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Abstract
We claim that human mathematics is only a limited part of the consequences of the
chosen basic axioms. Properly human mathematics varies with time but appears to
have universal features which we try to analyse. In particular, the functioning of the
human brain privileges concept naming and short formulations. This leads to
organising mathematical knowledge structurally. We consider briefly the problem of
non-mathematical sciences.
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The functioning of the human brain is very different from that of electronic computers.
Various mathematicians have noted that in doing mathematics the brain uses natural lan-
guages, functions combinatorially, is slow, prone to error, has very limited working mem-
ory, is very highly parallel, and uses unconscious thinking. Inherent to mathematics is the
fact that there are some very long proofs of theorems with short formulation. We argue
that the way the human brain functions explains some features of human mathematics,
as opposed to listing general consequences of the axioms. In particular, the human brain
privileges concept naming and short formulations. This leads to a structural organisation
of mathematical knowledge.

1 A non-philosophical approach
It is natural for scientists to reflect on their handling of scientific problems. An example
of this is the article [6] by Jaffe and Quinn. The following note is a modest attempt in this
direction (after earlier small contributions, for instance, [9]). We are concerned here with
finding natural limitations to human scientific progress and specifically in human mathe-
matics. Studying such limitations involves estimating both human intellectual capabilities
and the complexity of things investigated.

We are addressing here a philosophical problem, and we want to make clear why we
want to stay away from the traditions of philosophical literature. A couple of citations by
scientists may illustrate the problem. There is the popular approximate quote attributed
to C.F. Gauss:
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When a philosopher says something that is true then it is trivial. When he says some-
thing that is not trivial then it is false.

A.N. Whitehead also wrote [15]:

The safest general characterisation of the European philosophical tradition is that it
consists of a series of footnotes to Plato.

S. Weinberg’s opinion [14]:

The insights of philosophers have occasionally benefited physicists, but generally in a
negative fashion by protecting them from the preconceptions of other philosophers.
. . . without some guidance from our preconceptions, one could do nothing at all.
It is just that philosophical principles have not generally provided us with the right
preconceptions.

My view is that philosophical literature uses concepts like ‘understanding’, ‘thinking’,
‘meaning’, ‘existence’, ‘consciousness’, ‘God’, which refer to an introspective assessment of
the functioning of the human brain. I prefer to make my own assessment, staying close to
facts and away from philosophical tradition.

Note that ‘there exists’ is a well-defined mathematical concept to be used in a proper
setting, we shall also try to make sense in Sect. 4 of ‘understanding a mathematical proof ’.
This is not the place to discuss delicate questions, like Gödel’s “proof of the existence of
God”. See Wikipedia for reference and discussion; this “proof” was pointed out to me by
C. Liverani. In practice many references to ‘understanding’, ‘meaning’, etc., are without ill
consequences (and hard to avoid). I think, however, that it is important to notice that some
arguments like cogito ergo sum are based on introspection and to be treated as psycholog-
ical evidence. Such arguments are not to be used as logical proof.

2 What is human mathematics?
Mathematics consists in deriving consequences (theorems) from a set of assumptions (ax-
ioms) by application of given logical rules. The set of axioms mostly used currently is ZFC
(Zermelo–Fraenkel–Choice set-theoretical axioms). Axioms and theorems can be formu-
lated in a formal language. ZFC is fairly believable by mathematicians (a typical axiom is
‘there exists an infinite set’). We remind the reader that the consistency of ZFC cannot be
proved (this follows from Gödel’s incompleteness theorems).

Human mathematics is based on natural languages (ancient Greek, English, etc.) which
can in principle be translated into formal language (but is hardly understandable after
translation). There also exist formal proofs [3, 4] using a computer to verify the correct-
ness of deductive steps created by human mathematicians (these mathematicians use a
proof assistant like Coq or HOL Light). Formal proofs provide logical certainty if the basic
axioms are consistent and the computer functioning is reliable. This is an advantage over
the usual human proofs using a natural language since long proofs often contain logical
errors or confusing statements due to the informality of natural languages.

The advantages of formal proofs, or other proofs using computers in an essential way,
come at a the cost of human understandability. Now understanding M.A.F. Sanjuán [10]
among others has discussed the status of ‘understandability’. is one of the ‘philosophical’
concepts which involves introspective reference to the functioning of the human brain.
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We shall not try to give a ‘scientific’ definition of understanding based on the function-
ing of the human brain. We shall instead use generally accepted or acceptable features of
mathematical understanding based on verifiable facts, see the example of ‘understanding
a mathematical proof ’ in Sect. 4 below. Note that a long computer proof may be verifiable
step by step by a human, but this does not qualify as global human understanding.

Properly human proofs are thus using a natural human language, mathematical jargon,
and formulae, not translated into formal language, and without essential use of a com-
puter. I am reminded here of a statement by P. Deligne that what he was interested in were
mathematical proofs that he could understand, excluding computer proofs or proofs so
long that he could not understand them globally. [Quotation autorised by Deligne who
adds the following: “My ideal is to be able to prove (to myself ) everything I state, and at
least I keep in mind the exceptions I made. More important perhaps, the utility of a proof
is double: ensure that a statement is true, and understand it (in particular, by relating it to
other statements). Hence the adage that I learned from N. Katz: what is worth proving is
worth proving again.”]

3 Features of human mathematical thinking
Properly human mathematics uses natural languages (plus jargon and formulae) perhaps
with some noncreative use of computers. It is usually in written form, with the legacy of
earlier times.

One general feature of mathematics, which applies in particular to properly human
mathematics, is that some theorems have very long proofs with respect to the length of
their statement. This is related to Gödel’s incompleteness theorems; for instance, one may
invoke the fact that the halting problem for a Turing machine is undecidable [12]. A con-
sequence of this is that the rate of progress per mathematician (using properly human
mathematics) should be decreasing with time. The rate of progress in other sciences is
influenced by technological and political factors.

Comparison between human and computer intelligence have been made by Turing [11]
and von Neumann [13]. Compared to a computer, the brain is slow, prone to error, has
limited memory, and is very highly parallel.

[The reaction time of a neurone is between 10–4 and 10–2 seconds (von Neumann es-
timate) while current computer characteristic times are 10–6 to 10–9 seconds and faster.
There are different kinds of human memory, in part huge, but the short-term memory
(working memory) involved in ‘thinking’ is quite limited (to about 7 objets) compared
with the huge short-term memory of computers.]

We have reflections of various mathematicians on mathematical creativity (Gauss,
Poincaré [7], Hadamard [2], Hardy [5], etc.). They stress the role of unconscious thinking,
limited working memory, and the combinatorial nature of mathematical thinking. These
reflections do not amount to a theory of mathematical creativity (otherwise we could pro-
gram a creative mathematical computer).

To summarize, we have noted that in properly human mathematics the brain uses nat-
ural languages, functions combinatorially, is slow, prone to error, has very limited working
memory, is very highly parallel, and uses unconscious thinking. Furthermore, there are some
very long proofs.
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4 On the nature of human mathematical creativity: structures
We remark that human mathematics does not consist of a list of all logical consequences of
the axioms, but is based on a structural understanding of some of these consequences. The
structures we refer to are things like geometric objects, groups, compact spaces, etc., that
are generally not visible in the axioms. A structural presentation of mathematics has, for
instance, been advocated by Bourbaki (but this did not include categories and functors),
Grothendieck, and Voevodsky. The structural understanding of mathematics is a human
creation which changes with time and depends in some way on the features of the human
mind.

How do we account for the use of structures in human mathematics? The use by the
brain of a natural language, slowness, and limited working memory makes natural the
use of short formulations (words, short sequences of symbols). This, together with logi-
cal necessity, explains at least in part the use of concepts and structures in mathematical
thinking.

We see mathematical thinking as creating or checking a text in human mathematical
language spoken or written in the natural direction. Specifically, we mean that certain
sets of small size pieces extracted (according to suitable rules) from earlier parts of the
text should satisfy suitable rules (including number, length, and nature of the pieces). This
involves short- and longer-term memories and makes sense of ‘understanding a mathe-
matical proof ’. Except for dealing with the idiosyncrasies of human language, checking a
human mathematical text could easily be done by a computer (and something like this is
essentially done in formal proofs). Creating an interesting mathematical theorem is, how-
ever, at this time basically beyond the reach of computers. In particular, the role of high
brain parallelism and the use of unconscious thinking remain unclear. This is where the
human versus computer problem [11] stands at this moment for mathematics.

Apart from the use of natural languages, short names for structures, and combinatorial
functioning, human mathematics has to deal with very long proofs. The proof [1] of the
odd order theorem for groups in 1963 was 255 pages long, and considered at the time to
be very long. Currently there are a fair number of papers several hundred pages long [the
classification of finite simple groups, dated 2004, covers many papers with total length
around 10,000 to 20,000 pages]. The length of papers (or proofs extending over several
papers) tends thus to increase with time, in agreement with Turing’s result on the halting
problem [12]. This explains the growing use of proofs involving computers in an essential
way (the 4-colour theorem, the proof of the Kepler conjecture on sphere packings, etc.).

5 Understandability
If we look at mathematicians of a certain period (say, the early 20th century: Poincaré,
Hilbert, Gödel, von Neumann, etc.), we see that they have very different intellectual pro-
files. We can make sense of the statistical difference between scientific ability and other
human aptitudes as an effect of evolutionary selection. In fact, scientific ability is a side
effect of the development of the human brain in the last one or two million years, followed
by the acquisition of language, and quite recently by the ability to count and write. There
is no strong evolutionary pressure in favour of mathematical ability. This explains why the
human ability to produce mathematical arguments understandable by other humans is so
variable. Understandability is a natural human concept which is not easy to formalise, but
we have seen how to make sense of it in the case the human mathematical structures.
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Human short-term memory (working memory) is quite limited (to about 7 objets) com-
pared with the huge short-term memory of computers. We have argued that this and the
use of natural languages explains the introduction of concepts or structures in mathemat-
ics. Mathematical thinking naturally involves combinatorial functioning associated with
working memory, and also longer term memory in a way which is not fully clarified. Un-
derstanding a mathematical situation therefore involves a conscious or unconscious func-
tioning of the brain which remains to be described clearly, but we have at least outlined in
the previous section how to make sense of the understanding of a mathematical proof.

The human brain is a remarkable information-processing system. It has its limitations
but is very flexible and powerful. It uses poorly understood methods, including natural
languages and concept creation, to deal with complex inter-human communication and
reaching very complex results in mathematics.

We have seen how understandable mathematical statements (like the 4-colour theorem)
can have a proof that escapes human understanding. (The statement is understandable
– in the sense of checking that certain rules are satisfied by a mathematical text – even
if the proof is not.) One can also imagine results in formal language which, because of
length and complexity, escape human understanding. Yet such results might be logically
important for the structure of the consequences of the basic mathematical axioms. The set
of theorems properly understandable by humans, and the set of mathematical structures
that human mathematicians have introduced appear thus to be a rather limited view of
the whole of mathematics.

6 Non-mathematical sciences
Let us now turn to non-mathematical sciences. These use observational or experimental
protocols to make contact with reality at a certain approximation. We have thus pieces
of approximately observed reality, and a scientific theory consists in identifying a piece
of observed reality with a certain logical-mathematical structure. [This may be a list of
biological genera and species, or a system of variables called velocity, acceleration, etc.].

Here are some questions which arise in the special case of physics-astronomy. Does
the standard model of particles account for experiments with strong interactions? Does
general relativity account for the large-scale structure of the universe? Is the dynamics
of planets in the solar system chaotic? It is seen that these questions are of different na-
ture, depending on observational or experimental results and on the numerical study of
mathematical models. Various ingredients entering the study of these questions vary with
time in different manners. One ingredient is political decisions concerning large-scale ex-
perimental or observational projects, like the decision to end the Superconducting Super
Collider project in 1993. Another ingredient is progress in computer technology, for in-
stance, Moore’s law that describes the increase of the power of computers with time in
the period 1970–2020. Therefore the rate of progress in non-mathematical sciences is a
complicated issue, and we lack general statements covering past and present periods. The
same can be said for the kind of mathematical progress which involves computers in an
essential way.

7 Conclusion
Human mathematics differs from general consequences of the atoms of set theory in pro-
viding understandable proofs. This involves, in particular, using natural languages and
introducing named structures.
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