…1,tk) and �t > 0 su�ciently small satisfying t + �t < tk , from Itô•s

formula and condition (i) we get

EV
(
t + �t,x(t + �t),i

)
…EV

(
t,x(t),i

) ≤
∫ t+�t

t
ELV (s,xt, i) ds

≤
∫ t+�t

t
h
(
s,EV

(
s,x(s),i

)
,EVs

)
ds.

(3.2)

Dividing both sides of Eq. (3.2) by �t and taking the limit superior as�t → 0+, we get

D+m(t) ≤ h
(
t,m(t),mt(θ )

)
, t ∈ [tk…1,tk), (3.3)

wherem(t) = EV (t,x(t),i), mt(θ ) = EV (t + θ ,x(t + θ ),i), andθ ∈ […τ , 0].

On the one hand, from Theorem 8.1.4 in [10] we can obtain

EV
(
t,x(t),i

) ≤ r
(
t;t0,ξ (θ )

)
, t ∈ [tk…1,tk), (3.4)

whenEV (t0 + θ ,φ, i) = EV (t0 + θ ,x(t0 + θ ),i) ≤ ξ (θ ).
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On the other hand, at the impulsive momentstk , from condition (ii) we get

EV
(
tk,x(tk),i

)
= EV

(
tk,Ik

(
tk,x

(
t…
k
))

, i
)

≤ Hk
(
EV

(
tk,x

(
t…
k
)
, i
))

≤ Hk
(
r
(
t;t0,ξ (θ )

))

≤ r
(
t;t0,ξ (θ )

)
.

(3.5)

Therefore from the above proof we get

⎧
⎪⎪⎨

⎪⎪⎩

D+m(t) ≤ h(t,m(t),mt), t �= tk,t ∈ [t0,∞),

m(tk) ≤ Hk(m(t…
k )), k ∈ Z+,

mt0(θ ) = EV (t0 + θ ,φ(θ ),i), θ ∈ […τ , 0].

(3.6)

Obviously, from Theorem 3.1 in [8] we immediately get

EV
(
t,x(t),i

) ≤ r
(
t;t0,ξ (θ )

)
, t ∈ [t0, +∞), (3.7)

whenEV (t0 + s,x(t0 + θ ),i) ≤ ξ (θ ). �

4 Stability analysis of stochastic functional differential equations with
Markovian switching and impulsive control

Theorem 4.1 Let conditions (i) and (ii) of Theorem 3.1hold, and assume that there exist
V (t,x(t),i) ∈ V0, b ∈ VK, and a ∈ CK satisfying

(iii)

b
(∣∣x(t)

∣∣p) ≤ V
(
t,x(t),i

) ≤ a
(
t,

∣∣x(t)
∣∣p)

. (4.1)

Then the trivial solution of system (2.2) is pth-moment stable if the trivial solution of
(3.1) is stable. The trivial solution of system (2.2) is pth-moment asymptotically stable if
the trivial solution of (3.1) is asymptotically stable.

Proof Since the trivial solution of (3.1) is stable, for any givenε > 0, there existsδ =

δ(t0,ε) > 0 with δ < b(ε) such that when‖ξ‖τ < δ,

∣∣y
(
t;t0,ξ (θ )

)∣∣ < b(ε) ∀t ≥ t0. (4.2)

Since conditions (i) and (ii) of Theorem3.1are satis“ed, by this theorem we get

EV
(
t,x(t),i

) ≤ r
(
t;t0,ξ (θ )

)
< b(ε) ∀t ≥ t0. (4.3)

Using condition (iii), we get

0 ≤ b
(
E

∣∣x(t)
∣∣p) ≤ Eb

(∣∣x(t)
∣∣p) ≤ EV

(
t,x(t),i

)
, t ≥ t0. (4.4)
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Combining (4.3) and (4.4), we get

b
(
E

∣∣x(t)
∣∣p) ≤ b(ε), t ≥ t0. (4.5)

Because the functionb belongs toVK, we get

E
∣∣x(t)

∣∣p ≤ ε, t ≥ t0. (4.6)

Hence we the trivial solution of system (2.2) is pth-moment stable if the trivial solution
of (3.1) is stable.

Next, we prove that the trivial solution of system (2.2) is attractive in thepth moment.
Since the trivial solutiony(t;t0,ξ (s)) of (3.1) is attractive, for any givenε > 0, there exist
δ2 = δ2(t0,ε) andT = T(t0,δ2) such that when‖ξ‖τ < δ2,

∣∣y
(
t;t0,ξ (θ )

)∣∣ < b(ε), for t ≥ T + t0. (4.7)

Since the functiona belongs toCK, we obtain

EV
(
t0 + θ ,x(t0 + θ ),i

) ≤ Ea
(
t0 + θ ,

∣∣x(t0 + θ )
∣∣p)

≤ a
(
t0 + θ ,E

∣∣x(t0 + θ )
∣∣p) ∀θ ∈ […τ , 0].

(4.8)

For anyθ ∈ […τ , 0], we setξ (θ ) = a(t0 + θ ,E|x(t0 + θ )|p). From (4.8) it follows that EV (t0 +
θ ,x(t0 + θ ),i) ≤ ξ (θ ). Obviously, Theorem3.1holds. Consequently, we can “ndδ3 > 0 such
that, simultaneously,

sup
…τ≤θ≤0

E
∣∣x(t0 + θ )

∣∣p
< δ3 and ‖ξ‖τ < δ2. (4.9)

From Eq. (4.7), Eq. (4.8), and Theorem3.1we derive that

b
(
E

∣∣x(t)
∣∣p) ≤ Eb

(∣∣x(t)
∣∣p) ≤ EV

(
t,x(t),i

)

≤ r
(
t;t0,ξ (s)

)
< b(ε) ∀t ≥ T + t0.

Because the functionb belongs toVK, we get

E
∣∣x(t)

∣∣p
< ε for t ≥ T + t0. (4.10)

Thus the trivial solution of system (2.2) is attractive in thepth moment. By the above
discussion the trivial solution of system (2.2) is asymptotically stable in thepth moment
if the trivial of solution of (3.1) is asymptotically stable. �

Theorem 4.2 Let conditions (i) and (ii) of Theorem 3.1hold, and assume that there exists
V (t,x(t),i) ∈ V0 satisfying

(iii) ′

λ1
∣∣x(t)

∣∣p ≤ V
(
t,x(t),i

) ≤ λ2
∣∣x(t)

∣∣p
, (4.11)

where λ1 > 0 and λ2 > 0.
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Then the trivial solution of system (2.2) is exponentially stable in the pth moment if the
trivial solution of (3.1) is exponentially stable.

Proof Since the trivial solution of (3.1) is exponentially stable, there exist two positive

constantsλ andk such that|y(t;t0,ξ (s))| ≤ k‖ξ‖τ e…λt for t ≥ t0, which implies that

r
(
t;t0,ξ (s)

) ≤ k‖ξ‖τ e…λt ∀t ≥ t0. (4.12)

From (4.11) we obtain that

EV
(
t0 + θ ,x(t0 + θ ),i

) ≤ λ2E
∣∣x(t0 + θ )

∣∣p ∀θ ∈ […τ , 0]. (4.13)

For anyθ ∈ […τ , 0], we chooseξ (θ ) = λ2E|x(t0 + θ )|p = λ2E|φ(θ )|p. From (4.13) we obtain

EV (t0 + θ ,x(t0 + θ ),i) ≤ ξ (θ ). Obviously, Theorem3.1holds.

From Eq. (4.12), Eq. (4.13), and Theorem3.1we get

λ1E
∣∣x(t)

∣∣p ≤ EV
(
t,x(t),i

) ≤ r
(
t;t0,ξ (s)

) ≤ kλ2e…λt sup
…τ≤θ≤0

(
E

∣∣φ(θ )
∣∣p)

, (4.14)

from which we get that

E
∣∣x(t)

∣∣p ≤ Ke…λt sup
…τ≤θ≤0

(
E

∣∣φ(θ )
∣∣p)

, (4.15)

whereK = kλ2
λ1

.

Hence from (4.15) we derive that the trivial solution of system (2.2) is exponentially

stable in thepth moment. �

5 Example
Example 5.1 Consider the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = [A(r(t))x(t) + B(r(t))x(t …τ )] dt + [C(r(t))x(t) + D(r(t))x(t …τ )] dw(t),

t �= tk,

x(tk) = Ik(x(t…
k )), tk ∈ Z

+,

x(θ ) = φ(θ ), …τ ≤ θ ≤ 0,

(5.1)

wherex(t) = (x1,x2)T , w(t) is a two-dimensional normalized Brownian motion de“ned on

a complete probability space,{r(t),t ≥ 0} is the Markov process taking values inS = {1,2}
with generator� = (qij)2×2. |Ik(x(t…

k ))| ≤ μk|x(t…
k )|,μk > 0.

ChooseV (t,x(t),i) = pi|x(t)|2, wherepi (i = 1,2) are positive constants. Then we have

min{p1,p2}
∣∣x(t)

∣∣2 ≤ V
(
t,x(t),i

) ≤ max{p1,p2}
∣∣x(t)

∣∣2, (5.2)
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ELV
(
t,x(t),i

)
= 2xT (x)pi

[
A(i)x(t) + B(i)x(t …τ )

]
+

2∑

j=1

γijxT pjx(t)

+ pi
[
xT CT (i)C(i)x(t) + 2xT DT (i)D(i)x(t …τ )

+ xT(
t …δ(t)

)
DT (i)D(i)x(t …τ )

]

≤ xT pi

[

AT (i) + A(i) +

(

1 +
1
pi

2∑

j=1

qijpj

)

E + 2CT (i)C(i)

]

x(t)

+ xT (t …τ )pi
[
BT (i)B(i) + 2DT (i)D(i)

]
x(t …τ ).

(5.3)

Namely,

max
1≤i≤2

ELV
(
t,x(t),i

)

≤ max{λmax(H(1)),λmax(H(2))}
min{p1,p2} min

1≤i≤2
EV

(
t,x(t),i

)

+
max{λmax(G(1)),λmax(G(2))}

min{p1,p2} min
1≤i≤2

EV
(
t …τ ,x(t …τ ),i

)
,

(5.4)

whereH(i) = pi[AT (i) + A(i) + (1 + 1
pi

∑2
j=1 qijpj)E + 2CT (i)C(i)], and G(i) = pi[BT (i)B(i) +

2DT (i)D(i)] (i = 1,2).
On the other hand,

EV
(
t,x(t),i

) ≤ max{p1,p2}
∣∣x(tk)

∣∣2 = max{p1,p2}
∣∣Ik

(
x
(
t…
k
))∣∣2

≤ max{p1,p2}μ2
k
∣∣x

(
t…
k
)∣∣2 ≤ max{p1,p2}μ2

k
min{p1,p2} EV

(
t…
k ,x

(
t…
k
)
, i
)
.

(5.5)

Let a = …max{λmax(H(1)),λmax(H(2))}
min{p1,p2} , b = max{λmax(G(1)),λmax(G(2))}

min{p1,p2} , and c =
max{p1,p2}μ2

k
min{p1,p2} . Thus the

comparison system of system (5.1) is

⎧
⎪⎪⎨

⎪⎪⎩

y′(t) = …ay(t) + by(t …τ ), t ≥ t0,t �= tk,

y(tk) = cy(t…
k ), k ∈ Z+,

yt0 = ξ (θ ), θ ∈ […τ , 0].

(5.6)

By Corollary 3.2 in [11] we obtain that system (5.6) is exponentially stable if the following
conditions are satis“ed:

tk …tk…1≥ μ, |b| < a, max
{
1,c2} < eλμ, (5.7)

whereλ satis“esλ … 2c + |b| + |b|eλτ .
By Theorem4.2 we conclude that the trivial solution of system (5.1) is exponentially

stable in mean square if (5.7) holds.

6 Conclusion
In the paper, we have established a comparison principle to study thepth-moment sta-
bility of stochastic functional di�erential equations with Markovian switching and impul-
sive control. The established comparison principle can be applied to investigate stability
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of stochastic functional di�erential equations with Markovian switching and impulsive

control. We can see from our theorems and an example that su�cient conditions are eas-

ily obtained by employing the comparison principle together with the stability criteria for

impulsive functional di�erential equations. We believe that the comparison principle is

quite general and can be used to analyze other important problems.
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