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1 Introduction and statement of the result
Let f ∈ L∞(R+;RN ), u0 ∈R

N , v0 ∈R
N , and m > 0. Let us consider the Cauchy problem

⎧
⎨

⎩

my′′ = f , t > 0,

y(0) = u0, y′(0) = v0,
(1.1)

governing the motion of a material point of mass m subject to the force field f . Our goal is
to show that the solution to (1.1) is the limit as h → +∞ of the minimizers of the following
functionals defined on trajectories y : R+ →R

N :

m
2h2

∫ +∞

0

∣
∣y′′(t)

∣
∣2e–ht dt –

∫ +∞

0
fh(t) · y(t)e–ht dt, h ∈N,

subject to the same initial conditions, where (fh)h∈N ⊂ L∞(R+;RN ) is a sequence such that
fh ⇀ f in w∗ – L∞(R+;RN ) as h → +∞. More precisely, letting

A :=
{

v ∈ W 2,1
loc

(
R

+;RN)
:
∫ +∞

0

∣
∣v′′(t)

∣
∣2e–t dt < +∞

}
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and fh ∈ L∞(R+;RN ) for every h ∈ N, we may define the rescaled energy functional (see
also Lemma 2.3)

Jh(u) :=

⎧
⎪⎪⎨

⎪⎪⎩

m
2

∫ +∞
0 |u′′(t)|2e–t dt – h–2 ∫ +∞

0 fh(h–1t) · u(t)e–t dt

if u ∈A,

+∞ otherwise in W 2,1
loc (R+;RN ).

We will prove the following result.

Theorem 1.1 For every h ∈N, there exists a unique solution uh to the problem

min
{
Jh(u) : u ∈A, u(0) = u0, u′(0) = h–1v0

}
.

Moreover, if fh ⇀ f in w∗ – L∞(R+;RN ) as h → +∞, then by setting yh(t) := uh(ht) we have
yh ⇀ y in w∗ – W 2,∞((0, T);RN ) for every T > 0, where y is the unique solution on R

+ of
problem (1.1).

A variational approach based on the minimization of weighted inertia-energy (WIE)
functionals can be used for approximating large classes of initial value problems of the
second order. An example is the nonhomogeneous wave equation

wtt = �w + g in R
+ ×R

N .

Indeed, it has been shown in [8] that given g ∈ L2
loc((0, +∞); L2(RN )), α ∈ H1(RN ), and

β ∈ H1(RN ), there exists a sequence (gh)h∈N converging to g in L2((0, T); L2(RN )) for every
T > 0 such that the following properties hold. First, the WIE functional

∫ +∞

0

∫

RN
e–t

{
1
2
∣
∣utt(t, x)

∣
∣2 +

1
2

h–2∣∣∇u(t, x)
∣
∣2 – h–2gh

(
h–1t, x

)
u(t, x)

}

dt dx

has, for every h ∈ N, a unique minimizer uh in the class of functions u ∈ L1
loc(R+ × R

N )
such that

⎧
⎪⎪⎨

⎪⎪⎩

∇u ∈ L1
loc(R+ ×R

N ), u′′ ∈ L1
loc(R+ ×R

N ),
∫ +∞

0
∫

RN e–t{|utt|2 + |∇u|2}dt dx < +∞,

u(0, x) = α(x), ut(0, x) = h–1β(x).

Second, by setting wh(t, x) := uh(ht, x) the sequence (wh)h∈N converges weakly in
H1((0, T) ×R

N ) for every T > 0 to a function w that solves in the sense of distributions in
R

+ ×R
N the initial value problem

⎧
⎨

⎩

wtt = �w + g,

w(0, x) = α(x), wt(0, x) = β(x).
(1.2)

A similar result holds for other classes of hyperbolic equations as shown in [4, 6, 9]. In
particular, it applies to the nonlinear wave equation wtt = �w – p

2 |w|p–2w, p ≥ 2, as conjec-
tured by De Giorgi [1] and first proven in [5]; see also [7]. Let us mention that (the scalar
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version of) Theorem 1.1 is not a direct consequence of the above result from [8], since
we should apply the latter to constant-in-space forcing terms g and initial data α,β , and
since the approximating sequence (gh)h∈N in [8] is not arbitrary but obtained by means of
a specific construction, not allowing, for instance, for the choice gh ≡ g for every h.

Concerning the WIE approach for ODEs, let us mention its application in [3] for pro-
viding a variational approach to Lagrangian mechanics by considering an equation of the
form

my′′ + ∇U(y) = 0, t > 0, (1.3)

for given potential energy U ∈ C1(RN ), bounded from below and m > 0. The main theo-
rem of [3] proves indeed that solutions to the initial value problem for (1.3) can be approx-
imated by rescaled minimizers, subject to the same initial conditions, of the functionals

Gh(v) =
∫ +∞

0
e–t

{
m
2

∣
∣v′′(t)

∣
∣2 + h–2U

(
v(t)

)
}

dt, h ∈ N.

It is worth noticing that also in this case, Theorem 1.1 is not a consequence of the result
from [3] since the latter requires that the force field is conservative and independent of t.

We have already observed that in the scalar case, problem (1.1) is a particular case of
problem (1.2), obtained by taking constant initial data and letting the forcing term de-
pend only on time. Let us also mention another interpretation of (1.1) from a continuum
mechanics point of view. Indeed, Newton’s second law (1.1) governs the motion of the
center of mass of a body occupying a reference configuration � ⊂ R

N . In more detail, let
ρ be the mass density of the body, and let u(t, x) be the position of the material point x at
time t. If T is the Cauchy stress tensor and b is the body force field acting on �, then the
equation of motion (see,e.g., [2]) takes the form

ρutt = divT + b in R
+ × �. (1.4)

Therefore by integrating in � both sides of (1.4) we formally get

d2

dt2

(∫

�

ρu dx
)

=
∫

�

divTdx +
∫

�

bdx =
∫

∂�

T · n dHN–1 +
∫

�

b dx =: f�, t > 0,

that is,

m�y′′ = f�, t > 0,

where f� = f�(t) is the total force acting on the body, accounting for surface and body
forces, m� =

∫

�
ρ(x) dx is the mass of the body, and

y(t) = m–1
�

∫

�

ρ(x)u(t, x) dx

is the position at time t of the center of mass of the body during the motion. Therefore
Newton’s second law (1.1) can be viewed as the average in space of the equation of motion
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(1.4). In this perspective, Theorem 1.1 can be seen as a result about the equation of motion
in R

N in the above average sense.
Let us finally stress that the methods described in this paper, here only devoted to the

elementary problem (1.1), can be extended to nonlinear problems like y′′ = ∇yG(t, y) under
suitable assumptions on G and also to hyperbolic problems such as (1.2) allowing us to
get further results on these topics. In this perspective, we will develop our analysis in a
forthcoming paper.

2 Existence of minimizers
In this section, we provide some preliminary results we are going to use for proving The-
orem 1.1. First of all, it is worth noticing that if u ∈A, then u ∈ W 2,2((0, T);RN ) for every
T > 0, hence both u(0) and u′(0) are well defined. Moreover, if u ∈A, then by the Cauchy–
Schwarz inequality,

∣
∣
∣
∣

∫ +∞

0
f
(
h–1t

) · u(t)e–t dt
∣
∣
∣
∣ ≤ ‖f‖∞

(∫ +∞

0

∣
∣u(t)

∣
∣2e–t dt

)1/2

,

and the integral in the left-hand side is finite (see Lemma 2.1), so that Jh(u) is well-defined
and finite. In fact, we have the following estimates.

Lemma 2.1 Let u ∈A. Then e–t/2u ∈ L2((0, +∞);RN ), e–t/2u′ ∈ L2((0, +∞);RN ), and

∫ +∞

0

∣
∣u′(t)

∣
∣2e–t dt ≤ 2

∣
∣u′(0)

∣
∣2 + 4

∫ +∞

0

∣
∣u′′(t)

∣
∣2e–t dt, (2.1)

∫ +∞

0

∣
∣u(t)

∣
∣2e–t dt ≤ 2

∣
∣u(0)

∣
∣2 + 8

∣
∣u′(0)

∣
∣2 + 16

∫ +∞

0

∣
∣u′′(t)

∣
∣2e–t dt. (2.2)

Proof We have u ∈ AC([0, T];RN ) and u′ ∈ AC([0, T];RN ) for every T > 0. Therefore
d
dt |u(t)|2 = 2u(t) · u′(t) and d

dt |u′(t)|2 = 2u′(t) · u′′(t) for a.e. t > 0. Moreover, given T > 0,
we integrate by parts and obtain

∫ T

0

∣
∣u′(t)

∣
∣2e–t dt =

[
–e–t∣∣u′(t)

∣
∣2]T

0 + 2
∫ T

0
e–t/2u′(t) · u′′(t)e–t/2 dt

≤ ∣
∣u′(0)

∣
∣2 +

1
2

∫ T

0

∣
∣u′(t)

∣
∣2e–t dt + 2

∫ T

0

∣
∣u′′(t)

∣
∣2e–t dt,

where we have used the Young inequality. By letting T → +∞ we get (2.1). The same
computation entails

∫ T

0

∣
∣u(t)

∣
∣2e–t dt ≤ ∣

∣u(0)
∣
∣2 +

1
2

∫ T

0

∣
∣u(t)

∣
∣2e–t dt + 2

∫ T

0

∣
∣u′(t)

∣
∣2e–t dt.

By letting T → +∞ and by taking advantage of (2.1) we obtain (2.2). �

The next lemma proves the first statement of Theorem 1.1.

Lemma 2.2 For every h ∈N, there exists a unique solution to the problem

min
{
Jh(u) : u ∈A, u(0) = u0, u′(0) = h–1v0

}
. (2.3)
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Proof We first observe that Jh is strictly convex and that the minimization set is convex.
Therefore if a minimizer exists, then it is necessarily unique, so we are left to prove the
existence. If u ∈A is such that u(0) = u0 and u′(0) = h–1v0, then Lemma 2.1 entails

∫ +∞

0

∣
∣u(t)

∣
∣2e–t dt ≤ 2|u0|2 + 8h–2|v0|2 + 16

∫ +∞

0

∣
∣u′′(t)

∣
∣2e–t dt (2.4)

and
∫ +∞

0

∣
∣u′(t)

∣
∣2e–t dt ≤ 2h–2|v0|2 + 4

∫ +∞

0

∣
∣u′′(t)

∣
∣2e–t dt. (2.5)

Let (uk)k∈N be a minimizing sequence for problem (2.3). Since u0 + h–1tv0 is admissible for
problem (2.3), we have, for any k large enough,

Jh(uk) ≤ Jh
(
u0 + h–1tv0

)
+ 1,

whence by (2.4) and by the Young and Cauchy–Schwarz inequalities, denoting by C vari-
ous constants only depending on ‖fh‖∞, h, u0, v0, m, we get

∫ +∞

0

∣
∣u′′

k (t)
∣
∣2e–t dt

≤ 2
m

h–2
∫ +∞

0
fh

(
h–1t

) · uk(t)e–t dt

–
2
m

h–2
∫ +∞

0
fh

(
h–1t

) · (u0 + h–1tv0
)
e–t dt +

2
m

≤ 2
m

‖fh‖∞h–2
∫ +∞

0

∣
∣uk(t)

∣
∣e–t dt + C

≤ 2
m

‖fh‖∞h–2
(∫ +∞

0

∣
∣uk(t)

∣
∣2e–t dt

) 1
2

+ C

≤ 1
32

∫ +∞

0

∣
∣uk(t)

∣
∣2e–t dt +

32
m2 h–4‖fh‖2

∞ + C

≤ 1
2

∫ +∞

0

∣
∣u′′

k (t)
∣
∣2e–t dt + C.

(2.6)

By taking into account of (2.4), (2.5), and (2.6) we get that the sequence (e– t
2 uk)k∈N is

equibounded in W 2,2(R+;RN ). So there exists v ∈ W 2,2(R+;RN ) such that, up to extracting
a subsequence, e– t

2 uk ⇀ v in W 2,2(R+;RN ), and hence uk ⇀ u := e t
2 v in W 2,2((0, T);RN )

for every T > 0, and u(0) = u0, u′(0) = h–1v0. Therefore for every T > 0, we have

lim inf
k→+∞

∫ +∞

0

∣
∣u′′

k (t)
∣
∣2e–t dt ≥ lim inf

k→+∞

∫ T

0

∣
∣u′′

k (t)
∣
∣2e–t dt ≥

∫ T

0

∣
∣u′′(t)

∣
∣2e–t dt,

and hence

∫ +∞

0

∣
∣u′′(t)

∣
∣2e–t dt = sup

T>0

∫ T

0

∣
∣u′′(t)

∣
∣2e–t dt ≤ lim inf

k→+∞

∫ +∞

0

∣
∣u′′

k (t)
∣
∣2e–t dt,



Percivale and Mainini Advances in Continuous and Discrete Models         (2023) 2023:20 Page 6 of 9

so eventually we find u ∈A, and since

lim
k→+∞

∫ +∞

0
h–2fh

(
h–1t

) · uke–t dt =
∫ +∞

0
h–2fh

(
h–1t

) · ve–t/2 dt

=
∫ +∞

0
h–2fh

(
h–1t

) · ue–t dt,

we get

lim inf
k→+∞

Jh(uk) ≥ Jh(u).

We conclude that u is a solution to (2.3). �

Lemma 2.3 Let h ∈N. If uh is the unique solution to (2.3), then yh(t) := uh(ht) is the unique
minimizer of

Fh(y) :=

⎧
⎨

⎩

m
2h2

∫ +∞
0 |y′′(t)|2e–ht dt –

∫ +∞
0 fh(t) · y(t)e–ht dt if y ∈Ah,

+∞ otherwise in W 2,1
loc (R+;RN )

over Ah, where

Ah :=
{

y ∈ W 2,1
loc

(
R

+;RN)
:
∫ +∞

0

∣
∣y′′(t)

∣
∣2e–ht dt < +∞, y(0) = u0, y′(0) = v0

}

.

Proof Since uh ∈ A and uh(0) = u0, u′
h(0) = h–1v0, we directly see that yh ∈ Ah and

h–1Fh(yh) = Jh(uh). Moreover, if y ∈ Ah, then by setting uh(t) = y(h–1t) we get uh ∈
A, uh(0) = u0, u′

h(0) = h–1v0, and h–1Fh(y) = Jh(uh). Therefore Fh(yh) ≤ Fh(y) for every
y ∈Ah, and equality holds if and only if y = yh, as claimed. �

3 Proof of Theorem 1.1
Given yh minimizing Fh over Ah, here we prove suitable boundedness estimates for the
sequence (yh)h∈N, which are the main step toward the proof of Theorem 1.1.

Lemma 3.1 For every h ∈N, let yh be as in Lemma 2.3. Then y′′
h ∈ L∞(R+;RN ), and

∥
∥y′′

h
∥
∥∞ ≤ m–1 sup

h∈N
‖fh‖∞.

Moreover, the sequence (yh)h∈N is equibounded in W 2,∞((0, T);RN ) for every T > 0.

Proof Let h ∈N, ϕ ∈ Cc(R+;RN ), and let ξ be the unique solution to

⎧
⎨

⎩

ξ ′′ = etϕ, t > 0,

ξ (0) = ξ ′(0) = 0.

By setting ψh(t) := h–2ξ (ht) we see that ψh(0) = ψ ′
h(0) = 0 and

∫ +∞

0

∣
∣ψ ′′

h(t)
∣
∣2e–ht dt = h–1

∫ +∞

0

∣
∣ϕ(t)

∣
∣2et dt,
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and the integral in the right-hand side is finite since ϕ ∈ Cc(R+;RN ). Thus we get yh +ψh ∈
Ah. The minimality of yh entails the validity of the first-order relation

mh–2
∫ +∞

0
y′′

h(t) · ψ ′′
h(t)e–ht dt =

∫ +∞

0
fh(t) · ψh(t)e–ht dt. (3.1)

Since ξ (0) = 0, using integration by parts, we have, for every ν > 0 and every τ > 0,

∫ τ

0

∣
∣ξ (t)

∣
∣e–t dt ≤

∫ τ

0

√∣
∣ξ (t)

∣
∣2 + ν2e–t dt

=
[
–e–t

√∣
∣ξ (t)

∣
∣2 + ν2

]τ

0 +
∫ τ

0

ξ ′(t) · ξ (t)
√|ξ (t)|2 + ν2

e–t dt

≤ ν +
∫ τ

0

∣
∣ξ ′(t)

∣
∣e–t dt,

Then by the arbitrariness of ν and τ , repeating the same argument taking into account
that ξ ′(0) = 0, we obtain

∫ +∞

0

∣
∣ξ (t)

∣
∣e–t dt ≤

∫ +∞

0

∣
∣ξ ′(t)

∣
∣e–t dt ≤

∫ +∞

0

∣
∣ξ ′′(t)

∣
∣e–t dt.

Therefore
∣
∣
∣
∣

∫ +∞

0
fh(t) · ψh(t)e–ht dt

∣
∣
∣
∣

= h–3
∣
∣
∣
∣

∫ +∞

0
fh

(
h–1s

) · ξ (s)e–s ds
∣
∣
∣
∣

≤ h–3‖fh‖∞
∫ +∞

0
e–s∣∣ξ ′′(s)

∣
∣ds = h–3‖fh‖∞

∫ +∞

0

∣
∣ϕ(s)

∣
∣ds.

(3.2)

We recall from Lemma 2.3 that yh(t) = uh(ht), where uh is the unique solution to (2.3).
Hence, taking into account that

h–2
∫ +∞

0
y′′

h(t) · ψ ′′
h(t)e–ht dt

=
∫ +∞

0
u′′

h(ht) · ξ ′′(ht)e–ht dt

= h–1
∫ +∞

0
u′′

h(s) · ξ ′′(s)e–s ds = h–1
∫ +∞

0
u′′

h(s) · ϕ(s) ds

and using (3.1) and (3.2), we get

∣
∣
∣
∣

∫ +∞

0
u′′

h(s) · ϕ(s) ds
∣
∣
∣
∣ ≤ m–1h–2‖fh‖∞

∫ +∞

0
|ϕ|ds. (3.3)

Since ϕ ∈ Cc(R+;RN ) is arbitrary and Cc(R+;RN ) is dense in L1(R+;RN ), (3.3) entails

∥
∥u′′

h
∥
∥∞ ≤ 1

h2m
‖fh‖∞,
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that is,

∥
∥y′′

h
∥
∥∞ ≤ 1

m
‖fh‖∞. (3.4)

Eventually, we have, for every t ∈ [0, T],

y′
h(t) = v0 +

∫ t

0
y′′

h(s) ds and yh(t) = u0 + tv0 +
∫ t

0
(t – s)y′′

h(s) ds,

and hence (3.4) yields

‖yh‖L∞(0,T) ≤ |u0| + T |v0| +
T2

2m
‖fh‖∞ (3.5)

and

∥
∥y′

h
∥
∥

L∞(0,T) ≤ |v0| +
T
m

‖fh‖∞. (3.6)

Estimates (3.4), (3.5), and (3.6) prove the result, since the sequence (fh)h∈N is bounded
in L∞(R+). �

Proof of Theorem 1.1 For every h ∈ N, let yh be as in Lemma 2.3. Let T > 0, and let ξ ∈
C∞(R) with spt ξ ⊂ (0, T). Then setting ϕh(t) := ξ (t)eht and taking into account the first-
order minimality condition (3.1), we have

–m
∫ T

0
y′

h(t) · (h–2ξ ′′′(t) + 2h–1ξ ′′(t) + ξ ′(t)
)

dt

= –mh–2
∫ T

0
y′

h(t) · (ϕ′′
h(t)e–ht)′ dt

= mh–2
∫ T

0
y′′

h(t) · ϕ′′
h(t)e–ht dt = mh–2

∫ +∞

0
y′′

h(t) · ϕ′′
h(t)e–ht dt

=
∫ +∞

0
fh(t) · ϕh(t)e–ht dt =

∫ T

0
fh(t) · ξ (t) dt.

(3.7)

By Lemma 3.1 there exists y ∈ W 2,∞((0, T);RN ) such that, up to subsequences, yh ⇀ x in
w∗ – W 2,∞((0, T);RN ). Therefore we get x(0) = u0 and x′(0) = v0. Taking into account (3.7)
and the w∗ – L∞(R+) convergence of fh to f , in the limit as h → +∞, we obtain

–m
∫ T

0
y′(t) · ξ ′(t) dt =

∫ T

0
f(t) · ξ (t) dt.

The latter holds for every ξ ∈ C∞(R) with spt ξ ⊂ (0, T), and therefore x is the unique
solution of

⎧
⎨

⎩

my′′ = f ,

y(0) = u0, y′(0) = v0,
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on [0, T]. Hence the whole sequence (yh)h∈N is such that yh ⇀ x in w∗ – W 2,∞((0, T);RN ).
Since the Cauchy problem (1.1) has a unique solution y on R

+ and since T is arbitrary, we
conclude that yh ⇀ y in w∗ – W 2,∞((0, T);RN ) as h → +∞ for every T > 0, thus proving
the theorem. �

4 Conclusions
The paper contains some new ideas concerning the approximation of the solution of the
equation of motion of a body with the minimizers of a sequence of variational problems
even in the presence of environmental forces. The method can be extended to hyperbolic
equations.
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