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Abstract
We prove that the recently introduced spin Benjamin–Ono equation admits a Lax pair
and deduce a family of conservation laws that allow proving global wellposedness in
all Sobolev spaces Hk for every integer k ≥ 2. We also infer an additional family of
matrix-valued conservation laws of which the previous family is just the traces.
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1 Introduction
In a recent paper [1], Berntson, Langmann, and Lenells have introduced the following spin
generalization of the Benjamin–Ono equation on the line R or on the torus T,

∂tU + {U , ∂xU} + H∂2
x U – i[U , H∂xU] = 0, x ∈ X,

where X denotes R or T, the unknown U is valued into d × d matrices, and H denotes the
scalar Hilbert transform on X; in fact, the authors chose the normalization H = isign(D)
so that H∂x = –|D|, where |D| denotes the Fourier multiplier associated to the symbol |k|.
Notice that in front of the commutator term on the right-hand side, we take a different
sign from the one used in [1]. However, passing to the other sign by applying the complex
conjugation is easy. Consequently, the above equation reads

∂tU = ∂x
(|D|U – U2) – i

[
U , |D|U]

. (1)

The purpose of this note is to prove that equation (1) enjoys a Lax pair structure and to
infer the first consequences on the corresponding dynamics.

2 The Lax pair structure
Let us first introduce some more notation. Given operators A, B, we denote

{A, B} := AB + BA, |A, B] := AB – BA
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and A∗ denote the adjoint of A. We consider the Hilbert space H := L2
+(X,Cd×d) made of

L2 functions on X with Fourier transforms supported in nonnegative modes, and valued
into d × d matrices, endowed with the inner product 〈A|B〉 =

∫
X tr(AB∗) dx. We denote

by �≥0 the orthogonal projector from L2(X,Cd×d) onto H . According to the study of the
integrability of the scalar Benjamin–Ono equation [2], given U ∈ L2(X,Cd×d) valued into
C

d×d , we define on H the unbounded operator

LU := D – TU , D :=
1
i
∂x,

where dom(LU ) := {F ∈ H : DF ∈ H }, and TU is the Toeplitz operator of symbol U de-
fined by TU (F) := �≥0(UF). It is easy to check that LU is self-adjoint if U is valued in
Hermitian matrices. However, we do not need the latter property for establishing the Lax
pair structure. If U is smooth enough (say belonging to the Sobolev space H2), we define
the following bounded operator,

BU := i
(
T|D|U – T2

U
)
,

which is anti-self-adjoint if U is valued in Hermitian matrices. Our main result is the fol-
lowing.

Theorem 1 Let I be a time interval and U be a continuous function on I valued into
H2(X,Cd×d) such that ∂tU is continuous valued into L2(X,Cd×d). Then U is a solution
of (1) on I if and only if

∂tLU = [BU , LU ].

Proof Obviously, ∂tLU = –T∂tU . Since TG = 0 implies classically G = 0, the claim is equiv-
alent to the identity

–T∂x(|D|U–U2)–i[U ,|D|U] = [BU , LU ].

We have

–T∂x(|D|U–U2)–i[U ,|D|U] = [iT|D|U , D] + TU∂xU+∂xUU + iT[U ,|D|U]

= [BU , D] + TU∂xU+∂xUU – TU T∂xU – T∂xU TU + iT[U ,|D|U]

= [BU , LU ] + T{U ,∂xU} – {TU , T∂xU} + iT[U ,|D|U] – i[TU , T|D|U ]

So, we have to check that

T{U ,∂xU} – {TU , T∂xU} + iT[U ,|D|U] – i[TU , T|D|U ] = 0. (2)

We need the following lemma, where we denote �<0 := Id – �≥0.

Lemma 1 Let A, B ∈ L∞(X,Cd×d). Then, for every F ∈ H ,

(TAB – TATB)F = �≥0
(
�≥0(A)�<0

(
�<0(B)F

))
.
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Let us prove Lemma 1. Write

TABF = �≥0(ABF) = �≥0
(
A�≥0(BF)

)
+ �≥0

(
A�<0(BF)

)
= TATBF + �≥0

(
A�<0(BF)

)

so that observing that the ranges of �≥0 and of �<0 are stable through the multiplication,

(TAB – TATB)F = �≥0
(
A�<0(BF)

)
= �≥0

(
�≥0(A)�<0

(
�<0(B)F

))
.

This completes the proof of Lemma 1. Let us apply Lemma 1 to A = U , B = |D|U . We get

i(TU|D|U – TU T|D|U )F = �≥0
(
�≥0(U)�<0

(
�<0

(
i|D|U)

F
))

= –�≥0
(
�≥0(U)�<0

(
�<0(∂xU)F

))
,

and similarly

i(T|D|UU – T|D|UTU )F = �≥0
(
�≥0

(
i|D|U)

�<0
(
�<0(U)F

))

= �≥0
(
�≥0(∂xU)�<0

(
�<0(U)F

))

so that

(
iT[U ,|D|U] – i[TU , T|D|U ]

)
F = –�≥0

(
�≥0(U)�<0

(
�<0(∂xU)F

))

– �≥0
(
�≥0(∂xU)�<0

(
�<0(U)F

))

= –T{U ,∂xU}(F) + {TU , T∂xU}(F),

using again Lemma 1. Hence, we have proved identity (2). �

3 Conservation laws and global wellposedness
The following is an application of Theorem 1.

Corollary 1 Assume that U0 belongs to the Sobolev space H2(X,Cd×d) and is valued into
Hermitian matrices. Then equation (1) has a unique solution U , depending continuously on
t ∈R, valued into Hermitian matrices of the Sobolev space H2(X), and such that U(0) = U0.
Furthermore, the following quantities are conservation laws,

Ek(U) =
〈
Lk

U (�≥0U)|�≥0U
〉
, k = 0, 1, 2 . . . .

In particular, the norm of U(t) in the Sobolev space H2(X) is uniformly bounded for t ∈R.

Proof The local wellposedness in the Sobolev space H2 follows from an easy adaptation of
Kato’s iterative scheme—see, e.g., Kato [3] for hyperbolic systems. Global wellposedness
will follow if we show that conservation laws control the H2 norm. Set U+ := �≥0U , U– :=
�<0U . Applying �≥0 to both sides of (1), we get

∂tU+ = –i∂2
x U+ – 2TU∂xU+ – 2T∂xU– U+ = iL2

U (U+) + BU (U+).
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Therefore, from Theorem 1,

d
dt

〈
Lk

u(U+)|U+
〉

=
〈[

BU , Lk
U
]
U+

∣
∣U+

〉
+

〈
Lk

U
(
iL2

U (U+) + BU (U+)
)∣∣U+

〉

+
〈
Lk

U (U+)|iL2
U (U+) + BU (U+)

〉

= 0,

since BU and iL2
U are anti-self-ajoint.

Now observe that E0(U) = ‖U+‖2
L2 . Since U is Hermitian, we have

U =

⎧
⎨

⎩
U+ + U∗

+ if X = R,

U+ + U∗
+ – 〈U+〉 if X = T,

where 〈F〉 denotes the mean value of a function F on T. We infer that E0(U) controls the
L2 norm of U . Let us come to E1(U). In view of the Gagliardo–Nirenberg inequality,

E1(U) =
〈
DU+

∣∣U+
〉
–

〈
TU (U+)

∣∣U+
〉 ≥ 〈DU+|U+〉 – O

(‖U+‖3
L3

)

≥ 〈DU+|U+〉 – O
(〈DU+|U+〉1/2‖U+‖2

L2
)

– O
(‖U+‖3

L2
)
.

Consequently, E0(U) and E1(U) control ‖U+‖2
L2 + 〈DU+|U+〉, which is the square of the

H1/2 norm of U+, since U+ only has nonnegative Fourier modes. Therefore, the H1/2 norm
of U is controlled by E0(U) and E1(U).

Since E2(U) is the square of L2 norm of LU (U+) and the L2 norm of TU (U+) is controlled
by the H1/2 norm of U by the Sobolev estimate, we infer that E0(U), E1(U), and E2(U)
control the L2 norms of U and of ∂xU , namely the Sobolev H1 norm of U .

Finally, E4(U) is the square if the L2 norm of L2
U (U+). Since LU (U+) is already controlled in

L2 and U is controlled in L∞ by the Sobolev inclusion H1 ⊂ L∞, we infer that the H1 norm
of LU (U+) is controlled. But H1 is an algebra, so the H1 norm of TU (U+) is also controlled.
Finally, we infer that {En(U), n ≤ 4} control the H1 norms of U+ and ∂xU+, namely the H2

norm of U+, and finally of U . �

Remarks.
(1) If the initial datum U belongs to the Sobolev space Hk for an integer k > 2, a similar

argument shows that the Hk norm of U is controlled by the collection
{En(U), 0 ≤ n ≤ 2k}.

(2) In [1], the evolution of multi-solitons for (1) is derived through a pole ansatz, and
the question of keeping the poles away from the real line—or from the unit circle in
the case X = T—is left open. Since Corollary 1 implies that the L∞ norm of the
solution stays bounded as t varies, this implies a positive answer to this question, as
far as the poles do not collide. In fact, we strongly suspect that such a collision does
not affect the structure of the pole ansatz because it is likely that multisolitons have
a characterization in terms of the spectrum of LU , as it has in the scalar case [2].

Let us say a few more about conservation laws. The conservation laws Ek can be explicitly
computed in terms of U . For simplicity, we focus on E0 and E1. In case X = R, we have
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exactly

E0(U) =
1
2

∫

R

tr
(
U2)dx,

and

E1(U) =
〈
DU+

∣
∣U+

〉
–

〈
TU (U+)

∣
∣U+

〉

=
∫

R

tr
(

1
2

U|D|U –
1
3

U3
)

dx,

so we recover the Hamiltonian function derived in [1].
In case X = T, the above formulae must be slightly modified due the zero Fourier mode.

This leads us to a bigger set of conservation laws. Indeed, every constant matrix V ∈C
d×d

is a special element of H , and we observe that BU (V ) = –iL2
U (V ). Arguing exactly as in

the proof of Corollary 1, we infer that, for every integer � ≥ 1, for every pair of constant
matrices V , W , the quantity 〈L�

U (V )|W 〉 is a conservation law. Since V , W are arbitrary,
this means that, if 1 denotes the identity matrix, all the matrix-valued functionals

M�–2(U) :=
∫

T

L�
U (1) dx

for � ≥ 1 are conservation laws. If the measure of T is normalised to 1, we have for instance

M–1(U) = –〈U+〉 = –〈U〉,

M0(U) =
1
2
〈
U2 – iUHU

〉
+

1
2
〈U〉2.

Then one can check that

E0(U) =
1
2

tr
(〈

U2〉) +
1
2

tr
(〈U〉2),

E1(U) = tr
〈

1
2

U|D|U –
1
3

U3
〉

–
5
3

tr
[〈U〉3] – tr

[
M0(U)〈U〉].

Observe again that the first term on the right-hand side of the expression of E1(U) is the
opposite of the Hamiltonian function in [1].

In the case X = R, all the matrix valued expressions Mk(U) make sense if k ≥ 0 and are
again conservation laws. For instance,

M0(U) =
1
2

∫

R

(
U2 – iUHU

)
dx.

Finally, notice that in both cases X = T and X = T, we have

Ek(U) = trMk(U)

for every k ≥ 0.
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