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Abstract
Motivated by several applications, we investigate the well-posedness of a switched
system composed by a system of linear hyperbolic balance laws and by a system of
linear algebraic differential equations. This setting includes networks and looped
systems of hyperbolic balance laws. The obtained results are globally in time,
provided that the inputs have finite (but not necessarily small) total variation.
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1 Introduction
In this paper, we investigate the well-posedness of switched systems consisting of linear
hyperbolic balance laws and algebraic differential equations and having the form

∂tu(t, x) + Aσ (t, x)∂xu(t, x) = sσ

(
t, x, u(t, x)

)
, (1a)

Bσ (t)

(
u(t, 0)
u(t, 1)

)

= Bw,σ (t)w(t) + bσ (t), (1b)

Eσ ẇ = Hσ w + K0,σ (t)u
(
t, 0+) + K1,σ (t)u

(
t, 1–) + f(t). (1c)

Here the unknown u, defined for t > 0 and x ∈ [0, 1], satisfies the system of linear hyper-
bolic partial differential equations (1a), briefly PDEs, and w, defined for t > 0, is the solu-
tion to (1c), a linear differential algebraic equation (DAE) with index one. The functions u
and w are linked together through the boundary conditions (1b) of the PDE and the vector
field of the DAE (1c). The complete system (1a)–(1c) is subject to some external switch-
ing governed by the parameter σ . For various examples of coupled systems PDE-DAE,
see [7]. Systems like (1a)–(1c) occur in many real applications such as networks for water
supply, electrical power distribution [3, 20], or gas transport [3, 15, 16]. Similar systems,
but with nonlinear PDE, are used also for modeling the human circulatory system [25–27]
or controlling traffic flows [13, 17] with autonomous vehicles.

In the literature the coupling between hyperbolic PDEs and ODEs at the boundary has
been studied in different settings; see [5, 6, 10–12, 18, 19] and the references therein. In
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the case on nonlinear systems of hyperbolic balance laws, only results local in time and
with small total variation have been obtained [4, 5]. Instead, the present setting allows us
to prove the existence of a global in time solution without any restrictions on the total
variation of the initial datum. This is in accordance with the results obtained in the Ph.D.
thesis by Hante [21] about the well-posedness of switched linear balance laws on bounded
domains. We remark that the results by Hante do not cover the case of the present paper.
This is due to the fact that (1a)–(1c) is a so-called loop system, i.e., the boundary condi-
tion (1b) at one side can depend on the trace of the solution at the other side.

Here we treat only the particular case of DAEs of index one. This is due to the fact that
solutions to DAEs with index more than one are distributions in general, in particular,
Dirac distributions and their derivatives; see [28]. This exceeds the regularity we need for
boundary terms of the hyperbolic PDEs. Coupled systems with linear transport equations
and linear switched DAEs of arbitrary index are investigated in [7].

In the present paper, we prove the well-posedness of (1a)–(1c) by using an iterative con-
verging procedure based on the solutions to both PDEs and DAEs. As regards the hyper-
bolic balance laws (1a)–(1b), we use the well-known definition of broad solutions (see,
e.g., [8]) based on the concept of characteristic curves. Using the Banach fixed point the-
orem, we extend the results on bounded intervals, contained in [21], to the case of looped
systems. Moreover, we obtain suitable bounds on the total variation, which allow us to
consider the traces of the solution at the boundaries. Regarding the DAEs, we use well-
known results and estimates; see [24].

The paper is organized as follows. In Sect. 2, we summarize several results about the
well-posedness of linear hyperbolic balance laws and about the solutions to algebraic dif-
ferential equations. In Sect. 3, we investigate the coupled problem (1a)–(1c). The supple-
mentary technical details are collected in Sect. 4.

2 Separate systems
In this section, we briefly recall the theory for both linear hyperbolic PDEs with two
boundaries and linear DAEs. For the PDEs, the existing results are extended to include
looped systems. These are the basic steps to produce solutions to the complete switching
system (1a)–(1c).

2.1 Hyperbolic PDEs
Consider the following semilinear initial boundary value problem IBVP:

∂tu(t, x) + A(t, x)∂xu(t, x) = s
(
t, x, u(t, x)

)
, (2a)

(
B0

0(t) B1
0(t)

B0
1(t) B1

1(t)

)(
u(t, 0)
u(t, 1)

)

= b(t), (2b)

u(0, x) = ū(x), (2c)

where t ∈ R
+ and x ∈ [0, 1]. We underline that the boundary conditions (2b) are not in-

tended in classical sense (see, e.g., [2, 14]), so that we do not prescribe that the traces of
the solution at x = 0 and x = 1 strictly satisfy (2b). Roughly speaking, condition (2b) pre-
scribes the value of the solution only on the incoming components; see, for example, [23,
Sect. 2]. Hypotheses (H-4) and (H-5) below introduce noncharacteristic conditions for
this reason.
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We introduce the following assumptions:
(H-1) The map A : R+ × [0, 1] →R

n×n is a C2 function.
(H-2) The source term s : R+ × [0, 1] ×R

n →R
n is bounded, measurable with respect

to t, and Lipschitz continuous with respect to x and u. In particular, there exists
Ls > 0 such that

∣∣s(t, x, u)
∣∣≤ Ls,

∣∣s(t, x1, u1) – s(t, x2, u2)
∣∣≤ Ls|x1 – x2| + Ls|u1 – u2|

for all t ≥ 0, x, x1, x2 ∈ [0, 1], and u, u1, u2 ∈R
n.

(H-3) The system is strictly hyperbolic, i.e., the matrix A(t, x) has n real and distinct
eigenvalues λ1(t, x) < · · · < λn(t, x) for all t ∈R

+ and x ∈ [0, 1]. We denote by
li(t, x) and ri(t, x), i ∈ {1, . . . , n}, the left and right eigenvectors of the matrix A,
respectively. Without loss of generalities, we assume that

|ri| = 1, lj · ri =

⎧
⎨

⎩
1 if i = j,

0 if i �= j.

(H-4) There exist c > 0 and � ∈ {1, 2, . . . , n – 1} such that λ�(t, x) < –c and λ�+1(t, x) > c
for every (t, x) ∈R

+ × [0, 1].
(H-5) B0

0, B1
0 ∈ C0(R;R(n–�)×n), and B0

1, B1
1 ∈ C0(R;R�×n) are locally Lipschitz

continuous and satisfy

det

(
B0

0(t)[r�+1(t, 0) · · · rn(t, 0)] B1
0(t)[r1(t, 1) · · · r�(t, 1)]

B0
1(t)[r�+1(t, 0) · · · rn(t, 0)] B1

1(t)[r1(t, 1) · · · r�(t, 1)]

)

�= 0

for every t ∈ [0, T].

Remark 1 Under the previous assumptions, system (2a)–(2c) can be rewritten in a diago-
nal form. Indeed, define the n × n matrices

L(t, x) =
[
l1(t, x) · · · ln(t, x)

]� and R(t, x) =
[
r1(t, x) · · · rn(t, x)

]
,

whose components are, respectively, the normalized left- and right-eigenvectors of the
matrix A(t, x) and the n×n diagonal matrix �(t, x) composed by the eigenvalues of A(t, x).
Note that (H-3) and (H-4) imply that the matrices L, R, and � are nonsingular. Defining
the characteristic variables

v(t, x) =
[
v1(t, x) · · · vn(t, x)

]� := L(t, x)u(t, x),

v–(t, x) =
[
v1(t, x) · · · v�(t, x)

]�, v+(t, x) =
[
v�+1(t, x) · · · vn(t, x)

]�,

equation (2a) takes the diagonal form

vt(t, x) + �(t, x)vx(t, x) = h
(
t, x, v(t, x)

)
, (3)
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where

h(t, x, v) := L(t, x)s
(
t, x, R(t, x)v

)

+
[
Lt(t, x) + �(t, x)Lx(t, x)

]
R(t, x)v.

(4)

Finally, defining

R–(t, x) =
[
r1(t, x) · · · r�(t, x)

]
and R+(t, x) =

[
r�+1(t, x) · · · rn(t, x)

]
,

we rewrite the boundary condition (2b) in the form

(
N0(t) M0(t)
M1(t) N1(t)

)(
v+(t, 0)
v–(t, 1)

)

= b(t) – N̂(t)

(
v–(t, 0)
v+(t, 1)

)

(5)

with

N0(t) = B0
0(t)R+(t, 0), M0(t) = B1

0(t)R–(t, 1), M1(t) = B0
1(t)R+(t, 0),

N1(t) = B1
1(t)R–(t, 1) and N̂(t) =

(
B0

0R–(t, 0) B1
0R+(t, 1)

B0
1R–(t, 0) B1

1R+(t, 1)

)

.

Due to (H-5), the n × n matrix

M̂(t) :=

(
N0(t) M0(t)
M1(t) N1(t)

)

is invertible, and so (5) can be rewritten as

(
v+(t, 0)
v–(t, 1)

)

=
(
M̂(t)

)–1b(t) –
(
M̂(t)

)–1N̂(t)

(
v–(t, 0)
v+(t, 1)

)

, (6)

that is,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v+(t, 0) = b+(t) + N+(t)

⎛

⎝v–(t, 0)

v+(t, 1)

⎞

⎠ ,

v–(t, 1) = b–(t) + N–(t)

⎛

⎝v–(t, 0)

v+(t, 1)

⎞

⎠ ,

(7)

with appropriate choices of b–(t) ∈ R
�, b+(t) ∈ R

n–�, N–(t) ∈ R
�×n, and N+(t) ∈ R

(n–�)×n.
Expressions (6) or (7) have the same form of the general boundary conditions considered
in [23, Sect. 2]. The right-hand side represents the boundary datum, which is given since
v–(t, 0) and v+(t, 1) are the exiting components of the solution. On the left-hand side of (6)
and (7), the values of the entering components v–(t, 1) and v+(t, 0) of the solution are pre-
scribed.

Remark 2 Since the map A is of class C2, we deduce that the eigenvalues and eigenvectors
have the same regularity. In particular, the source term h defined in (4) for the diagonal
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equation (3) satisfies the following estimates. For every T > 0, there exists a constant Lh > 0
such that

∣∣h(t, x, v)
∣∣≤ Lh

(
1 + |v|),

∣∣h(t, x1, v1) – h(t, x2, v2)
∣∣≤ Lh|v1||x1 – x2| + Lh|v1 – v2|

for a.e. t ∈ [0, T] and all x, x1, x2 ∈ [0, 1] and v, v1, v2 ∈ R
n.

Solutions to (2a)–(2c) are to be intended in the sense of broad solutions, which are based
on the concept of characteristic curves.

Definition 3 Given τ ∈R
+, σ ∈ [0, 1], and i ∈ {1, . . . , n}, an absolutely continuous function

t �→ Xi(t; τ ,σ ) defined in a possible one-side neighborhood of τ is called the ith charac-
teristic curve if it satisfies

d
dt

Xi(t; τ ,σ ) = λi
(
t, Xi(t; τ ,σ )

)

for a.e. t where Xi(t; τ ,σ ) is defined, and Xi(τ ; τ ,σ ) = σ .

Remark 4 By assumption (H-4) the function t �→ Xi(t; τ ,σ ) is invertible. We denote the
inverse function by x �→ Ti(x; τ ,σ ).

Definition 5 Fix T > 0. A function u : C0([0, T]; L1((0, 1);Rn)) is a broad solution to
(2a)–(2c) if, defining for every i ∈ {1, . . . , n} the ith component vi of u as in Remark 1 and,
consequently, writing u as

u(t, x) =
n∑

i=1

vi(t, x)ri(t, x) = R(t, x)v(t, x) on [0, T] × [0, 1], (8)

the following conditions hold.
1. For all i ∈ {1, . . . , n} and τ ∈ [0, T] and for a.e. σ ∈ [0, 1], the equation

d
dt

vi
(
t; Xi(t; τ ,σ )

)
= hi

(
t, Xi(t; τ ,σ ), v

(
t, Xi(t; τ ,σ )

))

is satisfied for a.e. t where the characteristic curve Xi(t; τ ,σ ) (see Definition 3) exists.
2. The boundary condition (2b), in the sense of formulation (6), is satisfied for a.e.

t ∈ [0, T].
3. For every i ∈ {1, . . . , n}, the initial condition

vi(0, x) = li(0, x) · ū(x)

is satisfied for a.e. x ∈ [0, 1].

We have the following well-posedness result for (2a)–(2c).
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Theorem 6 Fix T > 0 and let hypotheses (H-1)–(H-5) hold. For every to ∈ [0, T], there
exists a process

Pto : [to, T] ×Dto → L1((0, 1);Rn),

where

Dto =
{

(ū, b) ∈ L1((0, 1);Rn)× L1((to, T);Rn) : TV(ū) + TV(b) < +∞}

satisfying:
1. u(t, ·) = P0(t, ū, b) is the solution to (2a)–(2c) in the sense of Definition 5.
2. Pto (to, ū, b) = ū for every (ū, b) ∈Dto .
3. For all to ≤ t1 ≤ t2 ≤ T and (ū, b) ∈Dto , we have:

Pto (t2, ū, b) = Pt1

(
t2,Pto (t1, ū, b), b|(t1,T)

)
.

4. There exists L > 0 such that

∥
∥P0(t, ū, b) – P0(t, ū0, b̃)

∥
∥

L1(0,1) ≤ L
[‖ū – ū0‖L1(0,1) + ‖b – b̃‖L1(0,T)

]
(9)

for a.e. t ∈ [0, T] and for all ū, ū0 ∈ L1(0, 1) and b, b̃ ∈ L1(0, T).
5. There exists L > 0 such that for a.e. t ∈ [0, T],

TV[0,1]
(
P0(t, ū, b)

)≤ LeLt[1 + TV[0,1](ū) + TV[0,t](b)
]

+ LeLt[‖ū‖L∞(0,1) + ‖b‖L∞(0,t)
]
.

(10)

6. There exists L > 0 such that for a.e. t ∈ [0, T],

∥
∥P0(·, ū, b)

(
0+) – P0(·, ū0, b̃)

(
0+)∥∥

L1(0,t) ≤ L‖ū – ū0‖L1(0,1)

+ L‖b – b̃‖L1(0,T).
(11)

7. There exists L > 0 such that for a.e. t ∈ [0, T],

∥
∥P0(·, ū, b)

(
1–) – P0(·, ū0, b̃)

(
1–)∥∥

L1(0,t) ≤ L‖ū – ū0‖L1(0,1)

+ L‖b – b̃‖L1(0,T).
(12)

8. There exists L > 0 such that for a.e. t ∈ [0, T],

∥
∥P0(t, ū, b)

∥
∥

L∞(0,1) ≤ L
[‖ū‖L∞ + 2‖b‖L∞(0,t) + T

]
. (13)

Theorem 6 is in the same spirit as [8, Theorem 3.2], where the result is proved in the
case of no boundaries. The proof in the case of two separate boundaries, contained in [21],
does not cover the situation in this paper. The proof of Theorem 6 is given in Sect. 4.3.
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2.2 Linear DAE
Consider, for T > 0, the linear differential algebraic equation

Eẇ = Hw + f̂(t),

w(0) = w̄,
(14)

where w : [0, T] → R
m is the unknown, E, H ∈ R

m×m are given coefficients, f̂ : [0, T] →
R

m is the nonhomogeneous term, and w̄ ∈ R
m is the initial condition. In the case E is

an invertible matrix, (14) clearly is a classical system of ordinary differential equations;
see, for example, [22] for the basic theory. The case of a singular matrix E is more tricky.
Following [24], we introduce the following assumptions on the matrices E, H.

(D-1) The matrix pair (E, H) is regular, i.e., the map s �→ det(sE – H) is a nonzero
polynomial.

(D-2) The matrices E and H commute, i.e., EH = HE.

Remark 7 Assumption (D-2) can be omitted by using a manipulation of (14). Under as-
sumption (D-1), there exists s̃ ∈ R such that (s̃E – H) is nonsingular. Multiplying equa-
tion (14) from the left by (s̃E – H)–1, we obtain that

Ẽẇ = H̃w + (s̃E – H)–1 f̂(t),

where Ẽ = (s̃E – H)–1E and H̃ = (s̃E – H)–1H. We note that s̃̃E – H̃ is the identity matrix,
and hence the matrices Ẽ and H̃ commute.

If (D-1) holds, then according to [24, Theorem 2.7], we can transform E and H into its
Weierstraß canonical form, i.e., there exist invertible transformations S, T ∈ R

m×m such
that

(SET, SHT) =

((
I1 0
0 N

)

,

(
J 0
0 I2

))

, (15)

where I1 ∈ R
m1×m1 and I2 ∈ R

m2×m2 are the identity matrices, J ∈ R
m1×m1 is a matrix in

Jordan canonical form, and N ∈ R
m2×m2 is a nilpotent matrix, i.e., Nν = 0 for some ν ∈

N \ {0}. The integers m1 and m2 satisfy m1 + m2 = m. For later use, we decompose S into
S1 ∈R

m1×m and S2 ∈R
m2×m and define the variables y ∈R

m1 and z ∈ R
m2 such that

(
S1

S2

)

= S,

(
y
z

)

= T–1w. (16)

Thus we can write (14) in the form

ẏ = Jy + fy(t),

Nż = z + fz(t),

(
y(0)
z(0)

)

= T–1w̄, (17)

where Sf̂ = (fy, fz)�.
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Following [24, Chap. 2.2], we can give an explicit formula for the solution of (14):

w(t) = eEDHtEDEw̄0 +
∫ t

0
eEDH(t–s)ED f̂(s) ds

–
(
I – EDE

) ν–1∑

i=0

(
EHD)iHD f̂ (i)(t),

(18)

where w̄0 solves

w̄ = EDEw̄0 –
(
I – EDE

) ν–1∑

i=0

(
EHD)iHD f̂ (i)(0). (19)

Here the matrices ED and HD are the so-called Drazin inverses of E and H, respectively;
see [24, Chap. 2].

Definition 8 A function w ∈ C0([0, T];Rm) is a solution to (14) if for every t ∈ [0, T],
equations (18) and (19) hold.

We have the following result about the existence and uniqueness of solution for (14).

Theorem 9 ([24, Theorem 2.29 and Corollary 2.30]) Assume that hypotheses (D-1)
and (D-2) hold. Let f̂ ∈ Cν–1([0, T];Rm), where ν is the smallest natural number such that
Nν = 0. Then there exists a unique solution to (14) in the sense of Definition 8.

Remark 10 In the case ν = 1, Theorem 9 remains valid also in the case where f̂ is a
bounded-variation function. In this setting, we need to relax the regularity of w to the
class of bounded-variation functions and the expression of the solution to (14) is, for a.e.
t ∈ [0, T],

w(t) = eEDHtEDEw̄0 +
∫ t

0
eEDH(t–s)ED f̂(s) ds –

(
I – EDE

)
HD f̂(t),

where w̄ = EDEw̄0 – (I – EDE)HD f̂(0+).

3 The coupled problem
Now we consider the coupled problem of switched hyperbolic PDE and switched DAE
(swDAE). The complete system is

∂tu(t, x) + Aσ (t, x)∂xu(t, x) = sσ

(
t, x, u(t, x)

)
, (20a)

Bσ (t)

(
u(t, 0)
u(t, 1)

)

= Bw,σ (t)w(t) + bσ (t), (20b)

u(0, x) = ū(x),

Eσ ẇ = Hσ w + K0,σ (t)u
(
t, 0+) + K1,σ (t)u

(
t, 1–) + f(t), (20c)

w(0) = w,
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where x ∈ [0, 1], t ∈ [0, T] for T > 0, u : [0, T]× [0, 1] →R
n is the solution of the PDE (20a),

Aσ : [0, T] × [0, 1] → R
n×n, sσ [0, T] × [0, 1] × R

n → R
n is a source term, Bσ : [0, T] →

R
n×2n and Bw,σ : [0, T] → R

n×m, bσ : [0, T] → R
n constitute the boundary or coupling

conditions, ū : [0, 1] → R
n is the initial condition for system (20a), w : [0, T] → R

m is as
solution of the swDAE (20c), σ : R →N is a switching signal with finitely many switching
times, Eσ , Hσ ∈ R

m×m and K0,σ , K1,σ : [0, T] → R
m×n, f : [0, T] → R

m form the DAE, and
w ∈R

m are the initial condition for system (20c). In the following, we restrict ourselves to
the case of an swDAE system with index ν = 1.

Note that (20b) is an algebraic equation and (20c) contains algebraic equations. There-
fore the coupled problem cannot be addressed simply as a combination of the two separate
subsystems. Equations (20b) and (20c) have to be chosen such that the PDE provides only
information via the outgoing characteristics and sufficient data is given as boundary con-
ditions, as the following trivial example illustrates.

Example 11 Consider the system

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + ∂xu = 0, t > 0, x ∈ [0, 1],

u(t, 0) = w, t > 0,

0 · ẇ = w – u(t, 0), t > 0.

The PDE equation is a simple transport equation with characteristic speed 1; hence its
solution is completely determined by specifying the initial and left boundary data. In this
example, the algebraic differential equation is unable to select the boundary datum, since
the DAE and boundary conditions coincide. In other words, the boundary condition does
not contain any information; thus the transport equation has infinitely many solutions.

To avoid settings like those of Example 11, we rewrite the PDE into characteristic vari-
ables and decompose the DAE into algebraic equations and ODEs. The resulting system
has the form

∂tv + �(t, x)∂xv = h(t, x, v),
(

v+(t, 0+)
v–(t, 1–)

)

=

(
By,0(t) Bz,0(t)
By,1(t) Bz,1(t)

)(
y(t)
z(t)

)

+

(
b0(t)
b1(t)

)

+

(
N–(t)
N+(t)

)(
v–(t, 0)
v+(t, 1)

)

,

v(0, x) = v̄(x),

ẏ(t) = Jy(t) + S1K0(t)R(t, 0)

(
v–(t, 0+)
v+(t, 0+)

)

(21)

+ S1K1(t)R(t, 1)

(
v–(t, 1–)
v+(t, 1–)

)

+ S1f(t),

z(t) = –S2K0(t)R(t, 0)

(
v–(t, 0+)
v+(t, 0+)

)
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– S2K1(t)R(t, 1)

(
v–(t, 1–)
v+(t, 1–)

)

– S2f(t),

y(0) = ȳ.

The algebraic conditions do not conflict with the boundary conditions, provided that
1. (C-1)] For the coupled system (21),

S2K0(t)R+(t, 0) = 0 and S2K1(t)R–(t, 1) = 0,

where S2 is chosen as in (16). We further we assume that S1K0(t), S1K1(t), and f(t)
are measurable in time and bounded.

Remark 12 Note that if this assumption is not satisfied, then it might be possible transfer
these algebraic relations into the formulation of the coupling conditions.

With assumption (C-1), we can decouple the algebraic equations and replace z in the
boundary conditions so that the new system reads

∂tv + �(t, x)∂xv = h(t, x, v),
(

v+(t, 0)
v–(t, 1)

)

=

(
By,0(t)
By,1(t)

)

y(t) +

(
b̃0(t)
b̃1(t)

)

+

(
Ñ–(t)
Ñ+(t)

)(
v–(t, 0+)
v+(t, 1–)

)

v(0, x) = v̄(x),

ẏ(t) = Jy(t) + S1K0(t)R(t, 0)

(
v–(t, 0+)
v+(t, 0+)

)

+ S1K1(t)R(t, 1)

(
v–(t, 1–)
v+(t, 1–)

)

+ S1f(t).

(22)

Note that the terms Ñ– and Ñ+ in (22) can be different from zero, even if N– = 0 and N+ = 0
in (21). Moreover, the dependencies on v+(t, 0+) and v–(t, 1–) in the ODE can be replaced
by boundary conditions.

We finally rewrite system (22) in the more compact form

∂tu(t, x) + A(t, x)∂xu(t, x) = s
(
t, x, u(t, x)

)
,

P(t)

(
u(t, 0)
u(t, 1)

)

= Py(t)y(t) + p(t),

u(0, x) = ū(x),

ẏ(t) = Jy(t) +
(

G0 G1

)(u(t, 0+)
u(t, 1–)

)

+ g(t),

y(0) = ȳ,

(23)



Borsche et al. Advances in Continuous and Discrete Models         (2023) 2023:19 Page 11 of 31

with

P(t) =

(
–Ñ–

0 I 0 –Ñ–
1

–Ñ+
0 0 I –Ñ+

1

)

, Py =

(
By,0(t)
By,1(t)

)

, p =

(
b̃0(t)
b̃1(t)

)

,

and G0 = S1K0, G1 = S1K1, g = S1f . System (23) is equivalent to (20a)–(20c) thanks to (C-
1). For this system, we provide analytical results.

Definition 13 Fix T > 0. A pair (u, y) is a solution to (23) on the time interval [0, T] if the
following conditions hold.

1. u is a broad solution on [0, T] to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu + A(t, x)∂xu = s(t, x, u),

P(t)

⎛

⎝u(t, 0)

u(t, 1)

⎞

⎠ = Py(t)y(t) + p(t),

u(0, x) = ū,

in the sense of Definition 5.
2. y ∈ C0([0, T];Rm1 ) satisfies

y(t) = ȳ +
∫ t

0

(
Jy(s) + G(s)

)
ds

for every t ∈ [0, T], where

G(t) = G0(t)u
(
t, 0+) + G1(t)u

(
t, 1–) + g(t)

for a.e. t ∈ [0, T].

We have the following existence result.

Theorem 14 Assume that (C-1), (D-1), (D-2), and (H-1)–(H-5) hold. Then, for every T >
0, there exists a semigroup

S : [0, T] ×D −→D,

where

D =
{

(ū, ȳ) ∈ L1((0, 1);Rn)×R
m1 : TV(ū) < +∞}

satisfying:
1. (u(t, x), y(t)) = S(t, ū, ȳ)(x) for every (ū, ȳ) ∈D is a solution to the coupled

system (20a)–(20c) (or to the alternative form (23)) in the sense of Definition 13.
2. S(0, ū, ȳ) = (ū, ȳ) for every (ū, ȳ) ∈D.
3. For all 0 ≤ t1 ≤ t2 ≤ T and (ū, ȳ) ∈D, we have

S(t2, ū, ȳ) = S
(
t2 – t1,S(t1, ū, ȳ)

)
.
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4. There exists L > 0 such that

∥
∥S(t, ū, ȳ) – S(t, ũ, ỹ)

∥
∥

L1(0,1) ≤ L
[‖ū – ũ‖L1(0,1) + ‖ȳ – ỹ‖L1(0,t)

]
(24)

for a.e. t ∈ [0, T] and for all (ū, ȳ) ∈D and (ũ, ỹ) ∈D.

Proof First, introduce the sets

Du =
{

u ∈ C0([0, T]; L1((0, 1);Rn)) : sup
t∈[0,T]

TV
(
u(t)

)
+ ‖u‖L∞ < +∞

}
,

Dy =
{

y ∈ C0([0, T];Rm1
)

: TV(y) < +∞}
.

We construct the solution to system (23) by passing to the limit of an approximating se-
quence of solutions. The proof is divided into several steps.

Construction of approximate solutions.
Set u0(t, x) ≡ ū(x) and y0(t) ≡ ȳ. For every k ≥ 1, given uk–1 ∈ Du and yk–1 ∈ Dy , recur-

sively define uk as the solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tuk(t, x) + A(t, x)∂xuk(t, x) = s(t, x, uk),

P(t)

⎛

⎝uk(t, 0)

uk(t, 1)

⎞

⎠ = Py(t)yk–1(t) + p(t),

uk(0, x) = ū.

(25)

Note that Theorem 6 applies to system (25), and hence the solution uk exists, is unique,
and belongs to Du. Moreover, define yk ∈ C0([0, T];Rm1 ) as the solution to the linear non-
homogeneous system

⎧
⎨

⎩
ẏk(t) = Jyk(t) + G0(t)uk–1(t, 0+) + G1(t)uk–1(t, 1–) + g(t),

yk(0) = ȳ.
(26)

Classic theory of ODEs implies that the previous system admits a unique solution, since
by Theorem 6 and (C-1) the function

t �−→ G0(t)uk–1
(
t, 0+) + G1(t)uk–1

(
t, 1–) + g(t)

is measurable; see [9, Theorem 3.1]. The same function is also bounded by (C-1) and the
definition of Du. Hence yk belongs to Dy .

yk is a Cauchy sequence.
For k ≥ 2 and t ∈ [0, T], using (26), we obtain

∣
∣yk(t) – yk–1(t)

∣
∣≤

∫ t

0

∣
∣J
(
yk(s) – yk–1(s)

)∣∣ds

+
∫ t

0

∣∣G0(s)
(
uk–1(s, 0) – uk–2(s, 0)

)∣∣ds

+
∫ t

0

∣
∣G1(s)

(
uk–1(s, 1) – uk–2(s, 1)

)∣∣ds
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≤ ‖J‖
∫ t

0

∣∣yk(s) – yk–1(s)
∣∣ds

+ LG

∫ t

0

∣
∣uk–1(s, 0) – uk–2(s, 0)

∣
∣ds

+ LG

∫ t

0

∣∣uk–1(s, 1) – uk–2(s, 1)
∣∣ds,

where LG := max{supt∈[0,T] ‖G0(t)‖, supt∈[0,T] ‖G1(t)‖}. By the Gronwall lemma, for k ≥ 2
and t ∈ [0, T], we deduce that

∣
∣yk(t) – yk–1(t)

∣
∣≤ e‖J‖tLG

∥
∥uk–1(·, 0) – uk–2(·, 0)

∥
∥

L1(0,t)

+ e‖J‖tLG
∥
∥uk–1(·, 1) – uk–2(·, 1)

∥
∥

L1(0,t).
(27)

By (11) and (12) we obtain that for k ≥ 3,

∣∣yk(t) – yk–1(t)
∣∣≤ e‖J‖tLGL

∥∥Py(yk–2 – yk–3)
∥∥

L1(0,t)

≤ e‖J‖tLGL‖Py‖
∫ t

0

∣∣yk–2(s) – yk–3(s)
∣∣ds.

We apply [5, Lemma 4.2], i.e., Lemma 16 with α = 0, β = e‖J‖tLGL‖Py‖, and hk(t) = |yk(t) –
yk–1(t)|, to the inequality

hn(t) ≤ α + β

∫ t

0
hn–2(τ ) dτ

and obtain that for all n ≥ 1,

max
{

h2n(t), h2n+1(t)
}≤ α

n–1∑

i=0

β iti

i!
+ Y

βntn

n!
,

where Y ≥ max{‖h0‖,‖h1‖}.
Thus there exists a positive constant C1 such that

‖yk – yk–1‖C0([0,T]) ≤ C1
(e‖J‖T LGL‖Py‖)kTk

k!

for every k ≥ 3. Therefore, for every k > j ≥ 3,

‖yk – yj‖C0([0,T]) ≤
k∑

i=j+1

‖yi – yi–1‖C0([0,T])

≤ C1

k∑

i=j+1

(e‖J‖T LGL‖Py‖)iTi

i!
,

proving that yk is a Cauchy sequence in C0([0, T]). Thus there exists y∗ ∈ C0([0, T]) such
that yk converges to y∗ in C0([0, T]) as k → +∞.
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uk is a Cauchy sequence.
Using (9), we deduce the existence of a constant C > 0 such that for all k and k′, we have

the estimate

∥∥uk(t, ·) – uk′ (t, ·)∥∥L1(0,1) ≤ C‖yk–1 – yk′–1‖L1(0,T)

≤ CT‖yk–1 – yk′–1‖C0([0,T])

for every t ∈ [0, T]. Thus uk is a Cauchy sequence in C0([0, T]; L1(0, 1)), proving the ex-
istence of u∗ ∈ C0([0, T]; L1(0, 1)) such that uk converges to u∗ in C0([0, T]; L1(0, 1)) as
k → +∞.

The couple (u∗, y∗) is a solution to (23).
First, we show that y∗ is a solution to the ODE with the input from u∗. Due to (26), for

every t ∈ [0, T], we have

yk(t) = ȳ +
∫ t

0
Jyk(s) ds +

∫ t

0

[
G0(s)uk–1

(
s, 0+) + G1(s)uk–1

(
s, 1–) + g(s)

]
ds.

Using again (11) and (12), we deduce that both sequences uk(·, 0+) and uk(·, 1–) are Cauchy
sequences in L1(0, T) and the limits are respectively u∗(·, 0+) and u∗(·, 1–), since the non-
characteristic condition (H-4) holds; see [1]. Passing to the limit as k → ∞, we thus obtain

y∗(t) = ȳ +
∫ t

0
Jy∗(s) ds +

∫ t

0

[
G0(s)u∗(s, 0+) + G1(s)u∗(s, 1–) + g(s)

]
ds,

proving that y∗ satisfies condition 2 of Definition 13. Moreover, note that the last integral in
the previous equation is uniformly bounded because of (13) and (C-1). Hence the previous
equation implies that y∗ has finite total variation.

Conversely, we define ũ as the solution to the hyperbolic system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tũ(t, x) + A(t, x)∂xũ(t, x) = s(t, x, ũ),

P(t)

⎛

⎝ũ(t, 0)

ũ(t, 1)

⎞

⎠ = Py(t)y∗(t) + p(t),

ũ(0, x) = ū,

which exists and is unique by Theorem 6. Due to (9), for t ∈ [0, T] and k ≥ 1, we have that

∥
∥ũ(t) – uk(t)

∥
∥

L1(0,1) ≤ L
∥
∥y∗ – yk–1

∥
∥

L1(0,t)

for some positive constant L. Since yk is a Cauchy sequence and uk converges to u∗ in
C0([0, T]; L1(0, 1)), we deduce that ũ = u∗ in C0([0, T]; L1(0, 1)), proving that u∗ satisfies
condition 1 of Definition 13.

Well-posedness estimate. Consider two initial conditions (ū, ȳ) and (ũ, ỹ) with TV(ū) +
TV(ũ) < +∞. Denote by (ūk , ȳk) and (ũk , ỹk) the sequences constructed as in the first part
of the proof for the initial conditions given by (ū, ȳ) and (ũ, ỹ), respectively. By (9) there
exists a constant C1 > 0 such that

∥
∥ūk(t) – ũk(t)

∥
∥

L1(0,1) ≤ C1‖ū – ũ‖L1(0,1) + C1

∫ t

0

∣
∣ȳk(s) – ỹk(s)

∣
∣ds (28)
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for a.e. t ∈ [0, T]. Moreover, there exists C2 > 0 such that for every t ∈ [0, T],

∣
∣ȳk(t) – ỹk(t)

∣
∣≤ |ȳ – ỹ| + C2

∫ t

0

∣
∣ȳk(s) – ỹk(s)

∣
∣ds

+ C2

∫ t

0

∣∣ūk(s, 0) – ũk(s, 0)
∣∣ds

+ C2

∫ t

0

∣
∣ūk(s, 1) – ũk(s, 1)

∣
∣ds.

(29)

Using (11) and (12) in (29), we deduce that there exists C3 > 0 such that

∣
∣ȳk(t) – ỹk(t)

∣
∣≤ |ȳ – ỹ| + C2

∫ t

0

∣
∣ȳk(s) – ỹk(s)

∣
∣ds + C3‖ū – ũ‖L1(0,1) (30)

for every t ∈ [0, T], and so by the Gronwall lemma

∣
∣ȳk(t) – ỹk(t)

∣
∣≤ [|ȳ – ỹ| + C3‖ū – ũ‖L1(0,1)

]
eC2t

≤ [|ȳ – ỹ| + C3‖ū – ũ‖L1(0,1)
]
eC2T

(31)

for every t ∈ [0, T]. Inserting (31) into (28), we deduce that for a.e. t ∈ [0, T],

∥∥ūk(t) – ũk(t)
∥∥

L1(0,1) ≤
(

C1 +
C3

C2

(
eC2T – 1

)
)

‖ū – ũ‖L1(0,1)

+
C1

C2
|ȳ – ỹ|(eC2T – 1

)
.

(32)

Passing to the limit as k → +∞ in (31) and (32), we obtain (24). �

Corollary 15 Let T > 0, and let σ : [0, T] → N be a given switching signal with finitely
many switching points. Then, under the above hypotheses, system (20a)–(20c) has a unique
solution (u, w) on [0, T].

A proof can be obtained by iteratively applying Theorem 14.

4 Technical details
4.1 Lemma 4.2
Here we repeat Lemma 4.2 from [5].

Lemma 16 Assume that the sequence hn ∈ C0([0, T];R+) satisfies

hn(t) ≤ α + β

∫ t

0
hn–2(τ ) dτ with h0(t) ∈ [0, H] and h1(t) ∈ [0, H]

for positive numbers α,β , and H . Then for all n ≥ 1,

max
{

h2n(t), h2n+1(t)
}≤ α

n–1∑

i=0

β iti

i!
+ H

βntn

n!
.
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4.2 A priori estimates
Lemma 17 Assume hypotheses (H-1)–(H-5) hold. Define λmax as in (52). Let v be a broad
solution to (3) with initial condition v̄ and boundary conditions (7). Then, for every 0 < t ≤

1
λmax

, there exists a constant C > 0, depending on λmax, h, N+, and N–, such that

∥∥v(t)
∥∥

L∞ ≤ C
[‖v̄‖L∞ +

∥∥b–∥∥
L∞(0,t) +

∥∥b+∥∥
L∞(0,t) + t

]
(33)

and

TV
(
v(t)

)≤ C
(
1 + TV(v̄) + TV

(
b+) + TV

(
b–)) exp(Ct)

+ C
(‖v‖L∞ +

∥
∥b+∥∥

L∞ +
∥
∥b–∥∥

L∞
)

exp(Ct).
(34)

Proof First note that the choice t ≤ 1
λmax

implies that the characteristic curves starting
from one boundary do not reach the other boundary within time 1

λmax
. Denote by L a

uniform bound and a Lipschitz constant for h in [0, 1
λmax

] × [0, 1] × R
n; see Remark 2.

Since v is a broad solution to (3), then for all i ∈ {1, . . . ,�} and 0 ≤ t ≤ 1
λmax

,

vi(t, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v̄i(Xi(0; t, x)) +
∫ t

0 hi(τ , Xi(τ ; t, x), v(τ , Xi(τ ; t, x))) dτ

if x < Xi(t; 0, 1),

m1
i (Ti(1; t, x)) +

∫ t
Ti(1;t,x) hi(τ , Xi(τ ; t, x), v(τ , Xi(τ ; t, x))) dτ

if x > Xi(t; 0, 1),

(35)

whereas for all i ∈ {� + 1, . . . , n} and 0 ≤ t ≤ 1
λmax

,

vi(t, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m0
i (Ti(0; t, x)) +

∫ t
Ti(0;t,x) hi(τ , Xi(τ ; t, x), v(τ , Xi(τ ; t, x))) dτ

if x < Xi(t; 0, 0),

v̄i(Xi(0; t, x)) +
∫ t

0 hi(τ , Xi(τ ; t, x), v(τ , Xi(τ ; t, x))) dτ

if x > Xi(t; 0, 0),

(36)

where Ti denotes the inverse of the ith characteristic curve (see Remark 4), and

m0
i (t) = b+

i (t) +

[

N+(t)

(
v–(t, 0)
v+(t, 1)

)]

i

,

m1
i (t) = b–

i (t) +

[

N–(t)

(
v–(t, 0)
v+(t, 1)

)]

i

;

(37)

see (7).
First consider the L∞ estimates. For i ∈ {1, . . . ,�} and 0 < t ≤ 1

λmax
, we have

∣
∣vi(t, 0)

∣
∣≤ ∣

∣v̄i
(
Xi(0; t, 0)

)∣∣ +
∫ t

0

∣
∣hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))∣∣dτ

≤ √
n‖v̄‖L∞ + Lt + L

∫ t

0

∥∥v(τ )
∥∥

L∞ dτ ,
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and so

∣∣v–(t, 0)
∣∣≤ n

√
n‖v̄‖L∞ + nLt + nL

∫ t

0

∥∥v(τ )
∥∥

L∞ dτ . (38)

An analogous computation yields

∣
∣v+(t, 1)

∣
∣≤ n

√
n‖v̄‖L∞ + nLt + nL

∫ t

0

∥
∥v(τ )

∥
∥

L∞ dτ . (39)

For i ∈ {1, . . . ,�}, 0 < t ≤ 1
λmax

, and x ∈ (0, Xi(t; 0, 1)), we have

∣∣vi(t, x)
∣∣≤ √

n‖v̄‖L∞ + Lt + L
∫ t

0

∥∥v(τ )
∥∥

L∞ dτ ,

whereas for x ∈ (Xi(t; 0, 1), 1), using (38) and (39), we have

∣
∣vi(t, x)

∣
∣≤ ∣

∣m1
i
(
Ti(1; t, x)

)∣∣ +
∫ t

Ti(1;t,x)

∣
∣hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))∣∣dτ

≤ ∣
∣b–

i
(
Ti(1; t, x)

)∣∣ + L
∣
∣v–(Ti(1; t, x), 0

)∣∣ + L
∣
∣v+(Ti(1; t, x), 0

)∣∣

+ L
(
t – Ti(1; t, x)

)
+ L

∫ t

Ti(1;t,x)

∥
∥v(τ )

∥
∥

L∞ dτ

≤ √
n
∥∥b–∥∥

L∞(0,t) + 2n
√

nL‖v̄‖L∞

+ 2nL2Ti(1; t, x) + 2nL2
∫ Ti(1;t,x)

0

∥
∥v(τ )

∥
∥

L∞ dτ

+ L
(
t – Ti(1; t, x)

)
+ L

∫ t

Ti(1;t,x)

∥∥v(τ )
∥∥

L∞ dτ

≤ √
n
∥
∥b–∥∥

L∞(0,t) + 2n
√

nL‖v̄‖L∞ + 2nL2t + 2nL2
∫ t

0

∥
∥v(τ )

∥
∥

L∞ dτ .

A similar computation holds in the case i ∈ {� + 1, . . . , n}. Hence

∥∥v(t)
∥∥

L∞ ≤ (n
√

n + 4n
√

nL)‖v̄‖L∞ + n
√

n
(∥∥b–∥∥

L∞(0,t) +
∥∥b+∥∥

L∞(0,t)

)

+
(
nL + 4nL2)t +

(
nL + 4nL2)

∫ t

0

∥∥v(τ )
∥∥

L∞ dτ

≤ 5n
√

nL‖v̄‖L∞ + n
√

n
(∥∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t)

)

+ 5nL2t + 5nL2
∫ t

0

∥∥v(τ )
∥∥

L∞ dτ .

The Gronwall inequality implies that

∥∥v(t)
∥∥

L∞ ≤ e5nL2t[5n
√

nL‖v̄‖L∞ + n
√

n
(∥∥b–∥∥

L∞(0,t) +
∥∥b+∥∥

L∞(0,t)

)
+ 5nL2t

]

≤ 5n
√

nL2e5nL2t[‖v̄‖L∞ +
∥∥b–∥∥

L∞(0,t) +
∥∥b+∥∥

L∞(0,t) + t
]
,

so that (33) holds.
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Consider now the total-variation estimate (34). For i ∈ {1, . . . ,�} and 0 < t ≤ 1
λmax

, we
have

TV
(
vi(t, ·)) = TV

(
vi(t, ·); [0, Xi(t; 0, 1)

))

+ TV
(
vi(t, ·); (Xi(t; 0, 1), 1

])

+
∣
∣vi
(
t, Xi(t; 0, 1)+) – vi

(
t, Xi(t; 0, 1)–)∣∣,

(40)

whereas for i ∈ {� + 1, . . . , n} and 0 < t ≤ 1
λmax

,

TV
(
vi(t, ·)) = TV

(
vi(t, ·); [0, Xi(t; 0, 0)

))

+ TV
(
vi(t, ·); (Xi(t; 0, 0), 1

])

+
∣∣vi
(
t, Xi(t; 0, 0)+) – vi

(
t, Xi(t; 0, 0)–)∣∣.

(41)

Consider the first term in the right-hand side of (40) and points 0 ≤ x0 ≤ · · · ≤ xN <
Xi(t; 0, 1). Using (35), we deduce that

N∑

j=1

∣
∣vi(t, xj) – vi(t, xj–1)

∣
∣

≤ TV(v̄i) +
N∑

j=1

∫ t

0

∣
∣hi
(
τ , Xi(0; t, xj), v

(
τ , Xi(0; t, xj)

))

– hi(τ , Xi
(
0; t, xj–1, v

(
τ , Xi(0; t, xj–1)

))∣∣dτ

≤ TV(v̄i) + L
∫ t

0

∥
∥v(τ )

∥
∥∞ dτ + L

∫ t

0
TV

(
v(τ , ·))dτ ,

and so by (33) we have

TV
(
vi(t, ·); [0, Xi(t; 0, 1)

))

≤ TV(v̄i) + L
∫ t

0
TV

(
v(τ , ·))dτ

+ O(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

(42)

Here and in the following part of the proof, the Landau symbol O(1) denotes a constant.
Similarly the second term in the right-hand side of (41) can be estimated by

TV(vi
(
t, ·); (Xi(t; 0, 0), 1

])

≤ TV(v̄i) + L
∫ t

0
TV

(
v(τ , ·))dτ .

+ O(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

(43)
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Consider now the second term in the right-hand side of (40) and points Xi(t; 0, 1) < x0 ≤
· · · ≤ xN ≤ 1. Using (35), we get

N∑

j=1

∣
∣vi(t, xj) – vi(t, xj–1)

∣
∣

≤
N∑

j=1

∣
∣m1

i
(
Ti(1; t, xj)

)
– m1

i
(
Ti(1; t, xj–1)

)∣∣

+
N∑

j=1

∣
∣∣
∣

∫ t

Ti(1;t,xj)
hi
(
τ , Xi(τ ; t, xj), v

(
τ , Xi(τ ; t, xj)

))
dτ

–
∫ t

Ti(1;t,xj–1)
hi
(
τ , Xi(τ ; t, xj–1), v

(
τ , Xi(τ ; t, xj–1)

))
dτ

∣∣
∣∣.

Defining K = supt∈[0, 1
λmax

]{supξ∈Rn\{0}
|N–(t)(ξ )|

|ξ | , supξ∈Rn\{0}
|N+(t)(ξ )|

|ξ | } and using (35), (36),
and (37), we deduce that

N∑

j=1

∣
∣m1

i
(
Ti(1; t, xj)

)
– m1

i
(
Ti(1; t, xj–1)

)∣∣

≤ TV
(
b–) + KnTV(v̄) + 2KnLt

+ KnL
∫ t

0
TV

(
v(τ ; ·))dτ ,

whereas, using the assumptions on h and triangle inequalities, we have

N∑

j=1

∣∣
∣∣

∫ t

Ti(1;t,xj)
hi
(
τ , Xi(τ ; t, xj), v

(
τ , Xi(τ ; t, xj)

))
dτ

–
∫ t

Ti(1;t,xj–1)
hi
(
τ , Xi(τ ; t, xj–1), v

(
τ , Xi(τ ; t, xj–1)

))
dτ

∣∣∣
∣

≤ 2Lt + L
∫ t

0
TV

(
v(τ ; ·))dτ

+ LO(1)
(

‖v̄‖L∞ +
∥∥b–∥∥

L∞(0,t) +
∥∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

Therefore the second term in the right-hand side of (40) can be estimated by

TV
(
vi(t, ·); (Xi(t; 0, 1), 1

])

≤ TV
(
b–) + KnTV(v̄) + 2(Kn + 1)Lt

+ (Kn + 1)L
∫ t

0
TV

(
v(τ ; ·))dτ

+ LO(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

(44)
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Similarly, the first term in the right-hand side of (41) can be estimated by

TV
(
vi(t, ·); [0, Xi(t; 0, 0)

))

≤ TV
(
b+) + KnTV(v̄) + 2(Kn + 1)Lt

+ (Kn + 1)L
∫ t

0
TV

(
v(τ ; ·))dτ .

+ LO(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

(45)

Consider now the third term in the right-hand side of (40). Using (35), (36), (37), and
the assumptions on h, we obtain

∣
∣vi
(
t, Xi(t; 0, 1)+) – vi

(
t, Xi(t; 0, 1)–)∣∣

≤
∣
∣∣ lim
τ→0+

m1
i (τ )

∣
∣∣ +

∣
∣v̄i
(
1–)∣∣

+
∣∣
∣∣

∫ t

0
hi
(
τ , Xi

(
τ ; t, Xi(t; 0, 1)

)
, v
(
τ , Xi

(
τ ; t, Xi(t; 0, 1)

)+))dτ

–
∫ t

0
hi
(
τ , Xi

(
τ ; t, Xi(t; 0, 1)

)
, v
(
τ , Xi

(
τ ; t, Xi(t; 0, 1)

)–))dτ

∣
∣∣
∣

(46)

≤ ∣
∣b–(0+)∣∣ + (2K + 1)‖v̄‖L∞ + L

∫ t

0
TV

(
v(τ , ·))dτ

+ LO(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

Similarly, the third term in the right-hand side of (41) can be estimated by

∣
∣vi
(
t, Xi(t; 0, 0)+) – vi

(
t, Xi(t; 0, 0)–)∣∣

≤ ∣
∣b+(1–)∣∣ + (2K + 1)‖v̄‖L∞ + L

∫ t

0
TV

(
v(τ , ·))dτ

+ LO(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

(47)

Inserting (42), (44), and (46) into (40), we get

TV
(
vi(t, ·))≤ TV(v̄i) + TV

(
b–) + KnTV(v̄) + (2Kn + 3)Lt

+ (Kn + 3)L
∫ t

0
TV

(
v(τ ; ·))dτ

+ O(1)
(

‖v̄‖L∞ +
∥∥b–∥∥

L∞(0,t) +
∥∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

(48)

A similar estimate of (41) holds. Consequently,

TV
(
v(t, ·))≤ (

1 + Kn2)TV(v̄) + �TV
(
b–) + (n – �)TV

(
b+)

+ (2Kn + 3)nLt + (2 + Kn)nL
∫ t

0
TV

(
v(τ , ·))dτ
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+ O(1)
(

‖v̄‖L∞ +
∥
∥b–∥∥

L∞(0,t) +
∥
∥b+∥∥

L∞(0,t) +
1

λmax

)
t.

An application of the Gronwall lemma implies (34). �

4.3 Proof of Theorem 6
This subsection contains the proof of Theorem 6, which is based on the Banach fixed point
theorem.

Proof of Theorem 6 By Remark 1 the proof is focused on the diagonal version of sys-
tem (2a)–(2c) and is divided into two steps.

Step 1. Local existence and uniqueness of solution. Fix an initial condition ū ∈ L1((0, 1);
R

n) with finite total variation and a boundary condition b ∈ L1((0, T);Rn) with finite total
variation. Denote by v̄(x) = L(0, x)ū(x) the corresponding initial condition for the diagonal
system (3) with the corresponding boundary conditions b– and b+; see (7). Define

K = sup
t∈[0,T]

{
sup

ξ∈Rn\{0}
|N–(t)(ξ )|

|ξ | , sup
ξ∈Rn\{0}

|N+(t)(ξ )|
|ξ |

}
, (49)

M = 2n(2K + 1)TV(ū) + 2nTV
(
b–) + (2 + K)n‖v̄‖∞ (50)

+ 2n‖b‖∞ + 1,

M1 = (1 + K)‖v‖∞ + ‖b‖∞ + 1, (51)

λmax = max
{‖λi‖C0([0,T]×[0,1]) : i ∈ {1, . . . , n}}, (52)

� = max
{‖λi‖C1([0,T]×[0,1]) : i ∈ {1, . . . , n}}. (53)

Note that both λmax and � are finite because of (H-1) and (H-3). Choose t̄ ∈ (0, T] such
that

t̄ < min

{
1

λmax
,

1
nL(5K + 4)(1 + 2M1 + M)

}
(54)

and

n(2 + nK)e�t̄Lt̄ ≤ 1
2

, (55)

where L is a uniform bound and a Lipschitz constant for h in [0, T] × [0, 1] × R
n; see

Remark 2.
Note that the choice of t̄ implies that every characteristic curve starting form a boundary

does not arrive at the other boundary within time t̄. Now we aim to construct a map whose
fixed points are solutions to the diagonal IBVP and so to (2a)–(2c). First, introduce the
space

X =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v ∈ C0([0, t̄]; L1([0, 1];Rn)) :

sup
i∈{1,...,n}

sup
t∈[0,t̄]

TV
(
vi(t)

)≤ M

v(0) = v̄

‖v‖L∞([0,t̄]×[0,1]) ≤ M1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(56)
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equipped with the norm

‖v‖X :=
n∑

i=1

‖vi‖C0([0,t̄];L1([0,1];R)) =
n∑

i=1

sup
t∈[0,t̄]

∫ 1

0

∣∣vi(t, x)
∣∣dx, (57)

so that X is a complete metric space. Now define the operator

M : X −→ X

v �−→ M(v) =
(
M1(v), . . . , Mn(v)

)
,

according to the following four cases.
(c1) For all i ∈ {1, . . . ,�}, 0 < t ≤ t̄, and x ∈ [0, Xi(t; 0, 1)], we define

Mi(v)(t, x) = v̄i
(
Xi(0; t, x)

)
+
∫ t

0
hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))
dτ . (58)

(c2) For all i ∈ {� + 1, . . . , n}, 0 < t ≤ t̄, and x ∈ [Xi(t; 0, 0), 1], we define

Mi(v)(t, x) = v̄i
(
Xi(0; t, x)

)
+
∫ t

0
hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))
dτ . (59)

(c3) For all i ∈ {1, . . . ,�}, 0 < t ≤ t̄, and x ∈ (Xi(t; 0, 1), 1], we define

Mi(v)(t, x) = m1
i
(
Ti(1; t, x)

)
+
∫ t

Ti(1;t,x)
hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))
dτ , (60)

where Ti denotes the inverse of the ith characteristic curve (see Remark 4), and

m1
i (t) = b–(t) + N–(t)

(
Mb,0(v)(t)
Mb,1(v)(t)

)

; (61)

see (7), (67), and (70).
(c4) For all i ∈ {� + 1, . . . , n}, 0 < t ≤ t̄, and x ∈ [0, Xi(t; 0, 0)), we define

Mi(v)(t, x) = m0
i
(
Ti(0; t, x)

)
+
∫ t

Ti(0;t,x)
hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))
dτ , (62)

where

m0
i (t) = b+(t) + N+(t)

(
Mb,0(v)(t)
Mb,1(v)(t)

)

; (63)

see (7).
We proceed now to estimate the L∞ norm and the total variation of M(v) according to

four cases.
Case (c1). By Remark 2 we easily deduce that

∥∥Mi(v)
∥∥

L∞ ≤ ‖v̄i‖L∞ + L(1 + M1)t̄. (64)
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We claim that for every 0 ≤ t ≤ t̄,

TV
(
Mi(v)(t, ·); [0, Xi(t; 0, 1)

))≤ TV(v̄i) + L(M1 + M)t̄ (65)

and that

TV
(
Mi(v)(·, 0+); [0, t̄]

)≤ TV(v̄i) + L(1 + 2M1 + M)t̄. (66)

For later use, for 0 ≤ t ≤ t̄, we denote

Mb,0(v)(t) =

⎛

⎜
⎜
⎝

M1(v)(t, 0+)
...

M�(v)(t, 0+)

⎞

⎟
⎟
⎠ , (67)

which is well defined by (58) and has a finite total variation by (66).
To prove (65), fix N ∈ N \ {0}, a time 0 ≤ t ≤ t̄, and points 0 ≤ x0 < · · · < xN ≤ Xi(t; 0, 1).

Using the notation x̃j(τ ) = Xi(τ ; t, xj), we have that

N∑

j=1

∣∣Mi(v)(t, xj) – Mi(v)(t, xj–1)
∣∣

≤
N∑

j=1

∣
∣v̄i
(
x̃j(0)

)
– v̄i

(
x̃j–1(0)

)∣∣

︸ ︷︷ ︸
I1

+
N∑

j=1

∣∣
∣∣

∫ t

0
hi
(
τ , x̃j(τ ), v

(
τ , x̃j(τ )

))
– hi

(
τ , x̃j–1(τ ), v

(
τ , x̃j–1(τ )

))
dτ

∣∣
∣∣

︸ ︷︷ ︸
I2

.

Clearly, the term I1 is estimated by TV(v̄i). For the term I2, we have

I2 ≤
N∑

j=1

∫ t

0

∣∣hi
(
τ , x̃j(τ ), v

(
τ , x̃j(τ )

))
– hi

(
τ , x̃j–1(τ ), v

(
τ , x̃j(τ )

))∣∣dτ

+
N∑

j=1

∫ t

0

∣
∣hi
(
τ , x̃j–1(τ ), v

(
τ , x̃j(τ )

))
– hi

(
τ , x̃j–1(τ ), v

(
τ , x̃j–1(τ )

))∣∣dτ

≤ L
N∑

j=1

∫ t

0

(∣∣x̃j(τ ) – x̃j–1(τ )
∣
∣M1 +

∣
∣v
(
τ , x̃j(τ )

)
– v

(
τ , x̃j–1(τ )

)∣∣)dτ

≤ LM1t + LMt,

and so we deduce (65).
To prove (66), fix N ∈ N \ {0} and times 0 ≤ t0 < · · · < tN ≤ t̄. Using the notation x̂j(τ ) =

Xi(τ ; tj, 0), we have that

N∑

j=1

∣
∣Mi(v)(tj, 0) – Mi(v)(tj–1, 0)

∣
∣
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≤
N∑

j=1

∣
∣v̄i
(
x̂j(0)

)
– v̄i

(
x̂j–1(0)

)∣∣

︸ ︷︷ ︸
I3

+
N∑

j=1

∣
∣∣
∣

∫ tj–1

0

(
hi
(
τ , x̂j(τ ), v

(
τ , x̂j(τ )

))
– hi

(
τ , x̂j–1(τ ), v

(
τ , x̂j(τ )

)))
dτ

∣
∣∣
∣

︸ ︷︷ ︸
I4

+
N∑

j=1

∣∣
∣∣

∫ tj–1

0

(
hi
(
τ , x̂j–1(τ ), v

(
τ , x̂j(τ )

))
– hi

(
τ , x̂j–1(τ ), v

(
τ , x̂j–1(τ )

)))
dτ

∣∣
∣∣

︸ ︷︷ ︸
I5

+
N∑

j=1

∣
∣∣
∣

∫ tj

tj–1

hi
(
τ , x̂j(τ ), v

(
τ , x̂j(τ )

))
dτ

∣
∣∣
∣

︸ ︷︷ ︸
I6

.

Clearly, the term I3 is estimated by TV(v̄i). For the remaining terms I4, I5, and I6, we have

I4 ≤ L
N∑

j=1

∫ tj–1

0

∣
∣x̂j(τ ) – x̂j–1(τ )

∣
∣M1 dτ ≤ LM1 t̄,

I5 ≤ L
N∑

j=1

∫ tj–1

0

∣
∣v
(
τ , Xi(τ ; tj, 0)

)
– v

(
τ , Xi(τ ; tj–1, 0)

)∣∣dτ ≤ LMt̄,

I6 ≤ L(1 + M1)t̄;

so (66) is proved.
Case (c2). Similarly to Case (c1), we deduce that for every 0 ≤ t ≤ t̄, (64) holds,

TV(Mi(v)(t, ·); (Xi(t; 0, 0), 1
])≤ TV(v̄i) + L(M1 + M)t̄, (68)

and

TV
(
Mi(v)(·, 1–); [0, t̄]

)≤ TV(v̄i) + L(1 + 2M1 + M)t̄. (69)

For 0 ≤ t ≤ t̄, we denote

Mb,1(v)(t) =

⎛

⎜⎜
⎝

M�+1(v)(t, 1–)
...

Mn(v)(t, 1–)

⎞

⎟⎟
⎠ , (70)

which is well defined by (59) and has a finite total variation by (69).
Case (c3). By Remark 2 we easily deduce that

∥∥Mi(v)
∥∥

L∞ ≤ ∥∥m1
i
∥∥

L∞ + L(1 + M1)t̄. (71)
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We claim that for every 0 ≤ t ≤ t̄,

TV(Mi(v)(t, ·); (Xi(t; 0, 1), 1]
)≤ TV

(
b–) + 2KTV(v̄i)

+ L(2K + 1)(1 + M + 2M1)t̄.
(72)

To prove (72), fix N ∈ N \ {0}, a time 0 ≤ t ≤ t̄, and points Xi(t; 0, 1) ≤ x0 < · · · < xN ≤ 1.
Using the notations x̃j(τ ) = Xi(τ ; t, xj) and t̃j = Ti(1; t, xj), we have that t̃0 < · · · < t̃N and

N∑

j=1

∣∣Mi(v)(t, xj) – Mi(v)(t, xj–1)
∣∣

≤
N∑

j=1

∣∣m1
i (t̃j) – m1

i (t̃j–1)
∣∣

︸ ︷︷ ︸
I7

+
N∑

j=1

∣∣
∣∣

∫ t

t̃j

(
hi
(
τ , x̃j(τ ), v

(
τ , x̃j(τ )

))
– hi

(
τ , x̃j(τ ), v

(
τ , x̃j–1(τ )

)))
dτ

∣∣
∣∣

︸ ︷︷ ︸
I8

+
N∑

j=1

∣∣∣
∣

∫ t

t̃j

(
hi
(
τ , x̃j(τ ), v

(
τ , x̃j–1(τ )

))
– hi

(
τ , x̃j–1(τ ), v

(
τ , x̃j–1(τ )

)))
dτ

∣∣∣
∣

︸ ︷︷ ︸
I9

+
N∑

j=1

∣∣
∣∣

∫ t̃j

t̃j–1

hi
(
τ , x̃j–1(τ ), v

(
τ , x̃j–1(τ )

))
dτ

∣∣
∣∣

︸ ︷︷ ︸
I10

.

Using (49), (66), (69), and (61), we get

I7 ≤ TV
(
b–) + KTV

(
Mb,0(v)(·)) + KTV

(
Mb,1(v)(·))

≤ TV
(
b–) + 2K

[
TV(v̄i) + L(1 + 2M1 + M)t̄

]
.

For the remaining terms I8, I9, and I10, we have

I8 ≤ L
N∑

j=1

∫ t

t̃j

∣
∣v
(
τ , x̃j(τ )

)
– v

(
τ , x̃j–1(τ )

)∣∣dτ ≤ LMt̄,

I9 ≤ L
N∑

j=1

∫ t

t̃j

∣∣x̃j(τ ) – x̃j–1(τ )
∣∣M1 dτ ≤ LM1 t̄,

I10 ≤
N∑

j=1

∫ t̃j

t̃j–1

∣∣hi
(
τ , x̃j–1(τ ), v

(
τ , x̃j–1(τ )

))∣∣dτ ≤ L(1 + M1)t̄,

proving (72).
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Case (c4). Similarly to Case (c3), we deduce that for every 0 ≤ t ≤ t̄, (71) holds, and

TV
(
Mi(v)(t, ·); [0, Xi(t; 0, 0)

))≤ TV
(
b–) + 2KTV(v̄i)

+ L(2K + 1)(1 + M + 2M1)t̄.
(73)

Moreover, using (58) and (60), note also that for all i ∈ {1, . . . ,�} and 0 < t ≤ t̄,

∣
∣∣ lim
x→Xi(t;0,1)–

Mi(v)(t, x) – lim
x→Xi(t;0,1)+

Mi(v)(t, x)
∣
∣∣

≤ 2‖v̄‖L∞ + 2‖b‖∞ + K
(‖v̄‖∞ + L(1 + M1)t̄

)
+ 2L(1 + M1)t̄.

(74)

The same inequality holds in the case i ∈ {� + 1, . . . , n}.
Using (65), (68), (72), (73), and (74), we deduce that for all 0 ≤ t ≤ t̄ and i ∈ {1, . . . , n},

TV
(
Mi(v)(t, ·))≤ 2(2K + 1)TV(v̄i) + 2TV

(
b–) + (2 + K)‖v̄‖∞

+ 2‖b‖∞ + LK(1 + M1)t̄

+ 4L(K + 1)(1 + M + 2M1)t̄,

(75)

and so, by the choice of t̄ as in (54),

TV
(
M(v)(t, ·))≤ M, (76)

which implies that the operator M(v) is well defined. Note that the proof that t �→ M(v)(t)
is continuous from [0, t̄] to L1((0, 1);Rn) is straightforward and so omitted.

Fix v, v∗ ∈ X. For all t ∈ [0, t̄] and i ∈ {1, . . . ,�}, we have

∥∥Mi(v)(t, ·) – Mi
(
v∗)(t, ·)∥∥L1

=
∫ 1

0

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx

≤
∫ Xi(t;0,1)

0

∣
∣Mi(v)(t, x) – Mi

(
v∗)(t, x)

∣
∣dx

+
∫ 1

Xi(t;0,1)

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx.

Using (58) and the change of variable ξ = Xi(τ ; t, x), we deduce that

∫ Xi(t;0,1)

0

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx

≤
∫ Xi(t;0,1)

0

∫ t

0

∣
∣hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))

– hi
(
τ , Xi(τ ; t, x), v∗(τ , Xi(τ ; t, x)

))∣∣dτ dx

≤ L
∫ Xi(t;0,1)

0

∫ t

0

∣∣v
(
τ , Xi(τ ; t, x)

)
– v∗(τ , Xi(τ ; t, x)

)∣∣dτ dx

≤ e�t̄L
∫ t

0

∫ 1

0

∣
∣v(τ , ξ ) – v∗(τ , ξ )

∣
∣dξ dτ ≤ e�t̄Lt̄

∥
∥v – v∗∥∥

X .
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Using (60), we obtain that

∫ 1

Xi(t;0,1)

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx

≤ K
∫ 1

Xi(t;0,1)

∣
∣Mb,0(v)

(
Ti(1; t, x)

)
– Mb,0

(
v∗)(Ti(1; t, x)

)∣∣dx
︸ ︷︷ ︸

I11

+ K
∫ 1

Xi(t;0,1)

∣
∣Mb,1(v)

(
Ti(1; t, x)

)
– Mb,1

(
v∗)(Ti(1; t, x)

)∣∣dx
︸ ︷︷ ︸

I12

+I13,

where

I13 =
∫ 1

Xi(t;0,1)

∫ t

Ti(1;t,x)

∣
∣hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))

– hi
(
τ , Xi(τ ; t, x), v∗(τ , Xi(τ ; t, x)

))∣∣dτ dx.

For the term I11, using (58) and (67), we have that

I11 ≤
�∑

j=1

∫ 1

Xi(t;0,1)

∣∣Mj(v)
(
Ti(1; t, x), 0

)
– Mj

(
v∗)(Ti(1; t, x), 0

)∣∣dx

≤
�∑

j=1

∫ 1

Xi(t;0,1)

∣∣∣
∣

∫ Ti(1;t,x)

0
hj
(
τ , Xj

(
τ ; Ti(1; t, x), 0

)
, v
(
τ , Xj

(
τ ; Ti(1; t, x), 0

)))

– hj
(
τ , Xj

(
τ ; Ti(1; t, x), 0

)
, v∗(τ , Xj

(
τ ; Ti(1; t, x), 0

)))
∣∣
∣∣dτ dx

≤ L
�∑

j=1

∫ 1

Xi(t;0,1)

∫ Ti(1;t,x)

0

∣
∣v∗(τ , Xj

(
τ ; Ti(1; t, x), 0

))

– v∗(τ , Xj
(
τ ; Ti(1; t, x), 0

))∣∣dτ dx

≤ L�e�t̄ t̄
∥
∥v – v∗∥∥

X .

Similarly, we deduce that

I12 ≤ L(n – �)e�t̄ t̄
∥
∥v – v∗∥∥

X .

For the remaining term I13, using the change of variable ξ = Xi(τ ; t, x), we get

I13 ≤ L
∫ 1

Xi(t;0,1)

∫ t

Ti(1;t,x)

∣∣v
(
τ , Xi(τ ; t, x)

)
– v∗(τ , Xi(τ ; t, x)

)∣∣dτ dx

≤ e�t̄L
∫ t

0

∫ 1

0

∣∣v(τ , ξ ) – v∗(τ , ξ )
∣∣dτ dξ ≤ e�t̄Lt̄

∥∥v – v∗∥∥
X .

Therefore for all t ∈ [0, t̄] and i ∈ {1, . . . ,�}, we obtain

∥∥Mi(v)(t, ·) – Mi
(
v∗)(t, ·)∥∥L1 ≤ (2 + Kn)e�t̄Lt̄

∥∥v – v∗∥∥
X . (77)
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Analogous calculations allow us to prove that for all i ∈ {� + 1, . . . , n} and t ∈ [0, t̄],

∥
∥Mi(v)(t, ·) – Mi

(
v∗)(t, ·)∥∥L1 ≤ (2 + Kn)e�t̄Lt̄

∥
∥v – v∗∥∥

X . (78)

Hence, using (55), (57), (77), and (78), for every t ∈ [0, t̄], we have

∥∥M(v) – M
(
v∗)∥∥

X ≤
n∑

i=1

sup
t∈[0,t̄]

∥∥Mi(v)(t, ·) – Mi
(
v∗)(t, ·)∥∥L1([0,1];R)

≤ n(2 + Kn)e�t̄Lt̄
∥∥v – v∗∥∥

X ≤ 1
2
∥∥v – v∗∥∥

X ,

proving that M is a contraction. Hence a unique solution exists in the time interval [0, t̄].
Step 2. Global existence in [0, T]. Assume by contradiction that the solution v does not

exist on the whole time interval [0, T] and define

T̂ = sup
{

t ∈ [0, T] : v is defined in [0, t]
}

. (79)

By contradiction, T̂ < T . Moreover,

lim
t→T̂–

TV
(
v(t, ·)) = +∞; (80)

otherwise, the construction in the first part of the proof can be applied, violating the max-
imality of T̂ .

If T̂ ≤ 1
λmax

, then Lemma 17 implies that TV(v(t, ·)) is bounded in the time interval [0, T̂],
contradicting (80).

If T̂ ≤ 1
λmax

, then we can apply the previous considerations on time intervals of length
1

λmax
, obtaining a contradiction with the definition of T̂ .

Step 3. Stability estimates in [0, T]. Here we briefly sketch the proofs for the L1-
estimates (9), (11), and (12). We only consider the case t ≤ t̄; the final estimates follow
by an iterative procedure. We start with four cases in the construction of M. Let v and v∗

be the solutions to the diagonal system (3) with the initial and boundary conditions v̄, b
and, respectively, v̄∗, b∗.

1. For i ∈ {1, . . . ,�}, t ≤ t̄, and x ∈ [0, x̄i], where x̄i = Xi(t; 0, 1), we obtain

∫ x̄i

0

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx

≤ ∥
∥v̄ – v̄∗∥∥

L1(0,1) +
∫ x̄i

0

∫ t

0

∣
∣hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))

– hi
(
τ , Xi(τ ; t, x), v∗(τ , Xi(τ ; t, x)

))∣∣dτ dx

≤ ∥∥v̄ – v̄∗∥∥
L1(0,1) + L

∫ t

0

∥∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ .
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Similarly, for t̃ ∈ (0, t), we deduce the estimate for the trace:

∫ t

t̃

∣∣Mi(v)(τ , 0+) – Mi
(
v∗)(τ , 0+)

∣∣dτ

≤
∫ t

t̃

∣∣v̄i
(
Xi(t̃; τ , 0)

)
– v̄∗

i
(
Xi(t̃; τ , 0)

)∣∣dτ

+
∫ t

t̃

∫ t

0

∣∣hi
(
τ , Xi(θ ; τ , 0), v

(
τ , Xi(θ ; τ , 0)

))

– hi
(
τ , Xi(θ ; τ , 0), v∗(τ , Xi(θ ; τ , 0)

))∣∣dθ dτ

≤ ∥∥v̄ – v̄∗∥∥
L1(0,1) + L

∫ t

0

∥∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ .

(81)

2. In the same way, for i ∈ {� + 1, . . . , n}, t ≤ t̄, and x ∈ [x̄i, 1], where x̄i = Xi(t; 0, 0),

∫ 1

x̄i

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx ≤ ∥∥v̄ – v̄∗∥∥
L1(0,1)

+ L
∫ t

0

∥∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ ,

and, for t̃ ∈ (0, t),

∫ t

t̃

∣
∣Mi(v)(τ , 1–) – Mi

(
v∗)(τ , 1–)

∣
∣dτ

≤ ∥
∥v̄ – v̄∗∥∥

L1(0,1) + L
∫ t

0

∥
∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ .

(82)

3. For i ∈ {1, . . . ,�}, t ≤ t̄, and x ∈ [x̄i, 1], where x̄i = Xi(t; 0, 1), using (81) and (82), we
deduce that

∫ 1

x̄i

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx

≤
∫ 1

x̄i

∣∣mi
(
Ti(1; t, x)

)
– m∗

i
(
Ti(1; t, x)

)∣∣dx

+
∫ 1

x̄i

∫ t

Ti(1;t,x)

∣
∣hi
(
τ , Xi(τ ; t, x), v

(
τ , Xi(τ ; t, x)

))

– hi
(
τ , Xi(τ ; t, x), v∗(τ , Xi(τ ; t, x)

))∣∣dτ dx

≤ ∥
∥b – b∗∥∥

L1(0,T) + K
�∑

j=1

∫ t

Tj(1;t,x̄i)

∣
∣Mj(v)(τ , 0+) – Mj

(
v∗)(τ , 0+)

∣
∣dτ

+ K
n∑

j=�+1

∫ t

Tj(1;t,x̄i)

∣∣Mj(v)(τ , 1–) – Mj
(
v∗)(τ , 1–)

∣∣dτ

+ L
∫ t

0

∥
∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ

≤ ∥∥b – b∗∥∥
L1(0,T) + nK

∥∥v̄ – v̄∗∥∥
L1(0,1)
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+ nKL
∫ t

0

∥∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ .

4. Analogous calculations imply that for i ∈ {� + 1, . . . , n}, t ≤ t̄, and x ∈ [0, x̄i], with
x̄i = Xi(t; 0, 0),

∫ x̄i

0

∣∣Mi(v)(t, x) – Mi
(
v∗)(t, x)

∣∣dx

≤ ∥∥b – b∗∥∥
L1(0,T) + nK

∥∥v̄ – v̄∗∥∥
L1(0,1)

+ nKL
∫ t

0

∥
∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ .

Combining the estimates obtained in the previous four cases, we have

∥∥v(t, ·) – v∗(t, ·)∥∥L1 ≤ 2
∥∥b – b∗∥∥

L1(0,T) + (2nK + 2)
∥∥v̄ – v̄∗∥∥

L1(0,1)

+ (2nKL + 2)
∫ t

0

∥
∥v(τ , ·) – v(τ , ·)∥∥L1(0,1) dτ

for every t ≤ t̄. Using the Gronwall lemma, we obtain (9). Moreover, estimates (11) and (12)
follow from (81), (82), and (9).

Step 4. Total variation and L∞ estimates. The total variation (10) and the L∞ esti-
mates (13) follow from Lemma 17. �

5 Conclusions
We proved the well-posedness of a switched system composed by a system of linear hy-
perbolic balance laws and by a system of linear algebraic differential equations. The results
are global in time in the case of the initial data with finite total variation. We do not need
to impose any additional hypothesis on the smallness of the total variation.

The present setting includes networks and looped systems of hyperbolic balance laws.
Moreover, it can describe many real applications: for networks for water supply, electrical
power distribution, or gas transport. Similar systems, but with nonlinear PDE, are used
also for modeling the human circulatory system or controlling traffic flow through au-
tonomous vehicles.
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