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1 Introduction by Y. Pomeau
Let us first precise that the references quoted in this section are the ones postponed at the
end the paper.

The Notes by Jean Ginibre on kinetic theory (“La théorie cinétique sans peine”) were
written by him when he was still a student, slightly before he got his PhD. I thought it
worthwhile to add a few comments to help understand this remarkable piece and to put
it in the more general framework of theoretical physics at the time of their writing, this
being based partly on personal memory and would likely be quite different when seen by
others. Moreover, it is not intended to be a thorough review of progresses in the field made
since, like in a standard review paper.

The situation of theoretical physics at the time, fifties to early sixties, was still domi-
nated by the outstanding success of calculations of various effects due to the quantum
interaction between electrons and electromagnetic radiation. This had given access [1] to
phenomena like the Lambshift and to the small (g – 2) difference. All this relied on elab-
orate strategies of calculation allowing to get rid of a priori diverging “corrections” with
strategies invented by Heisenberg and Dirac in the thirties. Even though the results were
certainly correct, the whole strategy of the calculation was not free of difficulties. There-
fore there was a natural tendency for the most mathematically inclined theoreticians, as
certainly Jean was, to try to put things on a safer ground. This is surely one of the basis
of his use of a mathematical formalism aiming at putting things in a fully rigorous frame-
work, somewhat unfamiliar to many physicists. Such a formalism allows to do equilibrium
thermodynamics in an infinitely extended homogeneous system without dealing first with
a finite system and then making its size grow to infinity at constant density and tempera-
ture. This tendency was strengthened by the successful approach of equilibrium problems
like the understanding of phase transitions in various models of spin systems. However,
as well understood by Jean, the understanding of nonequilibrium process was (and re-
mains) far less advanced than the one of physics “at equilibrium”. This is partly because
outside of equilibrium there is nothing like a Gibbs ensemble. The only available “math-
ematical object” describing nonequilibrium systems is the so-called BBGKY hierarchy, a
quite cumbersome theory relating between themselves an infinite set of functions with
an increasing number of arguments as one climbs the hierarchy. Because of its complex-
ity and as emphasized by Jean, one has to make approximations to get something out of
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this BBGKY hierarchy. The most remarkable result in the theory of nonequilibrium sys-
tems is the Boltzmann kinetic equation that requires that the system is at very low density
so that the collisions (namely the strong interaction between particles) occur between a
pair of particles only, or almost so if they interact by a smooth potential. Jean explains in
the Notes how Boltzmann kinetic equation can be derived from the hierarchy, something
done first by Bogoliubov [2] as he indicates. He does not mention one resounding success
that took place slightly before the writing of the Notes, namely the derivation by Balescu
and Lenard [3] of the kinetic equation for a neutral plasma. This case is not covered by the
standard Boltzmann kinetic theory because the long range interaction between electric
charges makes diverge the cross section of two body collisions and so the kinetic operator.
The Balescu–Lenard kinetic operator introduces a kind of out-of-equilibrium screening
of the interaction between electric charges like the one found at equilibrium in the Debye–
Huckel theory of electrolytes.

The derivation by Bogoliubov [2] of Boltzmann kinetic equation used a fully coherent
analysis of the dynamics of a dilute gas in a state close to uniform in space. This is no triv-
ial matter because the original derivation by Boltzmann is based on many assumptions
not showing very clearly what are the assumptions needed to make this kinetic equation
valid and in particular what could be the “next order” corrections taking into account,
for instance, finite density effects and/or of long range 2-body interactions. This “formal”
derivation by Bogoliubov is done by Jean here and leads to a very compact form of Boltz-
mann kinetic equation, as written in his equation (3.12).

Section 5 is devoted to the outstanding question of irreversibility. There Jean explains
in a simple way how irreversibility shows up in Boltzmann kinetic theory, it is because his
operator C(t) has to be taken at t tending to plus infinity to derive the kinetic equation,
whereas reversibility applies only for finite times. Jean makes an interesting connection
between the Mayer expansion at equilibrium and the calculation of the correlations out of
equilibrium at low densities.

Jean insists well that various assumptions necessary to derive even the standard Boltz-
mann kinetic equation may be invalid. Actually it was discovered [4] slightly after the
writing of the Notes that, out of equilibrium, a specific phenomenon occurs, absent at
equilibrium, namely the long range propagation of disturbances via the hydro-dynamical
modes. Because of that there is no local kinetic theory in 2D fluids (and in 1D also!). There
is an allusion to this kind of long range propagation of nonequilibrium correlations in the
Notes when referring to the article by Cohen and Dorfman [5] on page 26 in the con-
clusion section without saying precisely what is involved and by referring to an “opinion”.
From this reference it seems that Jean refers to the discovery of long range cycles of col-
lisions between particles interacting with short range forces, like hard spheres (in 3D) or
discs (in 2D). It had been discovered that, for instance in 3D, four hard spheres can make a
cycle of collisions of size as big as wished because of the possibility that two spheres mak-
ing an initial encounter can meet again by being thrown back to each other by collisions
with a few other spheres. At second collision such a re-collision event makes invalid the
Stosszahlansatz of Boltzmann necessary to derive his kinetic equation, because this ansatz
implies that the two colliding particles are statistically independent before the collision.

This makes the situation of nonequilibrium gases far more complex than at equilibrium
where the range of correlation is the same as the range of the interaction potential. As
was shown slightly later than the paper [5], there is another mechanism of long range
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propagation of correlations in nonequilibrium fluids. It results from the hydrodynamic
modes, always present in a fluid. Because of that the transport coefficients in 2D fluids
diverge (logarithmically), whereas the density expansion of transport coefficients in 3D
gets beyond a finite order contributions depending logarithmically on the density.

At about the time where the Notes were written, other attempts were made to develop a
formalism enabling to study nonequilibrium situations, based on molecular dynamics like
Boltzmann kinetic theory but without assuming a dilute gas and so—hopefully—giving
access to chemical physics of dense media and to a more global understanding of the status
of irreversibility. Such attempts were made by Prigogine and his group in Brussels. This is
developed for instance in the book by Balescu [6]. This book includes a highly original part
on quantum systems and derives from scratch the Boltzmann–Nordheim kinetic equation
for quantum gases, fermionic and bosonic. The general philosophy of the approach of
problems of kinetic theory by the Brussels school can perhaps be summarized by saying
that besides the change of the mean values, changes in the correlations are also taken into
account if their time scale is smaller than the one of the mean values. In other terms,
the correlations are created by quick events like the two body collisions in Boltzmann
kinetic theory. This constraint is quoted in the Notes, but, as we just explained, it may be
of dubious validity outside of the case of dilute gases because of either the long cycles of
re-collisions [5] or the long range propagation of hydrodynamic modes [4].

2 English Summary of Jean Ginibre’s manuscript, presented by Y. Pomeau
This summary of the unpublished Notes written by Jean Ginibre is numbered according to
the sections of the original text (written in french) which is presented in Sec. 3. Moreover
the references quoted here are postponed at the end of the paper, most of them are taken
from the original text.).

2.1 Introduction
As rightly said by the author, Liouville equations are too complex to be useful. Kinetic
theory yields a “simplified” picture of gas/fluid dynamics involving a distribution func-
tion for one particle. Boltzmann kinetic equation was derived by him by using a statistical
argument foreign to a purely mechanical picture. References [2], [7] to [10] did look at pos-
sible derivations of Boltzmann kinetic equation directly from the Liouville equation and
its BBGKY consequence. The most systematic (and earliest) derivation is by Bogoliubov
[2], and it relies on various conjectures of validity hard to check. This essay is to formulate
clearly the assumptions behind such a derivation by displaying as concisely as possible the
algebraic structure of the theory.

Section 1 explains the notations, based on ref [11]. Section 2 introduces the BBGKY hi-
erarchy and solves it formally. Section 3 explains the principle of the theory in the simplest
possible way. Section 4 displays Bogoliubov derivation of the Boltzmann kinetic equation.
Section 5 explains how irreversibility sets in by starting from formally reversible dynam-
ical equations. Section 6 explains the relationship between the theory of Bogoliubov and
the works of Green [9] and Cohen [10].

2.2 Preliminaries
This section introduces the formalism used in the Notes. Compared to the expositions of
BBGKY theory and particularly to Bogoliubov [2], this formalism is quite different. This
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goes far beyond trivial changes of notations but implies also an attempt to put things in a
far more abstract framework than usual in this field.

The fundamental object there is denoted as Em and is the set of real functions depending
on positions and momenta of m classical particles. Moreover, the functions are symmet-
rical under permutation of particle indices. The functions in Em are measurable by the Li-
ouville measure, which implies that integrals of functions in Em over space and momenta
converge. E, the direct product of the Em’s, is endowed of a structure of algebra thanks to
the � product defined in Eq. (1-2), an interesting and I believe original idea that stream-
lines many calculations done later. Thanks to this algebraic structure, one can define an
application in E, called � and defined in Eq. (1-5).

The next five examples have partly a pedagogical purpose, well deserved, and give, if
possible, some agility for the algebraic manipulations to come. Examples 1 to 3 are devoted
to the operator �. Example 4 introduces a new operator P, and Example 5 introduces
others, denoted as �, �, H0, R, P, and P–1 used in later calculations.

2.3 The equation of motion and its formal solution
The equation solved is the Liouville equation. An added complexity there is that the con-
straint of a fixed number of particles is dropped, which somehow extends the usual grand
canonical ensemble of equilibrium thermodynamics to nonequilibrium. The basic ele-
ment of the analysis becomes the function ρ�(X) with the dynamical equation given in
Eqs. (2-5) and (2-6). The Liouville equation is Eq. (2-8). It assumes an interaction poten-
tial V (.) fairly general that may involve more than two particles.

The fundamental operator of evolution is Ut defined in Eq. (2-30) and so to speak com-
puted in Eqs. (2-32) and (2-33). As noticed a bit later (at the very end of Sect. 2), the con-
vergence of the developments introduced in Eq. (2-32) is not certain, by far! The final result
of this section is Eq. (2-47), completed by (2-48). This is an outstanding result that extends
formally relations known at equilibrium to out of equilibrium situations, as pointed out by
the author. Indeed the well-known limitation [12] in the validity of this kind of extension
is that outside of equilibrium correlations tend to be far more long ranged than at equi-
librium because of the propagation of perturbations at distances of order of the mean free
path in dilute gases or even at infinite distances by hydrodynamic fluctuations in denser
media.

2.4 The correlation equation and the kinetic equation
This section is devoted to the derivation of “the kinetic equation”. Its range of applicability
is limited by the assumption that the number density is small, meaning practically that
some sort of Boltzmann kinetic equation will be the final result.

The beginning of this section outlines what is meant by “kinetic equation”. This implies
(even though the word is not used) an adiabatic assumption of synchronization of solu-
tions of the full dynamical problem with the one body distribution denoted as f (x). It states
also that this is true in the limit of a small density, where practically the kinetic equation is
Boltzmann kinetic equation. Differently from the usual derivations of Boltzmann kinetic
equation, the author begins by computing a correlation operator, denoted as C, which
yields the full distribution ρ as a function of F and lastly of f (Eq. 3-1). The author derives
then the closed equation (3-10) for the time derivative of C. By integration this gives C,
and by inserting the result into Eq. (3-4) one should get the kinetic equation.
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Even though this calculation is formally exact, at the end the kinetic equation is derived
by inserting into Eq. (3-4) the operator C(t) computed for t tending to +∞. In standard
derivations of Boltzmann kinetic equation, this amounts to putting in the collision opera-
tor the scattering data of the two body problem to get changes of the velocity distribution
at time scales much longer than the duration of a two body collision.

The last paragraph explains the relationship between the method of derivation of the
Notes and that of Zwanzig [13]. The difference lies in the linearity assumed by Zwanzig
that does not hold true.

2.5 The interaction representation and the point of view of Bogoliubov
This section is about the effective derivation of the kinetic equation in the aforementioned
limits. This is done in interaction representation, where the leading order is the hamilto-
nian for noninteracting particles and the perturbation comes from the two body interac-
tion. The operator C′ is derived from Eqs. (4-9) and (4-10). After integration with respect
to time, one obtains an expression of C(∞), which is the same as the one given by Bogoli-
ubov, and finally agrees at the end with Boltzmann kinetic operator. At the end of Sect. 4,
there is a table of correspondence between the equation of this section and the equations
in Bogoliubov paper [2]. This comparison should be helpful for everybody wishing to un-
derstand better the link between the original derivations of Boltzmann kinetic equation
and the ones based on the BBGKY hierarchy or directly the Liouville equations as in the
Notes.

2.6 The problem of irreversibility
The way irreversibility does appear in kinetic theory is of course central to the subject
since the discussions following Boltzmann’ s work. A good introduction to the historical
aspects of this can be found in the second book of S.G. Brush on kinetic theory [14] that
includes the original papers or English translation of articles by Poincaré, Zermelo and the
answers by Boltzmann himself. Technically, and as noticed in this section, irreversibility
sets in because of the substitution of C(∞) for C(t) in the equations, something necessary
to get an explicit equation at the end that is local in time, namely such that one integrates
over time the pair correlation created by binary collisions, assuming there is none before
the collision. This is the well-known “Stosszahlansatz” by Boltzmann, equivalent to as-
suming that before they meet particles are uncorrelated or have no knowledge of each
other. The way this Stosszahlansatz is formulated (the word however does not appear) is
interesting because it displays very explicitly how irreversibility sets in in the analysis, al-
though generally it is only seen as a final result of all the assumptions made without linking
it precisely to the step where it appears.

2.7 Formal solution of the equation for correlations
The purpose of this section is to explain, by formal analogy of the theory developed so far
with equilibrium statistics, that the correlations created by the interaction of particles can
be found explicitly.

This section exposes the principle of the derivation of the Boltzmann equation from the
result derived in Sect. 5. This requires the computation of the operator C(∞), which is
done in this section, with the final result given in Eq. (6-18).
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2.8 Conclusion
This concluding section is very far reaching, given the time where the Notes were written.
It says rightly that the convergence of the formal expansions introduced in the derivation of
the kinetic equation is at least dubious and concludes that “an important work” remains
to be done in this respect. Looking retrospectively it is right that the Notes and other
works done later show that so-called long tails pop up in kinetic theory as soonas one goes
beyond the limit of a very dilute gas, where Boltzmann kinetic theory applies. But this is
another story, and we refer the interested reader to ref [12] that lists relevant publications
on this topic.

3 The manuscript by Jean Ginibre
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