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Abstract

This paper investigates the existence of positive periodic solutions for a periodic
predator-prey model with fear e�ect and general functional responses. The general
functional responses can cover the Holling types II and III functional response, the
Beddington…DeAngelis functional response, the Crowley…Martin functional response,
the ratio-dependent type with Michaelis…Menten type functional response, etc.
Some new su�cient conditions for the existence of positive periodic solutions of the
model are obtained by employing the continuation theorem of coincidence degree
theory and some ingenious estimation techniques for the upper and lower bounds of
the a priori solutions of the corresponding operator equation. Our results
considerably improve and extend some known results.
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1 Introduction
The dynamic relationship between predators and prey is very common and essential in

ecological environments. Consequently, many scholars have studied di�erent types of

predator…prey models based on some practical problems. Many scholars have studied

the important dynamic properties of the autonomous and nonautonomous predator…

prey models such as stability, permanence, extinction, global attractivity, and the exis-

tence of periodic and almost periodic solutions. These studies are valuable in exploring

and predicting the relationships and patterns of changes between predators and prey. Pe-

riodic phenomena, such as seasonal e�ects of weather, food supply, mating habits, hunt-

ing or harvesting seasons [1], are widespread in ecosystems. In the predator…prey model,

a wide variety of functional responses are available re”ecting how direct killing may oc-

cur. The periodic predator…prey models with di�erent functional responses and practical

factors have been studied by many scholars. For example, the ratio-dependent functional

responses [2, 3], the Holling type functional responses [4…6], the Beddington…DeAngelis

functional responses [4, 7…11], the Crowley…Martin functional responses [12…14] (see

also the references therein).
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Recently, Tripathi et al. [14] studied the following nonautonomous predator…prey model

with Crowley…Martin functional response:

⎧
⎨

⎩

ẋ(t) = x(t)[a(t) …b(t)x(t) … c(t)y(t)
α(t)+β(t)x(t)+γ (t)y(t)+q(t)x(t)y(t) ],

ẏ(t) = y(t)[…d(t) …r(t)y(t) + f (t)x(t)
α(t)+β(t)x(t)+γ (t)y(t)+q(t)x(t)y(t) ],

(1.1)

where x(t) and y(t) denote the population densities of the prey and predators at timet,
respectively. In model (1.1), it is assumed that all parameters are continuous and have

positive upper and lower bounds. The functiona(t) denotes the intrinsic rate of prey;

a(t)/b(t) denotes carrying capacity in the absence of predation;c(t) denotes the cap-

turing rate; f (t) denotes the conversion rate (the coe�cient of conversion from prey

to predator); d(t) denotes the death rate of predators;r(t) denotes the predator den-

sity dependence rate (predator population decreases due to competition among the

predators). Predators consume prey with a Crowley…Martin type functional response

(c(t)y(t))/(α(t) + β(t)x(t) + γ (t)y(t) + q(t)x(t)y(t)) and contribute to its growth with rate

(f (t)x(t))/(α(t) + β(t)x(t) + γ (t)y(t) + q(t)x(t)y(t)). The functionα(t) measures the half sat-

uration of prey species;β(t) measures the handling time;γ (t) denotes the coe�cient of

interference among predators;q(t) denotes the coe�cient of interference among preda-

tors at the high density of prey. More detailed biological explanations can be found in

[10, 14, 15] and the references therein. Tripathi et al. [14] studied the permanence, ex-

tinction, global attractivity, and the existence of periodic and almost periodic solutions

of model (1.1) in detail. If q(t) ≡ 0, then the functional response of model (1.1) becomes

the Beddington…DeAngelis type, and then model (1.1) was studied in [10, 11]; further if

r(t) ≡ 0, then model (1.1) was studied in [4, 7…9]. Moreover, if α(t) ≡ 0 andq(t) ≡ 0, the

functional response of model (1.1) becomes the ratio-dependent type, then model (1.1)

was studied in [3]; further if r(t) ≡ 0, then model (1.1) was studied in [2].

Many biologists realized that the cost of fear should be incorporated along with direct

predation in prey…predator interactions [16]. Experiments by Zenette et al. [17] showed

that fear of predators alone led to a 40% reduction in the number of o�spring that song

sparrow parents could produce. In [18], Wang et al. “rst formulated and investigated a

predator…prey model incorporating the cost of fear (indirect e�ects) and observed that the

cost of fear plays a crucial role in changing the dynamics of predator…prey interactions.

Further, some predator…prey models with fear e�ects and di�erent functional responses

and practical factors have been studied by many scholars (see, e.g., [19…23]).

Motivated by the above research works, in this paper, we further consider the following

periodic predator…prey model with fear e�ect and general functional responses:

⎧
⎨

⎩

ẋ(t) = x(t)[a(t)F(k(t),y(t)) …b(t)x(t)] …c(t)G(t,x(t),y(t))y(t),

ẏ(t) = y(t)[…d(t) …r(t)y(t) + f (t)G(t,x(t),y(t))].
(1.2)

In model (1.2), the predators follow general functional responses to hunt the prey pop-

ulation, and the functionG(t,x,y) satis“es some assumptions which will be given below.

In this paper, we always assume that the functionsa(t), b(t), d(t), andf (t) are continuous,

positive, andω-periodic (ω > 0); the functionsk(t), c(t), andr(t) are continuous, nonnega-

tive, andω-periodic. In addition, some additional restrictions on the parameter functions
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will be given in our theorem conditions. Here, the termF(k(t),y(t)) ≤ 1 denotes the cost of
anti-predator defense due to fear;k(t) re”ects the level of fear which drives anti-predator
behaviors of the prey [18]. We assume that the functionF(k,y) satis“es the following con-
dition (see [18]):

(H) F(k,y) is continuous on R
2
+ and continuously differentiable with respect to

(k,y)T ∈ R
2
+; F(k,y) > 0, F(0,y) = 1, F(k, 0) = 1 for k ≥ 0 and y ≥ 0; the partial

derivatives ∂F(k,y)
∂k ≤ 0 and ∂F(k,y)

∂y ≤ 0 for k ≥ 0 and y ≥ 0.
Clearly, the functionF(k,y) can cover the following forms: 1/(1 +ky), 1/(1 + ky2), e…ky,

etc.
For convenience, in this paper, we always assume thatm(t), α1(t), α3(t), andα5(t) are

continuous, positive, andω-periodic, α2(t) and α4(t) are continuous, nonnegative, and
ω-periodic. In addition, we assume that the functionG(t,x,y) ≡ G1(t,x,y) or G(t,x,y) ≡
G2(t,x), or G(t,x,y) ≡ G3(m(t), x

y ), whereG1(t,x,y), G2(t,x) and G3(m(t), x
y ) satisfy some

of the given assumptions.
Assume that the functionG1(t,x,y) satis“es the following conditions:
(P1) G1(t,x,y) is nonnegative and continuous on R×R

2
+ and continuously

differentiable with respect to (x,y)T ∈ R
2
+, and ω-periodic in t.

(P2) G1(t,x,y) > 0 and G1(t, 0,y) = 0 for t ∈R, x > 0, y ≥ 0; for each (t,y)T ∈R×R+,
G1(t,x,y) is increasing with respect to x on R+; for each (t,x)T ∈R×R+, G1(t,x,y)
is nonincreasing with respect to y on R+.

(P3) There exists a continuous ω-periodic function �1(t) > 0 such that
G1(t,x, 0)≤ �1(t)x for t ∈R, x ∈ R+.

(P4) For each x ∈ (0,+∞), there exists a continuous function G̃1(t,x) > 0, which is
ω-periodic in t, such that yG1(t,x,y) ≤ G̃1(t,x) for t ∈ R, y ≥ 0.

(P5) The partial derivatives ∂G1(t,x,y)
∂x ≥ 0 and ∂G1(t,x,y)

∂y < 0 for t ∈R, x > 0, y > 0; for each
(t,x)T ∈R×R+, limy→∞ G1(t,x,y) = 0.

It is not di�cult to “nd that G1(t,x,y) can cover some common forms such as the
Beddington…DeAngelis functional response

x
α1(t) + α2(t)x + α3(t)y

,

the Crowley…Martin functional response

x
α1(t) + α2(t)x + α3(t)y + α4(t)xy

,

and other forms of functional response, such as

x
α1(t) + α2(t)y + α3(t)y2

,
x2

α1(t) + α3(t)y + α5(t)x2
.

Assume that the functionG2(t,x) satis“es the following conditions:
(Q1) G2(t,x) is nonnegative and continuous on R×R+ and continuously differentiable

with respect to x ∈ R+, and ω-periodic in t.
(Q2) G2(t,x) > 0 and G2(t, 0) = 0 for t ∈R, x > 0; for each t ∈ R, G2(t,x) is increasing

with respect to x on R+.
(Q3) There exists a continuous ω-periodic function �2(t) > 0 such that

G2(t,x) ≤ �2(t)x for t ∈ R, x ∈R+.
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(Q4) The partial derivative ∂G2(t,x)
∂x > 0 for t ∈R, x > 0.

Clearly, the functionG2(t,x) can cover the classical Holling type II functional response

x
α1(t) + α2(t)x

.

Note that, for x ≥ 0, n ∈ N+, andn ≥ 2,

G2(t,x) :=
xn

α1(t) + α3(t)xn =
xn…1

α1(t) + α3(t)xn x ≤ (ζ (t))n…1

α1(t) + α3(t)(ζ (t))n x,

where

ζ (t) =
(

α1(t)
α3(t)

(n … 1)
) 1

n
.

In addition, it is not di�cult to verify that the function G2(t,x) satis“es conditions
(Q1)…(Q4). Note that, whenn = 2, the functionG2(t,x) becomes the classical Holling type
III functional response

x2

α1(t) + α3(t)x2
.

Assume that the functionG3(m,z) (z = x
y ) satis“es the following conditions:

(H1) G3(m,z) is nonnegative and continuous on R
2
+ and continuously differentiable

with respect to z ∈R+.
(H2) G3(m,z) > 0 and G3(m, 0) = 0 for m > 0, z > 0; for each z > 0, G3(m,z) is

nonincreasing with respect to m on (0,+∞); for each m > 0, G3(m,z) is increasing
with respect to z on (0,+∞).

(H3) For each m > 0, ∂G3(m,z)
∂z > 0 for z > 0, and limz→∞ G3(m,z) = �3(m) > 0.

(H4) For each m > 0, G3(m,z)
z is nonincreasing with respect to z on (0,+∞), and

limz→0+
G3(m,z)

z = �4(m) > 0.
It is not di�cult to “nd that G3(m(t), x

y ) can cover the ratio-dependent type with
Michaelis…Menten functional response

x
y

m(t) + x
y

=
x

m(t)y + x
.

The main purpose of this paper is to study the existence of positive periodic solutions
for model (1.2) by using the continuation theorem of coincidence degree theory [24]. The
most crucial aspect of using the coincidence theorem is to estimate the upper and lower
bounds of the a priori solutions of the corresponding operator equation (seeLϕ = μNϕ,
μ ∈ (0, 1) in Sect.2). The existence of positive periodic solutions for the special cases of
model (1.2) has attracted the attention of many scholars and has yielded plentiful results
(see, e.g., [2…4, 7…11, 14]). For model (1.2), our main results (see Theorems3.1and 3.2,
Corollary 3.1) extend and improve Theorem 4.2 in Li and She [10], Theorem 3.1 in Li
and She [3], Theorem 8 in Tripathi [14]. In addition, we obtain di�erent results com-
pared to some of the known ones (see Theorem 3.5 in Fan et al. [2], Theorems 3.1 and
3.2 in Fan and Kuang [7], Theorems 3.1 and 3.2 in Bohner et al. [4], Theorems 1 and



Guo and MaAdvances in Continuous and Discrete Models        (2023) 2023:22 Page 5 of 23

2 in Fazly and Hesaaraki [9], Theorem 3.1 in Jiang [11], Theorem 9 in Tripathi [14]). It

is worth mentioning that the continuation theorem of coincidence degree theory [24] is

very e�ective to study the existence of periodic solutions of predator…prey models (see,

e.g., [2, 4…7, 9, 11…14, 25]) and other biological models (see, e.g., [26…28]).

The rest of this paper is organized as follows. In Sect.2, we “rst review the continua-

tion theorem of coincidence degree theory [24] and then study the existence of positive

periodic solutions of model (1.2). In Sect.3, we give some applications of our results and

compare them with some known results. The last section contains the conclusions and

some numerical simulations of this paper.

2 Existence of positive periodic solutions of the model
Let X, Z be normed vector spaces,L : Dom L ⊂ X → Z be a linear mapping,N : X → Z be

a continuous mapping. The mappingL will be called a Fredholm mapping of index zero if

dim Ker L = codim Im L < +∞ and Im L is closed inZ. If L is a Fredholm mapping of index

zero and there exist continuous projectionsP : X → X and Q : Z → Z such that Im P =

Ker L, Im L = Ker Q = Im(I …Q), it follows that L|Dom L∩Ker P : (I …P)X → Im L is invertible.

We denote the inverse of that map byKp. If 
 is an open bounded subset ofX, the mapping

N will be calledL-compact on
 if QN(
) is bounded andKp(I …Q)N : 
 → X is compact.

SinceIm Q is isomorphic toKer L, there exists an isomorphismJ : Im Q → Ker L.

Lemma 2.1 ([24]) Assume that 
 ⊂ X is an open bounded set. Let L be a Fredholm map-
ping of index zero, and let N be L-compact on 
. Assume that

(i) Lu 
= μNu, ∀u ∈ ∂
 ∩ Dom L, μ ∈ (0, 1);
(ii) QNu 
= 0, ∀u ∈ ∂
 ∩ Ker L;

(iii) deg{JQN ,
 ∩ Ker L, 0} 
= 0.
Then the operator equation Lu = Nu has at least one solution in Dom L ∩ 
.

For any continuousω-periodic function �(t) de“ned onR, we denote

�̂ =
1
ω

∫ ω

0
�(t) dt, �u = max

t∈[0,ω]
�(t), �l = min

t∈[0,ω]
�(t).

For convenience, for anyv,̃v ∈R, we de“ne

�1(v) =
1
ω

∫ ω

0
f (t)G̃1

(
t,exp{v})dt, �2(v,̃v) =

1
ω

∫ ω

0

c(t)G2(t,exp{̃v})
exp{v} dt,

�3(v) = �4
(
ml)f̂ exp{v}, ϒ(v) =

( c
a )u( d

f )l

F(ku,exp{v}) ,

M1 = min

{

ln

(
â
b̂

)

+ 2̂aω, ln
[(

a
b

)u]}

,

M2 = ln

(
�3(M1)

d̂

)

+ 2�3
(
ml)f̂ ω.

The main results of this paper are as follows.

Theorem 2.1 Assume that ĉ > 0 and one of the following conditions holds:
(A1) G(t,x,y) ≡ G1(t,x,y), �1 := 1

ω

∫ ω

0 f (t)G1(t, (a
b )l, 0)dt > d̂;
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(A2) G(t,x,y) ≡ G2(t,x), �2 := 1
ω

∫ ω

0 f (t)G2(t, (a
b )l) > d̂;

(A3) G(t,x,y) ≡ G3(m(t), x
y ), �3 := �3(mu)̂f > d̂, G3(ml,ϒ(M2)) < (d

f )l .
Then model (1.2) has at least one positive ω-periodic solution.

Proof Assume thatG(t,x,y) ≡ G1(t,x,y) or G(t,x,y) ≡ G2(t,x), or G(t,x,y) ≡ G3(m(t), x
y ).

Let x(t) = exp{ϕ1(t)} andy(t) = exp{ϕ2(t)}, then model (1.2) can be transformed into

⎧
⎪⎪⎨

⎪⎪⎩

ϕ̇1(t) = a(t)F(k(t),exp{ϕ2(t)}) …b(t)exp{ϕ1(t)}
…c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)}) exp{ϕ2(t)}

exp{ϕ1(t)} ,

ϕ̇2(t) = …d(t) …r(t)exp{ϕ2(t)} + f (t)G(t,exp{ϕ1(t)},exp{ϕ2(t)}).
(2.1)

Clearly, it is only necessary to prove that model (2.1) has anω-periodic solution.
Let

X = Z =
{
ϕ =

(
ϕ1(t),ϕ2(t)

)T ∈ C
(
R,R2) | ϕ(t) = ϕ(t + ω)

}

with the norm ‖ϕ‖ = maxt∈[0,ω] |ϕ1(t)|+ maxt∈[0,ω] |ϕ2(t)|. Clearly, bothX andZ are Banach
spaces. De“ne

Pϕ =
1
ω

∫ ω

0
ϕ(t) dt(ϕ ∈ X), Qϕ =

1
ω

∫ ω

0
ϕ(t) dt(ϕ ∈ Z),

Lϕ = ϕ̇(t), Nϕ =

[
N1(t)
N2(t)

]

,

where

N1(t) = a(t)F
(
k(t),exp

{
ϕ2(t)

})
…b(t)exp

{
ϕ1(t)

}

…
c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)})exp{ϕ2(t)}

exp{ϕ1(t)} ,

N2(t) = …d(t) …r(t)exp
{
ϕ2(t)

}
+ f (t)G

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})
.

Then, it hasKer L = {ϕ ∈ X | ϕ ∈ R
2} and Im L = {ϕ ∈ Z | ∫ ω

0 ϕ(t) dt = 0}. Clearly,Im L is
closed inZ, anddim Ker L = codim Im L = 2. Thus,L is a Fredholm mapping of index zero.
Moreover, the generalized inverse (toL) KP : Im L → Dom L ∩ Ker P exists and is given by
KPϕ =

∫ t
0 ϕ(s) ds …1

ω

∫ ω

0

∫ t
0 ϕ(s) ds dt. Then, similar to the proof of Theorem 2.1 in [28], we

can obtain thatN is L-compact on
 for any open bounded set
 ⊂ X.
Corresponding to the operator equationLϕ = μNϕ, μ ∈ (0, 1), we have

⎧
⎪⎪⎨

⎪⎪⎩

ϕ̇1(t) = μ[a(t)F(k(t),exp{ϕ2(t)}) …b(t)exp{ϕ1(t)}
…c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)}) exp{ϕ2(t)}

exp{ϕ1(t)} ],

ϕ̇2(t) = μ[…d(t) …r(t)exp{ϕ2(t)} + f (t)G(t,exp{ϕ1(t)},exp{ϕ2(t)})].
(2.2)

Assume that (ϕ1(t),ϕ2(t))T ∈ X is an arbitrary solution of model (2.2) for a certain μ ∈
(0, 1). Since (ϕ1(t),ϕ2(t))T ∈ X, there existξ1, ξ2, η1, η2 ∈ [0,ω] such that

ϕ1(ξ1) = min
t∈[0,ω]

ϕ1(t), ϕ1(η1) = max
t∈[0,ω]

ϕ1(t),
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ϕ2(ξ2) = min
t∈[0,ω]

ϕ2(t), ϕ2(η2) = max
t∈[0,ω]

ϕ2(t).

Clearly, ϕ̇1(ξ1) = ϕ̇1(η1) = ϕ̇2(ξ2) = ϕ̇2(η2) = 0. Integrating on both sides of (2.2) over the
interval [0,ω], we have

∫ ω

0

[

a(t)F
(
k(t),exp

{
ϕ2(t)

})
…b(t)exp

{
ϕ1(t)

}

…
c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)})exp{ϕ2(t)}

exp{ϕ1(t)}
]

dt = 0

(2.3)

and
∫ ω

0

[
d(t) + r(t)exp

{
ϕ2(t)

}
…f (t)G

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})]
dt = 0. (2.4)

Note that
∫ ω

0
ϕ̇2(t)exp

{
ϕ2(t)

}
dt = exp

{
ϕ2(ω)

}
…exp

{
ϕ2(0)

}
= 0,

then we have

∫ ω

0

[
d(t)exp

{
ϕ2(t)

}
+ r(t)exp

{
2ϕ2(t)

}]
dt

=
∫ ω

0
f (t)exp

{
ϕ2(t)

}
G

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})
dt.

(2.5)

From (2.2), (2.3), and condition (H), we have

∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt

≤
∫ ω

0
a(t)F

(
k(t),exp

{
ϕ2(t)

})
dt

+
∫ ω

0

[

b(t)exp
{
ϕ1(t)

}
+

c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)})exp{ϕ2(t)}
exp{ϕ1(t)}

]

dt

= 2
∫ ω

0
a(t)F

(
k(t),exp

{
ϕ2(t)

})
dt ≤ 2̂aω.

(2.6)

From (2.3), we have

âω …̂b exp
{
ϕ1(ξ1)

}
ω ≥

∫ ω

0

[
a(t)F

(
k(t),exp

{
ϕ2(t)

})
…b(t)exp

{
ϕ1(ξ1)

}]
dt ≥ 0,

which implies that

ϕ1(ξ1) ≤ ln

(
â
b̂

)

:= m1.

Then, from (2.6), we have

ϕ1(t) ≤ ϕ1(ξ1) +
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≤ m1 + 2̂aω := M∗

1.
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Also, from ϕ̇1(η1) = 0, we can easily obtain that

ϕ1(t) ≤ ϕ1(η1) ≤ ln

(
a(η1)F(k(η1),exp{ϕ2(η1)})

b(η1)

)

≤ ln

[(
a
b

)u]

:= M̃∗
1.

Thus, we have

ϕ1(t) ≤ min
{

M∗
1,M̃∗

1

}
= M1. (2.7)

From (2.2) and (2.4), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt

≤
∫ ω

0

[
d(t) + r(t)exp

{
ϕ2(t)

}]
dt +

∫ ω

0
f (t)G

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})
dt

= 2
∫ ω

0
f (t)G

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})
dt.

(2.8)

We consider the following three cases.

Case (i). Condition (A1) holds.

From (2.7), (2.8), and condition (P2), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ 2

∫ ω

0
f (t)G1

(
t,exp{M1}, 0}

)
dt = 2�̂1ω, (2.9)

where �1(t) = f (t)G1(t,exp{M1}, 0). From (2.5), (2.7), and conditions (P2) and (P4), we

have

d̂ exp
{
ϕ2(ξ2)

} ≤ 1
ω

∫ ω

0
f (t)G1

(
t,exp{M1},exp

{
ϕ2(t)

})
exp

{
ϕ2(t)

}
dt

≤ 1
ω

∫ ω

0
f (t)G̃1

(
t,exp{M1}

)
dt

= �1(M1) > 0,

which implies that

ϕ2(ξ2) ≤ ln

(
�1(M1)

d̂

)

.

Then, from (2.9), we have

ϕ2(t) ≤ ϕ2(ξ2) +
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ ln

(
�1(M1)

d̂

)

+ 2�̂1ω := M(1)
2 .
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From (2.4) and conditions (P2) and (P3), we have

d̂ω ≤
∫ ω

0
f (t)G1

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})
dt

≤
∫ ω

0
f (t)G1

(
t,exp

{
ϕ1(η1)

}
, 0

)
dt

≤
∫ ω

0
f (t)�1(t)exp

{
ϕ1(η1)

}
dt,

which implies that

ϕ1(η1) ≥ ln

(
d̂

(̂f �1)

)

:= l(1)
1 .

Then, from (2.6), we have

ϕ1(t) ≥ ϕ1(η1) …
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≥ l(1)

1 … 2̂aω := L(1)
1 .

If �1 > d̂, then there exists a su�ciently small constantδ1 > 0 such that

�1(δ1) :=
(

a
b

)l

F
(
ku,δ1

)
…

(
c�1

b

)u

δ1 > 0,

∫ ω

0
f (t)G1

(
t,�(δ1),δ1

)
dt > d̂ω + r̂δ1ω.

(2.10)

Claim (i). If �1 > d̂, then exp{ϕ2(η2)} ≥ δ1.

If the claim is not true, then

max
t∈[0,ω]

exp
{
ϕ2(t)

}
= exp

{
ϕ2(η2)

}
< δ1.

From ϕ̇1(ξ1) = 0, exp{ϕ2(ξ1)} ≤ exp{ϕ2(η2)} < δ1, conditions (P2) and (P3), we have

exp
{
ϕ1(ξ1)

}
=

a(ξ1)F(k(ξ1),exp{ϕ2(ξ1)})
b(ξ1)

…
c(ξ1)G1(ξ1,exp{ϕ1(ξ1)},exp{ϕ2(ξ1)})exp{ϕ2(ξ1)}

b(ξ1)exp{ϕ1(ξ1)}

≥
(

a
b

)l

F
(
ku,δ1

)
…

c(ξ1)G1(ξ1,exp{ϕ1(ξ1)}, 0)
b(ξ1)exp{ϕ1(ξ1)} δ1

≥
(

a
b

)l

F
(
ku,δ1

)
…

c(ξ1)�1(ξ1)
b(ξ1)

δ1

≥
(

a
b

)l

F
(
ku,δ1

)
…

(
c�1

b

)u

δ1

= �1(δ1) > 0.
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Further, from (2.4) and condition (P2), we have

d̂ω + r̂δ1ω ≥
∫ ω

0

[
d(t) + r(t)exp

{
ϕ2(t)

}]
dt

=
∫ ω

0
f (t)G1

(
t,exp

{
ϕ1(t)

}
,exp

{
ϕ2(t)

})
dt

≥
∫ ω

0
f (t)G1

(
t,exp

{
ϕ1(ξ1)

}
,exp

{
ϕ2(η2)

})
dt

≥
∫ ω

0
f (t)G1

(
t,�1(δ1),δ1

)
dt,

which is a contradiction to (2.10). This proves the claim.

From Claim (i) and (2.9), we can obtain

ϕ2(t) ≥ ϕ2(η2) …
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≥ ln(δ1) … 2̂�1ω := L(1)

2 .

Now, let us consider the following algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

[ 1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1}
…1

ω

∫ ω

0 μ
c(t)G1(t,exp{ϕ1},exp{ϕ2}) exp{ϕ2}

exp{ϕ1} dt] = 0,
1
ω

∫ ω

0 f (t)G1(t,exp{ϕ1},exp{ϕ2}) dt …̂d …μ̂r exp{ϕ2} = 0

(2.11)

for (ϕ1,ϕ2)T ∈R
2, whereμ ∈ [0, 1] is a parameter. By using the similar arguments as above,

we can show that any solution (ϕ∗
11,ϕ

∗
21)

T ∈ R
2 of (2.11) with μ ∈ [0, 1] satis“es

l(1)
1 = ln

(
d̂

(̂f �1)

)

≤ ϕ∗
11 ≤ ln

(
â
b̂

)

= m1,

l(1)
2 := ln

(
δ∗

1

) ≤ ϕ∗
21 ≤ ln

(
�1(m1)

d̂

)

:= m(1)
2 ,

(2.12)

whereδ∗
1 > 0 satis“es

�∗
1

(
δ∗

1

)
:=

â
b̂

F
(
ku,δ∗

1

)
…

1

b̂

(
1
ω

∫ ω

0
c(t)�1(t) dt

)

δ∗
1 > 0,

1
ω

∫ ω

0
f (t)G1

(
t,�∗

1

(
δ∗

1

)
,δ∗

1

)
dt > d̂ + r̂δ∗

1.

Note that M1, M(1)
2 , L(1)

1 , L(1)
2 , m1, m(1)

2 , l(1)
1 , andl(1)

2 are independent ofμ. De“ne


(1) =
{
ϕ ∈ X | ‖ϕ‖ < U (1)},

where

U (1) = 1 + max
{∣
∣l(1)

1

∣
∣,

∣
∣L(1)

1

∣
∣, |m1|, |M1|

}
+ max

{∣
∣l(1)

2

∣
∣,

∣
∣L(1)

2

∣
∣,

∣
∣m(1)

2

∣
∣,

∣
∣M(1)

2

∣
∣
}
.
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Clearly,
(1) satis“es condition (i) in Lemma2.1. When ϕ = (ϕ1,ϕ2)T ∈ ∂
(1) ∩ Ker L =
∂
(1) ∩R

2, thenϕ is a constant vector inR2 with |ϕ1| + |ϕ2| = U (1). Then

QN

[
ϕ1

ϕ2

]

=

[
1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1} …W1(ϕ1,ϕ2)
1
ω

∫ ω

0 f (t)G1(t,exp{ϕ1},exp{ϕ2}) dt …̂d …̂r exp{ϕ2}

]


=
[

0

0

]

,

where

W1(ϕ1,ϕ2) =
1
ω

∫ ω

0

c(t)G1(t,exp{ϕ1},exp{ϕ2})exp{ϕ2}
exp{ϕ1} dt.

Here, we have proved that condition (ii) in Lemma2.1is satis“ed. To compute the Brouwer
degree, let us consider the homotopy

�(1)
μ

(
(ϕ1,ϕ2)T)

= μQN
(
(ϕ1,ϕ2)T)

+ (1 …μ)� (1)((ϕ1,ϕ2)T)
, μ ∈ [0, 1],

where

� (1)((ϕ1,ϕ2)T)
=

[
1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1}
1
ω

∫ ω

0 f (t)G1(t,exp{ϕ1},exp{ϕ2}) dt …̂d

]

.

From (2.12), it follows that 0 /∈ �(1)
μ (∂
(1) ∩ R

2) for μ ∈ [0, 1]. In addition, from condi-
tions (H), (P2), and (P5), one can easily show that� (1)((ϕ1,ϕ2)T ) = 0 has a unique solution
(ϕ̃∗

11, ϕ̃
∗
21)

T in R
2 if �1 > d̂. Let e11 = exp{ϕ̃∗

11} > 0, e21 = exp{ϕ̃∗
21} > 0. From conditions (H)

and (P5), we have

ς
(1)
1 :=

1
ω

∫ ω

0
a(t)

∂F(k(t),e21)
∂y

e21 dt ≤ 0,

ς
(1)
2 :=

1
ω

∫ ω

0
f (t)

∂G1(t,e11,e21)
∂x

e11 dt ≥ 0,

ς
(1)
3 :=

1
ω

∫ ω

0
f (t)

∂G1(t,e11,e21)
∂y

e21 dt < 0.

A direct calculation produces

deg
{
� (1),∂
(1) ∩ Ker L, 0

}
= sign

∣
∣
∣
∣
∣

…̂be11 ς
(1)
1

ς
(1)
2 ς

(1)
3

∣
∣
∣
∣
∣

= sign
{
…̂be11ς

(1)
3 …ς

(1)
1 ς

(1)
2

}

= 1 
= 0.

SinceIm Q = Ker L, then we haveJ = I. Furthermore, by the invariance property of homo-
topy, we have

deg
{

JQN ,∂
(1) ∩ Ker L, 0
}

= deg
{

QN ,∂
(1) ∩ Ker L, 0
}

= deg
{
� (1),∂
(1) ∩ Ker L, 0

} 
= 0.
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By Lemma2.1, if condition (A1) holds, then model (2.1) admits at least oneω-periodic
solution.

Case (ii). Condition (A2) holds.
From (2.7), (2.8), and condition (Q2), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ 2

∫ ω

0
f (t)G2

(
t,exp

{
ϕ1(t)

})
dt

≤ 2
∫ ω

0
f (t)G2

(
t,exp{M1}

)
dt

= 2�̂2ω,

(2.13)

where�2(t) = f (t)G2(t,exp{M1}). From (2.4) and condition (Q3), we have

d̂ω ≤
∫ ω

0
f (t)G2

(
t,exp

{
ϕ1(η1)

})
dt ≤ exp

{
ϕ1(η1)

}
∫ ω

0
f (t)�2(t) dt,

which implies that

ϕ1(η1) ≥ ln

(
d̂

(̂f �2)

)

:= l(2)
1 .

Then, from (2.6), we have

ϕ1(t) ≥ ϕ1(η1) …
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≥ l(2)

1 … 2̂aω := L(2)
1 .

From (2.3) and condition (Q2), we have

�2
(
M1,L(2)

1

)
exp

{
ϕ2(ξ2)

}
ω =

∫ ω

0

c(t)G2(t,exp{L(2)
1 })exp{ϕ2(ξ2)}

exp{M1} dt

≤
∫ ω

0

c(t)G2(t,exp{ϕ1(t)})exp{ϕ2(t)}
exp{ϕ1(t)} dt

≤
∫ ω

0
a(t)F

(
k(t),exp

{
ϕ2(t)

})
dt

≤ âω,

which implies that

exp
{
ϕ2(ξ2)

} ≤ â
�2(M1,L(2)

1 )
.

Then, from (2.13), we have

ϕ2(t) ≤ ϕ2(ξ2) +
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ ln

(
â

�2(M1,L(2)
1 )

)

+ 2�̂2ω := M(2)
2 .

If �2 > d̂, then there exists a su�ciently small constantδ2 > 0 such that

�2(δ2) :=
(

a
b

)l

F
(
ku,δ2

)
…

(
c�2

b

)u

δ2 > 0,
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∫ ω

0
f (t)G2

(
t,�2(δ2)

)
dt > d̂ω + r̂δ2ω.

Claim (ii). If �2 > d̂, then exp{ϕ2(η2)} ≥ δ2.

We omit the proof of Claim (ii) here since it is very similar to that ofClaim (i).

From Claim (ii) and (2.13), we can obtain

ϕ2(t) ≥ ϕ2(η2) …
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≥ ln(δ2) … 2̂�2ω := L(2)

2 .

Now, let us consider the following algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

[ 1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1}
…1

ω

∫ ω

0
c(t)G2(t,exp{ϕ1}) exp{ϕ2}

exp{ϕ1} dt] = 0,
1
ω

∫ ω

0 f (t)G2(t,exp{ϕ1}) dt …̂d …μ̂r exp{ϕ2} = 0

(2.14)

for (ϕ1,ϕ2)T ∈R
2, whereμ ∈ [0, 1] is a parameter. By using similar arguments as above, we

can show that any solution (ϕ∗
12,ϕ

∗
22)

T ∈R
2 of (2.14) with μ ∈ [0, 1] satis“es

l(2)
1 = ln

(
d̂

(̂f �2)

)

≤ ϕ∗
12 ≤ ln

(
â
b̂

)

= m1,

l(2)
2 := ln

(
δ∗

2

) ≤ ϕ∗
22 ≤ ln

(
â

�2(m1, l(2)
1 )

)

:= m(2)
2 ,

(2.15)

whereδ∗
2 > 0 satis“es

�∗
2

(
δ∗

2

)
:=

â
b̂

F
(
ku,δ∗

2

)
…

1

b̂

(
1
ω

∫ ω

0
c(t)�2(t) dt

)

δ∗
2 > 0,

1
ω

∫ ω

0
f (t)G2

(
t,�∗

2

(
δ∗

2

))
dt > d̂ + r̂δ∗

2.

Note that M1, M(2)
2 , L(2)

1 , L(2)
2 , m1, m(2)

2 , l(2)
1 , andl(2)

2 are independent ofμ. De“ne


(2) =
{
ϕ ∈ X | ‖ϕ‖ < U (2)},

where

U (2) = 1 + max
{∣
∣l(2)

1

∣
∣,

∣
∣L(2)

1

∣
∣, |m1|, |M1|

}
+ max

{∣
∣l(2)

2

∣
∣,

∣
∣L(2)

2

∣
∣,

∣
∣m(2)

2

∣
∣,

∣
∣M(2)

2

∣
∣
}
.

Clearly,
(2) satis“es conditions (i) and (ii) in Lemma2.1. Let us consider the homotopy

�(2)
μ

(
(ϕ1,ϕ2)T)

= μQN
(
(ϕ1,ϕ2)T)

+ (1 …μ)� (2)((ϕ1,ϕ2)T)
, μ ∈ [0, 1],

where

� (2)((ϕ1,ϕ2)T)
=

[
1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1} …W2(ϕ1,ϕ2)
1
ω

∫ ω

0 f (t)G2(t,exp{ϕ1}) dt …̂d,

]

,
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where

W2(ϕ1,ϕ2) =
1
ω

∫ ω

0

c(t)G2(t,exp{ϕ1})exp{ϕ2}
exp{ϕ1} dt.

From (2.15), it follows that 0 /∈ �(2)
μ (∂
(2) ∩R

2) for μ ∈ [0, 1]. In addition, from conditions
(H) and (Q2), one can easily show that� (2)((ϕ1,ϕ2)T ) = 0 has a unique solution (̃ϕ∗

12, ϕ̃
∗
22)

T

in R
2 if �2 > d̂. Let e12 = exp{ϕ̃∗

12} > 0, e22 = exp{ϕ̃∗
22} > 0. From conditions (H) and (Q4),

we have

ς
(2)
1 :=

1
ω

∫ ω

0
a(t)

∂F(k(t),e22)
∂y

e22 dt ≤ 0,

ς
(2)
2 :=

1
ω

∫ ω

0
f (t)

∂G2(t,e12)
∂x

e12 dt > 0.

Note that J = I, by the invariance property of homotopy, we have

deg
{

JQN ,∂
(2) ∩ Ker L, 0
}

= deg
{
� (2),∂
(2) ∩ Ker L, 0

}

= sign

{

…
(

ς
(2)
1 …

1
ω

∫ ω

0

c(t)G2(t,e12)e22

e12
dt

)

ς
(2)
2

}

= 1 
= 0.

By Lemma2.1, if condition (A2) holds, then model (2.1) admits at least oneω-periodic
solution.

Case (iii). Condition (A3) holds.
From (2.7), (2.8), and conditions (H2) and (H3), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ 2

∫ ω

0
f (t)G3

(

ml,
exp{M1}

exp{ϕ2(t)}
)

dt ≤ 2�3
(
ml)f̂ ω := 2�3ω. (2.16)

From (2.5) and condition (H4), we have

d̂ exp
{
ϕ2(ξ2)

} ≤ 1
ω

∫ ω

0
f (t)G3

(

m(t),
exp{ϕ1(t)}
exp{ϕ2(t)}

)

exp
{
ϕ2(t)

}
dt

≤ 1
ω

∫ ω

0
f (t)G3

(

ml,
exp{M1}

exp{ϕ2(t)}
)

exp{ϕ2(t)}
exp{M1} exp{M1}dt

≤ 1
ω

∫ ω

0
f (t)�4

(
ml) exp{M1}dt

= �3(M1) > 0,

which implies that

exp
{
ϕ2(ξ2)

} ≤ �3(M1)

d̂
.

Then, from (2.16), we have

ϕ2(t) ≤ ϕ2(ξ2) +
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ ln

(
�3(M1)

d̂

)

+ 2�3ω = M2 := M(3)
2 .
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From ϕ̇2(η2) = 0, we can obtain

f (η2)G3

(

m(η2),
exp{ϕ1(η2)}
exp{ϕ2(η2)}

)

= d(η2) + r(η2)exp
{
ϕ2(η2)

} ≥ d(η2),

which implies that

G3

(

ml,
exp{ϕ1(η2)}
exp{ϕ2(η2)}

)

≥
(

d
f

)l

.

Note that

G3
(
ml,ϒ

(
M(3)

2

))
<

(
d
f

)l

,

then from condition (H2), we have

exp{ϕ1(η2)}
exp{ϕ2(η2)} ≥ ϒ(M2) = ϒ

(
M(3)

2

)
.

Note that

exp{ϕ1(η1)}
exp{ϕ2(η1)} ≥ exp{ϕ1(η2)}

exp{ϕ2(η2)} ≥ ϒ
(
M(3)

2

)
=

( c
a )u( d

f )l

F(ku,exp{M(3)
2 }) ,

then from ϕ̇1(η1) = 0 and conditions (H), (H2), and (H4), we can obtain

exp
{
ϕ1(η1)

}

=
a(η1)
b(η1)

F
(
k(η1),exp

{
ϕ2(η1)

})

…
c(η1)
b(η1)

G3

(

m(η1),
exp{ϕ1(η1)}
exp{ϕ2(η1)}

)
exp{ϕ2(η1)}
exp{ϕ1(η1)}

≥ a(η1)
b(η1)

F
(
k(η1),exp

{
ϕ2(η1)

})

…
c(η1)
b(η1)

G3

(

m(η1),
exp{ϕ1(η2)}
exp{ϕ2(η2)}

)
exp{ϕ2(η2)}
exp{ϕ1(η2)}

≥ a(η1)
b(η1)

F
(
ku,exp

{
M(3)

2

})
…

c(η1)
b(η1)

G3(ml,ϒ(M(3)
2 ))

ϒ(M(3)
2 )

≥ a(η1)
b(η1)

F
(
ku,exp

{
M(3)

2

})
[

1 …
(

c
a

)u G3(ml,ϒ(M(3)
2 ))

F(ku,exp{M(3)
2 })ϒ(M(3)

2 )

]

=
a(η1)

b(η1)(d
f )l

F
(
ku,exp

{
M(3)

2

})
[(

d
f

)l

…G3
(
ml,ϒ

(
M(3)

2

))
]

> 0,

which implies that

ϕ1(η1) ≥ ln

{
( a

b )l

( d
f )l

F
(
ku,exp

{
M(3)

2

})
[(

d
f

)l

…G3
(
ml,ϒ

(
M(3)

2

))
]}

:= ˜l(3)
1 . (2.17)
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Then, from (2.6) and (2.17), we have

ϕ1(t) ≥ ϕ1(η1) …
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≥ ˜l(3)

1 … 2̂aω := L(3)
1 .

If �3(mu )̂f > d̂, then there exists su�ciently smallδ3 > 0 such that

G3

(

mu,
exp{L(3)

1 }
δ3

)

f̂ > d̂ + r̂δ3. (2.18)

Claim (iii). If �3(mu)̂f > d̂, then exp{ϕ2(η2)} ≥ δ3.
If the claim is not true, thenexp{ϕ2(η2)} < δ3. From (2.4) and condition (H2), we have

d̂ω + r̂δ3ω ≥
∫ ω

0

[
d(t) + r(t)exp

{
ϕ2(t)

}]
dt

=
∫ ω

0
f (t)G3

(

m(t),
exp{ϕ1(t)}
exp{ϕ2(t)}

)

dt

≥
∫ ω

0
f (t)G3

(

mu,
exp{L(3)

1 }
δ3

)

dt

= G3

(

mu,
exp{L(3)

1 }
δ3

)

f̂ ω,

which is a contradiction to (2.18). This proves the claim.
From Claim (iii) and (2.16), we can obtain

ϕ2(t) ≥ ϕ2(η2) …
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≥ ln(δ3) … 2�3ω := L(3)

2 .

Let (ϕ1,ϕ2)T ∈R
2 satisfy the following algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

[ 1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1}
…1

ω

∫ ω

0 μc(t)G3(m(t), exp{ϕ1}
exp{ϕ2} )

exp{ϕ2}
exp{ϕ1} dt] = 0,

1
ω

∫ ω

0 f (t)G3(m(t), exp{ϕ1}
exp{ϕ2} ) dt …̂d …μ̂r exp{ϕ2} = 0,

(2.19)

whereμ ∈ [0, 1] is a parameter. By using similar arguments as above, we can show that any
solution (ϕ∗

13,ϕ
∗
23)

T ∈R
2 of (2.19) with μ ∈ [0, 1] satis“es

l(3)
1 := ln

{
â

b̂( d
f )l

F
(
ku,exp

{
m(3)

2

})
[(

d
f

)l

…
ĉ

â( c
a )u G3

(
ml,ϒ

(
m(3)

2

))
]}

≤ ϕ∗
13 ≤ ln

(
â
b̂

)

= m1,

l(3)
2 := ln

(
δ∗

3

) ≤ ϕ∗
23 ≤ ln

(
�3(m1)

d̂

)

:= m(3)
2 ,

(2.20)

whereδ∗
3 > 0 satis“es

G3

(

mu,
exp{l(3)

1 }
δ∗

3

)

f̂ > d̂ + r̂δ∗
3.
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Note that M1, M(3)
2 , L(3)

1 , L(3)
2 , m1, m(3)

2 , l(3)
1 , andl(3)

2 are independent ofμ. De“ne


(3) =
{
ϕ ∈ X | ‖ϕ‖ < U (3)},

where

U (3) = 1 + max
{∣
∣l(3)

1

∣
∣,

∣
∣L(3)

1

∣
∣, |m1|, |M1|

}
+ max

{∣
∣l(3)

2

∣
∣,

∣
∣L(3)

2

∣
∣,

∣
∣m(3)

2

∣
∣,

∣
∣M(3)

2

∣
∣
}
.

Clearly,
(3) satis“es conditions (i) and (ii) in Lemma2.1. To compute the Brouwer degree,

let us consider the homotopy

�(3)
μ

(
(ϕ1,ϕ2)T)

= μQN
(
(ϕ1,ϕ2)T)

+ (1 …μ)� (3)((ϕ1,ϕ2)T)
, μ ∈ [0, 1],

where

� (3)((ϕ1,ϕ2)T)
=

[
1
ω

∫ ω

0 a(t)F(k(t),exp{ϕ2}) dt …̂b exp{ϕ1}
1
ω

∫ ω

0 f (t)G3(m(t), exp{ϕ1}
exp{ϕ2} ) dt …̂d

]

.

From (2.20), it follows that 0 /∈ �(3)
μ (∂
(3) ∩R

2) for μ ∈ [0, 1]. In addition, from conditions

(H), (H2), and (H3), one can easily show that� (3)((ϕ1,ϕ2)T ) = 0 has a unique solution

(ϕ̃∗
13, ϕ̃

∗
23)

T in R
2 if �3 > d̂. Let e13 = exp{ϕ̃∗

13} > 0, e23 = exp{ϕ̃∗
23} > 0. From conditions (H)

and (H3), we have

ς
(3)
1 :=

1
ω

∫ ω

0
a(t)

∂F(k(t),e23)e23

∂y
dt ≤ 0,

ς
(3)
2 :=

1
ω

∫ ω

0
f (t)

∂G3(m(t), e13
e23

)

∂z
e13

e23
dt > 0.

A direct calculation produces

deg
{
� (3),∂
(3) ∩ Ker L, 0

}
= sign

∣
∣
∣
∣
∣

…̂be13 ς
(3)
1

ς
(3)
2 …ς

(3)
2

∣
∣
∣
∣
∣

= sign
{
ς

(3)
2

(
b̂e13 …ς

(3)
1

)}

= 1 
= 0.

Note that J = I, by the invariance property of homotopy, we have

deg
{

JQN ,∂
(3) ∩ Ker L, 0
}

= deg
{

QN ,∂
(3) ∩ Ker L, 0
}

= deg
{
� (3),∂
(3) ∩ Ker L, 0

} 
= 0.

By Lemma2.1, if condition (A3) holds, then model (2.1) admits at least oneω-periodic

solution. �
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3 Some remarks
Our results improve and extend some of the previous results. Some of the remarks below

will compare our results with some of the previous results.

If we choose

F(k,y) =
1

1 + ky
, G(t,x,y) ≡ G1(t,x,y) =

x
α1(t) + α2(t)x + α3(t)y + α4(t)xy

,

then model (1.2) becomes the following periodic predator…prey model with Crowley…

Martin functional response:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = x(t)[ a(t)
1+k(t)y(t) …b(t)x(t)

… c(t)y(t)
α1(t)+α2(t)x(t)+α3(t)y(t)+α4(t)x(t)y(t) ],

ẏ(t) = y(t)[…d(t) …r(t)y(t) + f (t)x(t)
α1(t)+α2(t)x(t)+α3(t)y(t)+α4(t)x(t)y(t) ].

(A)

For model (A), an application of our main results is as follows.

Theorem 3.1 Assume that the following condition

(
H(1)

A
)

ĉ > 0,
1
ω

∫ ω

0

f (t)(a
b )l

α1(t) + α2(t)(a
b )l dt > d̂

holds, then model (A) has at least one positive ω-periodic solution.

A direct corollary of Theorem3.1is given below.

Corollary 3.1 Assume that the following condition

(
H(2)

A
)

ĉ > 0,
(

a
b

)l(
f̂ …̂dαu

2

)
> αu

1 d̂

holds, then model (A) has at least one positive ω-periodic solution.

Remark 3.1 Recently, Tripathi et al. [14] proved that model (A) has at least one positive

ω-periodic solution under the following condition:

(
H(3)

A
)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k(t) ≡ 0, cl > 0, αl
2 > 0, αl

4 > 0, rl > 0,

dl <
f u( au

bl )

αl
1+αl

2( au
bl )

:= D1, al >
cu( D1…dl

rl )

αl
1+αl

3( D1…dl

rl )
:= D2,

f l( al…D2
bu )

αu
1+αu

2( al…D2
bu )+αu

3( D1…dl

rl )+αu
4( al…D2

bu )( D1…dl

rl )
> du.

Clearly, our condition (H(2)
A ) of Corollary 3.1 is weaker than condition (H(3)

A ). Thus, our

Corollary 3.1improves Theorem 8 in [14].
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Remark 3.2 Li and She [10] proved that model (A) has at least one positiveω-periodic

solution under the following condition:

(
H(4)

A
)

⎧
⎨

⎩

k(t) ≡ 0, cl > 0, αl
2 > 0, α4(t) ≡ 0, rl > 0,

αl
3al > cu, ( al

bu … cu

buαl
3
)(f l …duαu

2) > αu
1du.

Clearly, our condition (H(2)
A ) of Corollary 3.1 is weaker than condition (H(4)

A ). Thus, our

Corollary 3.1improves Theorem 4.2 in [10].

Remark 3.3 Fan and Kuang [7] proved that model (A) has at least one positiveω-periodic

solution under the following condition:

(
H(5)

A
)

⎧
⎨

⎩

k(t) ≡ 0, cl > 0, αl
2 > 0, α4(t) ≡ 0, r(t) ≡ 0,

αl
3al > cu, ( al

bu … cu

buαl
3
)(f l …duαu

2) > αu
1du.

In [7], the authors only assumed that the functionα1(t) is nonnegative. Ifαl
1 > 0, then our

condition (H(2)
A ) of Corollary 3.1is weaker than condition (H(5)

A ). Thus, our Corollary3.1

extends Theorem 3.1 in [7].

Remark 3.4 For model (A), or some of its special cases, some scholars have obtained some

plentiful results of the existence of positive periodic solutions [4, 7…9, 14]. Note that our

Theorem3.1and Corollary3.1do not limit the size of the periodω. Compared with some

results in [4, 7, 9, 14] (see Theorem 3.2 in Fan and Kuang [7], Theorem 3.1 in Bohner et

al. [4], Theorems 1 and 2 in Fazly and Hesaaraki [9], and Theorem 9 in Tripathi [14]), we

obtain di�erent results.

If we choose

F(k,y) ≡ 1, G(t,x,y) ≡ G3

(

m(t),
x
y

)

=
x
y

m(t) + x
y

=
x

m(t)y + x
,

then model (1.2) becomes the following periodic ratio-dependent type predator…prey

model with Michaelis…Menten type functional response:

⎧
⎨

⎩

ẋ(t) = x(t)[a(t) …b(t)x(t) … c(t)y(t)
m(t)y(t)+x(t) ],

ẏ(t) = y(t)[…d(t) …r(t)y(t) + f (t)x(t)
m(t)y(t)+x(t) ].

(B)

For model (B), an application of our main results is as follows.

Theorem 3.2 Assume that the following condition

(
H(1)

B
)

ĉ > 0, f̂ > d̂,
(

c
a

)u[

1 …
(

d
f

)l]

< ml

holds, then model (B) has at least one positive ω-periodic solution.
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Remark 3.5 Li and She [3] proved that model (B) has at least one positiveω-periodic so-

lution under the condition

(
H(2)

B
)

cl > 0, rl > 0, f l > du, al >
cu

ml .

Clearly, our condition (H(1)
B ) of Theorem 3.2 is weaker than condition (H(2)

B ). Thus, our

Theorem3.2improves Theorem 3.1 in [3].

Remark 3.6 For model (B), if r(t) ≡ 0, then we would like to mention the following two

facts.

(i) If model (B) degenerates into the corresponding autonomous system (the case of
a(t) ≡ a > 0, b(t) ≡ b > 0, c(t) ≡ c > 0, m(t) ≡ m > 0, d(t) ≡ d > 0, and f (t) ≡ f > 0),
then our condition (H(2)

B ) can be reduced to the sufficient and necessary condition
(f > d, c

a (1 …d
f ) < m) for the existence of the positive equilibrium of model (B) (see

[29]).
(ii) Fan, Wang, and Zou [2] proved that model (B) has at least one positive ω-periodic

solution under the condition

(
H(3)

B
)

cl > 0, f̂ > d̂, â >
(̂

c
m

)

.

As can be seen from (i), we give a di�erent result compared to Theorem 3.5 in [2]. Thus,

our Theorem3.2extends Theorem 3.5 in [2].

4 Conclusions and numerical simulations
In this paper, the existence of periodic solutions of a class of periodic predator…prey model

with fear e�ect and general functional responses is investigated by means of the contin-

uation theorem of coincidence degree theory [24]. The general functional responses can

cover the Holling types II and III functional response, the Beddington…DeAngelis func-

tional response, the Crowley…Martin functional response, the ratio-dependent type with

Michaelis…Menten type functional response, etc. The most crucial aspect of using the

coincidence theorem is to “nd a bounded open set
 that satis“es the conditions of the

theorem, which requires estimating the upper and lower bounds on the a priori solution

of the corresponding operator equation (Lϕ = μNϕ, 0 <μ < 1). This paper mainly ob-

tains three classes of su�cient conditions for the existence of positive periodic solutions

of model (1.2). Our main results improve or extend some of the known results (see Re-

marks3.1…3.6in Sect.3).

At the end of the paper, we present numerical simulations to illustrate our theoretical

results. We “x the following parameters:a(t) = 4 + 0.5sin(t), b(t) = 1 + 0.25cos(t), c(t) =

1 + 0.2cos(t), d(t) = 0.6 + 0.5cos(t), r(t) = 3(1 + 0.5cos(t)), f (t) = 2(1 + 0.5cos(t)).
(i) Let us further choose k(t) = 3(1 + 0.5cos(t)), α1(t) = 0.6(1 + 0.45sin(t)),

α2(t) = 0.3 + 0.2sin(t), α3(t) = 0.5 + 0.1sin(t), α4(t) = 2(1 + 0.15sin(t)). Then we have
ω = 2π , ĉ = 1 > 0,

1
ω

∫ ω

0

f (t)(a
b )l

α1(t) + α2(t)(a
b )l dt ≈ 4.968889 >̂d = 0.6.
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Figure 1 The phase trajectory and solution curves of model (A) with the initial value (1.5,0.5)T

Figure 2 The phase trajectory and solution curves of model (B) with the initial value (1.5,0.5)T
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From Theorem 3.1, it follows that model (A) has at least one positive 2π -periodic
solution (see Fig. 1).

(ii) Let us further choose m(t) = 0.5 + 0.1sin(t). Then we have ω = 2π , ĉ = 1 > 0,

f̂ = 2 > d̂ = 0.6,
(

c
a

)u[

1 …
(

d
f

)l]

≈ 0.282176 <ml = 0.4.

From Theorem 3.2, it follows that model (B) has at least one positive 2π -periodic
solution (see Fig. 2).

Acknowledgements
The authors would like to thank the reviewers and the editor for their careful reading, helpful comments, and suggestions
that greatly improved the paper.

Funding
This paper is supported by Project funded by China Postdoctoral Science Foundation (No. 2022TQ0026), the
Fundamental Research Funds for the Central Universities (No. FRF-TP-22-102A1), National Natural Science Foundation of
China (No. 12201038 and No. 11971055), and Beijing Natural Science Foundation (No. 1202019).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author contributions
All authors jointly worked on the results. All authors read and approved the “nal version of the manuscript.

Received: 12 October 2022 Accepted: 20 April 2023

References
1. Cushing, J.M.: Periodic time-dependent predator…prey system. SIAM J. Appl. Math.32, 82…95 (1977)
2. Fan, M., Wang, Q., Zou, X.: Dynamics of a nonautonomous ratio-dependent predator…prey system. Proc. R. Soc. Edinb.,

Sect. A133, 97…118 (2003)
3. Li, H., She, Z.: Uniqueness of periodic solutions of a nonautonomous density-dependent predator…prey system.

J. Math. Anal. Appl.442, 886…905 (2015)
4. Bohner, M., Fan, M., Zhang, J.: Existence of periodic solutions in predator…prey and competition dynamic systems.

Nonlinear Anal., Real World Appl.7, 1193…1204 (2006)
5. Bai, D., Yu, J., Fan, M., Kang, Y.: Dynamics for a non-autonomous predator…prey system with generalist predator.

J. Math. Anal. Appl.485, 123820 (2020)
6. Zhu, X., Ding, W.: Global stability of periodic solutions of predator…prey system with Holling type III functional

response. J. Appl. Anal. Comput.9, 1606…1615 (2019)
7. Fan, M., Kuang, Y.: Dynamics of a nonautonomous predator…prey system with the Beddington…DeAngelis functional

response. J. Math. Anal. Appl.295, 15…39 (2004)
8. Cui, J., Takeuchi, Y.: Permanence, extinction and periodic solution of predator…prey system with

Beddington…DeAngelis functional response. J. Math. Anal. Appl.317, 464…474 (2006)
9. Fazly, M., Hesaaraki, M.: Periodic solutions for predator…prey systems with Beddington…DeAngelis functional response

on time scales. Nonlinear Anal., Real World Appl.9, 1224…1235 (2008)
10. Li, H., She, Z.: Dynamics of a non-autonomous density-dependent predator…prey model with Beddington…DeAngelis

type. Int. J. Biomath.9, 1650050 (2016)
11. Jiang, X., Meng, G., She, Z.: Existence of periodic solutions in a nonautonomous food web with

Beddington…DeAngelis functional response. Appl. Math. Lett.71, 59…66 (2017)
12. Tripathi, J.P., Jana, D., Vyshnavi Devi, N., Tiwari, V., Abbas, S.: Intraspeci“c competition of predator for prey with variable

rates in protected areas. Nonlinear Dyn.102, 511…535 (2020)
13. Cai, M., Yan, S., Du, Z.: Positive periodic solutions of an eco-epidemic model with Crowley…Martin type functional

response and disease in the prey. Qual. Theory Dyn. Syst.19, 56 (2020)
14. Tripathi, J.P., Bugalia, S., Tiwari, V., Kang, Y.: A predator…prey model with Crowley…Martin functional response:

a nonautonomous study. Nat. Resour. Model.33, e12287 (2020)
15. Tripathi, J.P., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator…prey model with

Crowley…Martin functional response. Commun. Nonlinear Sci. Numer. Simul.30, 45…69 (2016)
16. Preisser, E.L., Bolnick, D.I.: The many faces of fear: comparing the pathways and impacts of nonconsumptive predator

e�ects on prey populations. PLoS ONE3, e2465 (2008)
17. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of o�spring songbirds

produce per year. Science334, 1398…1401 (2011)



Guo and MaAdvances in Continuous and Discrete Models        (2023) 2023:22 Page 23 of 23

18. Wang, X., Zanette, L., Zou, X.: Modelling the fear e�ect in predator…prey interactions. J. Math. Biol.73, 1179…1204
(2016)

19. Chen, J., He, X., Chen, F.: The in”uence of fear e�ect to a discrete-time predator…prey system with predator has other
food resource. Mathematics9, 865 (2021)

20. Cong, P., Fan, M., Zou, X.: Dynamics of a three-species food chain model with fear e�ect. Commun. Nonlinear Sci.
Numer. Simul.99, 105809 (2021)

21. Sk, N., Tiwari, P.K., Pal, S.: A delay nonautonomous model for the impacts of fear and refuge in a three species food
chain model with hunting cooperation. Math. Comput. Simul.192, 136…166 (2022)

22. Liu, T., Chen, L., Chen, F., Li, Z.: Stability analysis of a Leslie…Gower model with strong Allee e�ect on prey and fear
e�ect on predator. Int. J. Bifurc. Chaos32, 2250082 (2022)

23. Qi, H., Meng, X., Hayat, T., Hobiny, A.: In”uence of fear e�ect on bifurcation dynamics of predator…prey system in a
predator-poisoned environment. Qual. Theory Dyn. Syst.21, 27 (2022)

24. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Di�erential Equations. Springer, Berlin (1977)
25. Bai, D., Zeng, W., Wu, J., Kang, Y.: Dynamics of a non-autonomous biocontrol model on native consumer, biocontrol

agent and their predator. Nonlinear Anal., Real World Appl.55, 103136 (2020)
26. Bai, Z., Zhou, Y.: Existence of two periodic solutions for a non-autonomous SIR epidemic model. Appl. Math. Model.

35, 382…391 (2011)
27. Mandal, P.S., Abbas, S., Banerjee, M.: A comparative study of deterministic and stochastic dynamics for a

non-autonomous allelopathic phytoplankton model. Appl. Math. Comput.238, 300…318 (2014)
28. Guo, K., Song, K., Ma, W.: Existence of positive periodic solutions of a delayed periodic microcystins degradation

model with nonlinear functional responses. Appl. Math. Lett.131, 108056 (2022)
29. Beretta, E., Kuang, Y.: Global analysis in some delayed ratio-dependent predator…prey systems. Nonlinear Anal.,

Theory Methods Appl.32, 381…408 (1998)

Publisher•s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional a�liations.


