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Abstract

This paper investigates the existence of positive periodic solutions for a periodic
predator-prey model with fear e ect and general functional responses. The genera
functional responses can cover the Holling types Il and Il functional response, the
Beddington...DeAngelis functional response, the Crowley...Martin functional response,
the ratio-dependent type with Michaelis...Menten type functional response, etc.
Some new su cient conditions for the existence of positive periodic solutions of the

D

model are obtained by employing the continuation theorem of coincidence degre
theory and some ingenious estimation techniques for the upper and lower bound
the a priori solutions of the corresponding operator equation. Our results
considerably improve and extend some known results.
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1 Introduction

The dynamic relationship between predators and prey is very common and essential in
ecological environments. Consequently, many scholars have studied di erent types of
predator...prey models based on some practical problems. Many scholars have studied
the important dynamic properties of the autonomous and nonautonomous predator...
prey models such as stability, permanence, extinction, global attractivity, and the exis-
tence of periodic and almost periodic solutions. These studies are valuable in exploring
and predicting the relationships and patterns of changes between predators and prey. Pe-
riodic phenomena, such as seasonal e ects of weather, food supply, mating habits, hunt-
ing or harvesting seasond], are widespread in ecosystems. In the predator...prey model,

a wide variety of functional responses are available re"ecting how direct killing may oc-
cur. The periodic predator...prey models with di erent functional responses and practical
factors have been studied by many scholars. For example, the ratio-dependent functional
responses?, 3], the Holling type functional responses4..6], the Beddington...DeAngelis
functional responses4, 7..11], the Crowley...Martin functional responsed2..14] (see

also the references therein).
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Recently, Tripathi et al. 14] studied the following nonautonomous predator...prey model
with Crowley...Martin functional response:

o o0
() = x(0)]a(t) .. bOx() - sreramm Oy

S\ — Sf)x(t) (1.1)
3(@) = yOL.-d@) - 2O ) * Sorpammr @D

where x(t) and y(¢t) denote the population densities of the prey and predators at tinte
respectively. In model 1.1), it is assumed that all parameters are continuous and have
positive upper and lower bounds. The functior(z) denotes the intrinsic rate of prey;
a(t)/b(t) denotes carrying capacity in the absence of predatios(t) denotes the cap-
turing rate; f(¢) denotes the conversion rate (the coe cient of conversion from prey
to predator); d(¢) denotes the death rate of predators(¢t) denotes the predator den-
sity dependence rate (predator population decreases due to competition among the
predators). Predators consume prey with a Crowley...Martin type functional response
(c@yE(x(t) + B(&)x(2) + y (£)y(t) + q(¢)x(t)y(¢)) and contribute to its growth with rate
(F@OxO (e (2) + BE)x(2) + ¥ @©)y(2) + g(©)x(t)y(2)). The function «(t) measures the half sat-
uration of prey speciesp(t) measures the handling timey (¢) denotes the coe cient of
interference among predatorsg(¢) denotes the coe cient of interference among preda-
tors at the high density of prey. More detailed biological explanations can be found in
[10, 14, 15] and the references therein. Tripathi et al.14] studied the permanence, ex-
tinction, global attractivity, and the existence of periodic and almost periodic solutions
of model (1.1) in detail. If g(¢) = 0, then the functional response of modell(1) becomes
the Beddington...DeAngelis type, and then modé&ll) was studied in L0, 11]; further if

r(¢) = 0, then model (.1) was studied in #, 7..9]. Moreover, if () = 0 andg(¢) = 0, the
functional response of modelX.1) becomes the ratio-dependent type, then model.()
was studied in BJ; further if r(¢) = 0, then model (L.1) was studied in P].

Many biologists realized that the cost of fear should be incorporated along with direct
predation in prey...predator interactionslp]. Experiments by Zenette et al.1[7] showed
that fear of predators alone led to a 4@ reduction in the number of o spring that song
sparrow parents could produce. In1g], Wang et al. “rst formulated and investigated a
predator...prey modelincorporating the cost of fear (indirect e ects) and observed that the
cost of fear plays a crucial role in changing the dynamics of predator...prey interactions.
Further, some predator...prey models with fear e ects and di erent functional responses
and practical factors have been studied by many scholars (see, €.6..43)).

Motivated by the above research works, in this paper, we further consider the following
periodic predator...prey model with fear e ect and general functional responses:

x(t) = x(8)[a(®)F (k(2),y(2)) - b(£)x(2)] .. c(£) G(£,(2), y(£))y(2), (1.2)
¥(@) =y@)..d(0) .. r(e)y(e) + f () G(£,(2), y(£))]-
In model (1.2), the predators follow general functional responses to hunt the prey pop-
ulation, and the function G(¢,x, y) satis“es some assumptions which will be given below.
In this paper, we always assume that the functioa$t), b(¢), d(t), andf () are continuous,
positive, andw-periodic (w > 0); the functionsk(z), c(¢), andr(t) are continuous, nonnega-
tive, andw-periodic. In addition, some additional restrictions on the parameter functions
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will be given in our theorem conditions. Here, the tern¥ (k(¢),y(t)) < 1 denotes the cost of
anti-predator defense due to feak () re”ects the level of fear which drives anti-predator
behaviors of the prey18]. We assume that the functiorF(k,y) satis“es the following con-

dition (see [L9)):

(H) F(k,y) is continuous on R? and continuously differentiable with respect to
(k,y)T € R2; F(k,y) >0, F(0,y) =1, F(k,0) = 1for k > O and y > 0; the partial

derivatives % <0and %’;y) <O0fork>0andy>0.

Clearly, the functionF(k,y) can cover the following forms: 1/(1 +y), 1/(1 +ky?), e,
etc.

For convenience, in this paper, we always assume thalt), a1(t), as(t), and as(f) are
continuous, positive, andw-periodic, a,(¢) and a4(t) are continuous, nonnegative, and
w-periodic. In addition, we assume that the functiorG(z,x,y) = Gi(¢,x,y) or G(t,x,y) =
Ga(z,x), or G(¢,x,y) = Gs(m(t), ’y—‘), where G1(t,x,y), Ga(t,x) and Gs(m(z), ’y—‘) satisfy some
of the given assumptions.

Assume that the functionGi (¢, x,y) satis“es the following conditions:

(P1) Ga(t,x,y) is nonnegative and continuous on R x R? and continuously

differentiable with respect to (x,y)” € R?, and w-periodic in ¢.

(P2) Gi(t,x,y)>0and Gy(t,0,y)=0fort € R,x >0,y > 0; for each (t,)T € R x R,
Ga(t,x,y) is increasing with respect to x on R,; for each (¢,4)7 € R x R., Gi(¢,,7)
is nonincreasing with respect to y on Rs.

(P3) There exists a continuous w-periodic function ®1(¢) > 0 such that
Gi(t,x,0)< O1(t)x for £ e R, x € R4

(P4) For each x € (0, +00), there exists a continuous function Gy (£,%) > 0, which is
w-periodic in ¢, such that yGi(¢,x,y) < Gai(t,x) for t € R, y=>0.

(P5) The partial derivatives W >0and %;xy) <OforteR, x>0, y>0; for each
(t,%)T € R x Ry, limy_, o G1(t,%,5) = 0.

It is not dicult to “nd that Ga(¢,x,y) can cover some common forms such as the

Beddington...DeAngelis functional response

X
a1(t) +aa(t)x + as(t)y’

the Crowley...Martin functional response

x
ay(t) + ax()x + az()y + aa(t)xy’

and other forms of functional response, such as

X x2

a1(t) + az(t)y + as(t)y?’ a(t) + aa(t)y + as(t)x?

Assume that the functionG,(¢,x) satis“es the following conditions:

(Q1) Ga(t,x) is nonnegative and continuous on R x R, and continuously differentiable
with respect to x € R+, and w-periodic in £.

(Q2) Ga(t,x)>0and Ga(t,0) =0for t € R, x> 0; for each t € R, Gy(¢,x) is increasing
with respect to x on Rs.

(Q3) There exists a continuous w-periodic function ®() > 0such that
Go(t,x) < Oy(t)x fort e R, x € R,
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(Q4) The partial derivative %ﬁ:”) >0forteR,x>0.
Clearly, the functionGx(¢,x) can cover the classical Holling type Il functional response

x
ai(t) + ax(t)x’

Note that, forx > 0,n e N*, andn > 2,

P B xn...l - (é‘(t))"l

Gltx) = D+ @)+ anO  ald) + Oy

where

ay(t)

{(t):(m nl) .

In addition, it is not dicult to verify that the function Go(t,x) satis‘es conditions
(Q1)...(Q4). Note that, when = 2, the function G.(¢,x) becomes the classical Holling type
[l functional response

%2

a1() + as(t)x?

Assume that the functionGs(m,z) (z = ’;‘) satis“es the following conditions:

(H1) Ga(m,z) is nonnegative and continuous on R2 and continuously differentiable
with respect to z € R.

(H2) Gs(m,z)>0and Gz(m, Q) =0for m >0, z>0; for each z> 0, G3(m,z) is
nonincreasing with respect to m on (0, +oo); for each m > 0, G3(m, z) is increasing
with respect to z on (0, +00).

(H3) For each m >0, %:”) >0 for z>0, and lim,_, o, G3(m,2) = O3(m) > 0.

(H4) For each m >0, % is nonincreasing with respect to z on (0, +oo), and
lim,_, g+ % = Q4(m) > 0.

It is not dicult to “nd that  Gz(m(z), f) can cover the ratio-dependent type with

Michaelis...Menten functional response

_ X
5 m(y

N~ | IR

m(t

The main purpose of this paper is to study the existence of positive periodic solutions
for model (1.2) by using the continuation theorem of coincidence degree theor34]. The
most crucial aspect of using the coincidence theorem is to estimate the upper and lower
bounds of the a priori solutions of the corresponding operator equation (sée = uNg,

u € (0,1) in Sect2). The existence of positive periodic solutions for the special cases of
model (1.2) has attracted the attention of many scholars and has yielded plentiful results
(see, e.g., 4.4, 7..11, 14)). For model (L.2), our main results (see Theorem8.1and 3.2,
Corollary 3.1) extend and improve Theorem 4.2 in Li and Shel{], Theorem 3.1 in Li
and She B], Theorem 8 in Tripathi [14]. In addition, we obtain di erent results com-
pared to some of the known ones (see Theorem 3.5 in Fan et 8], [Theorems 3.1 and
3.2 in Fan and Kuang{], Theorems 3.1 and 3.2 in Bohner et al4], Theorems 1 and
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2 in Fazly and Hesaaraki9], Theorem 3.1 in Jiang11], Theorem 9 in Tripathi [14]). It

is worth mentioning that the continuation theorem of coincidence degree theorp{] is
very e ective to study the existence of periodic solutions of predator...prey models (see,
e.g., B 4..7,9, 11..14, 25)]) and other biological models (see, e.924..29]).

The rest of this paper is organized as follows. In Se&t.we “rst review the continua-
tion theorem of coincidence degree theory2§] and then study the existence of positive
periodic solutions of model {.2). In Sect.3, we give some applications of our results and
compare them with some known results. The last section contains the conclusions and
some numerical simulations of this paper.

2 Existence of positive periodic solutions of the model

Let X, Z be normed vector spaced,: Dom L C X — Z be alinear mappingN : X — Z be
a continuous mapping. The mappind will be called a Fredholm mapping of index zero if
dimKerL = codimIm L < +oo andIm L is closed inZ. If L is a Fredholm mapping of index
zero and there exist continuous projection® : X — X and Q : Z — Z such thatImP =
KerL, ImL =KerQ=1Im(/ ..Q), it follows that L|pomznkerp : (I ...P)X — ImL is invertible.
We denote the inverse of that map bi(,. If 2 is an open bounded subset df, the mapping
N will be calledZ-compact onQ if QN() is bounded andX,,(I ..Q)N : £ — X is compact.
Sincelm Q is isomorphic toKer L, there exists an isomorphisni : Im Q — KerL.

Lemma 2.1 ([24]) Assume that Q C X is an open bounded set. Let L be a Fredholm map-
ping of index zero, and let N be L-compact on Q. Assume that
(i) Lu# uNu,Vu e dQNDomL, u € (0,1)
(i) QNu 70, Yu € 9Q N KerL;
(iii) deg{/QON,Q2NKerL,0} #O0.
Then the operator equation Lu = Nu has at least one solution in DomL N Q.

For any continuousw-periodic function o(¢) de“ned on R, we denote

1 w
0= —/ o(t)dt, 0" = max o(t), o' = min o(¢).
w Jo te[0,0] te[0,0]
For convenience, for any,v € R, we de“ne
1 1 ~ c(t)Ga(t, exp{V}
2)=2 [(fOGi(tewi)d o= [,
0

exp{v}
()42
F(k*,exp{v})’

w2} ] (3]

D3(M o~
M2:11‘1< 3% 1)) +2®3(Wll) w.

P3(v) = Os(m!)fexp(v},  T()=

The main results of this paper are as follows.

Theorem 2.1 Assume that ¢ > 0 and one of the following conditions holds:
(A1) G(t,x,9) = Gi(t,x,9), 1 =L [V F(O)Ga(t, (§), 0)dt > d;
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(A2) G(t,x,5) = Galt,x), 1o := 2 [ f(£)Galt, (2)) > d;
(A3) G(t,x,y) = Ga(m(t), %), Mg := Og(m")f >d, Ga(m', T (M) < (4)".
Then model (1.2) has at least one positive w-periodic solution.

Proof Assume thatG(z,x,y) = Gi(t,x,y) or G(¢,x,y) = Ga(¢,x), or G(t,x,y) = Gz(m(t), ’y—‘)
Letx(¢) = exp{e1(2)} and y(¢) = exp{¢2(£)}, then model (L.2) can be transformed into

¢1(8) = a(®)F (k(2), exp{g2(2)}) .. b(£) expiea(£)}

AB)G(z.explea (B)} explwa(t)}) explga ()} (2.1)
" exple1(2)} '

¢2(t) = ..d(t) .. r(t) explea(0)} + f()G(t, explea (D)}, expla(D)}).

Clearly, it is only necessary to prove that mode2 (1) has anw-periodic solution.
Let

T
X=Z={p=(p2(t).02(t)) € C(R,R?) | (t) = (¢ + w)}
with the norm |l¢|| = maxejo ) l¢1(£)| + max.eo.) l@2(2)|. Clearly, bothX andZ are Banach
spaces. De“ne

w

P<p=%/:<p(t)dt(<p €X), Q<p=%/0 p()dt(yp € 2),

Le=¢(t), Ng= [Z;Eg} ,

where

Nu(t) = a(t)F (k(2),exp{@a(t)}) . b(t) exp{a (1)}

c(t)G(z,exp{p1(t)}, exp{pa(£)}) exp{e2(2)}
exp{ea(t)}

No(£) = ..d(t) ..r(t) exp{ea(t) } + 7 ()G (¢, exp{ea(t)}, exp{p2(r)}).

Then, ithasKerL={p € X | g e R*} andImL = {p € Z| [; ¢(¢)dt = 0}. Clearly,ImL is
closed inZ, anddimKer L = codimIm L = 2. Thus,L is a Fredholm mapping of index zero.
Moreover, the generalized inverse (tb) Kp : ImL — Dom L N Ker P exists and is given by
Kpp = [y p(s)ds .2 [ [5 o(s)dsdt. Then, similar to the proof of Theorem 2.1 in 28], we
can obtain thatN is L-compact on for any open bounded sef2 C X.

Corresponding to the operator equatioily = uNg, u € (0,1), we have

@1(8) = ula)F (k(2), expiepa(2)}) . b(t) expiea(e)}

c(t)G(t.exploi(t)} expip2(6)}) expleo(t)}
T exp{e1(t)) ! (2.2)

@2(t) = pul..d(t) .. r(t) expigpa(6)} + f ()G (¢, explea (D)}, explg2()})]-

Assume that (1(£), 92(£))T € X is an arbitrary solution of model 2.2) for a certain i €
(0,1). Since g1(t), p2(t))” € X, there existéy, &, n1, n2 € [0, ] such that

@1(61) = min_@1(2), @1(n1) = max @1(2),
te[0,w] te[0,0]
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@2(62) = min_@o(2), @2(n2) = max go(t).
te[0,0] te[0,w]

Clearly, 91(&1) = ¢1(n1) = ¢2(&2) = ¢2(n2) = 0. Integrating on both sides of Z.2) over the
interval [0,w], we have

/O w[a(t)F(k(t),exp{wg(t)}) b explea(t))

()G (4, explea(2)}, explea()}) exple2(2)}
exp{pa(t)}

(2.3)

:| dt=0
and
/0 w[d(t) +r(t)exp{pa(t)} .. £(£)G (¢, exp{ea(t)} exp{a(t)})] dt = 0. (2.4)
Note that
[ a0 exploao) de = exploato)} . explva(0)] =0,
then we have

/w[d(t) exp{qu(t)} +r(t) exp{Zgoz(t)}] dt
0 (2.5)

- /O " F(6) expla(0)} G (6. explen(®)] explpa(d))) .

From (2.2, (2.3), and condition (H), we have

/ 16200 dt
0

< /(;‘“ a(t)F(k(t),eXp{‘/)Z(t)}) dt

“ c(t)G(t,exp{p1(t)}, explea(t)}) exp{ea(t)}
* /o [b(t) explea()) + exp{p1(t)} } a

(2.6)

= Z/wa(t)F(k(t),exp{goz(t)}) dt < 2aw.
0

From (2.3), we have

o . bexplgi(Er)}o > /o [P (k@ exp{ea0)}) - be) exploa(en) ] de 0,
which implies that

<,01(§1) < In <%) =m;.
Then, from (2.6), we have

01(0) < p2(E1) + / (62(6)| dt < my + 20 1= M.
0
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Also, from ¢1(n1) =0, we can easily obtain that

or(8) < 01(71) 5ln<“(m)F(k(";zSp{W(n1)})) sln[(g) } = Tk,
Thus, we have
1(£) < min{ M7, M; ) = M. (2.7)

From (2.2) and 2.4), we have

[ lo0lar
0
< /Ow[d(t) +r(t) exp{e2(t)} ] dt + /wa(t)G(t, exp{ea(t)},exp{pa(t)}) dt (2.8)

=2 /O wf (6)G(t,exp{e1(t)}, exp{pa(t)}) dt.

We consider the following three cases.
Case (i). Condition (A1) holds.
From (2.7), (2.8), and condition (P2), we have

/()w’gbz(t)! dt < 2/wa(t)G1(t,exp{M1}, 0}) dt = 2A 0, (2.9)

where A4(t) = f(£)Gi(t,exp{M1},0). From @.5), (2.7), and conditions (P2) and (P4), we
have

dewploatea)) < o, [ FOGu(e.explbta) explval0)]) exl o)) ds

1 [? ~
= /0 P0G (t.expiMy)) dt

= ®y(My1) >0,

which implies that

p2(&2) < 1n<q>1(§41))-

Then, from (2.9), we have

+ 23\10) ::Mgl).

pt) < oolE) + /0 | ga(0)| dt < m(%)
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From (2.4) and conditions (P2) and (P3), we have

do = [ £t explon(d)] exlee))
= /wa(f)Gl(t,eXP{fﬂl(Tll)},0) dt

< fo " OO0 exploatn)) .

which implies that

p1(n1) = ln< i ) =1,
(foe1)

Then, from (2.6), we have
o1(8) = @a(ma) .. / ()| dt = 1Y ... 3w =L,
0
If I1; >d, then there exists a su ciently small constan$; > 0 such that

! o u
T1(81) = <%> F(k,51) (%) 51>0,

/wf(t)Gl(t,F((Sl),(Sl) dt >dw +7810.
0

(2.10)

Claim (i). If Ty > d, then exp{g2(112)} > 81.
If the claim is not true, then

trer[?z] exp{pa(t)} = exp{pa(n2)} < 1.

From ¢1(£1) = 0, exp{e2(£1)} < exp{¢2(112)} <81, conditions (P2) and (P3), we have

a(&1)F(k(&1),exp{p2(£1)})
b(&1)

c(61)G1(&1,exp{p1(é1)}, exp{p2(£1)}) expl{pa(£1)}
b(&1) exp{g1(£1)}

Ly cEDGi(EL explea(§1)),0)
)F(k ) e el E)

!
®
> (g) F(kt,sy) .. D01

exp{p1(61)} =

b(§1)
! O\ “
%) F(k*,81) (%) 51
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Further, from (2.4) and condition (P2), we have
do +7810 > /0 w[d(t) +r(t) exp|o2(t) )] dt
= [ re6u(e.explon@) exploato]) de
> [ 06t explosten)exploatna)]) ds
> /wa(t)Gl(t,Fl(le),le) dt,

which is a contradiction to £.10. This proves the claim.
From Claim (i) and (2.9), we can obtain

@2() = 02(n2) ... / |@a2(t)| dt > In(81) ... Dy =L,
0
Now, let us consider the following algebraic equations:

[L [ a(t)F(k(t),exple2)) dt .. Dexplon)

1 (o c(@)Gi(texp{oi}expip}) expleo} —
5 fO H exp{p1} dt] - O! (211)

L [ f(0)Ga(t,expler),expl2)) dt .. d .. yiFexplgz) =0

for (p1,92)T € R?, wherep € [0, 1] is a parameter. By using the similar arguments as above,
we can show that any solutiong;;, ¢3;)7 € R? of (2.11) with x € [0, 1] satis“es

’d\ o~
l(ll) = ln< — ) < < ln<i> = m,
(re1) b (2.12)
[
lgl) = ln(SI) <5 < ]n(%) = m(zl),

wheres3 > 0 satis“es

5 (87) == =F(k*,87) %(% /Ow c(t)O1(t) dt)SI >0,

) Q)

1 (e L
= [ 06 (eri(e:) 51) dr> a4,
@ Jo

Note that My, M, LY L my, m$, 1D, and I$ are independent ofu. De“ne
QW=lpeX| gl <u®},

where

9= 1 max([7] 19 1)+ (2], 187, |7
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Clearly, Q) satis“es condition (i) in Lemma2.1 When ¢ = (¢1,¢2)7 € 3Q® N KerL =
QM NR?, then ¢ is a constant vector inR? with |¢1| + |¢2| = UD. Then

ON 1| _ %fow a(t)F(k(t),exp{p2}) dt ..Zexp{wll...W1(¢1,¢2)
%fc;uf(t)Gl(taeXP{<ﬂl},eXp{§0z}) dt ..d .. Texp{pz}

3]

Wile1,92) = _/o

where

c(£)Ga(t, exp{g1}, exp{wz})exp{wz}
exp{¢p1}

Here, we have proved that condition (i) in Lemma. lis satis“ed. To compute the Brouwer
degree, let us consider the homotopy

ED((01,92)") = nQN (@1 02)") + (1 .. .) VD ((p1,02)"),  wel0,1],
where

1 ro N
WD (0r o)) = | @ Jo AOFK().explgal)dt .. bexples)
(o)) [%ﬁ?@GﬂhﬁmmLMMWDﬁnd

From (2.1, it follows that 0 ¢ E(}(9Q™ NR?) for u € [0,1]. In addition, from condi-
tions (H), (P2), and (P5), one can easily show th&t"((¢1,¢2)7) = 0 has a unique solution
(@i 50T in R2if T1y >d. Leters = exp{g],} > 0, e21 = exp{g3,} > 0. From conditions (H)
and (P5), we have
1 /¢ aF(k(¢),
5‘{1) 3:—/ ﬂ(t)—( 9 ezl)ezldtf 0,
w Jo 8
W= / 1t )3G1(t 611,621) Ldi>0,

(1) f e )aGl(t 611,621) J1dt <0.
dy

A direct calculation produces

beyy oY
deg{w®,09® NKerL,0} =sign| " *hy
S2 S3

o~ 0 .
= 31gn{..b611§3( ) S'i )52( )}

=1%0.

Sincelm Q = Ker L, then we haveg =I. Furthermore, by the invariance property of homo-
topy, we have

deg{JQN,3Q® NKerL,0} = deg{QN, Q™ NKerL, 0}

= deg{w®, Q™ NKerL,0} 70.
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By Lemmaz2.1, if condition (A1) holds, then model 2.1) admits at least onev-periodic
solution.

Case (ii). Condition (A2) holds.

From (2.7), (2.8), and condition (Q2), we have

/wlcbz(t)! dt < Z/wf(t)Gz(t,exp{(pl(t)}) dt
0 0
<2 / ’ f(£)Ga(t,exp{M1}) dt (2.13)
0
=270,
where A(£) = f(£)Ga(t,exp{M4}). From (2.4) and condition (Q3), we have
do < / wf (t)Ga(t,exp{e1(m)}) dt < exp{p1(n1)} f ‘ FO)O(t) dt,
0 0

which implies that

@1(n1) = ln( /d\ ) =12,
(f©2

Then, from (2.6), we have

o1(0) = @1(n1) ... /0 |a(t)| dt = 1P ... 200 :=LD.
From (2.3) and condition (Q2), we have

“ o()Ga(t, exp{LY)) expl@a(£2))

(2 —
CDz(Ml,Ll )exp{gog(ég)}a)—/o exp(My] dt
E/w c(£)Ga(t,exploa(£)}) exp{g2(2)} gt
0 explei(t)}

< /Ow a(t)F (k(t),exp{epa2(t)}) dt

S a)!

which implies that

-~

a

CXP{(Pz(Sz)} = m

Then, from (2.13, we have

-~

@(2) < @2(&2) +/ AGIEES 1n< + 270 = MP.
0

<I>2(M1,L(12))>

If I1, >d, then there exists a su ciently small constan, > 0 such that

a\'! c®5\"
['p(82) = (E) F(k*,82) <7> 82>0,
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[ 106l To02) > 47520
0

Claim (ii). If TI, >d, thenexp{g2(n2)} = 5>.
We omit the proof of Claim (ii) here since it is very similar to that ofClaim (i).

From Claim (ii) and (2.13, we can obtain
0a0) 2 92() [ 19200 dt = 062) .. B =15,
0
Now, let us consider the following algebraic equations:

[L [ a(e)F(k(z), expla}) dt .. Dexplen)
(2.14)

1 (o c(t)Ga(texplei})) explez) df]=0
0 JO exp{e1} ’

L[5 f(©)Ga(t,expies}) dt .4 .. yFexp{gs} =0

for (¢1,92)” € R?, wherepu € [0, 1] is a parameter. By using similar arguments as above, we
can show that any solution¢;,, ¢3,)7 € R? of (2.14) with x € [0, 1] satis“es

3 o~

12 = ln< —— > <S¢ < ln<i) = ma,
(f©2) b

(2.15)

. a — ®
ng) .—ln(éz) <5, < ln(7> = m(z ,
@ (my, 1)

whereé; > 0 satis“es

a 1/1 (¢
r3(83) = %F(k“,a;) ..?<;/() c(t)@z(t)dt)8§>0,

%/ F(6)Ga(t,T5(53)) dt >d +785.
0

Note that M, M(zz), L(lz), L(zz), my, m(zz)’ 1(12), andl(zz) are independent ofw. De“ne

QP =lpeX|lol<u®},

where

U® =1 +max (|12, L], 1ma],1M1]} + max{[iD],|LD], |mP], |MP]}.

Clearly, Q@ satis“es conditions (i) and (i) in Lemma2.1 Let us consider the homotopy
B (01 92)") = LN ((p1.92)") + (1 . .)V O ((gr,02)"), ne[0,1],

where

1o b
@ 7y = | u Jo AO)F(k(®),exp{p2}) dt .. bexp{ps} .. Wa(p1,¢2)
YO((p1,92)") [ 1 [V f(6)Ga(t,explor))dt ..d, }
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where

c(t)Ga(t, exp{Wl})eXP{Qﬂz}
exp{e1}

Wa(p1,92) = —A

From (2.19), it follows that 0 ¢ E(9Q® NR?) for 11 € [0, 1]. In addition, from conditions
(H) and (Q2), one can easily show tha@((¢1,¢2)”) = 0 has a unique solutiong},, ¢3,)”

in R2 if I, >d. Let epp= exp{&fz} >0,ex= exp{gz} > 0. From conditions (H) and (Q4),
we have

1 /¢ oF(k(t),
@ ::_/ a(®) (k(t), e22)
@ Jo dy

1 [ 3Gt
2.1 / Fo2G2bad s,
w Jo 0x

exdt <0,

Note thatJ = I, by the invariance property of homotopy, we have

deg{/QN,9Q® NKerL,0}
= deg{lll(z), 0@ N KerL, 0}

. 1 [?c(t)Ga(t,ern)e
:s1gn{ (§£2)"';/0 %d}f géz)

=1+0.

By Lemmaz2.], if condition (A2) holds, then model 2.1) admits at least onev-periodic
solution.

Case (iii). Condition (A3) holds.

From (2.7), (2.8), and conditions (H2) and (H3), we have

/ |@a(t)| dt < 2 / f(t)G3< ! %) dt < 203(m')fw = 2A30. (2.16)

From (2.5 and condition (H4), we have

dexplinte)] <, [ 7(0Ga(m(e, Z2 Y exploatt))

; exp{Ma} \ exp{epa(t)}
. 5/0 Fe)Gs (m ’exp{wz(t)}) explaty) P

1 w
< ;/ f(£)®4(m") exp{My} dt
0
= ®3(M1) >0,
which implies that

<I>3(M1).

exp{p2(62)} < =

Then, from (2.16, we have

@2(t) < pa(&2) + /()w|¢2(t)| dt < ln<w> +2A30 =M, = MY,



Guo and MaAdvances in Continuous and Discrete Models (2023) 2023:22

From ¢,(n2) = 0, we can obtain

f(12)Gs (m(nz), %) = () + r(m) explgaln2)} = d(ma),

which implies that
d !
Gal . eXP{fﬂl(nz)}) > (_) _
3( exp{g2(n2)} S
Note that
d l
ol () < (%)
f
then from condition (H2), we have

exp{e1(n2)} -

T S (M) = Y (M),
exp{p2(n2)} — (M) =T (M)

Note that

explei(n)} _ explea(r)} (MY = L(?)l
explpa(n)} ~ explea(n2)} 2 F(keexplm$)’

then from ¢1(n1) = 0 and conditions (H), (H2), and (H4), we can obtain

eXP{‘Pl(Tll)}
= S (kG exl21)
c(n1) G (mw ) e><1>{<p1(r11)}>e><p{<pz(m)}
() Y exploa(n)} ) exploa(n)}
> ZEZBF(k(m).eXP{wz(m)})
c(n1) G (M(n ) GXP{wl(nz)})eXp{wz(nz)}
“b(m) Y explea(n2)} ) exploa(n2))

c(m1) Ga(m!, Y (MY))
b)) v

g)” Ga(m!, Y (MEY) ]
a) F(k,explM&N)T M)

>6l('71) " ax 3)
= hery” P

- ani) ., . @) |:
> b(nl)F(k ,exp{M2 }) 1(

e o[ (7)ot )

" b))

>0,

which implies that

ayl

1) = m{ (;) F(ku,exp{M@})[(i)l ...G3(ml,T(M(23)))“ e

f

G

Page 15 of 23

(2.17)
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Then, from (2.6) and 2.17), we have
01(8) > 01(n1) .../0w|¢1(t)| dt > lf(l}") .. 2w :=L(13).
If ©3(m*)f >d, then there exists su ciently smallss > 0 such that
Gs (m e"pg(f)} )7>2+?53. (2.18)

Claim (iii). If ©3(m*)f >d, then exp{@2(2)} = 8s.
If the claim is not true, thenexp{y2(n2)} <3d3. From (2.4) and condition (H2), we have

dw +7830 > /0 w[d(t) +r(t) exp{p2(t)} ] dt

= [ ros(mo 506«

(3
/ f(t)G3< lﬁ%) t
=G3 (m”, 76XP{L(13)} )7(0,
83

which is a contradiction to £.18. This proves the claim.
From Claim (iii) and (2.16), we can obtain

02) 2 gale) o [62(0) dt 2 0G5) .. D =L,
0
Let (¢1,92)" € R? satisfy the following algebraic equations:

[L % a(@®F(k(2),expl@2)) dt .. bexploa)
L[5 () Ga(m(t), Z2lendyeeleal gy = g, (2.19)

eXp{wz} exp{p1}

%fof(t)Gs(M(t) eplesly gy 4 .. yiexplea) = 0,

expigz}

wherepu € [0, 1] is a parameter. By using similar arguments as above, we can show that any
solution (pis, 34)7 € R2 of (2.19 with x € [0, 1] satis“es

- d ! ~
8 ZZln{Z(‘;)l (K exp{m(zs)})[(f> o Gg(ml,T(m(;')))iH
< @i < 1n<%) =my, (2.20)
<o )

wheres3 > 0 satis“es

1(3) PR
Gg,(m”,exlo(s{*l })/>d+75§.
3
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Note that My, M, L9, LY, iy, m$, I¥), and () are independent ofi.. De*ne
Q®={p e Xl <u®},
where
= L man 2} 1l )+ a9, 2 9 a9

Clearly,® satis“es conditions (i) and (i) in Lemma2.1 To compute the Brouwer degree,
let us consider the homotopy

EQ((p1,92)") = QN (@1 92)") + (1 ...) ¥ ((p1,02)"), ne0,1],
where

V(o1 90)7) = F fo“’l a(i)F(k(t),exp{gaiig{cZ} : .Zexg)\{(pl}:| |
2 Jo fOGa(m(e), S8 dt ..d
From (2.20), it follows that 0 ¢ E(3)(9Q® NR?) for 11 € [0, 1]. In addition, from conditions
(H), (H2), and (H3), one can easily show that®((1,¢,)”) = 0 has a unique solution
(¢33 ¢39)7 in R?if T3 >d. Leters = exp{pis} > 0, e23 = exp{p3s} > 0. From conditions (H)
and (H3), we have

1 ¢ F
S‘is)::;/O a(t)a (k(t)'623)623dt§0,

dy
1 (e 9Ga(m(t), 22)
== / Flt)—— et F18 gy s,
w Jo 0z €23
A direct calculation produces
..27\613 5‘](_3)

deg{\ll(s), Q@ N KerL, 0} =sign

3 3
PP

= sign{ gf) @elg . .gf)) }

=1=0.
Note thatJ = I, by the invariance property of homotopy, we have

deg{JQN,3Q® NKerL,0} = deg{QN,3Q® NKerL, 0}

= deg{w®,3Q® NKerL,0} 70.

By Lemmaz2.1, if condition (A3) holds, then model 2.1) admits at least onew-periodic
solution. O
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3 Some remarks
Our results improve and extend some of the previous results. Some of the remarks below
will compare our results with some of the previous results.

If we choose

x
a(t) + ax(t)x + az()y + as(t)xy’

F(k,y) = 1+—1ky’ G(t,x,y) = Gi(t,x,y) =

then model (1.2 becomes the following periodic predator...prey model with Crowley...
Martin functional response:

() = 2O el .. b(t)x(t)

k(2)y(2)
(£)y(t)
*ag () +ao(t)x(e) raz(E)y(6) raa(B)x()y(t) ] (A)

o £
90 =y@L--d(@) - 7O + ey o0

For model (A), an application of our main results is as follows.
Theorem 3.1 Assume that the following condition

w a\l
LS

1y =~

H c>0, — —
(H:") o Jo on(f) +oa(6)(5)

holds, then model (A) has at least one positive w-periodic solution.

A direct corollary of Theorem3.1is given below.

Corollary 3.1 Assume that the following condition

!
(HO) &>0, (z) .. dat) >aid
holds, then model (A) has at least one positive w-periodic solution.

Remark 3.1 Recently, Tripathi et al. 4] proved that model @) has at least one positive
w-periodic solution under the following condition:

k() =0, >0, ab>0, ah>0, >0,

u 1
1) c(PLsty
1 bl — ) P —
® <o =Dy, a'>——~= =Dy,
(Hy) o +ah(%7) aé+aé(Dlr-l-dl )
ﬂl..
F1(%522) “

] [ ] [
at..D: Dq..d at..Dp\,Dq..d
et et Pl et (P2 ) P

Clearly, our condition (Hf?) of Corollary 3.1is weaker than condition Hf)). Thus, our
Corollary 3.1improves Theorem 8 in [L4].
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Remark 3.2 Li and She 10] proved that model @A) has at least one positive-periodic
solution under the following condition:

k(t)=0, >0, ab>0, a4(t)=0, >0,

(1) .
abal >, (3 ...bﬁaé)(fl A ) > old".

Clearly, our condition (H(Z)) of Corollary 3.1is weaker than condition (—1(4)) Thus, our
Corollary 3.1improves Theorem 4.2 in 1.0].

Remark 3.3 Fan and Kuang{] proved that model A) has at least one positive-periodic
solution under the following condition:

k() =0, >0, ab>0, a4(t) =0, r(@®)=0

(H(S)) )
4 okal > ¢ (& ...b;‘;,g)(f’ d o) > atd”.

In [7], the authors only assumed that the functior;(t) is nonnegative. ltx} > 0, then our
condition (H(Z)) of Corollary 3.1is weaker than condition H(S)) Thus, our Corollary3.1
extends Theorem 3.1inT].

Remark 3.4 For model A), or some of its special cases, some scholars have obtained some
plentiful results of the existence of positive periodic solutiongl[7..9, 14]. Note that our
Theorem3.1and Corollary3.1do not limit the size of the periodw. Compared with some
results in [4, 7, 9, 14] (see Theorem 3.2 in Fan and Kuang@], Theorem 3.1 in Bohner et

al. [4], Theorems 1 and 2 in Fazly and Hesaarald][ and Theorem 9 in Tripathi [14]), we
obtain di erent results.

If we choose

o
m)+ = mley+a

Fly)=1, G(txy) = Gg(m(t), ’y—‘) =

then model (1.2 becomes the following periodic ratio-dependent type predator...prey
model with Michaelis...Menten type functional response:

() = %(Oalt) . bEV(E) . s, )

5 = yOL-d) .. r@Oy(e) + 520
For model B), an application of our main results is as follows.

Theorem 3.2 Assume that the following condition

o) w0 7o (9 [e(4) ]

holds, then model (B) has at least one positive w-periodic solution.
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Remark 3.5 Liand She 3] proved that model B) has at least one positive-periodic so-
lution under the conditio