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1 Introduction
In this paper, we investigate the well-posedness of switched systems consisting of linear
hyperbolic balance laws and algebraic di erential equations and having the form

tut,x) +A (t,x) cu(t,x)=s t,x,u(t,x), (1a)
u(,0) _

B (t) u(t 1) =By, (t)w(t)+b (t), (1b)

Ew=H w+Kp, (t)ut,0" +Ky (t)ut, 1~ +f(t). (1c)

Here the unknownu, de“ned fort >0 andx [0, 1], satis“es the system of linear hyper-
bolic partial di erential equations (18), brie”y PDEs, andw, de“ned for t > 0, is the solu-
tion to (1¢), a linear di erential algebraic equation (DAE) with index one. The functions
andw are linked together through the boundary conditionsl() of the PDE and the vector
“eld of the DAE (1c). The complete systemX@)...Lc) is subject to some external switch-
ing governed by the parameter . For various examples of coupled systems PDE-DAE,
see [7]. Systems like 1d)...1c) occur in many real applications such as networks for water
supply, electrical power distribution B, 20], or gas transport B, 15, 16]. Similar systems,
but with nonlinear PDE, are used also for modeling the human circulatory syste®®[.27)
or controlling tra c "ows [ 13, 17] with autonomous vehicles.

In the literature the coupling between hyperbolic PDEs and ODEs at the boundary has
been studied in di erent settings; seeq, 6, 10..12, 18, 19] and the references therein. In
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the case on nonlinear systems of hyperbolic balance laws, only results local in time and
with small total variation have been obtained 5]. Instead, the present setting allows us
to prove the existence of a global in time solution without any restrictions on the total
variation of the initial datum. This is in accordance with the results obtained in the Ph.D.
thesis by Hante 1] about the well-posedness of switched linear balance laws on bounded
domains. We remark that the results by Hante do not cover the case of the present paper.
This is due to the fact that (d)...{¢) is a so-calledoop systemi.e., the boundary condi-
tion (1b) at one side can depend on the trace of the solution at the other side.

Here we treat only the particular case of DAEs of index one. This is due to the fact that
solutions to DAEs with index more than one are distributions in general, in particular,
Dirac distributions and their derivatives; see?B]. This exceeds the regularity we need for
boundary terms of the hyperbolic PDEs. Coupled systems with linear transport equations
and linear switched DAEs of arbitrary index are investigated ii][

In the present paper, we prove the well-posedness @8)...{c) by using an iterative con-
verging procedure based on the solutions to both PDEs and DAESs. As regards the hyper-
bolic balance laws 13d)...1b), we use the well-known de“nition of broad solutions (see,
e.g., B]) based on the concept of characteristic curves. Using the Banach “xed point the-
orem, we extend the results on bounded intervals, contained ], to the case of looped
systems. Moreover, we obtain suitable bounds on the total variation, which allow us to
consider the traces of the solution at the boundaries. Regarding the DAEs, we use well-
known results and estimates; se24].

The paper is organized as follows. In Se&, we summarize several results about the
well-posedness of linear hyperbolic balance laws and about the solutions to algebraic dif-
ferential equations. In Sect3, we investigate the coupled problemig)...Lc). The supple-
mentary technical details are collected in Seet.

2 Separate systems

In this section, we brie"y recall the theory for both linear hyperbolic PDEs with two
boundaries and linear DAEs. For the PDEs, the existing results are extended to include
looped systems. These are the basic steps to produce solutions to the complete switching

system (a)...10).

2.1 Hyperbolic PDEs
Consider the following semilinear initial boundary value problem IBVP:

du(t,X) + A(t,X) xu(t,x) =s t,x,u(t,x) , (2a)
BY(t) Bi(t) u(t,0) _
B Bl uty ) (2b)
u(0,x) = u(x), (20)

wheret R*andx [0, 1]. We underline that the boundary conditionsZb) are not in-
tended in classical sense (see, e.g,,14]), so that we do not prescribe that the traces of
the solution atx =0 andx = 1 strictly satisfy @b). Roughly speaking, condition2b) pre-
scribes the value of the solution only on the incoming components; see, for exam#g, [
Sect. 2]. Hypotheses (H-4) and (H-5) below introduce noncharacteristic conditions for
this reason.
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We introduce the following assumptions:

(H-1) The map A:R*x [0,1] R™"isa C? function.

(H-2) The source term s:R* x [0,1]x R"  R" is bounded, measurable with respect
to t, and Lipschitz continuous with respect to X and U. In particular, there exists
Ls > O such that

S(t,x,u) Ls, S(t,X1,u1)..5(t,X2,U2)  Lg|X1..X2| + Ls|uy .. U

forallt 0, x,X3,X2 [0,1], and u,us,u; R".

(H-3) The system is strictly hyperbolic, i.e., the matrix A(t,X) has n real and distinct
eigenvalues 1(t,X)<---< p(t,x)forallt R*andx [0,1] We denote by
li(t,x) and ri(t,x),i { 1,...n}, the left and right eigenvectors of the matrix A,

respectively. Without loss of generalities, we assume that
1 ifi=j,
Irl=1, lj-ri= o
0 ifi=j.

(H-4) Thereexistc>0and {1,2,...n...}suchthat (t,x)<.cand +(t,x)>cC
for every (t,x) R*x [0,1].
(H-5) BY, Bé COR;R™-)*M) and BY, Bl CO(R;R *M) are locally Lipschitz

continuous and satisfy

4ot BSOI (6,0 +-1a(t, 0] BYOIra(t, 1)--+r (¢, 1)
B +(t,0)---Ta(t,0)] BI(t)[rat,1)---r (t,1)]
foreveryt [O,T].

Remarkl Under the previous assumptions, systerid)...2c) can be rewritten in adiago-
nal form. Indeed, de“ne then x n matrices

L(t.x)= T1(t,x)---In(t,x)  and R(t,x)= ra(t,x)---ra(t,x) ,
whose components are, respectively, the normalized left- and right-eigenvectors of the
matrix A(t,x) and thenx n diagonal matrixA (t,x) composed by the eigenvalues 8ft, x).
Note that (H-3) and (H-4) imply that the matricesL, R, and A are nonsingular. De“ning

the characteristic variables

V(t,X) = va(t,x) - -va(t,x) :=L(t,X)u(t,x),

VX = i)V (%), VXS Vet X) et X)
equation @a) takes the diagonal form

Ve(t,X) + A(t,X)vk(t,X) = h t,x,v(t,X) , 3)
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where

h(t,x,v) :=L(t,x)s t,x, R(t,x)v

4
+ Le(t,x) + A(t,X)Lg(t,X) R(t,X)v.
Finally, de“ning
R(t,x)= ry(t,x)---r (t,x) and R*(t,X)= r +1(t,X)---rp(t,x),
we rewrite the boundary condition 2b) in the form
N Mol) VL0 gy gy VO )
1 Nit)  ve(t1) Vi, 1)
with
No(t) =BoMR™(t,0),  Mo() =Bg(HR"(t,1),  Ma(t)=BI(DR’(t,0),
—RIMR- _ B3R(,0) BgR'(t,1)
Ni(t) =Bi(t)R(t,1) and N(t)= BOR-(t,0) BIR'(L1)
Due to (H-5), then x n matrix
M= No® Mo
Ma(t)  Na(t)
is invertible, and so §) can be rewritten as
Vi(t,0) v-(t,0)
D " M) “bt) ... M) “N(@) D (6)
that is,
+ + + V"(t,O)
vi(t,0) =b*(t) + N*(t)
vi(t, 1)
7
v-(t,0)
v-(t,1) =b-(t) + N-(t)
vi(t, 1)

with appropriate choices ofo(t) R ,b*(t) R™,N-(t) R *", andN*({) RM-)*n
Expressions@) or (7) have the same form of the general boundary conditions considered
in [23, Sect. 2]. The right-hand side represents the boundary datum, which is given since
v-(t,0) andv*(t, 1) are the exiting components of the solution. On the left-hand side d)(
and (7), the values of the entering components (t, 1) andv*(t, 0) of the solution are pre-
scribed.

Remark2 Since the mapA is of classC?, we deduce that the eigenvalues and eigenvectors
have the same regularity. In particular, the source termde“ned in (4) for the diagonal
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equation @) satis“es the following estimates. For evefly > 0, there exists a constarit,, > 0
such that

hit,x,v)  Ln 1+]v],

h(t,xg,v1) ..h(t,X2,v2)  Ln|va||X1 .. X2 + Ln|v1 .. Vo
fora.et [0,T]andallx,x;,x; [0,1] andv,v;,v, R".

Solutionsto 24d)...2c) are to be intended in the sense of broad solutions, which are based
on the concept of characteristic curves.

De“nition3 Given R*, [0,1],andi { 1,...n}, anabsolutely continuous function
t  Xi(t; , ) de“ned in a possible one-side neighborhood of is called theith charac-
teristic curveif it satis“es

d . — . (+-
axi(t’ ’ )_ |t,X|(t, ’ )

for a.e.t whereX;(t; , )isde“ned,andXj( ; , )=

Remark4 By assumption (H-4) the functiont  X;(t; , ) is invertible. We denote the
inverse function byx  Ti(x; , ).

De“nition 5 Fix T > 0. A function u : C°([0,T];L%((0, 1)R™) is a broad solution to
(29)...20) if, de“ning for everyi { 1,...n} theith componenty; of u as in Remarkl and,
consequently, writingu as

ut,x)=  vi(t,x)ri(t,x) = R(t,x)v(t,x) on[0,T]x [0,1], (8)
i=1
the following conditions hold.

1. Foralli {1,...n}and [0,T] and for a.e. [0, 1], the equation

%vi EX L ) Sh LX) X )

is satisfied for a.e. t where the characteristic curve X(t; , ) (see Definition 3) exists.
2. The boundary condition (2b), in the sense of formulation (6), is satisfied for a.e.

t [0,T]
3. Foreveryi {1,...n}, the initial condition

vi(0,X) =1i(0,x) - u(x)
is satisfied for a.e. x [0, 1].

We have the following well-posedness result fo28)...2c).
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Theorem 6 Fix T >0 and let hypothese¢H-1)..(H-5) hold. For every § [0, T], there
exists a process

Py, [t T1x Dy, L (0, 1)R",
where
Dy, = (U,b) L' (0,1)R" x L (t, T);R" :TV(@)+TV(b) <+
satisfying
1. u(t,) =Po(t,u,b) is the solution to (2a)—(2¢) in the sense of Definition 5.
2. Pi(to,u,b) = U for every (u,b) Dy,.
3. Forallty, t1 tz Tand(u,b) Dy, wehave:
7D’(o(t21 LT! b) = Ptl t21 P’(o(tla Jy b)! bl(tl,T) .
4. There exists L > Qsuch that

Po(t,i,b) Po(t,ﬁo,b) Ll(O,l) L Jﬁo L1(0,1)+ bb Ll(O,T) (9)

fora.e.t [0,T]andforallu,ug LY(0,1)andb,b L(0,T).
5. There exists L > Qsuch that fora.e.t [0,T],

TVioq Po(t,U,b) L 1+TVoy(0)+ TV oy(b)

B (10)
+Let UL on* b -
6. There exists L > Osuch that fora.e.t [0,T],
PO(',J, b) O+ ..Po(',ﬁo,b) O+ Ll(O,t) L Jﬂo Ll(O,l) (11)
+ L b b Ll(O,T)'
7. There exists L > Qsuch that fora.e.t [0,T],
PO(',J, b) 1 ...PO(',JO,b) 1 L1(O,t) L JHO L1(0,1) (12)
+ L b b Ll(O,T)'
8. There exists L > Qsuch that fora.e.t [0,T],
Po(t,u,b) L 01 L uL +2by op+T. (13)

Theorem 6 is in the same spirit as§, Theorem 3.2], where the result is proved in the
case of no boundaries. The proofin the case of tveeparateboundaries, contained in21],
does not cover the situation in this paper. The proof of Theoreis given in Sect4.3.
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2.2 Linear DAE
Consider, forT >0, the linear di erential algebraic equation

Ew = Hw +f(t),
(14)
w(0) =w,

wherew : [0,T] R™ is the unknown,E,H R™™ are given coe cients, f : [0,T]
R™ is the nonhomogeneous term, andv  R™ is the initial condition. In the caseE is
an invertible matrix, (L4) clearly is a classical system of ordinary di erential equations;
see, for example,J2] for the basic theory. The case of a singular matri is more tricky.
Following [24], we introduce the following assumptions on the matriceis,H.

(D-1) The matrix pair (E,H) is regular, i.e., the map s  det(sE ..H) is a nonzero

polynomial.
(D-2) The matrices E and H commute, i.e., EH = HE.

Remark7 Assumption (D-2) can be omitted by using a manipulation ofLd). Under as-
sumption (D-1), there existss R such that @& ...H) is nonsingular. Multiplying equa-
tion (14) from the left by (S£ .. H)% we obtain that

Ew = Hw + (sE .. H)¥(t),

whereE=(sE..H)EandH = (s£..H)H. We note thatsE .. H is the identity matrix,
and hence the matrice&€ andH commute.

If (D-1) holds, then according to R4, Theorem 2.7], we can transfornk and H into its
Weierstrall canonical form, i.e., there exist invertible transformatiol T R™ ™ such
that

|
(SET,SHT)= '+ O 3 0 (15)
0 N 0 Ip

wherel; RM*M gndl, RM*M gre the identity matricesJ R™>*™M js a matrix in
Jordan canonical form, and R™*™2 js a nilpotent matrix, i.e.,N =0 for some

N\{0}. The integersm; and m; satisfym; + m, = m. For later use, we decomposginto
Si RM*MandS, RM™*™andde“nethevariabley R™ andz R™2 such that

2o =T . (16)
S

Thus we can write (4) in the form

y = Jy+fy(b), y(0)

=T, 17)
Nz=z+1,(t), z(0)

whereSf = (fy,f;) .
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Following [24, Chap. 2.2], we can give an explicit formula for the solution oi4):

t
w(t) = & MEPEW, + & H-9EDf(9)ds
0
1 _ (18)
...1..EPE EHP 'HPfOt),
i=0

wherewg solves

WA
w=EPEW, ... | ..EPE EHP 'HPf0(0). (19)
i=0

Here the matricesEP® and HP are the so-called Drazin inverses & and H, respectively;
see R4, Chap. 2].

De“nition 8 A function w  C°([0,T];R™) is a solution to (L4) if for everyt [0,T],
equations (8) and (19) hold.

We have the following result about the existence and uniqueness of solution fib4,

Theorem 9 ([24, Theorem 2.29 and Corollary 2.30]Assume that hypothesef-1)
and (D-2) hold. Letf C [0, T];R™), where is the smallest natural number such that
N =0.Then there exists a unique solution {d4) in the sense of De"nitior8.

Remark10 In the case =1, Theorem9 remains valid also in the case wherkis a
bounded-variation function. In this setting, we need to relax the regularity ef to the
class of bounded-variation functions and the expression of the solution tbj is, for a.e.
t [0,T],

t
w(t) = HEPEW, + & HE9EPf(9)ds... | ..EPE HPf(1),
0

wherew = EPEwg ... (.. EPE)HPf(0Y).

3 The coupled problem
Now we consider the coupled problem of switched hyperbolic PDE and switched DAE
(swDAE). The complete system is

tut,x)+A (t,x) cu(t,x)=s t,x,u(t,x), (20a)
u(t,0) _

B (t) ut. 1) =By, (t)w(t)+b (1), (20b)

u(0,x) = u(x),

Ew=H w+Kp, (tut,0" +Ky (t)ut, 1 +f(t), (20c)

w(0) =W,
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wherex [0,1],t [0,T]for T >0,u: [0,T]x [0,1] R"isthe solution ofthe PDE 203,
A :[0,T]x [0,1] R™" s [0, T]x [0,1]x R" R"is a source termB : [0,T]
R™2" and By, : [0,T] R™M b :[0,T] R" constitute the boundary or coupling
conditions, u: [0,1] R" is the initial condition for system @03, w: [0,T] R™is as
solution of the swDAE @0¢), :R  Nis a switching signal with “nitely many switching
times,E ,\H R™MandKq ,Ky, :[0,T] R™"{:[0,T] R™formthe DAE, and
W R™ are the initial condition for system 200). In the following, we restrict ourselves to
the case of an swDAE system with index= 1.

Note that (20b) is an algebraic equation and2(¢) contains algebraic equations. There-
fore the coupled problem cannot be addressed simply as a combination of the two separate
subsystems. Equation20b) and (20¢) have to be chosen such that the PDE provides only
information via the outgoing characteristics and su cient data is given as boundary con-
ditions, as the following trivial example illustrates.

Examplell Consider the system

tu+ wu=0, t>0,x [0,1],
u(t,0) =w, t>0,
0O-w=w..u(t,0), t>0.

The PDE equation is a simple transport equation with characteristic speed 1; hence its
solution is completely determined by specifying the initial and left boundary data. In this
example, the algebraic di erential equation is unable to select the boundary datum, since
the DAE and boundary conditions coincide. In other words, the boundary condition does
not contain any information; thus the transport equation has in“nitely many solutions.

To avoid settings like those of Exampl&l, we rewrite the PDE into characteristic vari-
ables and decompose the DAE into algebraic equations and ODEs. The resulting system
has the form

tV+ A(t,X) xv=h(t,x,V),

V(.0 _ Byolt) Bzo(t) y(t) _ bo(t)

vo(t, 1) Byi(t) Bzalt)  z(t) by (t)

N-(t)  v-(t,0)
N*@t) vt 1)

v(0,Xx) = V(x),
_ v-(t,0%)
y(t) = It) + SiKo(t)R(t, 0) v (t, 0) (21)
FSKIORGD ") 3 SO,
v-(t,0%)

2(t) = ..SKo(t)R(, 0) 0



Borsche et alAdvances in Continuous and Discrete Models (2023) 2023:19 Page 10 of 31

LsKoRt 1) VG

vy SO

y(0) =y.

The algebraic conditions do not con”ict with the boundary conditions, provided that
1. (C-1)] For the coupled system (21),

SKo(t)R*(t,0)=0 and SK4(t)R"(t,1)=0,

where S, is chosen as in (16). We further we assume that $;Kg(t), S{K4(t), and f(t)

are measurable in time and bounded.

Remark12 Note that if this assumption is not satis“ed, then it might be possible transfer
these algebraic relations into the formulation of the coupling conditions.

With assumption (C-1), we can decouple the algebraic equations and replada the
boundary conditions so that the new system reads

tV+ A(t,X) xv=h(t,x,V),

v*(t,0) _ By, o(t) v+ bo(t) . N-(t) v-(t,0%

vo(t,1) By,1(t) ba(t) N*(t) v'(t, 1)
v(0,x) = v(x), 22)
v-(t,0%)

y(t) = INt) + SiKo(tR(t, 0) V(. O)

v(t, 1)

*SIGORGD) )

+ Sf ().

Note that the termsN--andN* in (22) can be di erent from zero, evenifN--=0andN* =0
in (21). Moreover, the dependencies ow' (t, 07) andv-(t, 1-) in the ODE can be replaced
by boundary conditions.

We “nally rewrite system @2) in the more compact form

tu(t,x) + A(t,x) xu(t,x)=st,x,u(t,x) ,

u(t,0)

CRREELICYORLO)
u(0,x) = t(x), (23)
YO =30+ Go Gy jgf; (),

y(0) =y,
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with

“Ng I 0 LNy p. = By.o(t) _ bo(t)

PO= N o1 0 P g0 T byt

and Gy = SKg, G; = $1K1, g = S;f. System 23) is equivalent to 0g)...20¢) thanks to (C-
1). For this system, we provide analytical results.

De“nition 13 Fix T >0. A pair (u,y) is a solution to £3) on the time interval [0,T] if the
following conditions hold.
1. U is a broad solution on [0, T] to

U+ A, X) xu=s(t,x,u),

u(t,0)
P(t) =Py(®y(®) +p(1),
(t.1)

u(0,x) =u,

in the sense of Definition 5.
2.y CY(0,T];R™) satisfies

yt)=y+ t NS +G(9 ds
0

foreveryt [0, T], where
G(t) =Gp(t)u t,0" +Gy(t)u t, 1 +g(t)
fora.e.t [O,T].

We have the following existence result.

Theorem 14 Assume that(C-1), (D-1), (D-2),and (H-1)..(H-5) hold. Then, for every T>
0,there exists a semigroup

S:[0,T]x DS D,
where
D= (0y) L' (0, 1)R" x R™:TV(U)<+
satisfying
1. (u(t,x),y(t)) = S(t,u,y)(X) for every (U,y) D is a solution to the coupled

system (20a)—(20c) (or to the alternative form (23)) in the sense of Definition 13.

2. §(0,u,y) = (u,y) forevery (u,y) D.
3. ForallO t; ty Tand(y) D,wehave

S(ta,u,y) =S to .11, S(ty,u,y) .



Borsche et alAdvances in Continuous and Discrete Models (2023) 2023:19 Page 12 of 31

4. There exists L > Qsuch that

S(t,u,y) .. S(t,u,y) 1oy L .l pion* VY Lo (24)
forae.t [0,T]andforall (u,y) D and(uy) D.

Proof First, introduce the sets
Dy= u CO°[0,TL;LY (0,1)R" :sup TV u(t) + u, <+
t [0,T]
Dy=y CO[0,TLR™ :TV(y)<+

We construct the solution to systemZ3) by passing to the limit of an approximating se-
guence of solutions. The proof is divided into several steps.

Construction of approximate solutions.

Setup(t,x) u(x)andyo(t) y.Foreveryk 1,givenuc 1 Dyandyy 1 Dy, recur-
sively de“neug as the solution to

tuk(tlx) +A(t,X) XUk(t,X) :S(t,X,Uk),

uk(t, 0)
P(t) =Py (t)yk..{t) + p(1), (25)
uk(t, 1)

uk(0,x) = U.

Note that Theorem 6 applies to systemZ5), and hence the solutiorug exists, is unique,
and belongs taD,,. Moreover, de“ney,  C°([0,T];R™) as the solution to the linear non-
homogeneous system

Yi(t) = Ik(t) + Go(t)uk...{t, 0%) + Gy (t)uk.. {t, 1) + g(t),

_ (26)
yk(0) =y.
Classic theory of ODEs implies that the previous system admits a unique solution, since
by Theorem6 and (C-1) the function

tS Go(t)uk. 1t,0" +Gy(t)u. 1t, 1 +g(t)

is measurable; se®] Theorem 3.1]. The same function is also bounded by (C-1) and the
de“nition of D,. Henceyy belongs toDy.

Yk is a Cauchy sequence.

Fork 2andt [0,T],using (26), we obtain

t

Yi(t) -- k.. A1) . J V(9 .. Yk..{9) ds

t
+  Go(9) uk.{s0)..ux. 4s0) ds
0

t
+ . Gi(9) uk.{s 1) ..ux.4s 1) ds
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t

J . V(S .- Yk..{9) ds

t

+Le  Uk.{s0)..ux. 4s0) ds
0

t
+Lle  Uk.{s1)..ux.4s1)ds
0

where Lg :=max{sup; 17 Go(t) ,sup; o1} Ga(t)}. By the Gronwall lemma, forkk 2
andt [0, T], we deduce that

yk(t) yki(t) € J tLG Uk___;(',o) --uk...i'lo) L1(o1) (27)

tellle U 51) U4 1) 1y

By (11) and (12) we obtain that fork 3,

Vi) Y. A) eV 'Lel Py(Vi.2-¥i.d L1y

t
e’'LeL Py Yk .49 .Yk 49 ds
0

We apply 5, Lemma 4.2], i.e., Lemma6with =0, =e’'LgL Py ,andhi(t) =|yk(t) ...
Yk..{t)|, to the inequality

t

ha(t)  + hn.£ )d
0

and obtain that foralln 1,

n..1 iti ngn
max han(t), han+a(t) e + YT,
o ! !
whereY max{ hg, hi}.
Thus there exists a positive constar@; such that

(eJTLGL P )ka
Yk Yk 100001y C1 k! :

for everyk 3. Therefore, for everk >j 3,

Yk .Y coqoT)) Yi --¥i..1co00,1)
i=j+1
“ @?TLeL P, )T!

= il

i=j+1

proving that yi is a Cauchy sequence i68°([0, T]). Thus there existsy  C°([0,T]) such
that y, convergestoy in C°([0,T]) ask +
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Uk is a Cauchy sequence.
Using (9), we deduce the existence of a consta@t> 0 such that for allk andk , we have
the estimate

Uk(t,) Uk (67) 105 © Yeo1-¥k.au1m

CT Yk..1--¥k .1 cOqoT)

for everyt [0, T]. Thus uy is a Cauchy sequence i€°([0,T]; L%(0, 1)), proving the ex-
istence ofu  C°([0,T];L%(0, 1)) such thatuy, converges tou in C°([0,T];L%(0,1)) as
k +

The couple(u ,y ) is a solution to 23).

First, we show thaty is a solution to the ODE with the input fromu . Due to 26), for
everyt [0,T], we have

t t
k) =y+  Ik(9ds+  Go(Yuk..150" +Gi(Juk..1S 1" +g(9 ds
0 0

Using again (1) and (12), we deduce that both sequenceg(-, 0") andu(-, 1) are Cauchy
sequences i.1(0,T) and the limits are respectively (-, 0") andu (-, 1), since the non-
characteristic condition (H-4) holds; se€l]]. Passing to the limit ak , we thus obtain

t t
y ®)=y+ Jy(9ds+ Go(u s0" +Gy(gu s1~+g(9 ds
0 0

provingthaty satis“es condition 2 of De“nition 13. Moreover, note that the lastintegralin
the previous equation is uniformly bounded because df3) and (C-1). Hence the previous
equation implies thaty has “nite total variation.

Conversely, we de“nau as the solution to the hyperbolic system

tu(t,x) + A(t,x) xu(t,x)=s(t,x,u),

u(t,0)
P(t) =Py()y (1) +p(),
(t,1)

u(0,x) =u,
which exists and is unique by Theorer. Dueto @), fort [0,T]andk 1, we have that

U(t) ..Uk(t) L1(0,1) L Y Yk L1(0y)

for some positive constanL. Sinceyy is a Cauchy sequence angk converges tou in
C°([0,T]; LY(0, 1)), we deduce thati =u in C°([0,T];L%(0, 1)), proving thatu satis“es
condition 1 of De“nition 13.

Well-posedness estimat€onsider two initial conditions (,y) and (u,y) with TV (u) +
TV(u)<+ .Denote by (k,Yx) and (uk, yx) the sequences constructed as in the “rst part
of the proof for the initial conditions given by (1,y) and (u,y), respectively. By9) there
exists a constanC; > 0 such that

t
Uk(t) .. uk(t) L1(0.1) Ciu.u19p+Ce . Yk(9) .. yk(s) ds (28)
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fora.e.t [0,T]. Moreover, there existsC, >0 such that for everyt [0, T],

t

Y@ yk®) Ty..yl+C , (9 .- yk(9) ds

t

+C; Uk(s 0) ..uk(s,0) ds (29)
0

t
+C;  Uk(s1)..uk(s1)ds
0

Using (11) and (12) in (29), we deduce that there exist€3 > 0 such that

t
y(®) .yk®) | y..y|+C . Yk(S) --yk(9) ds+C3 u..u 10y (30)

for everyt [0,T], and so by the Gronwall lemma

V) -y Y.yl +Cs Ul 1) €2 (31)
|yy| +C3 JU Ll(O,l) eczT
foreveryt [0, T]. Inserting (31) into (28), we deduce that fora.¢. [0,T],
_ Cs 7 _
Uk(t) .. uk(t) L1(0.1) Ci+ C. e ...1 u.u 19y
’ 2
c (32)
1= CoT
+—|y..y| €2 ... 1.
Czly yl
Passing to the limitak + in(31) and (32), we obtain @4). O

Corollary 15 Let T>0,and let :[0,T] N be a given switching signal with “nitely
many switching pointsThen, under the above hypothesesysten(203)..(20¢) has a unique
solution (u,w) on[0,T].

A proof can be obtained by iteratively applying Theoreri.

4 Technical details
4.1 Lemma4.2
Here we repeat Lemma 4.2 frong].

Lemma 16 Assume that the sequencg h C°([0, T];R*) satis“es

t

hn(t) + ha. 4 )d with hg(t) [0,H]and hy(t) [O,H]
0

for positive numbers, ,and H.Thenforalln 1,

n..1 iti ngn
max oy (t), han+a(t) — +H

0 i
i=0 1 n:
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4.2 A priori estimates
Lemma 17 Assume hypothesébl-1)..(H-5) hold. De“ne .« asin(52). Letv be a broad
solution to(3) with initial condition v and boundary conditiong7). Then, for every0 <t
mi there exists a constant € 0,depending on ,..x, h, N*, and N-; such that

v(t) | C v, + b~ b*

t (33)

Loyt L opt

and

TV v(t) C1+TV(VW)+TV b"™ +TV b exp(Ct)
(34)
+C v + b"  + b exp(Ct).

Proof First note that the choicet mi implies that the characteristic curves starting
from one boundary do not reach the other boundary within timemiax. Denote byL a
uniform bound and a Lipschitz constant forh in [0, ﬁ] x [0,1] x R"; see Remark2.
Sincev is a broad solution to 8), thenforalli {1,...,}and0 t L

max

VX051, ) + o (X)), v( Xl st x))d
if x<X;(t;0,1),
vi(t,x) = L . (35)
METIL )+ 1 g MO XLV X 5EX)
if x>X;(t;0,1),
whereasforali { +1,...njand0 t %

)
max

t

miO(Ti(O;t,x))+ Ti(O:t,x)hi( Xi(sx),v( LX) d

if x<X;(t;0,0),
Vit )= t (36)
Vi(Xi(O;t,X))+ ohi( 1Xi( ;t,X),V( ,Xi( ,t,X)))d
if x>X;(t;0,0),
whereT; denotes the inverse of théth characteristic curve (see Remar), and
mon =br+ N ,
OO NO 'y
(37)
~(t 0)
Mty=b-(t)+ N-(t ve(t, ;
MOBOT NO Ly
see ().
First consider theL estimates. For { 1,...,}and 0 <t ﬁ we have

vi(t,0) Vi X;(0;t,0) + thi Xi(sux),v L Xi(5tx) d
0

t
nv., +Lt+L  v() d,
0
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and so

t

vit,00 n nv_ +nLt+nL  v()  d. (38)
0

An analogous computation yields

t
Vit,1) n nv . +nlt+nL  v() _ d. (39)
0

Fori {1,...,},0<t —— andx (0,X(t;0,1)), we have

t
Vi (t,X) nv., +Lt+L  v(), d,
0

whereas forx  (X(t; 0, 1), 1), using38) and (39), we have

t
vitt,x)  mi Ti(Ltx) + hi X(6x),v L X(5tx)  d
Ti(1t.x)

by Ti(L;t,x) +L v Ti(1;t,x),0 +Lv" Ti(1;t,x),0

t
+Lt.. Ti(1;t,x) +L v(),  d
Ti(1tx)

nb-, (0,t)+2n nL v
Ti(1tx)

+2nL%T;(1;t,x) + 2nL? ) v(), d

t
+Lt.. Ti(1;t,x) +L v(),  d
Ti(1tx)
t

n b- +2n nLV | +2nl’t+2nl>  v() | d.
0

Lo
A similar computation holds inthe caseé { +1,...n}. Hence

v(t) | (h n+4n nL) v, +n n b~ ot b* | 08
t

+ nL+4nL? t+ nL+4nL? v(), d
0

5 nLv_ +n n b~ ont b* | o8
+5nL2t +5nL? ot v(), d.
The Gronwall inequality implies that
v(t) | etsn ALV, +n n b on* BT L o +5nL2%t
5n nL2eMt v+ b op* BT L eptts

so that (33) holds.
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Consider now the total-variation estimate34). Fori { 1,...,} and 0 <t , we

have

max

TV vi(t,:) =TV vi(t,"); 0,X(t;0,1)
+TV vi(t,); Xi(t;0,1),1 (40)
+ V; t,Xi(t;O,l)" Y t,Xi(t;O,l)” s

whereasfori { +1,...n}and0<t mi

TV vi(t,:) =TV vi(t,-); 0,X(t;0,0)
+TV vi(t,); X(t;0,0),1 (42)
+ v t,Xi(t;0,0Y Ly Xt 0,0) .

Consider the “rst term in the right-hand side of @0) and points 0 xp --- XN <
Xi(t;0,1). Using 85), we deduce that

Vi(t,Xj)...Vi(t,ij_‘D
=1
N t
TV (vi) + hi L, Xi(0t,%),v ,Xi(0;t, %)
=1 0
Jhi(CLX Ot X sy X050 d

TVE©) +L tv() d +L tTVv(,-)d,
0 0

and so by 83) we have

TV vi(t,*); 0,X(t;0,1)

t
Vi ;) d
TV(v)+L . TV v( ,9) (42)

1

+
L (0%) max

+O(1) v + b on ™ b* t.

Here and in the following part of the proof, the Landau symbaD(1) denotes a constant.
Similarly the second term in the right-hand side of41) can be estimated by

TV(vi t,); X(t;0,0),1

t
Vi ;) d .
TV(v)+L . TV v( ,") (43)

1

+
L (O max

+O@U) Vi o+ b g+ b t.
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Consider now the second term in the right-hand side o#Q) and pointsX;(t; 0, 1) <xo
-+ Xy 1. Using @5), we get

N
Vi(t,Xj)...Vi(t,ijj)
=1
N
m! Ti(L;t,x) ..m! Ti(Lit, %)
=1
N t
+ hi Xi(tx),v L Xi(5tx) d
j=1 Ti(l;t,Xj)
t
N hi  Xi(tx.v X tx.) d
Ti(l1x..2

De‘ning K = sup; o 1 y{sup anyg 'N“ﬁ( I sup Rn\{o}W} and using @5), (36),
and (37), we deduce that

N

mll Ti(l;t,Xj) m,l Ti(l;t,Xj”j
=1

TV b +KnTV (V) + 2KnLt

t

+KnL TV v( ;) d,
0

whereas, using the assumptions dnand triangle inequalities, we have

N t

hi Xi(stx),v L Xi(stx) d
j=1 Tix)

t

hi X stx.v L Xi(;tx..) d
Ti(Ltx..2

t

2Lt+L TV v( ;) d
0

_ 1
+LO1A) v + b~ b* | onpT— b

max

L oyt

Therefore the second term in the right-hand side of4Q) can be estimated by

TV vi(t,?); X(t;0,1),1

TV b +KnTV (V) + 2(Kn + 1)Lt

t

+(Kn+1)L TV v(;)d (44)
0

_ 1
+LOA) Vv, + b~ b* | opt— b

max

Loyt
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Similarly, the “rst term in the right-hand side of @1) can be estimated by

TV vi(t,-); 0,Xi(t;0,0)
TV b* +KnTV (V) + 2(Kn + 1)Lt

+(Kn+ 1)L v v( ;) d . (45)
0

_ 1
+LO(1) \% L + b L (O,t)+ b+ L (0I)+ t

max

Consider now the third term in the right-hand side of 40). Using @35), (36), (37), and
the assumptions orh, we obtain

vi t,Xi(t;0,1) ..v t,Xi(t;0,1)"
lim mi( ) + v 1+

t
+  h X UXi(t:0,1),v X st Xit:0,1) 7 d
° (46)
hi X t,X(t;0,1),v X ;t,X(t;0,1) " d
0
t

b~0" +(2K+1)v, +L TV v(,)d
0

_ 1
+LO@1) v + b on ™ b* Loy t.

max

Similarly, the third term in the right-hand side of @1) can be estimated by

vi £,Xi(t;0,0) ..v t,Xi(t;0,0)"
t

b* 1+ +(2K+1) v +L TV v(,)d (47)
0

_ 1
+LO(1) v + b ont b* Lont— t.

Inserting (42), (44), and @6) into (40), we get

TV vi(t,) TV(%)+TV b +KnTV @)+ (2Kn + 3)Lt

t
;) d
+(Kn+3)|_ . TV V( ) (48)

_ 1
+
+0() v + b on* b™ | opt— L

max

A similar estimate of @1) holds. Consequently,

TV v(t,) 1+Kn?> TVVW+ TV b~ +(n...)TV b*
t

+(2Kn+3)nLt+(2+Kn)nL TV v( ,) d
0
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1

+
L 0y max

+O@1) V. + b~ b* t.

Lopt
An application of the Gronwall lemma implies 84). 0

4.3 Proof of Theorem6
This subsection contains the proof of Theorer6, which is based on the Banach “xed point
theorem.

Proof of Theorent By Remarkl the proof is focused on the diagonal version of sys-
tem (23)...2¢) and is divided into two steps.

Step 1. Local existence and uniqueness of solutkir an initial condition o L*((0, 1);
R™) with “nite total variation and a boundary conditionb  L((0,T);R") with “nite total
variation. Denote by(x) = L(0,x)u(x) the corresponding initial condition for the diagonal
system @) with the corresponding boundary conditiond--andb™; see 7). De“ne

NOOL o INOOL

K= sup sup , , (49)
t o711 rygop || rgop ||
M =2n(2K + DTV (@) +2nTV b~ +(2+K)nv (50)
+2nb  +1,
Mi=1+K)v + b +1, (51)
max =Max i coqorxpap:l {L---n}, (52)
=max  cigorxpap-l {L.--n}. (53)

Note that both .« and are “nite because of (H-1) and (H-3). Choose (0,T] such
that

1 1

t<min —,
T ALK + 4) (L + M, + M)

(54)
and
- 1
n(2 +nK)e 'Lt > (55)

where L is a uniform bound and a Lipschitz constant foh in [0,T] x [0,1] x R"; see
Remark2.

Note that the choice oft implies that every characteristic curve starting form a boundary
does not arrive at the other boundary within time.. Now we aim to construct a map whose
“xed points are solutions to the diagonal IBVP and so t®2f)...2¢c). First, introduce the
space

sup sup TV vi(t) M
i{1.nkt [0f] #

X= v C°[0,t];L [0, 1];R" V(0) =V (56)

VL @oiixpi M1

Page 21 of 31
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equipped with the norm
n n 1

Vxi= Vi ocoqomuiqonmy = Sup o VitX) dx, ®7)
1 =gt [0d ©

so thatX is a complete metric space. Now de“ne the operator

M:XS X

vS MV)= My(v),...Mn(V) ,

according to the following four cases.
(c1) Foralli {1,...,},0<t t,andx [0,X;(t;0,1)]} we define
t
MiM(tX) =vi Xi(O;t,x) +  h X(tx),v  X(5tx) d . (58)
0
(c2) Foralli { +1,...n},0<t t,andx [X(t;0,0),1]we define
t
MiWM(tX) =vi Xi(O;t,x) + h X(tx),v  X(5tx) d . (59)
0
(c3) Foralli {1,...,},0<t t,andx (X(t;0,1),1] we define
t

Mi(v)(t,x) =m! Ti(L;t,x) + hi Xi(5tx),v L Xi(5tx) d o, (60)
Ti(1tx)

where T; denotes the inverse of the ith characteristic curve (see Remark 4), and

My o(V)(t)
mi(t) =b-(t) + N-(t ’ ; 61
O=b N (61)
see (7), (67), and (70).
(c4) Foralli { +1,...n},0<t t,andx [0,X(t;0,0)) we define
t
Mi(v)(t,x) =mP T;(0;t,x) + hi Xi(5tx),v Xi(tx) d o, (62)
Ti(0t.x)
where
+ sy Mbo(V)(t)
mo(t) =b*(t) + N*@) = °° ; 63
i (1) =b"(t) + N (t) Mu20)() (63)
see (7).
We proceed now to estimate thé.  norm and the total variation ofM (v) according to
four cases.

Case (cl). By Remarkwe easily deduce that

Mi(v) | VL +LEA+Mot (64)
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We claim that for every 0 t t,

TV Mi(V(t,); 0,Xi(t;0,1)  TV(V)+L(My+M)t (65)
and that
TV Mi(v)(-,0+);[0,t_] TV(\7i)+L(1+2M1+M)f (66)

For later use, for0 t t, we denote

o Ma()(t,04)
M=% & (67)
M (v)(t,0+)
which is well de“ned by 68) and has a “nite total variation by 66).

To prove (65), “x N N\{0},atime0 t t,andpoints0 Xxo<---<xy Xi(t;0,1).
Using the notationx;j( ) = Xi( ;t,x), we have that

N
Mi(V)(t,Xj)..Mi(V)(t,ijJ)
=1
N
Vi %(0) ..¥ %.{0)
J=1 ( .
:
N t
+ hi ox()v ox() hi o x.{)v x.{) d
1 0 0 .
I2

Clearly, the terml; is estimated byTV (v;). For the terml,, we have

N t
I hi o)V o) hioox )V () d
=1 0
Nt
+ hi . L)V x() i x5 {)hw x.{) d
j=1 0
N t
L . (). X. {)M+v x().v x.{) d
=1
LMjt + LMt,
and so we deduceqb).

To prove (66), “x N N\{O}andtimes0 ty<---<ty t.Usingthe notationx;( ) =
Xi( ;t,0), we have that

N
Mi(V)(t, 0) .-Mi(V)(t;...1 0)
j=1
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N
Vi X(0) ..V X {0)
=1
' 0 *
I3

N t.1
+ hi ij( ),V ,Xj() . h ,Xj,,,{ ),V an() d

=1 0

1 () *

I4

N t.1
+ hi ox. )V o x() hio oo L)V x.{) d

=1 ©

0 *
Is

N t;
+ hi ,Xj( ),V ,Xj() d

=1 Gt

0 *
le

Clearly, the terml; is estimated byTV (). For the remaining termdy, Is, andlg, we have

N _
|4 L Xj( )X]:( )Mld LMlt,
=1 O
N g _
ls L v L X(55.0) v L X(5.40) d o LM,
i1 0
le L(1+My)t;

so (66) is proved.
Case (c2). Similarly tcCase (c1)we deduce that for every 0 t t, (64) holds,

TV(Mi(V)(t,); Xi(t;0,0),1 TV (%) +L(My+M), (68)
and
TV Mi(W)(, 1. ): (A TVE) +LL+2Mq + M) (69)
ForO t t,wedenote
M +1(v)(t,1...é
M=% , (70)
Mn(v)(t,1...)

which is well de“ned by 69) and has a “nite total variation by 69).
Case (c3). By Remarkwe easily deduce that

Mi(v) | mt | +LL+Myt. (71)
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We claim that for every 0 t t,

TV(Mi()(t,); Xi(t;0,1),1] TV b +2KTV (%) (72)
72
+L(2K + 1)(1 +M +2My)t.

To prove (72),“x N N\{0},atime0 t t,andpointsX;(t;0,1) Xg<---<xn 1.
Using the notationsx( ) = Xi( ;t,x;) andtj = Ti(1;t,x;), we have thaty <--- <ty and

N
Mi(V)(t, %) .. Mi(V) (L, %9
j=1
N
mi() .. mi )
J=1 N
<.z
N t
+ h; ,X]'( ),V ,Xj() . hi ,Xj( ),V ,ij() d
g=1 0 .
I
N t
+ hi (v . L) ~hi . L)V x.{) d
g=1 0 .
lg
Ny
+ hi x.{)v ,x.{) d
=1 Gt 0 .

110

Using (49), (66), (69), and 61), we get

l; TV b +KTV Mpo(V)(-) +KTV Mp1(V)(-)

TV b +2K TV(V))+L(1+2M,+ M)t .

For the remaining termslg, lg, andlo, we have

N t
lg L v () ..v ,x.{) d LMt
j=1 i
N t
lg L X()..x.{)Mid  LMyt,
=1 b
N _
l10 hi x.{)v x.{) d LIL+Mt,
=1 4.1

proving (72).
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Case (c4). Similarly t€Case (c3)we deduce that for every 0 t t, (71) holds, and

TV Mi(v)(t,); 0,Xi(t;0,0) TV b~ +2KTV (%)

_ (73)
+L(2K +1)(1 +M +2M)t.
Moreover, using 68) and (60), note also thatforalli { 1,...,}and0<t t,
li Mi(V)(t,X) ... i Mi(v)(t
, im MGG - lim M) .

2V +2b +K V. +LA+Mt +2L(L+Mt.

The same inequality holds inthe case{ +1,...n}.
Using (65), (68), (72), (73), and (74), we deduce thatforall0 t tandi {1,...n},

TV Mi(V(t,)) 22K +1)TV(V)+2TV b +(2+K) Vv
+2b  +LK@+Mpt (75)

+4L(K +1)(1L+M + 2M ),
and so, by the choice of as in 54),
TV MW)(t,-) M, (76)

which implies that the operatorM (v) is well de“ned. Note that the proof thatt ~ M (v)(t)
is continuous from [0,t] to L((0, 1)IR") is straightforward and so omitted.
Fixv,v  X.Forallt [0,tJandi {1,...,}, we have

Mi(V)(t,')..Mi \% (t,') L1

. Mi(V)(t,X) . M; v (t,%) dx
0

Xi(t;0,1)
Mi(V)(t,X) ..M; v (t,X) dx

1
+ Mi(W)(t,X)..M; v (t,X) dx.
Xi(t;0,1)

Using (68) and the change of variable = X;( ;t,X), we deduce that

Xi(t;0,1)
Mi(V)(t,x) ..M; v (t,x) dx

Xi(t;0,1) t
hi Xi(stx),v L Xi(5t,x)
0 0

Jh X)), v Xi(stx) dodx
Xi(t:0,1) t
L v L Xi(tx) v Xi(5tx) dodx
0

t 1 _

e'L v(,).v(,)dd e'ltv.yv ,.
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Using (60), we obtain that

1
Mi(V)(t,X) ..M; v (t,x) dx
Xj(t;0,1)
1
K Mpo(V) Ti(L;t,x) ..MpoVv Ti(1;t,x) dx
X (t;0,1) 0 *
l11
1
+K Mpi1(V) Ti(Lit,x) ..Mp1 Vv Ti(L;t,x) dx+lgs,
v X (t;0,1) 0 *
l12
where
1 t
l13= hy L Xi(:t,x),v L Xi(;t,X)

Xi(t;0,1) Ti(11,x)

Jh XX,y Xi(t,x) dodx.

For the term 113, using 68) and (67), we have that

1
l11 M;(v) Ti(1;t,x),0 ..M; v T;(1;t,x),0 dx
j=1 Xit0.1)
1 Ti(11%)
h X TiLtx),0,v X 5Ti(Lt,x),0
=1 Xit01) 0

Jh X S Tinx), 0, v X S Ti(Lt,x), 0 d odx
1 Ti(1tx)
L v X Ti(Lt,x),0
=1 Xi(t01) 0
VX S Tix),0 dodx
=
Letv.v ..

Similarly, we deduce that

l, L(n..)e 't v..v "

For the remaining termlq3, using the change of variable = X;( ;t,x), we get

1 t
li3 L v L Xi(tx) v X (X)) dodx
Xi(t:0,1) Ti(1t.x)
_ ot o1 _
e'L v(,).v(,)dd e'ltv.yv ,.
0o 0
Therefore forallt [0,tJandi { 1,...,}, we obtain

Mi(W)(t,)..Mi v () 1 (2+Kn)e 'Lt v..v 77)

X



Borsche et alAdvances in Continuous and Discrete Models (2023) 2023:19 Page 28 of 31

Analogous calculations allow us to prove that forall { +1,...n}andt [0,t],

Mi(V)(t,)..Mi v (t,) 1 (2+Kn)e 'Lt v..v (78)

<
Hence, using §5), (57), (77), and (78), for everyt  [0,t], we have

n

M(V).Mv sup Mi(V)(t,") ..Mi v (t,°) LL(0.1]%)
i=1 t [0t]
I — 1
n(2+Knje 'Lt v..v Ev Vo

proving that M is a contraction. Hence a unique solution exists in the time interval [,
Step 2. Global existence {0, T]. Assume by contradiction that the solutions does not
exist on the whole time interval [0T ] and de“ne

T=supt [0,T]:visde“nedin[0,t] . (79)
By contradiction,T <T. Moreover,

lim TV v(t,") =+ (80)

t T

otherwise, the construction in the “rst part of the proof can be applied, violating the max-
imality of T.

If ¥ miax ,then Lemmal7implies that TV (v(t, -)) is bounded in the time interval [0 ],
contradicting (80).

If T ﬁ then we can apply the previous considerations on time intervals of length
ﬁ, obtaining a contradiction with the de“nition of T.

Step 3. Stability estimates iff0,T]. Here we brie”y sketch the proofs for thel?-
estimates 9), (11), and (L2). We only consider the cas¢ t; the “nal estimates follow
by an iterative procedure. We start with four cases in the construction bf. Letv andv
be the solutions to the diagonal systen8) with the initial and boundary conditionsv, b
and, respectivelyy ,b .

1. Fori {1,...,},t t,andx [0,X], where X; = Xi(t; 0, 1) we obtain

%
Mi(W)(t,X)..M; v (t,X) dx
0
R )TI t
VoV et - hi L Xi(st,x),v L Xi(t,X)
LB XY X)) ddx
t
V..V I_1(0‘1)+L . v(,)..v(,) I_1(0’1)d .
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Similarly, fort  (0,t), we deduce the estimate for the trace:

t Mi(v)( ,0+).M; v (,04)d

tvi Xi(t; ,0) ..¥ Xi(t; ,0) d

t
(81)

+ t thi ,Xi( i ,O),V ,Xi( ; 10)

t 0

h, ,Xi(; ,0),V ,Xi(; :0) dd

t
L 0 V( 5')"'\/( !') Ll(O,l)d .

VoV aont

t,and X [Xi, 1], where X; = X;(t; 0,0)

2. Inthe same way, fori { +1,...n}t

;Mi(v)(t,x)..Mi VX dx V.V g,
+L Ot V() V() g
and, fort  (0,t),
ML) Miv (1.0
(82)

t

WV g tL . V() V() e d

<|

3. Fori {1,...,}t t,andx [X,1], where X =X;(t;0,1) using (81) and (82), we
deduce that

1
Mi(V)(t,X) ..M; v (t,x) dx
%

1
m; Ti(L;t,x) ..m; T(1;t,x) dx
Xi

1t

hi X ;6x),v L Xi(;t,x)

+
%o Ti(t))

Jh X)),y Xi(stx) dodx

t

b..b I_1(0’T)+K - Mj(v)( ,0+)..Mj v (,08)d
j=1 Ti(xi)

M(v)( ,1..) .M v (,1...)d

+K
j=+1 Tj(lv‘tv)?l)
t
+L . v(,)..v(,) Ll(O,l)d

b..b Ll(O’T)+nK VoV a0
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t
+nKL . V() V() Laeqd -

4. Analogous calculations imply that fori { +1,...n},t t,andx [0,X], with
X = Xi(t; 0,0)

! Mi(W)(t,X)..M; v (t,X) dx
0

b..b +nK v..Vv

LioT) L1(0,1)

t

+ nKL . v(,)v( ) |_1(o,1)d )

Combining the estimates obtained in the previous four cases, we have

v(t,) v (t,) o 2b.b +(2nK +2) V..V

LioT) L1(0,1)

t
HEKL+2) (L)) g

foreveryt t.Usingthe Gronwall lemma, we obtair). Moreover, estimatesi1) and (12)
follow from (81), (82), and ©).

Step 4. Total variation andL estimates.The total variation (10) and theL esti-
mates (3) follow from Lemma17. O

5 Conclusions

We proved the well-posedness of a switched system composed by a system of linear hy-
perbolic balance laws and by a system of linear algebraic di erential equations. The results
are global in time in the case of the initial data with “nite total variation. We do not need

to impose any additional hypothesis on the smallness of the total variation.

The present setting includes networks and looped systems of hyperbolic balance laws.
Moreover, it can describe many real applications: for networks for water supply, electrical
power distribution, or gas transport. Similar systems, but with nonlinear PDE, are used
also for modeling the human circulatory system or controlling tra ¢ "ow through au-
tonomous vehicles.
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