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Abstract

Motivated by several applications, we investigate the well-posedness of a switched
system composed by a system of linear hyperbolic balance laws and by a system of
linear algebraic di�erential equations. This setting includes networks and looped
systems of hyperbolic balance laws. The obtained results are globally in time,
provided that the inputs have “nite (but not necessarily small) total variation.
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1 Introduction
In this paper, we investigate the well-posedness of switched systems consisting of linear
hyperbolic balance laws and algebraic di�erential equations and having the form

� tu(t,x) + A� (t,x)� xu(t,x) = s�
�
t ,x,u(t,x)

�
, (1a)

B� (t)

�
u(t, 0)

u(t, 1)

�

= Bw,� (t)w(t) + b� (t), (1b)

E� �w = H� w + K0,� (t)u
�
t, 0+�

+ K1,� (t)u
�
t, 1…�

+ f (t). (1c)

Here the unknownu, de“ned for t > 0 andx � [0, 1], satis“es the system of linear hyper-
bolic partial di�erential equations (1a), brie”y PDEs, andw, de“ned for t > 0, is the solu-
tion to (1c), a linear di�erential algebraic equation (DAE) with index one. The functionsu
andw are linked together through the boundary conditions (1b) of the PDE and the vector
“eld of the DAE (1c). The complete system (1a)…(1c) is subject to some external switch-
ing governed by the parameter� . For various examples of coupled systems PDE-DAE,
see [7]. Systems like (1a)…(1c) occur in many real applications such as networks for water
supply, electrical power distribution [3, 20], or gas transport [3, 15, 16]. Similar systems,
but with nonlinear PDE, are used also for modeling the human circulatory system [25…27]
or controlling tra�c ”ows [ 13, 17] with autonomous vehicles.

In the literature the coupling between hyperbolic PDEs and ODEs at the boundary has
been studied in di�erent settings; see [5, 6, 10…12, 18, 19] and the references therein. In
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the case on nonlinear systems of hyperbolic balance laws, only results local in time and
with small total variation have been obtained [4, 5]. Instead, the present setting allows us
to prove the existence of a global in time solution without any restrictions on the total
variation of the initial datum. This is in accordance with the results obtained in the Ph.D.
thesis by Hante [21] about the well-posedness of switched linear balance laws on bounded
domains. We remark that the results by Hante do not cover the case of the present paper.
This is due to the fact that (1a)…(1c) is a so-calledloop system, i.e., the boundary condi-
tion (1b) at one side can depend on the trace of the solution at the other side.

Here we treat only the particular case of DAEs of index one. This is due to the fact that
solutions to DAEs with index more than one are distributions in general, in particular,
Dirac distributions and their derivatives; see [28]. This exceeds the regularity we need for
boundary terms of the hyperbolic PDEs. Coupled systems with linear transport equations
and linear switched DAEs of arbitrary index are investigated in [7].

In the present paper, we prove the well-posedness of (1a)…(1c) by using an iterative con-
verging procedure based on the solutions to both PDEs and DAEs. As regards the hyper-
bolic balance laws (1a)…(1b), we use the well-known de“nition of broad solutions (see,
e.g., [8]) based on the concept of characteristic curves. Using the Banach “xed point the-
orem, we extend the results on bounded intervals, contained in [21], to the case of looped
systems. Moreover, we obtain suitable bounds on the total variation, which allow us to
consider the traces of the solution at the boundaries. Regarding the DAEs, we use well-
known results and estimates; see [24].

The paper is organized as follows. In Sect.2, we summarize several results about the
well-posedness of linear hyperbolic balance laws and about the solutions to algebraic dif-
ferential equations. In Sect.3, we investigate the coupled problem (1a)…(1c). The supple-
mentary technical details are collected in Sect.4.

2 Separate systems
In this section, we brie”y recall the theory for both linear hyperbolic PDEs with two
boundaries and linear DAEs. For the PDEs, the existing results are extended to include
looped systems. These are the basic steps to produce solutions to the complete switching
system (1a)…(1c).

2.1 Hyperbolic PDEs
Consider the following semilinear initial boundary value problem IBVP:

� tu(t,x) + A(t,x)� xu(t,x) = s
�
t,x,u(t,x)

�
, (2a)

�
B0

0(t) B1
0(t)

B0
1(t) B1

1(t)

� �
u(t, 0)

u(t, 1)

�

= b(t), (2b)

u(0,x) = ū(x), (2c)

where t � R
+ and x � [0, 1]. We underline that the boundary conditions (2b) are not in-

tended in classical sense (see, e.g., [2, 14]), so that we do not prescribe that the traces of
the solution atx = 0 andx = 1 strictly satisfy (2b). Roughly speaking, condition (2b) pre-
scribes the value of the solution only on the incoming components; see, for example, [23,
Sect. 2]. Hypotheses (H-4) and (H-5) below introduce noncharacteristic conditions for
this reason.



Borsche et al.Advances in Continuous and Discrete Models        (2023) 2023:19 Page 3 of 31

We introduce the following assumptions:

(H-1) The map A :R+ × [0,1] � R
n× n is a C2 function.

(H-2) The source term s :R+ × [0,1]× R
n � R

n is bounded, measurable with respect
to t , and Lipschitz continuous with respect to x and u. In particular, there exists
Ls > 0 such that

�
�s(t,x,u)

�
� � Ls,

�
�s(t,x1,u1) …s(t,x2,u2)

�
� � Ls|x1 …x2| + Ls|u1 …u2|

for all t � 0, x,x1,x2 � [0, 1], and u,u1,u2 � R
n.

(H-3) The system is strictly hyperbolic, i.e., the matrix A(t,x) has n real and distinct
eigenvalues � 1(t,x) < · · · < � n(t,x) for all t � R

+ and x � [0, 1]. We denote by
l i (t ,x) and r i (t ,x), i � { 1, . . . ,n}, the left and right eigenvectors of the matrix A ,
respectively. Without loss of generalities, we assume that

|r i | = 1, l j · r i =

�
�

	
1 if i = j,

0 if i �= j.

(H-4) There exist c> 0 and � � { 1, 2, . . . ,n … 1} such that � � (t ,x) < …c and � � +1(t,x) > c

for every (t,x) � R
+ × [0,1].

(H-5) B0
0,B1

0 � C0(R;R(n…� )× n), and B0
1,B1

1 � C0(R;R� × n) are locally Lipschitz
continuous and satisfy

det

�
B0

0(t)[r � +1(t, 0)· · · rn(t, 0)] B1
0(t)[r1(t, 1)· · · r � (t , 1)]

B0
1(t)[r � +1(t, 0)· · · rn(t, 0)] B1

1(t)[r1(t, 1)· · · r � (t , 1)]

�

�= 0

for every t � [0,T ].

Remark1 Under the previous assumptions, system (2a)…(2c) can be rewritten in adiago-

nal form. Indeed, de“ne then × n matrices

L(t,x) =


l1(t,x) · · · ln(t,x)

� �
and R(t,x) =



r1(t,x) · · · rn(t,x)

�
,

whose components are, respectively, the normalized left- and right-eigenvectors of the

matrix A(t,x) and then× n diagonal matrix�(t,x) composed by the eigenvalues ofA(t,x).

Note that (H-3) and (H-4) imply that the matricesL, R, and� are nonsingular. De“ning

the characteristic variables

v(t,x) =


v1(t,x) · · · vn(t,x)

� �
:= L(t,x)u(t,x),

v…(t,x) =


v1(t,x) · · · v� (t,x)

� �
, v+(t,x) =



v� +1(t,x) · · · vn(t,x)

� �
,

equation (2a) takes the diagonal form

vt (t,x) + �(t,x)vx(t,x) = h
�
t,x,v(t,x)

�
, (3)
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where

h(t,x,v) := L(t,x)s
�
t,x,R(t,x)v

�

+


Lt (t,x) + �(t,x)Lx(t,x)

�
R(t,x)v.

(4)

Finally, de“ning

R…(t,x) =


r1(t,x) · · · r � (t ,x)

�
and R+(t,x) =



r � +1(t,x) · · · rn(t,x)

�
,

we rewrite the boundary condition (2b) in the form

�
N0(t) M0(t)

M1(t) N1(t)

� �
v+(t, 0)

v…(t, 1)

�

= b(t) …�N(t)

�
v…(t, 0)

v+(t, 1)

�

(5)

with

N0(t) = B0
0(t)R+(t, 0), M0(t) = B1

0(t)R…(t, 1), M1(t) = B0
1(t)R+(t, 0),

N1(t) = B1
1(t)R…(t, 1) and �N(t) =

�
B0

0R…(t, 0) B1
0R+(t, 1)

B0
1R…(t, 0) B1

1R+(t, 1)

�

.

Due to (H-5), then × n matrix

�M(t) :=

�
N0(t) M0(t)

M1(t) N1(t)

�

is invertible, and so (5) can be rewritten as

�
v+(t, 0)

v…(t, 1)

�

=
�

�M(t)
� …1

b(t) …
�

�M(t)
� …1�N(t)

�
v…(t, 0)

v+(t, 1)

�

, (6)

that is,

�
�������

������	

v+(t, 0) =b+(t) + N+(t)




� v…(t, 0)

v+(t, 1)

�

� ,

v…(t, 1) =b…(t) + N…(t)




� v…(t, 0)

v+(t, 1)

�

� ,

(7)

with appropriate choices ofb…(t) � R
� , b+(t) � R

n…� , N…(t) � R
� × n, andN+(t) � R

(n…� )× n.
Expressions (6) or (7) have the same form of the general boundary conditions considered
in [23, Sect. 2]. The right-hand side represents the boundary datum, which is given since
v…(t, 0) andv+(t, 1) are the exiting components of the solution. On the left-hand side of (6)
and (7), the values of the entering componentsv…(t, 1) andv+(t, 0) of the solution are pre-
scribed.

Remark2 Since the mapA is of classC2, we deduce that the eigenvalues and eigenvectors
have the same regularity. In particular, the source termh de“ned in (4) for the diagonal
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equation (3) satis“es the following estimates. For everyT > 0, there exists a constantLh > 0

such that

�
�h(t,x,v)

�
� � Lh

�
1 + |v|

�
,

�
�h(t,x1,v1) …h(t,x2,v2)

�
� � Lh|v1||x1 …x2| + Lh|v1 …v2|

for a.e.t � [0,T ] and all x,x1,x2 � [0, 1] andv,v1,v2 � R
n.

Solutions to (2a)…(2c) are to be intended in the sense of broad solutions, which are based

on the concept of characteristic curves.

De“nition 3 Given� � R
+, � � [0, 1], andi � { 1, . . . ,n}, an absolutely continuous function

t �� Xi (t; � , � ) de“ned in a possible one-side neighborhood of� is called theith charac-

teristic curveif it satis“es

d
dt

Xi(t; � , � ) = � i
�
t ,Xi (t; � , � )

�

for a.e.t whereXi(t; � , � ) is de“ned, andXi(� ; � , � ) = � .

Remark4 By assumption (H-4) the functiont �� Xi(t; � , � ) is invertible. We denote the

inverse function byx �� Ti (x;� , � ).

De“nition 5 Fix T > 0. A function u : C0([0,T ]; L1((0, 1);Rn)) is a broad solution to

(2a)…(2c) if, de“ning for every i � { 1, . . . ,n} the ith componentvi of u as in Remark1 and,

consequently, writingu as

u(t,x) =
n�

i=1

vi (t,x)r i (t ,x) = R(t,x)v(t,x) on [0,T ] × [0,1], (8)

the following conditions hold.

1. For all i � { 1, . . . ,n} and � � [0,T ] and for a.e. � � [0, 1], the equation

d
dt

vi
�
t ;Xi (t; � , � )

�
= hi

�
t ,Xi (t; � , � ),v

�
t,Xi(t; � , � )

��

is satisfied for a.e. t where the characteristic curve Xi(t; � , � ) (see Definition 3) exists.
2. The boundary condition (2b), in the sense of formulation (6), is satisfied for a.e.

t � [0,T ].
3. For every i � { 1, . . . ,n}, the initial condition

vi(0,x) = l i (0,x) · ū(x)

is satisfied for a.e. x � [0, 1].

We have the following well-posedness result for (2a)…(2c).
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Theorem 6 Fix T > 0 and let hypotheses(H-1)…(H-5) hold. For every to � [0,T ], there

exists a process

Pto : [to,T ] × Dto � L1�
(0, 1);Rn�

,

where

Dto =
�
(ū,b) � L1�

(0, 1);Rn�
× L1�

(to,T);Rn�
: TV(ū) + TV(b) < +	

�

satisfying:

1. u(t,·) = P0(t, ū,b) is the solution to (2a)–(2c) in the sense of Definition 5.
2. Pto(to, ū,b) = ū for every (ū,b) � Dto.
3. For all to � t1 � t2 � T and (ū,b) � Dto, we have:

Pto(t2, ū,b) = Pt1

�
t2,Pto(t1, ū,b),b|(t1,T)

�
.

4. There exists L > 0 such that

�
� P0(t, ū,b) …P0(t, ū0, �b)

�
�

L1(0,1) � L



 ū …ū0
 L1(0,1) + 
 b …�b
 L1(0,T)

�
(9)

for a.e. t � [0,T ] and for all ū, ū0 � L1(0,1)and b, �b � L1(0,T).
5. There exists L > 0 such that for a.e. t � [0,T ],

TV [0,1]
�
P0(t, ū,b)

�
� LeLt 
 1 + TV [0,1](ū) + TV [0,t](b)

�

+ LeLt 
 
 ū
 L	 (0,1) + 
 b
 L	 (0,t)
�
.

(10)

6. There exists L > 0 such that for a.e. t � [0,T ],

�
� P0(·, ū,b)

�
0+�

…P0(·, ū0, �b)
�
0+� ��

L1(0,t) � L
 ū …ū0
 L1(0,1)

+ L
 b …�b
 L1(0,T).
(11)

7. There exists L > 0 such that for a.e. t � [0,T ],

�
� P0(·, ū,b)

�
1…�

…P0(·, ū0, �b)
�
1…� ��

L1(0,t) � L
 ū …ū0
 L1(0,1)

+ L
 b …�b
 L1(0,T).
(12)

8. There exists L > 0 such that for a.e. t � [0,T ],

�
� P0(t, ū,b)

�
�

L	 (0,1) � L



 ū
 L	 + 2
 b
 L	 (0,t) + T

�
. (13)

Theorem 6 is in the same spirit as [8, Theorem 3.2], where the result is proved in the

case of no boundaries. The proof in the case of twoseparateboundaries, contained in [21],

does not cover the situation in this paper. The proof of Theorem6 is given in Sect.4.3.
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2.2 Linear DAE
Consider, forT > 0, the linear di�erential algebraic equation

E �w = Hw + �f (t),

w(0) = w̄,
(14)

where w : [0,T ] � R
m is the unknown,E,H � R

m× m are given coe�cients, �f : [0,T ] �

R
m is the nonhomogeneous term, and̄w � R

m is the initial condition. In the caseE is

an invertible matrix, (14) clearly is a classical system of ordinary di�erential equations;

see, for example, [22] for the basic theory. The case of a singular matrixE is more tricky.

Following [24], we introduce the following assumptions on the matricesE,H.

(D-1) The matrix pair (E,H) is regular, i.e., the map s�� det(sE…H) is a nonzero
polynomial.

(D-2) The matrices E and H commute, i.e., EH = HE.

Remark7 Assumption (D-2) can be omitted by using a manipulation of (14). Under as-

sumption (D-1), there exists�s � R such that (�sE …H) is nonsingular. Multiplying equa-

tion (14) from the left by (�sE…H)…1, we obtain that

�E �w = �Hw + (�sE…H)…1�f (t),

where�E = (�sE …H)…1E and �H = (�sE …H)…1H. We note that �s�E …�H is the identity matrix,

and hence the matrices�E and �H commute.

If (D-1) holds, then according to [24, Theorem 2.7], we can transformE and H into its

Weierstraß canonical form, i.e., there exist invertible transformationsS,T � R
m× m such

that

(SET,SHT) =

��
I1 0

0 N

�

,

�
J 0

0 I2

��

, (15)

where I1 � R
m1× m1 and I2 � R

m2× m2 are the identity matrices,J� R
m1× m1 is a matrix in

Jordan canonical form, andN � R
m2× m2 is a nilpotent matrix, i.e.,N� = 0 for some� �

N \ { 0}. The integersm1 and m2 satisfym1 + m2 = m. For later use, we decomposeSinto

S1 � R
m1× m andS2 � R

m2× m and de“ne the variablesy � R
m1 andz � R

m2 such that

�
S1

S2

�

= S,

�
y

z

�

= T…1w. (16)

Thus we can write (14) in the form

�y = Jy+ fy(t),

N �z = z + fz(t),

�
y(0)

z(0)

�

= T…1w̄, (17)

whereS�f = (fy, fz)� .
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Following [24, Chap. 2.2], we can give an explicit formula for the solution of (14):

w(t) = eEDHtEDEw̄0 +
� t

0
eEDH(t…s)ED�f (s)ds

…
�
I …EDE

� � …1�

i=0

�
EHD� i

HD�f (i)(t),

(18)

wherew̄0 solves

w̄ = EDEw̄0 …
�
I …EDE

� � …1�

i=0

�
EHD� i

HD�f (i)(0). (19)

Here the matricesED and HD are the so-called Drazin inverses ofE and H, respectively;

see [24, Chap. 2].

De“nition 8 A function w � C0([0,T ];Rm) is a solution to (14) if for every t � [0,T ],

equations (18) and (19) hold.

We have the following result about the existence and uniqueness of solution for (14).

Theorem 9 ([24, Theorem 2.29 and Corollary 2.30])Assume that hypotheses(D-1)

and (D-2) hold. Let �f � C� …1([0,T ];Rm), where� is the smallest natural number such that

N� = 0.Then there exists a unique solution to(14) in the sense of De“nition8.

Remark10 In the case� = 1, Theorem 9 remains valid also in the case where�f is a

bounded-variation function. In this setting, we need to relax the regularity ofw to the

class of bounded-variation functions and the expression of the solution to (14) is, for a.e.

t � [0,T ],

w(t) = eEDHtEDEw̄0 +
� t

0
eEDH(t…s)ED�f (s)ds…

�
I …EDE

�
HD�f (t),

wherew̄ = EDEw̄0 … (I …EDE)HD�f (0+).

3 The coupled problem
Now we consider the coupled problem of switched hyperbolic PDE and switched DAE

(swDAE). The complete system is

� tu(t,x) + A� (t,x)� xu(t,x) = s�
�
t ,x,u(t,x)

�
, (20a)

B� (t)

�
u(t, 0)

u(t, 1)

�

= Bw,� (t)w(t) + b� (t), (20b)

u(0,x) = ū(x),

E� �w = H� w + K0,� (t)u
�
t, 0+�

+ K1,� (t)u
�
t, 1…�

+ f (t), (20c)

w(0) = w,
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wherex � [0, 1],t � [0,T ] for T > 0,u : [0,T ] × [0,1] � R
n is the solution of the PDE (20a),

A� : [0,T ] × [0,1] � R
n× n, s� [0,T ] × [0,1] × R

n � R
n is a source term,B� : [0,T ] �

R
n× 2n and Bw,� : [0,T ] � R

n× m, b� : [0,T ] � R
n constitute the boundary or coupling

conditions, ū : [0, 1] � R
n is the initial condition for system (20a), w: [0,T ] � R

m is as

solution of the swDAE (20c), � : R � N is a switching signal with “nitely many switching

times,E� ,H� � R
m× m and K0,� ,K1,� : [0,T ] � R

m× n, f : [0,T ] � R
m form the DAE, and

w � R
m are the initial condition for system (20c). In the following, we restrict ourselves to

the case of an swDAE system with index� = 1.

Note that (20b) is an algebraic equation and (20c) contains algebraic equations. There-

fore the coupled problem cannot be addressed simply as a combination of the two separate

subsystems. Equations (20b) and (20c) have to be chosen such that the PDE provides only

information via the outgoing characteristics and su�cient data is given as boundary con-

ditions, as the following trivial example illustrates.

Example11 Consider the system

�
���

��	

� tu + � xu = 0, t > 0,x � [0, 1],

u(t, 0) =w, t > 0,

0 · �w = w …u(t, 0), t > 0.

The PDE equation is a simple transport equation with characteristic speed 1; hence its

solution is completely determined by specifying the initial and left boundary data. In this

example, the algebraic di�erential equation is unable to select the boundary datum, since

the DAE and boundary conditions coincide. In other words, the boundary condition does

not contain any information; thus the transport equation has in“nitely many solutions.

To avoid settings like those of Example11, we rewrite the PDE into characteristic vari-

ables and decompose the DAE into algebraic equations and ODEs. The resulting system

has the form

� tv + �(t,x)� xv = h(t,x,v),
�

v+(t, 0+)

v…(t, 1…)

�

=

�
By,0(t) Bz,0(t)

By,1(t) Bz,1(t)

� �
y(t)

z(t)

�

+

�
b0(t)

b1(t)

�

+

�
N…(t)

N+(t)

� �
v…(t, 0)

v+(t, 1)

�

,

v(0,x) = v̄(x),

�y(t) = Jy(t) + S1K0(t)R(t, 0)

�
v…(t, 0+)

v+(t, 0+)

�

(21)

+ S1K1(t)R(t, 1)

�
v…(t, 1…)

v+(t, 1…)

�

+ S1f (t),

z(t) = …S2K0(t)R(t, 0)

�
v…(t, 0+)

v+(t, 0+)

�
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…S2K1(t)R(t, 1)

�
v…(t, 1…)

v+(t, 1…)

�

…S2f (t),

y(0) = ȳ.

The algebraic conditions do not con”ict with the boundary conditions, provided that

1. (C-1)] For the coupled system (21),

S2K0(t)R+(t, 0) =0 and S2K1(t)R…(t, 1) =0,

where S2 is chosen as in (16). We further we assume that S1K0(t), S1K1(t), and f (t)

are measurable in time and bounded.

Remark12 Note that if this assumption is not satis“ed, then it might be possible transfer

these algebraic relations into the formulation of the coupling conditions.

With assumption (C-1), we can decouple the algebraic equations and replacez in the

boundary conditions so that the new system reads

� tv + �(t,x)� xv = h(t,x,v),
�

v+(t, 0)

v…(t, 1)

�

=

�
By,0(t)

By,1(t)

�

y(t) +

�
�b0(t)
�b1(t)

�

+

�
�N…(t)
�N+(t)

� �
v…(t, 0+)

v+(t, 1…)

�

v(0,x) = v̄(x),

�y(t) = Jy(t) + S1K0(t)R(t, 0)

�
v…(t, 0+)

v+(t, 0+)

�

+ S1K1(t)R(t, 1)

�
v…(t, 1…)

v+(t, 1…)

�

+ S1f (t).

(22)

Note that the terms �N…and �N+ in (22) can be di�erent from zero, even ifN…= 0 andN+ = 0

in (21). Moreover, the dependencies onv+(t, 0+) andv…(t, 1…) in the ODE can be replaced

by boundary conditions.

We “nally rewrite system (22) in the more compact form

� tu(t,x) + A(t,x)� xu(t,x) = s
�
t,x,u(t,x)

�
,

P(t)

�
u(t, 0)

u(t, 1)

�

= Py(t)y(t) + p(t),

u(0,x) = ū(x),

�y(t) = Jy(t) +
�
G0 G1

�
�

u(t, 0+)

u(t, 1…)

�

+ g(t),

y(0) = ȳ,

(23)
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with

P(t) =

�
…�N…

0 I 0 …�N…
1

…�N+
0 0 I …�N+

1

�

, Py =

�
By,0(t)

By,1(t)

�

, p =

�
�b0(t)
�b1(t)

�

,

andG0 = S1K0, G1 = S1K1, g = S1f . System (23) is equivalent to (20a)…(20c) thanks to (C-

1). For this system, we provide analytical results.

De“nition 13 Fix T > 0. A pair (u,y) is a solution to (23) on the time interval [0,T ] if the

following conditions hold.

1. u is a broad solution on [0,T ] to

�
������

�����	

� tu + A(t,x)� xu = s(t,x,u),

P(t)




� u(t, 0)

u(t, 1)

�

� = Py(t)y(t) + p(t),

u(0,x) = ū,

in the sense of Definition 5.
2. y � C0([0,T ];Rm1) satisfies

y(t) = ȳ +
� t

0

�
Jy(s) + G(s)

�
ds

for every t � [0,T ], where

G(t) = G0(t)u
�
t, 0+�

+ G1(t)u
�
t, 1…�

+ g(t)

for a.e. t � [0,T ].

We have the following existence result.

Theorem 14 Assume that(C-1), (D-1), (D-2),and (H-1)…(H-5) hold. Then, for every T>

0, there exists a semigroup

S : [0,T ] × D Š� D,

where

D =
�
(ū, ȳ) � L1�

(0, 1);Rn�
× R

m1 : TV(ū) < +	
�

satisfying:

1. (u(t,x),y(t)) = S(t, ū, ȳ)(x) for every (ū, ȳ) � D is a solution to the coupled
system (20a)–(20c) (or to the alternative form (23)) in the sense of Definition 13.

2. S(0,ū, ȳ) = (ū, ȳ) for every (ū, ȳ) � D.
3. For all 0 � t1 � t2 � T and (ū, ȳ) � D, we have

S(t2, ū, ȳ) = S
�
t2 …t1,S(t1, ū, ȳ)

�
.
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4. There exists L > 0 such that

�
� S(t, ū, ȳ) …S(t, �u, �y)

�
�

L1(0,1) � L



 ū …�u
 L1(0,1) + 
 ȳ …�y
 L1(0,t)

�
(24)

for a.e. t � [0,T ] and for all (ū, ȳ) � D and ( �u, �y) � D.

Proof First, introduce the sets

Du =
�
u � C0�

[0,T ]; L1�
(0, 1);Rn��

: sup
t � [0,T ]

TV
�
u(t)

�
+ 
 u
 L	 < +	

�
,

Dy =
�
y � C0�

[0,T ];Rm1
�

: TV(y) < +	
�
.

We construct the solution to system (23) by passing to the limit of an approximating se-
quence of solutions. The proof is divided into several steps.

Construction of approximate solutions.
Setu0(t,x) � ū(x) andy0(t) � ¯y. For everyk � 1, givenuk…1� Du and yk…1� Dy, recur-

sively de“neuk as the solution to

�
������

�����	

� tuk(t,x) + A(t,x)� xuk(t,x) = s(t,x,uk),

P(t)




� uk(t, 0)

uk(t, 1)

�

� = Py(t)yk…1(t) + p(t),

uk(0,x) = ū.

(25)

Note that Theorem6 applies to system (25), and hence the solutionuk exists, is unique,
and belongs toDu. Moreover, de“neyk � C0([0,T ];Rm1) as the solution to the linear non-

homogeneous system

�
�

	
�yk(t) = Jyk(t) + G0(t)uk…1(t, 0+) + G1(t)uk…1(t, 1…) + g(t),

yk(0) = ȳ.
(26)

Classic theory of ODEs implies that the previous system admits a unique solution, since
by Theorem6 and (C-1) the function

t �Š� G0(t)uk…1
�
t, 0+�

+ G1(t)uk…1
�
t, 1…�

+ g(t)

is measurable; see [9, Theorem 3.1]. The same function is also bounded by (C-1) and the
de“nition of Du. Henceyk belongs toDy.

yk is a Cauchy sequence.
For k � 2 andt � [0,T ], using (26), we obtain

�
�yk(t) …yk…1(t)

�
� �

� t

0

�
�J

�
yk(s) …yk…1(s)

� �� ds

+
� t

0

�
�G0(s)

�
uk…1(s, 0) …uk…2(s, 0)

� �� ds

+
� t

0

�
�G1(s)

�
uk…1(s, 1) …uk…2(s, 1)

� �� ds
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� 
 J

� t

0

�
�yk(s) …yk…1(s)

�
� ds

+ LG

� t

0

�
�uk…1(s, 0) …uk…2(s, 0)

�
� ds

+ LG

� t

0

�
�uk…1(s, 1) …uk…2(s, 1)

�
� ds,

whereLG := max{supt � [0,T ] 
 G0(t)
 ,supt � [0,T ] 
 G1(t)
} . By the Gronwall lemma, fork � 2

and t � [0,T ], we deduce that

�
�yk(t) …yk…1(t)

�
� � e
 J
 tLG

�
� uk…1(·, 0) …uk…2(·, 0)

�
�

L1(0,t)

+ e
 J
 tLG
�
� uk…1(·, 1) …uk…2(·, 1)

�
�

L1(0,t).
(27)

By (11) and (12) we obtain that fork � 3,

�
�yk(t) …yk…1(t)

�
� � e
 J
 tLGL

�
� Py(yk…2…yk…3)

�
�

L1(0,t)

� e
 J
 tLGL
 Py

� t

0

�
�yk…2(s) …yk…3(s)

�
� ds.

We apply [5, Lemma 4.2], i.e., Lemma16with � = 0, 	 = e
 J
 tLGL
 Py
 , andhk(t) = |yk(t) …

yk…1(t)|, to the inequality

hn(t) � � + 	
� t

0
hn…2(� ) d�

and obtain that for alln � 1,

max
�
h2n(t),h2n+1(t)

�
� �

n…1�

i=0

	 i t i

i!
+ Y

	 ntn

n!
,

whereY � max{
 h0
 , 
 h1
} .

Thus there exists a positive constantC1 such that


 yk …yk…1
 C0([0,T ]) � C1
(e
 J
 T LGL
 Py
 )kT k

k!

for everyk � 3. Therefore, for everyk > j � 3,


 yk …yj
 C0([0,T ]) �
k�

i=j+1


 yi …yi…1
 C0([0,T ])

� C1

k�

i=j+1

(e
 J
 T LGL
 Py
 )iT i

i!
,

proving that yk is a Cauchy sequence inC0([0,T ]). Thus there existsy� � C0([0,T ]) such

that yk converges toy� in C0([0,T ]) ask � +	 .
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uk is a Cauchy sequence.
Using (9), we deduce the existence of a constantC > 0 such that for allk andk
, we have

the estimate

�
� uk(t, ·) …uk
 (t, ·)

�
�

L1(0,1) � C
 yk…1…yk
…1
 L1(0,T)

� CT
 yk…1…yk
…1
 C0([0,T ])

for every t � [0,T ]. Thus uk is a Cauchy sequence inC0([0,T ]; L1(0,1)), proving the ex-
istence ofu� � C0([0,T ]; L1(0,1)) such thatuk converges tou� in C0([0,T ]; L1(0,1)) as
k � +	 .

The couple(u� ,y� ) is a solution to (23).
First, we show thaty� is a solution to the ODE with the input fromu� . Due to (26), for

everyt � [0,T ], we have

yk(t) = ȳ +
� t

0
Jyk(s)ds+

� t

0



G0(s)uk…1

�
s, 0+�

+ G1(s)uk…1
�
s, 1…�

+ g(s)
�
ds.

Using again (11) and (12), we deduce that both sequencesuk(·, 0+) anduk(·, 1…) are Cauchy
sequences inL1(0,T) and the limits are respectivelyu� (·, 0+) andu� (·, 1…), since the non-
characteristic condition (H-4) holds; see [1]. Passing to the limit ask � 	 , we thus obtain

y� (t) = ȳ +
� t

0
Jy� (s)ds+

� t

0



G0(s)u� �

s, 0+�
+ G1(s)u� �

s, 1…�
+ g(s)

�
ds,

proving thaty� satis“es condition 2 of De“nition 13. Moreover, note that the last integral in
the previous equation is uniformly bounded because of (13) and (C-1). Hence the previous
equation implies thaty� has “nite total variation.

Conversely, we de“ne�u as the solution to the hyperbolic system

�
������

�����	

� t �u(t,x) + A(t,x)� x �u(t,x) = s(t,x, �u),

P(t)




� �u(t, 0)

�u(t, 1)

�

� = Py(t)y� (t) + p(t),

�u(0,x) = ū,

which exists and is unique by Theorem6. Due to (9), for t � [0,T ] and k � 1, we have that

�
� �u(t) …uk(t)

�
�

L1(0,1) � L
�
� y� …yk…1

�
�

L1(0,t)

for some positive constantL. Sinceyk is a Cauchy sequence anduk converges tou� in
C0([0,T ]; L1(0,1)), we deduce that�u = u� in C0([0,T ]; L1(0,1)), proving thatu� satis“es
condition 1 of De“nition 13.

Well-posedness estimate.Consider two initial conditions (ū, ȳ) and (�u, �y) with TV(ū) +
TV( �u) < +	 . Denote by (̄uk, ȳk) and (�uk, �yk) the sequences constructed as in the “rst part
of the proof for the initial conditions given by (̄u,ȳ) and (�u, �y), respectively. By (9) there
exists a constantC1 > 0 such that

�
� ūk(t) …�uk(t)

�
�

L1(0,1) � C1
 ū …�u
 L1(0,1) + C1

� t

0

�
�ȳk(s) …�yk(s)

�
� ds (28)



Borsche et al.Advances in Continuous and Discrete Models        (2023) 2023:19 Page 15 of 31

for a.e.t � [0,T ]. Moreover, there existsC2 > 0 such that for everyt � [0,T ],

�
�ȳk(t) …�yk(t)

�
� � |¯y …�y| + C2

� t

0

�
�ȳk(s) …�yk(s)

�
� ds

+ C2

� t

0

�
�ūk(s, 0) …�uk(s, 0)

�
� ds

+ C2

� t

0

�
�ūk(s, 1) …�uk(s, 1)

�
� ds.

(29)

Using (11) and (12) in (29), we deduce that there existsC3 > 0 such that

�
�ȳk(t) …�yk(t)

�
� � |¯y …�y| + C2

� t

0

�
�ȳk(s) …�yk(s)

�
� ds+ C3
 ū …�u
 L1(0,1) (30)

for everyt � [0,T ], and so by the Gronwall lemma

�
�ȳk(t) …�yk(t)

�
� �



|ȳ …�y| + C3
 ū …�u
 L1(0,1)

�
eC2t

�


|ȳ …�y| + C3
 ū …�u
 L1(0,1)

�
eC2T

(31)

for everyt � [0,T ]. Inserting (31) into (28), we deduce that for a.e.t � [0,T ],

�
� ūk(t) …�uk(t)

�
�

L1(0,1) �
�

C1 +
C3

C2

�
eC2T … 1

�
�


 ū …�u
 L1(0,1)

+
C1

C2
|ȳ …�y|

�
eC2T … 1

�
.

(32)

Passing to the limit ask � +	 in (31) and (32), we obtain (24). �

Corollary 15 Let T > 0, and let � : [0,T ] � N be a given switching signal with “nitely

many switching points. Then, under the above hypotheses, system(20a)…(20c) has a unique

solution(u,w) on [0,T ].

A proof can be obtained by iteratively applying Theorem14.

4 Technical details
4.1 Lemma 4.2
Here we repeat Lemma 4.2 from [5].

Lemma 16 Assume that the sequence hn � C0([0,T ];R+) satis“es

hn(t) � � + 	
� t

0
hn…2(� ) d� with h0(t) � [0,H] and h1(t) � [0,H]

for positive numbers� , 	 , and H. Then for all n � 1,

max
�
h2n(t),h2n+1(t)

�
� �

n…1�

i=0

	 i t i

i!
+ H

	 ntn

n!
.
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4.2 A priori estimates
Lemma 17 Assume hypotheses(H-1)…(H-5) hold. De“ne � max as in (52). Let v be a broad

solution to(3) with initial condition v̄ and boundary conditions(7). Then, for every0 <t �
1

� max
, there exists a constant C> 0,depending on� max, h, N+, and N…, such that

�
� v(t)

�
�

L	 � C



 v̄
 L	 +

�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) + t
�

(33)

and

TV
�
v(t)

�
� C

�
1 + TV(v̄) + TV

�
b+�

+ TV
�
b…��

exp(Ct)

+ C
�

 v
 L	 +

�
� b+

�
�

L	 +
�
� b…

�
�

L	

�
exp(Ct).

(34)

Proof First note that the choicet � 1
� max

implies that the characteristic curves starting

from one boundary do not reach the other boundary within time 1
� max

. Denote byL a

uniform bound and a Lipschitz constant forh in [0, 1
� max

] × [0, 1] × R
n; see Remark2.

Sincev is a broad solution to (3), then for all i � { 1, . . . ,� } and 0� t � 1
� max

,

vi (t,x) =

�
������

�����	

v̄i (Xi (0;t,x)) +
� t

0 hi (� ,Xi (� ; t ,x),v(� ,Xi(� ; t ,x))) d�

if x < Xi(t; 0, 1),

m1
i (Ti (1;t,x)) +

� t
Ti (1;t,x) hi (� ,Xi (� ; t ,x),v(� ,Xi(� ; t ,x))) d�

if x > Xi(t; 0, 1),

(35)

whereas for alli � { � + 1, . . . ,n} and 0� t � 1
� max

,

vi (t,x) =

�
������

�����	

m0
i (Ti (0;t,x)) +

� t
Ti (0;t,x) hi (� ,Xi (� ; t ,x),v(� ,Xi(� ; t ,x))) d�

if x < Xi(t; 0, 0),

v̄i (Xi (0;t,x)) +
� t

0 hi (� ,Xi (� ; t ,x),v(� ,Xi(� ; t ,x))) d�

if x > Xi(t; 0, 0),

(36)

whereTi denotes the inverse of theith characteristic curve (see Remark4), and

m0
i (t) = b+

i (t) +

�

N+(t)

�
v…(t, 0)

v+(t, 1)

��

i

,

m1
i (t) = b…

i (t) +

�

N…(t)

�
v…(t, 0)

v+(t, 1)

��

i

;

(37)

see (7).

First consider theL	 estimates. Fori � { 1, . . . ,� } and 0 <t � 1
� max

, we have

�
�vi (t, 0)

�
� �

�
�v̄i

�
Xi (0;t, 0)

� �� +
� t

0

�
�hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi (� ; t ,x)

�� �
� d�

�
�

n
 v̄
 L	 + Lt + L
� t

0

�
� v(� )

�
�

L	 d� ,
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and so

�
�v…(t, 0)

�
� � n

�
n
 v̄
 L	 + nLt + nL

� t

0

�
� v(� )

�
�

L	 d� . (38)

An analogous computation yields

�
�v+(t, 1)

�
� � n

�
n
 v̄
 L	 + nLt + nL

� t

0

�
� v(� )

�
�

L	 d� . (39)

For i � { 1, . . . ,� }, 0 <t � 1
� max

, andx � (0,Xi(t; 0, 1)), we have

�
�vi (t,x)

�
� �

�
n
 v̄
 L	 + Lt + L

� t

0

�
� v(� )

�
�

L	 d� ,

whereas forx � (Xi(t; 0, 1), 1), using (38) and (39), we have

�
�vi (t,x)

�
� �

�
�m1

i

�
Ti (1;t,x)

� �� +
� t

Ti (1;t,x)

�
�hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi (� ; t ,x)

�� �
� d�

�
�
�b…

i

�
Ti (1;t,x)

� �� + L
�
�v…�

Ti(1;t,x), 0
� �� + L

�
�v+�

Ti (1;t,x), 0
� ��

+ L
�
t …Ti(1;t,x)

�
+ L

� t

Ti (1;t,x)

�
� v(� )

�
�

L	 d�

�
�

n
�
� b…

�
�

L	 (0,t) + 2n
�

nL
 v̄
 L	

+ 2nL2Ti(1;t,x) + 2nL2
� Ti (1;t,x)

0

�
� v(� )

�
�

L	 d�

+ L
�
t …Ti(1;t,x)

�
+ L

� t

Ti (1;t,x)

�
� v(� )

�
�

L	 d�

�
�

n
�
� b…

�
�

L	 (0,t) + 2n
�

nL
 v̄
 L	 + 2nL2t + 2nL2
� t

0

�
� v(� )

�
�

L	 d� .

A similar computation holds in the casei � { � + 1, . . . ,n}. Hence

�
� v(t)

�
�

L	 � (n
�

n + 4n
�

nL)
 v̄
 L	 + n
�

n
� �� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t)

�

+
�
nL + 4nL2�

t +
�
nL + 4nL2� � t

0

�
� v(� )

�
�

L	 d�

� 5n
�

nL
 v̄
 L	 + n
�

n
� �� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t)

�

+ 5nL2t + 5nL2
� t

0

�
� v(� )

�
�

L	 d� .

The Gronwall inequality implies that

�
� v(t)

�
�

L	 � e5nL2t 
 5n
�

nL
 v̄
 L	 + n
�

n
� �� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t)

�
+ 5nL2t

�

� 5n
�

nL2e5nL2t 
 
 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) + t
�
,

so that (33) holds.
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Consider now the total-variation estimate (34). For i � { 1, . . . ,� } and 0 <t � 1
� max

, we

have

TV
�
vi (t, ·)

�
= TV

�
vi (t, ·);



0,Xi(t; 0, 1)

��

+ TV
�
vi (t, ·);

�
Xi (t; 0, 1), 1

��

+
�
�vi

�
t ,Xi (t; 0, 1)+

�
…vi

�
t,Xi(t; 0, 1)…

� ��,

(40)

whereas fori � { � + 1, . . . ,n} and 0 <t � 1
� max

,

TV
�
vi (t, ·)

�
= TV

�
vi (t, ·);



0,Xi(t; 0, 0)

��

+ TV
�
vi (t, ·);

�
Xi (t; 0, 0), 1

��

+
�
�vi

�
t ,Xi (t; 0, 0)+

�
…vi

�
t,Xi(t; 0, 0)…

� ��.

(41)

Consider the “rst term in the right-hand side of (40) and points 0� x0 � · · · � xN <

Xi(t; 0, 1). Using (35), we deduce that

N�

j=1

�
�vi (t,xj) …vi(t,xj…1)

�
�

� TV(v̄i ) +
N�

j=1

� t

0

�
�hi

�
� ,Xi (0;t,xj),v

�
� ,Xi (0;t,xj)

��

…hi(� ,Xi
�
0;t,xj…1,v

�
� ,Xi(0;t,xj…1)

�� �
� d�

� TV(v̄i ) + L
� t

0

�
� v(� )

�
�

	 d� + L
� t

0
TV

�
v(� , ·)

�
d� ,

and so by (33) we have

TV
�
vi (t, ·);



0,Xi(t; 0, 1)

��

� TV(v̄i ) + L
� t

0
TV

�
v(� , ·)

�
d�

+ O(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

(42)

Here and in the following part of the proof, the Landau symbolO(1) denotes a constant.

Similarly the second term in the right-hand side of (41) can be estimated by

TV(vi
�
t , ·);

�
Xi (t; 0, 0), 1

��

� TV(v̄i ) + L
� t

0
TV

�
v(� , ·)

�
d� .

+ O(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

(43)
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Consider now the second term in the right-hand side of (40) and pointsXi(t; 0, 1) <x0 �

· · · � xN � 1. Using (35), we get

N�

j=1

�
�vi (t,xj) …vi(t,xj…1)

�
�

�
N�

j=1

�
�m1

i

�
Ti (1;t,xj)

�
…m1

i

�
Ti (1;t,xj…1)

� ��

+
N�

j=1

�
�
�
�

� t

Ti (1;t,xj )
hi

�
� ,Xi (� ; t ,xj),v

�
� ,Xi (� ; t ,xj)

��
d�

…
� t

Ti (1;t,xj…1)
hi

�
� ,Xi (� ; t ,xj…1),v

�
� ,Xi (� ; t ,xj…1)

��
d�

�
�
�
�.

De“ning K = supt � [0, 1
� max

] {sup
 � Rn\{ 0}
|N…(t)(
 )|

|
 | ,sup
 � Rn\{ 0}
|N+(t)(
 )|

|
 | } and using (35), (36),

and (37), we deduce that

N�

j=1

�
�m1

i

�
Ti (1;t,xj)

�
…m1

i

�
Ti (1;t,xj…1)

� ��

� TV
�
b…�

+ KnTV(v̄) + 2KnLt

+ KnL
� t

0
TV

�
v(� ; ·)

�
d� ,

whereas, using the assumptions onh and triangle inequalities, we have

N�

j=1

�
�
�
�

� t

Ti (1;t,xj )
hi

�
� ,Xi (� ; t ,xj),v

�
� ,Xi (� ; t ,xj)

��
d�

…
� t

Ti (1;t,xj…1)
hi

�
� ,Xi (� ; t ,xj…1),v

�
� ,Xi (� ; t ,xj…1)

��
d�

�
�
�
�

� 2Lt + L
� t

0
TV

�
v(� ; ·)

�
d�

+ LO(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

Therefore the second term in the right-hand side of (40) can be estimated by

TV
�
vi (t, ·);

�
Xi (t; 0, 1), 1

��

� TV
�
b…�

+ KnTV(v̄) + 2(Kn + 1)Lt

+ (Kn + 1)L
� t

0
TV

�
v(� ; ·)

�
d�

+ LO(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

(44)
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Similarly, the “rst term in the right-hand side of (41) can be estimated by

TV
�
vi (t, ·);



0,Xi(t; 0, 0)

��

� TV
�
b+�

+ KnTV(v̄) + 2(Kn + 1)Lt

+ (Kn + 1)L
� t

0
TV

�
v(� ; ·)

�
d� .

+ LO(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

(45)

Consider now the third term in the right-hand side of (40). Using (35), (36), (37), and

the assumptions onh, we obtain

�
�vi

�
t ,Xi (t; 0, 1)+

�
…vi

�
t,Xi(t; 0, 1)…

� ��

�
�
�
� lim
� � 0+

m1
i (� )

�
�
� +

�
�v̄i

�
1…� ��

+

�
�
�
�

� t

0
hi

�
� ,Xi

�
� ; t ,Xi (t; 0, 1)

�
,v

�
� ,Xi

�
� ; t ,Xi (t; 0, 1)

� +��
d�

…
� t

0
hi

�
� ,Xi

�
� ; t ,Xi (t; 0, 1)

�
,v

�
� ,Xi

�
� ; t ,Xi (t; 0, 1)

� …��
d�

�
�
�
�

(46)

�
�
�b…�

0+� �� + (2K + 1)
 v̄
 L	 + L
� t

0
TV

�
v(� , ·)

�
d�

+ LO(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

Similarly, the third term in the right-hand side of (41) can be estimated by

�
�vi

�
t ,Xi (t; 0, 0)+

�
…vi

�
t,Xi(t; 0, 0)…

� ��

�
�
�b+�

1…� �� + (2K + 1)
 v̄
 L	 + L
� t

0
TV

�
v(� , ·)

�
d�

+ LO(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

(47)

Inserting (42), (44), and (46) into (40), we get

TV
�
vi (t, ·)

�
� TV(v̄i ) + TV

�
b…�

+ KnTV(v̄) + (2Kn + 3)Lt

+ (Kn + 3)L
� t

0
TV

�
v(� ; ·)

�
d�

+ O(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

(48)

A similar estimate of (41) holds. Consequently,

TV
�
v(t, ·)

�
�

�
1 + Kn2�

TV(v̄) + � TV
�
b…�

+ (n …� )TV
�
b+�

+ (2Kn + 3)nLt + (2 + Kn)nL
� t

0
TV

�
v(� , ·)

�
d�
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+ O(1)
�


 v̄
 L	 +
�
� b…

�
�

L	 (0,t) +
�
� b+

�
�

L	 (0,t) +
1

� max

�
t .

An application of the Gronwall lemma implies (34). �

4.3 Proof of Theorem6
This subsection contains the proof of Theorem6, which is based on the Banach “xed point

theorem.

Proof of Theorem6 By Remark1 the proof is focused on the diagonal version of sys-

tem (2a)…(2c) and is divided into two steps.

Step 1. Local existence and uniqueness of solution. Fix an initial condition ū � L1((0, 1);

R
n) with “nite total variation and a boundary conditionb � L1((0,T);Rn) with “nite total

variation. Denote byv̄(x) = L(0,x)ū(x) the corresponding initial condition for the diagonal

system (3) with the corresponding boundary conditionsb…andb+; see (7). De“ne

K = sup
t � [0,T ]

 
sup


 � Rn\{ 0}

|N…(t)(
 )|
|
 |

, sup

 � Rn\{ 0}

|N+(t)(
 )|
|
 |

!
, (49)

M = 2n(2K + 1)TV(ū) + 2nTV
�
b…�

+ (2 + K)n
 v̄
 	 (50)

+ 2n
 b
 	 + 1,

M1 = (1 + K)
 v
 	 + 
 b
 	 + 1, (51)

� max = max
�

 � i 
 C0([0,T ]× [0,1]) : i � { 1, . . . ,n}

�
, (52)

� = max
�

 � i 
 C1([0,T ]× [0,1]) : i � { 1, . . . ,n}

�
. (53)

Note that both � max and � are “nite because of (H-1) and (H-3). Choosēt � (0,T ] such

that

t̄ < min

 
1

� max
,

1
nL(5K + 4)(1 + 2M1 + M)

!
(54)

and

n(2 +nK)e� t̄Lt̄ �
1
2

, (55)

where L is a uniform bound and a Lipschitz constant forh in [0,T ] × [0,1] × R
n; see

Remark2.

Note that the choice of̄t implies that every characteristic curve starting form a boundary

does not arrive at the other boundary within timēt . Now we aim to construct a map whose

“xed points are solutions to the diagonal IBVP and so to (2a)…(2c). First, introduce the

space

X =

�
�����

����	

v � C0�
[0, t̄ ]; L1�

[0, 1];Rn��
:

sup
i�{ 1,...,n}

sup
t � [0,t̄ ]

TV
�
vi (t)

�
� M

v(0) = v̄


 v
 L	 ([0,̄t]× [0,1]) � M1

"
����#

����$

(56)
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equipped with the norm


 v
 X :=
n�

i=1


 vi 
 C0([0,̄t];L1([0,1];R)) =
n�

i=1

sup
t � [0,t̄ ]

� 1

0

�
�vi (t,x)

�
� dx, (57)

so thatX is a complete metric space. Now de“ne the operator

M : X Š� X

v �Š� M(v) =
�
M1(v), . . . ,Mn(v)

�
,

according to the following four cases.

(c1) For all i � { 1, . . . ,� }, 0 <t � t̄ , and x � [0,Xi(t; 0, 1)], we define

Mi(v)(t,x) = v̄i
�
Xi (0;t,x)

�
+

� t

0
hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi (� ; t ,x)

��
d� . (58)

(c2) For all i � { � + 1, . . . ,n}, 0 <t � t̄ , and x � [Xi (t; 0, 0), 1], we define

Mi(v)(t,x) = v̄i
�
Xi (0;t,x)

�
+

� t

0
hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi (� ; t ,x)

��
d� . (59)

(c3) For all i � { 1, . . . ,� }, 0 <t � t̄ , and x � (Xi(t; 0, 1), 1], we define

Mi(v)(t,x) = m1
i

�
Ti (1;t,x)

�
+

� t

Ti (1;t,x)
hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi (� ; t ,x)

��
d� , (60)

where Ti denotes the inverse of the ith characteristic curve (see Remark 4), and

m1
i (t) = b…(t) + N…(t)

�
Mb,0(v)(t)

Mb,1(v)(t)

�

; (61)

see (7), (67), and (70).
(c4) For all i � { � + 1, . . . ,n}, 0 <t � t̄ , and x � [0,Xi(t; 0, 0)), we define

Mi(v)(t,x) = m0
i

�
Ti (0;t,x)

�
+

� t

Ti (0;t,x)
hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi (� ; t ,x)

��
d� , (62)

where

m0
i (t) = b+(t) + N+(t)

�
Mb,0(v)(t)

Mb,1(v)(t)

�

; (63)

see (7).
We proceed now to estimate theL	 norm and the total variation ofM(v) according to

four cases.

Case (c1). By Remark2 we easily deduce that

�
� Mi(v)

�
�

L	 � 
 v̄i 
 L	 + L(1 +M1)t̄ . (64)



Borsche et al.Advances in Continuous and Discrete Models        (2023) 2023:19 Page 23 of 31

We claim that for every 0� t � t̄ ,

TV
�
Mi(v)(t, ·);



0,Xi(t; 0, 1)

��
� TV(v̄i ) + L(M1 + M)t̄ (65)

and that

TV
�
Mi(v)(·, 0+); [0,̄t ]

�
� TV(v̄i ) + L(1 + 2M1 + M)t̄. (66)

For later use, for 0� t � t̄ , we denote

Mb,0(v)(t) =




%
%
�

M1(v)(t, 0+)
...

M� (v)(t, 0+)

�

&
&
� , (67)

which is well de“ned by (58) and has a “nite total variation by (66).
To prove (65), “x N � N \ { 0}, a time 0� t � t̄ , and points 0� x0 < · · · < xN � Xi(t; 0, 1).

Using the notation �xj(� ) = Xi(� ; t ,xj), we have that

N�

j=1

�
�Mi(v)(t,xj) …Mi(v)(t,xj…1)

�
�

�
N�

j=1

�
�v̄i

�
�xj(0)

�
…v̄i

�
�xj…1(0)

� ��

' () *
I1

+
N�

j=1

�
�
�
�

� t

0
hi

�
� , �xj(� ),v

�
� , �xj(� )

��
…hi

�
� , �xj…1(� ),v

�
� , �xj…1(� )

��
d�

�
�
�
�

' () *
I2

.

Clearly, the termI1 is estimated byTV(v̄i ). For the termI2, we have

I2 �
N�

j=1

� t

0

�
�hi

�
� , �xj(� ),v

�
� , �xj(� )

��
…hi

�
� , �xj…1(� ),v

�
� , �xj(� )

�� �
� d�

+
N�

j=1

� t

0

�
�hi

�
� , �xj…1(� ),v

�
� , �xj(� )

��
…hi

�
� , �xj…1(� ),v

�
� , �xj…1(� )

�� �
� d�

� L
N�

j=1

� t

0

� �� �xj(� ) …�xj…1(� )
�
�M1 +

�
�v

�
� , �xj(� )

�
…v

�
� , �xj…1(� )

� ��� d�

� LM1t + LMt ,

and so we deduce (65).
To prove (66), “x N � N \ { 0} and times 0� t0 < · · · < tN � t̄ . Using the notation�xj(� ) =

Xi(� ; tj , 0), we have that

N�

j=1

�
�Mi(v)(tj , 0) …Mi(v)(tj…1, 0)

�
�
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�
N�

j=1

�
�v̄i

�
�xj(0)

�
…v̄i

�
�xj…1(0)

� ��

' () *
I3

+
N�

j=1

�
�
�
�

� tj…1

0

�
hi

�
� , �xj(� ),v

�
� , �xj(� )

��
…hi

�
� , �xj…1(� ),v

�
� , �xj(� )

���
d�

�
�
�
�

' () *
I4

+
N�

j=1

�
�
�
�

� tj…1

0

�
hi

�
� , �xj…1(� ),v

�
� , �xj(� )

��
…hi

�
� , �xj…1(� ),v

�
� , �xj…1(� )

���
d�

�
�
�
�

' () *
I5

+
N�

j=1

�
�
�
�

� tj

tj…1

hi
�
� , �xj(� ),v

�
� , �xj(� )

��
d�

�
�
�
�

' () *
I6

.

Clearly, the termI3 is estimated byTV(v̄i ). For the remaining termsI4, I5, andI6, we have

I4 � L
N�

j=1

� tj…1

0

�
� �xj(� ) …�xj…1(� )

�
�M1 d� � LM1t̄,

I5 � L
N�

j=1

� tj…1

0

�
�v

�
� ,Xi (� ; tj , 0)

�
…v

�
� ,Xi(� ; tj…1, 0)

� �� d� � LMt̄,

I6 � L(1 +M1)t̄;

so (66) is proved.

Case (c2). Similarly toCase (c1), we deduce that for every 0� t � t̄ , (64) holds,

TV(Mi(v)(t, ·);
�
Xi (t; 0, 0), 1

��
� TV(v̄i ) + L(M1 + M)t̄, (68)

and

TV
�
Mi(v)(·, 1…); [0,̄t ]

�
� TV(v̄i ) + L(1 + 2M1 + M)t̄. (69)

For 0� t � t̄ , we denote

Mb,1(v)(t) =




%
%
�

M� +1(v)(t, 1…)
...

Mn(v)(t, 1…)

�

&
&
� , (70)

which is well de“ned by (59) and has a “nite total variation by (69).

Case (c3). By Remark2 we easily deduce that

�
� Mi(v)

�
�

L	 �
�
� m1

i

�
�

L	 + L(1 +M1)t̄. (71)
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We claim that for every 0� t � t̄ ,

TV(Mi(v)(t, ·);
�
Xi (t; 0, 1), 1]

�
� TV

�
b…�

+ 2KTV(v̄i )

+ L(2K + 1)(1 +M + 2M1)t̄.
(72)

To prove (72), “x N � N \ { 0}, a time 0� t � t̄ , and pointsXi(t; 0, 1)� x0 < · · · < xN � 1.

Using the notations�xj(� ) = Xi(� ; t ,xj) and �tj = Ti(1;t,xj), we have that�t0 < · · · < �tN and

N�

j=1

�
�Mi(v)(t,xj) …Mi(v)(t,xj…1)

�
�

�
N�

j=1

�
�m1

i (�tj) …m1
i (�tj…1)

�
�

' () *
I7

+
N�

j=1

�
�
�
�

� t

�tj

�
hi

�
� , �xj(� ),v

�
� , �xj(� )

��
…hi

�
� , �xj(� ),v

�
� , �xj…1(� )

���
d�

�
�
�
�

' () *
I8

+
N�

j=1

�
�
�
�

� t

�tj

�
hi

�
� , �xj(� ),v

�
� , �xj…1(� )

��
…hi

�
� , �xj…1(� ),v

�
� , �xj…1(� )

���
d�

�
�
�
�

' () *
I9

+
N�

j=1

�
�
�
�

� �tj

�tj…1

hi
�
� , �xj…1(� ),v

�
� , �xj…1(� )

��
d�

�
�
�
�

' () *
I10

.

Using (49), (66), (69), and (61), we get

I7 � TV
�
b…�

+ KTV
�
Mb,0(v)(·)

�
+ KTV

�
Mb,1(v)(·)

�

� TV
�
b…�

+ 2K


TV(v̄i ) + L(1 + 2M1 + M)t̄

�
.

For the remaining termsI8, I9, andI10, we have

I8 � L
N�

j=1

� t

�tj

�
�v

�
� , �xj(� )

�
…v

�
� , �xj…1(� )

� �� d� � LMt̄,

I9 � L
N�

j=1

� t

�tj

�
� �xj(� ) …�xj…1(� )

�
�M1 d� � LM1t̄,

I10 �
N�

j=1

� �tj

�tj…1

�
�hi

�
� , �xj…1(� ),v

�
� , �xj…1(� )

�� �
� d� � L(1 +M1)t̄,

proving (72).
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Case (c4). Similarly toCase (c3), we deduce that for every 0� t � t̄ , (71) holds, and

TV
�
Mi(v)(t, ·);



0,Xi(t; 0, 0)

��
� TV

�
b…�

+ 2KTV(v̄i )

+ L(2K + 1)(1 +M + 2M1)t̄.
(73)

Moreover, using (58) and (60), note also that for alli � { 1, . . . ,� } and 0 <t � t̄ ,

�
�
� lim
x� Xi (t;0,1)…

Mi(v)(t,x) … lim
x� Xi (t;0,1)+

Mi(v)(t,x)
�
�
�

� 2
 v̄
 L	 + 2
 b
 	 + K
�

 v̄
 	 + L(1 + M1)t̄

�
+ 2L(1 + M1)t̄ .

(74)

The same inequality holds in the casei � { � + 1, . . . ,n}.
Using (65), (68), (72), (73), and (74), we deduce that for all 0� t � t̄ and i � { 1, . . . ,n},

TV
�
Mi(v)(t, ·)

�
� 2(2K + 1)TV(v̄i ) + 2TV

�
b…�

+ (2 + K)
 v̄
 	

+ 2
 b
 	 + LK(1 + M1)t̄

+ 4L(K + 1)(1 +M + 2M1)t̄,

(75)

and so, by the choice of̄t as in (54),

TV
�
M(v)(t, ·)

�
� M, (76)

which implies that the operatorM(v) is well de“ned. Note that the proof thatt �� M(v)(t)
is continuous from [0,̄t] to L1((0, 1);Rn) is straightforward and so omitted.

Fix v,v� � X. For all t � [0, t̄ ] and i � { 1, . . . ,� }, we have

�
� Mi(v)(t, ·) …Mi

�
v� �

(t, ·)
�
�

L1

=
� 1

0

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

�
� Xi (t;0,1)

0

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

+
� 1

Xi (t;0,1)

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx.

Using (58) and the change of variable
 = Xi(� ; t ,x), we deduce that

� Xi (t;0,1)

0

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

�
� Xi (t;0,1)

0

� t

0

�
�hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi(� ; t ,x)

��

…hi
�
� ,Xi (� ; t ,x),v� �

� ,Xi (� ; t ,x)
�� �

� d� dx

� L
� Xi (t;0,1)

0

� t

0

�
�v

�
� ,Xi (� ; t ,x)

�
…v� �

� ,Xi (� ; t ,x)
� �� d� dx

� e� t̄L
� t

0

� 1

0

�
�v(� , 
 ) …v� (� , 
 )

�
� d
 d� � e� t̄Lt̄

�
� v …v�

�
�

X.
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Using (60), we obtain that

� 1

Xi (t;0,1)

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

� K
� 1

Xi (t;0,1)

�
�Mb,0(v)

�
Ti (1;t,x)

�
…Mb,0

�
v� ��

Ti (1;t,x)
� �� dx

' () *
I11

+ K
� 1

Xi (t;0,1)

�
�Mb,1(v)

�
Ti (1;t,x)

�
…Mb,1

�
v� ��

Ti (1;t,x)
� �� dx

' () *
I12

+I13,

where

I13 =
� 1

Xi (t;0,1)

� t

Ti (1;t,x)

�
�hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi(� ; t ,x)

��

…hi
�
� ,Xi (� ; t ,x),v� �

� ,Xi (� ; t ,x)
�� �

� d� dx.

For the term I11, using (58) and (67), we have that

I11 �
��

j=1

� 1

Xi (t;0,1)

�
�Mj(v)

�
Ti (1;t,x), 0

�
…Mj

�
v� ��

Ti (1;t,x), 0
� �� dx

�
��

j=1

� 1

Xi (t;0,1)

�
�
�
�

� Ti (1;t,x)

0
hj

�
� ,Xj

�
� ;Ti (1;t,x), 0

�
,v

�
� ,Xj

�
� ;Ti (1;t,x), 0

���

…hj
�
� ,Xj

�
� ;Ti (1;t,x), 0

�
,v� �

� ,Xj
�
� ;Ti (1;t,x), 0

���
�
�
�
� d� dx

� L
��

j=1

� 1

Xi (t;0,1)

� Ti (1;t,x)

0

�
�v� �

� ,Xj
�
� ;Ti (1;t,x), 0

��

…v� �
� ,Xj

�
� ;Ti (1;t,x), 0

�� �
� d� dx

� L� e� t̄ t̄
�
� v …v�

�
�

X.

Similarly, we deduce that

I12 � L(n …� )e� t̄ t̄
�
� v …v�

�
�

X.

For the remaining termI13, using the change of variable
 = Xi(� ; t ,x), we get

I13 � L
� 1

Xi (t;0,1)

� t

Ti (1;t,x)

�
�v

�
� ,Xi (� ; t ,x)

�
…v� �

� ,Xi (� ; t ,x)
� �� d� dx

� e� t̄L
� t

0

� 1

0

�
�v(� , 
 ) …v� (� , 
 )

�
� d� d
 � e� t̄Lt̄

�
� v …v�

�
�

X.

Therefore for all t � [0, t̄ ] and i � { 1, . . . ,� }, we obtain

�
� Mi(v)(t, ·) …Mi

�
v� �

(t, ·)
�
�

L1 � (2 + Kn)e� t̄Lt̄
�
� v …v�

�
�

X. (77)
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Analogous calculations allow us to prove that for alli � { � + 1, . . . ,n} and t � [0, t̄ ],

�
� Mi(v)(t, ·) …Mi

�
v� �

(t, ·)
�
�

L1 � (2 + Kn)e� t̄Lt̄
�
� v …v�

�
�

X. (78)

Hence, using (55), (57), (77), and (78), for everyt � [0, t̄ ], we have

�
� M(v) …M

�
v� � ��

X �
n�

i=1

sup
t � [0,t̄ ]

�
� Mi(v)(t, ·) …Mi

�
v� �

(t, ·)
�
�

L1([0,1];R)

� n(2 +Kn)e� t̄Lt̄
�
� v …v�

�
�

X �
1
2

�
� v …v�

�
�

X,

proving that M is a contraction. Hence a unique solution exists in the time interval [0,t̄ ].

Step 2. Global existence in[0,T ]. Assume by contradiction that the solutionv does not

exist on the whole time interval [0,T ] and de“ne

+T = sup
�
t � [0,T ] : v is de“ned in [0,t]

�
. (79)

By contradiction,+T < T. Moreover,

lim
t � +T…

TV
�
v(t, ·)

�
= +	 ; (80)

otherwise, the construction in the “rst part of the proof can be applied, violating the max-

imality of +T .

If +T � 1
� max

, then Lemma17implies thatTV(v(t, ·)) is bounded in the time interval [0,+T],

contradicting (80).

If +T � 1
� max

, then we can apply the previous considerations on time intervals of length
1

� max
, obtaining a contradiction with the de“nition of +T .

Step 3. Stability estimates in[0,T ]. Here we brie”y sketch the proofs for theL1-

estimates (9), (11), and (12). We only consider the caset � t̄ ; the “nal estimates follow

by an iterative procedure. We start with four cases in the construction ofM. Let v andv�

be the solutions to the diagonal system (3) with the initial and boundary conditionsv̄, b

and, respectively,̄v� , b� .

1. For i � { 1, . . . ,� }, t � t̄ , and x � [0,x̄i ], where x̄i = Xi(t; 0, 1), we obtain

� x̄i

0

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

�
�
� v̄ …v̄�

�
�

L1(0,1) +
� x̄i

0

� t

0

�
�hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi(� ; t ,x)

��

…hi
�
� ,Xi (� ; t ,x),v� �

� ,Xi (� ; t ,x)
�� �

� d� dx

�
�
� v̄ …v̄�

�
�

L1(0,1) + L
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d� .
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Similarly, for �t � (0,t), we deduce the estimate for the trace:

� t

�t

�
�Mi(v)(� , 0+) …Mi

�
v� �

(� , 0+)
�
� d�

�
� t

�t

�
� v̄i

�
Xi (�t ; � , 0)

�
…v̄�

i

�
Xi (�t ; � , 0)

� �� d�

+
� t

�t

� t

0

�
�hi

�
� ,Xi (� ; � , 0),v

�
� ,Xi(� ; � , 0)

��

…hi
�
� ,Xi (� ; � , 0),v� �

� ,Xi (� ; � , 0)
�� �

� d� d�

�
�
� v̄ …v̄�

�
�

L1(0,1) + L
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d� .

(81)

2. In the same way, for i � { � + 1, . . . ,n}, t � t̄ , and x � [x̄i , 1], where x̄i = Xi(t; 0, 0),

� 1

x̄i

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx �

�
� v̄ …v̄�

�
�

L1(0,1)

+ L
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d� ,

and, for �t � (0,t),

� t

�t

�
�Mi(v)(� , 1…) …Mi

�
v� �

(� , 1…)
�
� d�

�
�
� v̄ …v̄�

�
�

L1(0,1) + L
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d� .

(82)

3. For i � { 1, . . . ,� }, t � t̄ , and x � [x̄i , 1], where x̄i = Xi(t; 0, 1), using (81) and (82), we
deduce that

� 1

x̄i

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

�
� 1

x̄i

�
�mi

�
Ti (1;t,x)

�
…m�

i

�
Ti (1;t,x)

� �� dx

+
� 1

x̄i

� t

Ti (1;t,x)

�
�hi

�
� ,Xi (� ; t ,x),v

�
� ,Xi(� ; t ,x)

��

…hi
�
� ,Xi (� ; t ,x),v� �

� ,Xi (� ; t ,x)
�� �

� d� dx

�
�
� b …b�

�
�

L1(0,T) + K
��

j=1

� t

Tj (1;t,x̄i )

�
�Mj(v)(� , 0+) …Mj

�
v� �

(� , 0+)
�
� d�

+ K
n�

j=� +1

� t

Tj (1;t,x̄i )

�
�Mj(v)(� , 1…) …Mj

�
v� �

(� , 1…)
�
� d�

+ L
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d�

�
�
� b …b�

�
�

L1(0,T) + nK
�
� v̄ …v̄�

�
�

L1(0,1)
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+ nKL
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d� .

4. Analogous calculations imply that for i � { � + 1, . . . ,n}, t � t̄ , and x � [0,x̄i ], with
x̄i = Xi(t; 0, 0),

� x̄i

0

�
�Mi(v)(t,x) …Mi

�
v� �

(t,x)
�
� dx

�
�
� b …b�

�
�

L1(0,T) + nK
�
� v̄ …v̄�

�
�

L1(0,1)

+ nKL
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d� .

Combining the estimates obtained in the previous four cases, we have

�
� v(t, ·) …v� (t, ·)

�
�

L1 � 2
�
� b …b�

�
�

L1(0,T) + (2nK + 2)
�
� v̄ …v̄�

�
�

L1(0,1)

+ (2nKL + 2)
� t

0

�
� v(� , ·) …v(� ,·)

�
�

L1(0,1)d�

for everyt � t̄ . Using the Gronwall lemma, we obtain (9). Moreover, estimates (11) and (12)

follow from (81), (82), and (9).

Step 4. Total variation andL	 estimates.The total variation (10) and the L	 esti-

mates (13) follow from Lemma17. �

5 Conclusions
We proved the well-posedness of a switched system composed by a system of linear hy-

perbolic balance laws and by a system of linear algebraic di�erential equations. The results

are global in time in the case of the initial data with “nite total variation. We do not need

to impose any additional hypothesis on the smallness of the total variation.

The present setting includes networks and looped systems of hyperbolic balance laws.

Moreover, it can describe many real applications: for networks for water supply, electrical

power distribution, or gas transport. Similar systems, but with nonlinear PDE, are used

also for modeling the human circulatory system or controlling tra�c ”ow through au-

tonomous vehicles.
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