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Abstract
The aim of the current work is to generalize the well-known bisection method using
quantum calculus approach. The results for different values of quantum parameter q
are analyzed, and the rate of convergence for each q ∈ (0, 1) is also determined. Some
physical problems in engineering are resolved using the QBM technique for various
values of the quantum parameter q up to three iterations to examine the validity of
the method. Furthermore, it is proven that QBM is always convergent and that for
each interval there exists q ∈ (0, 1) for which the first approximation of root coincides
with the precise solution of the problem.
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1 Introduction
Numerical techniques deal with the approximation for the solution of complex mathemat-
ical problems. Approximation of roots of nonlinear equation is one of the areas of interest
in numerical analysis. Different numerical methods like the Newton–Raphson method,
secant method, regula falsi method, bisection method, etc. are used to solve nonlinear
equations [1]. In the early twentieth century, Jackson introduced some crucial results of
q-calculus, and this field has become an active area of research due to its wide range of
applications in the field of combinatorics, mechanics, cryptography, hypergeometric se-
ries functions, number theory, and the theory of relativity [2–7]. Many researchers have
utilized the quantum calculus approach to generalize the numerical methods. Quantum
analogue of different root finding methods can be found in the literature [8–10].

Prashant et al. [11] used the q-Taylor formula and investigated the q-analogue of iterative
methods, particularly the q-analogue of the generalized Newton–Raphson method, and
compared the accuracy with the results obtained by the classical methods. Many linear
and nonlinear models appearing in science and engineering problems can be modeled by
using the q-differential equations. Jafari et al. [12] adopted the Daftardar decomposition
technique for solving the q-difference equations and also determined the convergence of
the method.

Many researchers have recently focused on improving the order of convergence of iter-
ative methods. Several modified iterative strategies have been developed to improve the
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order of convergence and the proficiency index. In [13] Chun-Hui He modified an an-
cient Chinese algorithm and developed Chun-Hui He iterative scheme to increase its rate
of convergence. Results show that the developed modified Chinese algorithms are more
precise and efficient. Khan in [14] developed a numerical algorithm based on Chun-Hui
He’s iteration algorithms and evaluated the effectiveness of the method by comparing the
solution of some engineering problems with the classical iterative algorithm. Chun-Hui
He’s iterative scheme is given as follows:

Phase 1 Using an ancient Chinese algorithm to estimate first approximation

x2 = x0 –
f (x0)

R(x0, x1)
, (1.1)

where f (x0)f (x1) < 0 and R(x0, x1) = f (x0)–f (x1)
x0–x1

.

Phase 2 Using x2 as an initial guess in Newton’s method

x3 = x2 –
f (x2)
f ′(x2)

.

Phase 3 Putting x2 = x0 and x3 = x1 in (1.1) and repeating the iteration process until the
desired accuracy is obtained.

The above-mentioned method is utilized in [15] to numerically estimate the Darcy fric-
tion factor in a water network problem. For more information in this regard, readers are
referred to [16, 17].

The purpose of the current study is to analyze the approximations of q-analogue of the
bisection method and its comparison with the classical iterative methods. The q-bisection
method has linear order of convergence, but it is always convergent. For q ∈ (0, 1) and
n ∈ N , the quantum number is defined as follows:

[n]q =
1 – qn

1 – q
,

when q → 1, [n]q = n.
The rest of the current article is organized as follows: Sect. 2 contains the proposed

quantum iterative algorithm. Section 3 gives the order of convergence of the proposed
method. Section 4 is all about the computation of roots of a numerical problem utiliz-
ing the QBM method. In Sect. 5, we compare the results of QBM with some well-known
iterative algorithms. Finally, the findings of our article are given in Sect. 6.

2 Main result
Consider the nonlinear equation

f (x) = 0,

where f (x) is a continuous real mapping. Suppose that the roots of the above equation lie
in the interval [a, b], i.e., f (a)f (b) < 0. The approximation of root is obtained by using the
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following q-bisection iterative formulas:

c =
a + qb

[2]q
, (2.1)

or

c =
aq + b

[2]q
, (2.2)

where c gives an approximate value of the root. Both of the iterative formulas can be used
for the approximation of root. Throughout this paper (2.1) is adopted as standard QBM.

Proposition 1 For a given interval [a, b], there exists q ∈ (0, 1) such that the q-bisection
method converges in a minimum number of iterations.

Suppose that if c is the root of f (x), i.e., f (c) = 0, then

q =
c – a
b – c

(2.3)

gives the value of q for which algorithm (2.1) rapidly converges to root. Expression equiv-
alent to (2.3) can also be obtained for (2.2).

Example 1 We consider the nonlinear equation

f (x) = xex2 – sin2 x + 3 cos x + 5.

The exact solution of the problem is x = –1.20764782713. From Fig. 1 we observe that
one root lies between –2 and 2, so we take [–2, 2] as an initial interval.

Table 1 shows that for q = 0.2470196903 the iterative process converges rapidly.

Figure 1 Graph of f (x) = xex
2
– sin2 x + 3cos x + 5



Gulshan et al. Advances in Continuous and Discrete Models         (2023) 2023:18 Page 4 of 12

Table 1 Comparison of the number of iterations for different values of q using QBM

q No. of iterations c f (c)

0.1 57 –1.2076 0
0.2470196903 16 –1.2076 0
0.25 51 –1.2076 0
0.5 30 –1.2076 0
0.75 32 –1.2076 0
1 32 –1.2076 0

3 Order of convergence
We rewrite the q-bisection method as follows:

xn+1 =
xn–1 + qxn

[2]q
. (3.1)

If x is the root of some function f , then the difference of the nth approximation of root xn

from x is taken as εn (error in the nth approximation), i.e.,

x = xn + εn.

Similarly, we have

x = xn–1 + εn–1,

x = xn+1 + εn+1.

From (3.1), we obtain

x – εn+1 =
x – εn–1 + qx – qεn

[2]q

=
[2]qx – εn–1 – qεn

[2]q

⇒ εn+1 =
εn–1 + qεn

[2]q

=
qεn

[2]q

[
1 +

εn–1

qεn

]
.

By neglecting the fraction εn–1
qεn

, we get

εn+1 ≈ qεn

[2]q
.

This shows that q-bisection method has the linear order of convergence for all the values
of quantum parameter q.

4 Numerical examples and comparison of results
This section focuses on the efficiency of the algorithm used to obtain the numerical re-
sults presented in the paper. All the computational experiments are performed on Intel(R)
Core(TM) i3, 2.1 GHz, 8GB RAM, and the code is written in MATLAB. Approximate val-
ues of root are correct up to 15 decimal places, i.e., ε = 10–16.
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Two types of stoping mechanism are used in the algorithm

(i)
∣∣∣∣b – a

2

∣∣∣∣ < ε and (ii)
∣∣f (c)

∣∣ < ε.

Initially, in Examples 2–5, we analyze the performance of quantum iterative algorithm for
different values of q up to three iterations. Later on, the number of iterations is increased
to acquire the desired accuracy.

Example 2 We consider the nonlinear equation

40n1.5 – 875n + 35,000 = 0.

The equation represents an industrial engineering profit estimation problem. Solution of
the nonlinear equation gives the minimum number of units n that a firm needs to sell in
order to get profit.

The exact solution of the problem is n = 62.691697150362522. From Fig. 2 we can see
that the root of function lies between 62 and 63, so we have taken [62, 64] as an initial
interval.

The above stated result concludes that n1 gives better approximation of root when q
is closer to 0.528. The exact solution of the problem is obtained by following the same
procedure as the one stated in Table 2. The last row of the table gives the results for the
classical bisection method. In contrast with the other values of q, we conclude that the
first iteration of the classical bisection method is not a better approximation of root than
q = 0.528.

Example 3 Consider the nonlinear equation

h3 – 9h2 + 3.8197 = 0.

The equation represents a physical problem of designing a scale to determine the volume
of oil in a spherical tank. The solution of this chemical engineering problem gives the
height of dipstick h corresponding to given volume of the spherical tank.

Figure 2 Graph of f (n) = 40n1.5 – 875n + 35,000
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Table 2 Calculations of ni and f (ni) for i = 1, 2, 3 and different values of q using QBM

q n1 f (n1) n2 f (n2) n3 f (n3)

0.1 62.181818182 204.409831 62.347107438 138.037429 62.497370398 77.788961
0.2 62.333333333 143.564496 62.611111111 32.241199 62.842592593 –60.304717
0.25 62.4 116.820190 62.72 –11.317682 62.464 91.161536
0.3 62.461538462 92.148120 62.816568047 –49.910271 62.543468366 59.322997
0.4 62.571428571 48.126601 62.979591837 –114.981245 62.688046647 1.459977
0.5 62.666666667 10.011665 63.111111111 –167.403960 62.814814815 –49.209921
0.528 62.691698829 –0.000671 62.239223635 181.346723 62.395711916 118.539909
0.55 62.709677419 –7.190263 62.251821020 176.287299 62.414286194 111.091271
0.6 62.75 –23.310705 62.28125 164.470235 62.45703125 93.954668
0.65 62.787878788 –38.448542 62.310376492 152.777876 62.498483457 77.342996
0.7 62.823529412 –52.690956 62.339100346 141.250308 62.538571138 61.284350
0.8 62.888888889 –78.789554 62.395061728 118.800671 62.614540466 30.868667
0.85 62.918918919 –90.775384 62.422205990 107.915681 62.650425444 16.509082
0.9 62.947368421 –102.127233 62.448753463 97.272713 62.684939496 2.702686
0.99 62.994974874 –20.802422 62.49498750 78.743724 62.743724938 –20.802422
1 63 –123.120088 62.5 76.735376 62.75 –23.310705

Figure 3 Graph of f (h) = h3 – 9h2 + 3.8197

The exact solution of the problem is 8.952339769727381. From Fig. 3 we can see that
the root of function lies between 8 and 10, so [8, 10] is taken as an initial interval for the
iteration process. Continuing the process repeatedly gives the exact root of the problem.
The last row of Table 3, where q = 1, gives the result of the classical bisection method.
Comparison shows that the first iteration for q = 0.909 is still a better approximation of
root than the classical bisection method.

Example 4 ((Population model) [1]) Consider the nonlinear equation

0.610679e–2k – e–k + 0.389321 = 0.

This equation represents logistic population growth model of USA from 1950 to 1970,
where k is the population growth rate.

The exact solution of the problem is k = 0.450167256004448. From Fig. 4 we can see that
the root of function lies between 0 and 1, so [0, 1] is taken as an initial interval. Proceeding
likewise, we obtain the exact root of the problem. For q = 1, the computation algorithm
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Table 3 Calculations of hi and f (hi) for i = 1, 2, 3 and different values of q using QBM

q h1 f (h1) h2 f (h2) h3 f (h3)

0.1 8.181818182 –50.951149 8.347107438 –41.670069 8.497370398 –32.472823
0.2 8.333333333 –42.476596 8.611111111 –25.016891 8.842592593 –8.488212
0.25 8.400000000 –38.516300 8.720000000 –17.471052 8.976000000 1.886054
0.3 8.461538462 –34.732872 8.816568047 –10.438809 9.089667729 11.228232
0.4 8.571428571 –27.667180 8.979591837 2.174127 8.688046647 –19.727211
0.5 8.666666667 –21.217337 9.111111111 13.043294 8.814814815 –10.569367
0.528 8.691099476 –19.513166 9.143389710 15.807306 8.847388248 –8.126180
0.55 8.709677419 –18.203730 9.167533819 17.899858 8.872142593 –6.244585
0.6 8.750000000 –15.320925 9.218750000 22.410246 8.925781250 –2.093276
0.65 8.787878788 –12.561745 9.265381084 26.601946 8.975985753 1.884912
0.7 8.823529412 –9.919360 9.307958478 30.500635 9.023000204 5.692251
0.8 8.888888889 –4.959450 9.382716049 37.512245 9.108367627 12.810134
0.85 8.918918919 –2.630066 9.415631848 40.667177 9.147138373 16.130788
0.9 8.947368421 –0.393742 9.445983380 43.613282 9.183554454 19.300255
0.909 8.952331063 –0.000690 9.451194900 44.122723 9.189872827 19.855175
1 9 3.819700 8.5 –32.305300 8.75 –15.320925

Figure 4 Graph of f (k) = 0.610679e–2k – e–k + 0.389321

reduces to the classical bisection method. Clearly, from Table 4, the first iteration obtained
corresponding to q = 0.819 is better approximation than the classical bisection method.

Example 5 ([18]) Consider the transcendental equation

(1 +
√

1 – 4λ)2

4
+ 2λ ln

(∣∣∣∣1 –
√

1 – 4λ

2

∣∣∣∣
)

= 0.

This equation is associated with the formulation of dynamical pull in the problem of
micro-electromechanical system (MEMS). For MEMS applications, an analytical closed-
form solution of the equation is crucial. From Fig. 5, the root lies closer to 0 and
f (0.1)f (0.25) < 0, so [0.1, 0.25] is taken as an initial interval.

From Table 5, it is evident that QBM gives better approximation of root in three itera-
tions for q = 0.4477 than the classical bisection method.
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Table 4 Calculations of ki and f (ki) for i = 1, 2, 3 and different values of q using QBM

q k1 f (k1) k2 f (k2) k3 f (k3)

0.1 0.090909091 –0.014624 0.173553719 –0.019766 0.248685199 –0.019134
0.2 0.166666667 –0.019590 0.305555556 –0.015948 0.421296296 –0.003921
0.25 0.200000000 –0.020059 0.360000000 –0.011106 0.488000000 0.005581
0.3 0.230769231 –0.019683 0.408284024 –0.005582 0.544833864 0.014771
0.4 0.285714286 –0.017295 0.489795918 0.005858 0.344023324 –0.012691
0.5 0.333333333 –0.013677 0.5555555561 0.016599 0.407407407 –0.005691
0.528 0.345549738 –0.012545 0.571694855 0.019399 0.423694124 –0.003607
0.55 0.354838710 –0.011632 0.583766909 0.021530 0.436071297 –0.001953
0.6 0.375000000 –0.009504 0.609375000 0.026147 0.462890625 0.001824
0.65 0.393939394 –0.007332 0.632690542 0.030452 0.487992876 0.005580
0.7 0.411764706 –0.005144 0.653979239 0.034459 0.511500102 0.009274
0.8 0.444444444 –0.000802 0.691358025 0.041643 0.554183813 0.016364
0.819 0.450247389 0.000011 0.202722711 –0.020056 0.314170051 –0.015291
0.9 0.473684211 0.003414 0.224376731 –0.019821 0.342469748 –0.012838
0.99 0.497487437 0.007052 0.247493750 –0.019177 0.371862469 –0.009848
1 0.5 0.007447 0.25 –0.019084 3.375 –0.009504

Figure 5 Graph of f (λ) = (1+
√
1–4λ)2
4 + 2λ ln(| 1–

√
1–4λ
2 |)

5 Comparison of QBM with some classical methods
This section is concerned with the comparison of QBM with the classical methods like
bisection method, Newton–Raphson’s, and regula falsi method. The efficiency of the pro-
posed quantum iterative method is determined by analyzing the solution of some of the
nonlinear equations. The value of f (xn), the number of iterations (IT), and the difference
between successive approximations (δ) are all shown in Table 5

f1(x) = ex – 2–x + 2 Cos(x) – 6,
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Table 5 Calculations of λi and f (λi) for i = 1, 2, 3 and for different values of q using QBM

q λ1 f (λ1) λ2 f (λ2) λ3 f (λ3)

0.1 0.113636364 0.293216 0.126033058 0.244321 0.137302780 0.202440
0.2 0.125000000 0.248280 0.145833333 0.172278 0.163194444 0.114782
0.25 0.130000000 0.229308 0.154000000 0.144595 0.173200000 0.083927
0.3 0.134615385 0.212213 0.161242604 0.120993 0.181725080 0.058918
0.4 0.142857143 0.182654 0.173469388 0.083119 0.195335277 0.021407
0.4474 0.146367811 0.170431 0.178402463 0.068526 0.200534604 0.007862
0.5 0.150000000 0.158010 0.183333333 0.054331 0.205555556 –0.004803
0.55 0.153225806 0.147170 0.187565036 0.042459 0.209719378 –0.014992
0.6 0.156250000 0.137168 0.191406250 0.031931 0.213378906 –0.023709
0.65 0.159090909 0.127913 0.194903581 0.022551 0.216608231 –0.031213
0.7 0.161764706 0.119325 0.198096886 0.014158 0.219468756 –0.037710
0.75 0.164285714 0.111337 0.201020408 0.006619 0.222011662 –0.043365
0.8 0.166666667 0.103889 0.203703704 –0.000180 0.183127572 0.054916
0.9 0.171052632 0.090411 0.208448753 –0.011913 0.188766584 0.039141
0.99 0.174623116 0.079671 0.212122169 –0.020741 0.193278423 0.026886
1 0.175 0.078549 0.2125 –0.021636 0.19375 0.025624

Table 6 f1(x) = ex – 2–x + 2Cos(x) – 6

Methods IT xn f (xn) δ

QBMa 53 –0.8325792882709923 –1.110223e–15 6.661338e–16
QBMb 51 –0.8325792882709914 1.776357e–15 1.332268e–15
QBMc 1 –0.8325792882709915 1.554312e–15 0
Bisection 46 –0.8325792882709777 4.463097e–14 2.842171e–14
Regula falsi 11 –0.8325792882709121 2.513545e–13 –1.72617e–12
Newton–Raphson 6 –0.832579288270992 0 1.110223e–16

f2(x) = 1,000,000ex +
435,000

x
(
ex – 1

)
– 1,564,000,

f3(x) = ln(x – 1) + Cos(x – 1),

f4(x) = 2x Cos(x) – (x – 2)2,

f5(x) = esin(x) – cos2(3x),

f6(x) = ln
(
tan(x)

)
– e–2x,

f7(x) = 230x4 + 18x3 + 9x2 – 221x – 9,

f8(x) = x – 0.8 – 0.2 sin(x),

f9(x) = Sin(x) – e–x,

f10(x) =
(1 +

√
1 – 4x)2

4
+ 2x ln

(∣∣∣∣1 –
√

1 – 4x
2

∣∣∣∣
)

.

In Tables 6–15, q = 0.5 and q = 0.75 are taken for QBMa and QBMb, respectively. For
QBMc, q is evaluated by using (2.3).

Remark 1
• The order of convergence of the proposed quantum iterative method is linear, but it

converges faster for some values of q.
• Tables show that if QBMc converges for the value of q obtained from Proposition 1,

then it approaches to the root in the minimum number of iterations.
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Table 7 f2(x) = 1,000,000ex + 435,000
x (ex – 1) – 1,564,000

Methods IT xn f (xn) δ

QBMa 67 0.1009979296857497 2.328306e–10 5.828671e–16
QBMb 55 0.1009979296857496 –4.656613e–10 2.428613e–16
QBMc 1 0.1009979296857490 –1.396984e–09 0
Bisection 50 0.1009979296857484 –2.095476e–09 1.776357e–15
Regula falsi 36 0.1009979296857490 –1.396984e–09 1.096345e–15
Newton–Raphson 6 0.100997929685750 0 –2.22045e–16

Table 8 f3(x) = ln(x – 1) + Cos(x – 1)

Methods IT xn f (xn) δ

QBMa 54 1.3977484759587473 5.551115e–16 2.886580e–15
QBMb 48 1.3977484759587468 –3.330669e–16 8.881784e–16
QBMc 49 1.3977484759587468 –3.330669e–16 8.881784e–16
Bisection 46 1.3977484759587473 5.551115e–16 6.661338e–16
Regula falsi 53 1.3977484759587480 2.109424e–15 –1.33226e–15
Newton–Raphson 8 1.397748475958747 2.220446e–16 0

Table 9 f4(x) = 2xCos(x) – (x – 2)2

Methods IT xn f (xn) δ

QBMa 56 0.9484340699196361 6.661338e–16 1.554312e–15
QBMb 55 0.9484340699196359 2.220446e–16 4.996004e–16
QBMc 1 0.948434069919636 0 0
Bisection 50 0.9484340699196361 6.661338e–16 8.881784e–16
Regula falsi 63 0.9484340699196361 6.661338e–16 –4.44089e–16
Newton–Raphson 7 0.948434069919636 6.661338e–16 6.661338e–16

Table 10 f5(x) = esin(x) – cos2(3x)

Methods IT xn f (xn) δ

QBMa 91 –9.455737905931795e–17 –1.110223e–16 7.091803e–17
QBMb 66 –9.109379319393902e–17 –1.110223e–16 7.970707e–17
QBMc 1 –3.081487911019579e–33 –1.110223e–16 0
Bisection 53 –5.551115123125783e–17 –1.110223e–16 1.110223e–16
Regula falsi 7 –0.7833286165303618 –1.822575e–11 4.330428e–07
Newton–Raphson 6 –2.358264037064873 6.661338e–16 4.440892e–16

Table 11 f6(x) = ln(tan(x)) – e–2x

Methods IT xn f (xn) δ

QBMa 57 0.8723123888016149 –4.718448e–16 2.220446e–
QBMb 50 0.8723123888016111 –9.436896e–15 7.882583e–15
QBMc 1 0.872312388801615 –8.3266726846e–17 0
Bisection 52 0.872312388801615 –9.436896e–16 6.661338e–16
Regula falsi 7 0.8723123888016150 –8.326673e–17 –1.11022e–16
Newton–Raphson 5 0.872312388801615 –8.326673e–17 0

Table 12 f7(x) = 230x4 + 18x3 + 9x2 – 221x – 9

Methods IT xn f (xn) δ

QBMa 54 0.962398418750542 2.273737e–13 –1.2212e–15
QBMb 55 0.962398418750542 4.263256e–13 7.771561e–16
QBMc 1 0.962398418750541 0 0
Bisection 51 0.9623984187505417 1.136868e–13 4.440892e–16
Regula falsi 15 0.9623984187505368 –3.12638803e–12 6.183942e–14
Newton–Raphson 5 0.962398418750541 –3.410605e–13 4.440892e–16
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Table 13 f8(x) = x – 0.8 – 0.2 sin(x)

Methods IT xn f (xn) δ

QBMa 56 0.9643338876952231 3.330669e–16 8.326673e–16
QBMb 55 0.9643338876952229 1.387779e–16 4.440892e–16
QBMc 1 0.964333887695223 –5.55111512e–17 0
Bisection 52 0.9643338876952226 –1.387779e–16 4.440892e–16
Regula falsi 7 0.9643338876952218 –8.326672e–16 2.985389e–13
Newton–Raphson 5 0.964333887695223 2.4980018e–16 –1.31509e–09

Table 14 f9(x) = Sin(x) – e–x

Methods IT xn f (xn) δ

QBMa 57 0.5885327439818610 –1.110223e–16 2.775558e–16
QBMb 48 0.5885327439818592 –2.553513e–15 4.440892e–15
QBMc 1 0.588532743981861 0 0
Bisection 51 0.5885327439818613 2.220446e–16 4.440892e–16
Regula falsi 22 0.588532743981861 1.1102230e–16 –3.3306e–16
Newton–Raphson 6 0.588532743981861 –1.110223e–16 1.110223e–16

Table 15 f10(x) = (1+
√
1–4x)2
4 + 2x ln(| 1–

√
1–4x
2 |)

Methods IT xn f (xn) δ

QBMa 57 0.2036321887945368 1.110223e–16 –2.22044e–16
QBMb 51 0.2036321887945368 1.110223e–16 0
QBMc 59 0.2036321887945370 –4.440892e–16 –1.4988e–15
Bisection 49 0.2036321887945370 –2.220446e–16 3.053113e–16
Regula falsi 22 0.2036321887945373 –8.881784e–16 –1.22124e–15
Newton–Raphson 6 0.203632188794537 1.11022e–16 1.72703e–10

• The classical bisection method is always convergent, but the q-bisection method may
be divergent for some values of q.

6 Conclusions
The main purpose of the current article is to develop an iterative algorithm for solving
nonlinear equation utilizing quantum calculus. The proposed algorithm generalizes the
classical bisection method, and it is observed that the quantum bisection method con-
verges at different rates for different values of quantum parameter q ∈ (0, 1). Although
QBM has linear order of convergence, there exists q for which the method converges
to root rapidly. The comparison of the algorithm shows that, in contrast to the classical
method, the generalized quantum bisection method is more reliable and gives better re-
sults for some values of q. Although Newton’s method has a higher order of convergence,
it is extremely sensitive to the initial guess, i.e., a bad initial guess may lead to the failure
of the algorithm. Similarly, in some problems, the regula falsi and the classical bisection
method fail to obtain the desired accuracy of the solution. On the other hand, QBM gives
better approximation of roots for some values of q. In the future, q-analogues of some
well-known numerical methods can be developed to improve the efficiency of the meth-
ods.
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