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Abstract
This paper investigates the existence of positive periodic solutions for a periodic
predator-prey model with fear effect and general functional responses. The general
functional responses can cover the Holling types II and III functional response, the
Beddington–DeAngelis functional response, the Crowley–Martin functional response,
the ratio-dependent type with Michaelis–Menten type functional response, etc.
Some new sufficient conditions for the existence of positive periodic solutions of the
model are obtained by employing the continuation theorem of coincidence degree
theory and some ingenious estimation techniques for the upper and lower bounds of
the a priori solutions of the corresponding operator equation. Our results
considerably improve and extend some known results.
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1 Introduction
The dynamic relationship between predators and prey is very common and essential in
ecological environments. Consequently, many scholars have studied different types of
predator–prey models based on some practical problems. Many scholars have studied
the important dynamic properties of the autonomous and nonautonomous predator–
prey models such as stability, permanence, extinction, global attractivity, and the exis-
tence of periodic and almost periodic solutions. These studies are valuable in exploring
and predicting the relationships and patterns of changes between predators and prey. Pe-
riodic phenomena, such as seasonal effects of weather, food supply, mating habits, hunt-
ing or harvesting seasons [1], are widespread in ecosystems. In the predator–prey model,
a wide variety of functional responses are available reflecting how direct killing may oc-
cur. The periodic predator–prey models with different functional responses and practical
factors have been studied by many scholars. For example, the ratio-dependent functional
responses [2, 3], the Holling type functional responses [4–6], the Beddington–DeAngelis
functional responses [4, 7–11], the Crowley–Martin functional responses [12–14] (see
also the references therein).
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Recently, Tripathi et al. [14] studied the following nonautonomous predator–prey model
with Crowley–Martin functional response:

⎧
⎨

⎩

ẋ(t) = x(t)[a(t) – b(t)x(t) – c(t)y(t)
α(t)+β(t)x(t)+γ (t)y(t)+q(t)x(t)y(t) ],

ẏ(t) = y(t)[–d(t) – r(t)y(t) + f (t)x(t)
α(t)+β(t)x(t)+γ (t)y(t)+q(t)x(t)y(t) ],

(1.1)

where x(t) and y(t) denote the population densities of the prey and predators at time t,
respectively. In model (1.1), it is assumed that all parameters are continuous and have
positive upper and lower bounds. The function a(t) denotes the intrinsic rate of prey;
a(t)/b(t) denotes carrying capacity in the absence of predation; c(t) denotes the cap-
turing rate; f (t) denotes the conversion rate (the coefficient of conversion from prey
to predator); d(t) denotes the death rate of predators; r(t) denotes the predator den-
sity dependence rate (predator population decreases due to competition among the
predators). Predators consume prey with a Crowley–Martin type functional response
(c(t)y(t))/(α(t) + β(t)x(t) + γ (t)y(t) + q(t)x(t)y(t)) and contribute to its growth with rate
(f (t)x(t))/(α(t) + β(t)x(t) + γ (t)y(t) + q(t)x(t)y(t)). The function α(t) measures the half sat-
uration of prey species; β(t) measures the handling time; γ (t) denotes the coefficient of
interference among predators; q(t) denotes the coefficient of interference among preda-
tors at the high density of prey. More detailed biological explanations can be found in
[10, 14, 15] and the references therein. Tripathi et al. [14] studied the permanence, ex-
tinction, global attractivity, and the existence of periodic and almost periodic solutions
of model (1.1) in detail. If q(t) ≡ 0, then the functional response of model (1.1) becomes
the Beddington–DeAngelis type, and then model (1.1) was studied in [10, 11]; further if
r(t) ≡ 0, then model (1.1) was studied in [4, 7–9]. Moreover, if α(t) ≡ 0 and q(t) ≡ 0, the
functional response of model (1.1) becomes the ratio-dependent type, then model (1.1)
was studied in [3]; further if r(t) ≡ 0, then model (1.1) was studied in [2].

Many biologists realized that the cost of fear should be incorporated along with direct
predation in prey–predator interactions [16]. Experiments by Zenette et al. [17] showed
that fear of predators alone led to a 40% reduction in the number of offspring that song
sparrow parents could produce. In [18], Wang et al. first formulated and investigated a
predator–prey model incorporating the cost of fear (indirect effects) and observed that the
cost of fear plays a crucial role in changing the dynamics of predator–prey interactions.
Further, some predator–prey models with fear effects and different functional responses
and practical factors have been studied by many scholars (see, e.g., [19–23]).

Motivated by the above research works, in this paper, we further consider the following
periodic predator–prey model with fear effect and general functional responses:

⎧
⎨

⎩

ẋ(t) = x(t)[a(t)F(k(t), y(t)) – b(t)x(t)] – c(t)G(t, x(t), y(t))y(t),

ẏ(t) = y(t)[–d(t) – r(t)y(t) + f (t)G(t, x(t), y(t))].
(1.2)

In model (1.2), the predators follow general functional responses to hunt the prey pop-
ulation, and the function G(t, x, y) satisfies some assumptions which will be given below.
In this paper, we always assume that the functions a(t), b(t), d(t), and f (t) are continuous,
positive, and ω-periodic (ω > 0); the functions k(t), c(t), and r(t) are continuous, nonnega-
tive, and ω-periodic. In addition, some additional restrictions on the parameter functions
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will be given in our theorem conditions. Here, the term F(k(t), y(t)) ≤ 1 denotes the cost of
anti-predator defense due to fear; k(t) reflects the level of fear which drives anti-predator
behaviors of the prey [18]. We assume that the function F(k, y) satisfies the following con-
dition (see [18]):

(H) F(k, y) is continuous on R
2
+ and continuously differentiable with respect to

(k, y)T ∈ R
2
+; F(k, y) > 0, F(0, y) = 1, F(k, 0) = 1 for k ≥ 0 and y ≥ 0; the partial

derivatives ∂F(k,y)
∂k ≤ 0 and ∂F(k,y)

∂y ≤ 0 for k ≥ 0 and y ≥ 0.
Clearly, the function F(k, y) can cover the following forms: 1/(1 + ky), 1/(1 + ky2), e–ky,

etc.
For convenience, in this paper, we always assume that m(t), α1(t), α3(t), and α5(t) are

continuous, positive, and ω-periodic, α2(t) and α4(t) are continuous, nonnegative, and
ω-periodic. In addition, we assume that the function G(t, x, y) ≡ G1(t, x, y) or G(t, x, y) ≡
G2(t, x), or G(t, x, y) ≡ G3(m(t), x

y ), where G1(t, x, y), G2(t, x) and G3(m(t), x
y ) satisfy some

of the given assumptions.
Assume that the function G1(t, x, y) satisfies the following conditions:
(P1) G1(t, x, y) is nonnegative and continuous on R×R

2
+ and continuously

differentiable with respect to (x, y)T ∈ R
2
+, and ω-periodic in t.

(P2) G1(t, x, y) > 0 and G1(t, 0, y) = 0 for t ∈R, x > 0, y ≥ 0; for each (t, y)T ∈R×R+,
G1(t, x, y) is increasing with respect to x on R+; for each (t, x)T ∈R×R+, G1(t, x, y)
is nonincreasing with respect to y on R+.

(P3) There exists a continuous ω-periodic function �1(t) > 0 such that
G1(t, x, 0) ≤ �1(t)x for t ∈R, x ∈ R+.

(P4) For each x ∈ (0, +∞), there exists a continuous function G̃1(t, x) > 0, which is
ω-periodic in t, such that yG1(t, x, y) ≤ G̃1(t, x) for t ∈ R, y ≥ 0.

(P5) The partial derivatives ∂G1(t,x,y)
∂x ≥ 0 and ∂G1(t,x,y)

∂y < 0 for t ∈R, x > 0, y > 0; for each
(t, x)T ∈R×R+, limy→∞ G1(t, x, y) = 0.

It is not difficult to find that G1(t, x, y) can cover some common forms such as the
Beddington–DeAngelis functional response

x
α1(t) + α2(t)x + α3(t)y

,

the Crowley–Martin functional response

x
α1(t) + α2(t)x + α3(t)y + α4(t)xy

,

and other forms of functional response, such as

x
α1(t) + α2(t)y + α3(t)y2 ,

x2

α1(t) + α3(t)y + α5(t)x2 .

Assume that the function G2(t, x) satisfies the following conditions:
(Q1) G2(t, x) is nonnegative and continuous on R×R+ and continuously differentiable

with respect to x ∈ R+, and ω-periodic in t.
(Q2) G2(t, x) > 0 and G2(t, 0) = 0 for t ∈R, x > 0; for each t ∈ R, G2(t, x) is increasing

with respect to x on R+.
(Q3) There exists a continuous ω-periodic function �2(t) > 0 such that

G2(t, x) ≤ �2(t)x for t ∈ R, x ∈R+.
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(Q4) The partial derivative ∂G2(t,x)
∂x > 0 for t ∈R, x > 0.

Clearly, the function G2(t, x) can cover the classical Holling type II functional response

x
α1(t) + α2(t)x

.

Note that, for x ≥ 0, n ∈ N+, and n ≥ 2,

G2(t, x) :=
xn

α1(t) + α3(t)xn =
xn–1

α1(t) + α3(t)xn x ≤ (ζ (t))n–1

α1(t) + α3(t)(ζ (t))n x,

where

ζ (t) =
(

α1(t)
α3(t)

(n – 1)
) 1

n
.

In addition, it is not difficult to verify that the function G2(t, x) satisfies conditions
(Q1)–(Q4). Note that, when n = 2, the function G2(t, x) becomes the classical Holling type
III functional response

x2

α1(t) + α3(t)x2 .

Assume that the function G3(m, z) (z = x
y ) satisfies the following conditions:

(H1) G3(m, z) is nonnegative and continuous on R
2
+ and continuously differentiable

with respect to z ∈R+.
(H2) G3(m, z) > 0 and G3(m, 0) = 0 for m > 0, z > 0; for each z > 0, G3(m, z) is

nonincreasing with respect to m on (0, +∞); for each m > 0, G3(m, z) is increasing
with respect to z on (0, +∞).

(H3) For each m > 0, ∂G3(m,z)
∂z > 0 for z > 0, and limz→∞ G3(m, z) = �3(m) > 0.

(H4) For each m > 0, G3(m,z)
z is nonincreasing with respect to z on (0, +∞), and

limz→0+
G3(m,z)

z = �4(m) > 0.
It is not difficult to find that G3(m(t), x

y ) can cover the ratio-dependent type with
Michaelis–Menten functional response

x
y

m(t) + x
y

=
x

m(t)y + x
.

The main purpose of this paper is to study the existence of positive periodic solutions
for model (1.2) by using the continuation theorem of coincidence degree theory [24]. The
most crucial aspect of using the coincidence theorem is to estimate the upper and lower
bounds of the a priori solutions of the corresponding operator equation (see Lϕ = μNϕ,
μ ∈ (0, 1) in Sect. 2). The existence of positive periodic solutions for the special cases of
model (1.2) has attracted the attention of many scholars and has yielded plentiful results
(see, e.g., [2–4, 7–11, 14]). For model (1.2), our main results (see Theorems 3.1 and 3.2,
Corollary 3.1) extend and improve Theorem 4.2 in Li and She [10], Theorem 3.1 in Li
and She [3], Theorem 8 in Tripathi [14]. In addition, we obtain different results com-
pared to some of the known ones (see Theorem 3.5 in Fan et al. [2], Theorems 3.1 and
3.2 in Fan and Kuang [7], Theorems 3.1 and 3.2 in Bohner et al. [4], Theorems 1 and
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2 in Fazly and Hesaaraki [9], Theorem 3.1 in Jiang [11], Theorem 9 in Tripathi [14]). It
is worth mentioning that the continuation theorem of coincidence degree theory [24] is
very effective to study the existence of periodic solutions of predator–prey models (see,
e.g., [2, 4–7, 9, 11–14, 25]) and other biological models (see, e.g., [26–28]).

The rest of this paper is organized as follows. In Sect. 2, we first review the continua-
tion theorem of coincidence degree theory [24] and then study the existence of positive
periodic solutions of model (1.2). In Sect. 3, we give some applications of our results and
compare them with some known results. The last section contains the conclusions and
some numerical simulations of this paper.

2 Existence of positive periodic solutions of the model
Let X, Z be normed vector spaces, L : Dom L ⊂ X → Z be a linear mapping, N : X → Z be
a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dim Ker L = codim Im L < +∞ and Im L is closed in Z. If L is a Fredholm mapping of index
zero and there exist continuous projections P : X → X and Q : Z → Z such that Im P =
Ker L, Im L = Ker Q = Im(I – Q), it follows that L|Dom L∩Ker P : (I – P)X → Im L is invertible.
We denote the inverse of that map by Kp. If 
 is an open bounded subset of X, the mapping
N will be called L-compact on 
 if QN(
) is bounded and Kp(I –Q)N : 
 → X is compact.
Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q → Ker L.

Lemma 2.1 ([24]) Assume that 
 ⊂ X is an open bounded set. Let L be a Fredholm map-
ping of index zero, and let N be L-compact on 
. Assume that

(i) Lu 
= μNu, ∀u ∈ ∂
 ∩ Dom L, μ ∈ (0, 1);
(ii) QNu 
= 0, ∀u ∈ ∂
 ∩ Ker L;

(iii) deg{JQN ,
 ∩ Ker L, 0} 
= 0.
Then the operator equation Lu = Nu has at least one solution in Dom L ∩ 
.

For any continuous ω-periodic function �(t) defined on R, we denote

�̂ =
1
ω

∫ ω

0
�(t) dt, �u = max

t∈[0,ω]
�(t), �l = min

t∈[0,ω]
�(t).

For convenience, for any v, ṽ ∈R, we define

�1(v) =
1
ω

∫ ω

0
f (t)G̃1

(
t, exp{v})dt, �2(v, ṽ) =

1
ω

∫ ω

0

c(t)G2(t, exp{̃v})
exp{v} dt,

�3(v) = �4
(
ml)f̂ exp{v}, ϒ(v) =

( c
a )u( d

f )l

F(ku, exp{v}) ,

M1 = min

{

ln

(
â
b̂

)

+ 2̂aω, ln
[(

a
b

)u]}

,

M2 = ln

(
�3(M1)

d̂

)

+ 2�3
(
ml)f̂ ω.

The main results of this paper are as follows.

Theorem 2.1 Assume that ĉ > 0 and one of the following conditions holds:
(A1) G(t, x, y) ≡ G1(t, x, y), �1 := 1

ω

∫ ω

0 f (t)G1(t, ( a
b )l, 0) dt > d̂;
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(A2) G(t, x, y) ≡ G2(t, x), �2 := 1
ω

∫ ω

0 f (t)G2(t, ( a
b )l) > d̂;

(A3) G(t, x, y) ≡ G3(m(t), x
y ), �3 := �3(mu )̂f > d̂, G3(ml,ϒ(M2)) < ( d

f )l .
Then model (1.2) has at least one positive ω-periodic solution.

Proof Assume that G(t, x, y) ≡ G1(t, x, y) or G(t, x, y) ≡ G2(t, x), or G(t, x, y) ≡ G3(m(t), x
y ).

Let x(t) = exp{ϕ1(t)} and y(t) = exp{ϕ2(t)}, then model (1.2) can be transformed into

⎧
⎪⎪⎨

⎪⎪⎩

ϕ̇1(t) = a(t)F(k(t), exp{ϕ2(t)}) – b(t) exp{ϕ1(t)}
– c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)}) exp{ϕ2(t)}

exp{ϕ1(t)} ,

ϕ̇2(t) = –d(t) – r(t) exp{ϕ2(t)} + f (t)G(t, exp{ϕ1(t)}, exp{ϕ2(t)}).
(2.1)

Clearly, it is only necessary to prove that model (2.1) has an ω-periodic solution.
Let

X = Z =
{
ϕ =

(
ϕ1(t),ϕ2(t)

)T ∈ C
(
R,R2) | ϕ(t) = ϕ(t + ω)

}

with the norm ‖ϕ‖ = maxt∈[0,ω] |ϕ1(t)|+ maxt∈[0,ω] |ϕ2(t)|. Clearly, both X and Z are Banach
spaces. Define

Pϕ =
1
ω

∫ ω

0
ϕ(t) dt(ϕ ∈ X), Qϕ =

1
ω

∫ ω

0
ϕ(t) dt(ϕ ∈ Z),

Lϕ = ϕ̇(t), Nϕ =

[
N1(t)
N2(t)

]

,

where

N1(t) = a(t)F
(
k(t), exp

{
ϕ2(t)

})
– b(t) exp

{
ϕ1(t)

}

–
c(t)G(t, exp{ϕ1(t)}, exp{ϕ2(t)}) exp{ϕ2(t)}

exp{ϕ1(t)} ,

N2(t) = –d(t) – r(t) exp
{
ϕ2(t)

}
+ f (t)G

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})
.

Then, it has Ker L = {ϕ ∈ X | ϕ ∈ R
2} and Im L = {ϕ ∈ Z | ∫ ω

0 ϕ(t) dt = 0}. Clearly, Im L is
closed in Z, and dim Ker L = codim Im L = 2. Thus, L is a Fredholm mapping of index zero.
Moreover, the generalized inverse (to L) KP : Im L → Dom L ∩ Ker P exists and is given by
KPϕ =

∫ t
0 ϕ(s) ds – 1

ω

∫ ω

0
∫ t

0 ϕ(s) ds dt. Then, similar to the proof of Theorem 2.1 in [28], we
can obtain that N is L-compact on 
 for any open bounded set 
 ⊂ X.

Corresponding to the operator equation Lϕ = μNϕ, μ ∈ (0, 1), we have

⎧
⎪⎪⎨

⎪⎪⎩

ϕ̇1(t) = μ[a(t)F(k(t), exp{ϕ2(t)}) – b(t) exp{ϕ1(t)}
– c(t)G(t,exp{ϕ1(t)},exp{ϕ2(t)}) exp{ϕ2(t)}

exp{ϕ1(t)} ],

ϕ̇2(t) = μ[–d(t) – r(t) exp{ϕ2(t)} + f (t)G(t, exp{ϕ1(t)}, exp{ϕ2(t)})].
(2.2)

Assume that (ϕ1(t),ϕ2(t))T ∈ X is an arbitrary solution of model (2.2) for a certain μ ∈
(0, 1). Since (ϕ1(t),ϕ2(t))T ∈ X, there exist ξ1, ξ2, η1, η2 ∈ [0,ω] such that

ϕ1(ξ1) = min
t∈[0,ω]

ϕ1(t), ϕ1(η1) = max
t∈[0,ω]

ϕ1(t),
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ϕ2(ξ2) = min
t∈[0,ω]

ϕ2(t), ϕ2(η2) = max
t∈[0,ω]

ϕ2(t).

Clearly, ϕ̇1(ξ1) = ϕ̇1(η1) = ϕ̇2(ξ2) = ϕ̇2(η2) = 0. Integrating on both sides of (2.2) over the
interval [0,ω], we have

∫ ω

0

[

a(t)F
(
k(t), exp

{
ϕ2(t)

})
– b(t) exp

{
ϕ1(t)

}

–
c(t)G(t, exp{ϕ1(t)}, exp{ϕ2(t)}) exp{ϕ2(t)}

exp{ϕ1(t)}
]

dt = 0
(2.3)

and
∫ ω

0

[
d(t) + r(t) exp

{
ϕ2(t)

}
– f (t)G

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})]
dt = 0. (2.4)

Note that
∫ ω

0
ϕ̇2(t) exp

{
ϕ2(t)

}
dt = exp

{
ϕ2(ω)

}
– exp

{
ϕ2(0)

}
= 0,

then we have
∫ ω

0

[
d(t) exp

{
ϕ2(t)

}
+ r(t) exp

{
2ϕ2(t)

}]
dt

=
∫ ω

0
f (t) exp

{
ϕ2(t)

}
G

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})
dt.

(2.5)

From (2.2), (2.3), and condition (H), we have

∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt

≤
∫ ω

0
a(t)F

(
k(t), exp

{
ϕ2(t)

})
dt

+
∫ ω

0

[

b(t) exp
{
ϕ1(t)

}
+

c(t)G(t, exp{ϕ1(t)}, exp{ϕ2(t)}) exp{ϕ2(t)}
exp{ϕ1(t)}

]

dt

= 2
∫ ω

0
a(t)F

(
k(t), exp

{
ϕ2(t)

})
dt ≤ 2̂aω.

(2.6)

From (2.3), we have

âω – b̂ exp
{
ϕ1(ξ1)

}
ω ≥

∫ ω

0

[
a(t)F

(
k(t), exp

{
ϕ2(t)

})
– b(t) exp

{
ϕ1(ξ1)

}]
dt ≥ 0,

which implies that

ϕ1(ξ1) ≤ ln

(
â
b̂

)

:= m1.

Then, from (2.6), we have

ϕ1(t) ≤ ϕ1(ξ1) +
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≤ m1 + 2̂aω := M∗

1.
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Also, from ϕ̇1(η1) = 0, we can easily obtain that

ϕ1(t) ≤ ϕ1(η1) ≤ ln

(
a(η1)F(k(η1), exp{ϕ2(η1)})

b(η1)

)

≤ ln

[(
a
b

)u]

:= M̃∗
1.

Thus, we have

ϕ1(t) ≤ min
{

M∗
1, M̃∗

1
}

= M1. (2.7)

From (2.2) and (2.4), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt

≤
∫ ω

0

[
d(t) + r(t) exp

{
ϕ2(t)

}]
dt +

∫ ω

0
f (t)G

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})
dt

= 2
∫ ω

0
f (t)G

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})
dt.

(2.8)

We consider the following three cases.
Case (i). Condition (A1) holds.
From (2.7), (2.8), and condition (P2), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ 2

∫ ω

0
f (t)G1

(
t, exp{M1}, 0})dt = 2�̂1ω, (2.9)

where �1(t) = f (t)G1(t, exp{M1}, 0). From (2.5), (2.7), and conditions (P2) and (P4), we
have

d̂ exp
{
ϕ2(ξ2)

} ≤ 1
ω

∫ ω

0
f (t)G1

(
t, exp{M1}, exp

{
ϕ2(t)

})
exp

{
ϕ2(t)

}
dt

≤ 1
ω

∫ ω

0
f (t)G̃1

(
t, exp{M1}

)
dt

= �1(M1) > 0,

which implies that

ϕ2(ξ2) ≤ ln

(
�1(M1)

d̂

)

.

Then, from (2.9), we have

ϕ2(t) ≤ ϕ2(ξ2) +
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ ln

(
�1(M1)

d̂

)

+ 2�̂1ω := M(1)
2 .
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From (2.4) and conditions (P2) and (P3), we have

d̂ω ≤
∫ ω

0
f (t)G1

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})
dt

≤
∫ ω

0
f (t)G1

(
t, exp

{
ϕ1(η1)

}
, 0

)
dt

≤
∫ ω

0
f (t)�1(t) exp

{
ϕ1(η1)

}
dt,

which implies that

ϕ1(η1) ≥ ln

(
d̂

(̂f �1)

)

:= l(1)
1 .

Then, from (2.6), we have

ϕ1(t) ≥ ϕ1(η1) –
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≥ l(1)

1 – 2̂aω := L(1)
1 .

If �1 > d̂, then there exists a sufficiently small constant δ1 > 0 such that

�1(δ1) :=
(

a
b

)l

F
(
ku, δ1

)
–

(
c�1

b

)u

δ1 > 0,

∫ ω

0
f (t)G1

(
t,�(δ1), δ1

)
dt > d̂ω + r̂δ1ω.

(2.10)

Claim (i). If �1 > d̂, then exp{ϕ2(η2)} ≥ δ1.
If the claim is not true, then

max
t∈[0,ω]

exp
{
ϕ2(t)

}
= exp

{
ϕ2(η2)

}
< δ1.

From ϕ̇1(ξ1) = 0, exp{ϕ2(ξ1)} ≤ exp{ϕ2(η2)} < δ1, conditions (P2) and (P3), we have

exp
{
ϕ1(ξ1)

}
=

a(ξ1)F(k(ξ1), exp{ϕ2(ξ1)})
b(ξ1)

–
c(ξ1)G1(ξ1, exp{ϕ1(ξ1)}, exp{ϕ2(ξ1)}) exp{ϕ2(ξ1)}

b(ξ1) exp{ϕ1(ξ1)}

≥
(

a
b

)l

F
(
ku, δ1

)
–

c(ξ1)G1(ξ1, exp{ϕ1(ξ1)}, 0)
b(ξ1) exp{ϕ1(ξ1)} δ1

≥
(

a
b

)l

F
(
ku, δ1

)
–

c(ξ1)�1(ξ1)
b(ξ1)

δ1

≥
(

a
b

)l

F
(
ku, δ1

)
–

(
c�1

b

)u

δ1

= �1(δ1) > 0.
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Further, from (2.4) and condition (P2), we have

d̂ω + r̂δ1ω ≥
∫ ω

0

[
d(t) + r(t) exp

{
ϕ2(t)

}]
dt

=
∫ ω

0
f (t)G1

(
t, exp

{
ϕ1(t)

}
, exp

{
ϕ2(t)

})
dt

≥
∫ ω

0
f (t)G1

(
t, exp

{
ϕ1(ξ1)

}
, exp

{
ϕ2(η2)

})
dt

≥
∫ ω

0
f (t)G1

(
t,�1(δ1), δ1

)
dt,

which is a contradiction to (2.10). This proves the claim.
From Claim (i) and (2.9), we can obtain

ϕ2(t) ≥ ϕ2(η2) –
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≥ ln(δ1) – 2�̂1ω := L(1)

2 .

Now, let us consider the following algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

[ 1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1}
– 1

ω

∫ ω

0 μ
c(t)G1(t,exp{ϕ1},exp{ϕ2}) exp{ϕ2}

exp{ϕ1} dt] = 0,
1
ω

∫ ω

0 f (t)G1(t, exp{ϕ1}, exp{ϕ2}) dt – d̂ – μ̂r exp{ϕ2} = 0

(2.11)

for (ϕ1,ϕ2)T ∈R
2, where μ ∈ [0, 1] is a parameter. By using the similar arguments as above,

we can show that any solution (ϕ∗
11,ϕ∗

21)T ∈ R
2 of (2.11) with μ ∈ [0, 1] satisfies

l(1)
1 = ln

(
d̂

(̂f �1)

)

≤ ϕ∗
11 ≤ ln

(
â
b̂

)

= m1,

l(1)
2 := ln

(
δ∗

1
) ≤ ϕ∗

21 ≤ ln

(
�1(m1)

d̂

)

:= m(1)
2 ,

(2.12)

where δ∗
1 > 0 satisfies

�∗
1
(
δ∗

1
)

:=
â
b̂

F
(
ku, δ∗

1
)

–
1
b̂

(
1
ω

∫ ω

0
c(t)�1(t) dt

)

δ∗
1 > 0,

1
ω

∫ ω

0
f (t)G1

(
t,�∗

1
(
δ∗

1
)
, δ∗

1
)

dt > d̂ + r̂δ∗
1 .

Note that M1, M(1)
2 , L(1)

1 , L(1)
2 , m1, m(1)

2 , l(1)
1 , and l(1)

2 are independent of μ. Define


(1) =
{
ϕ ∈ X | ‖ϕ‖ < U (1)},

where

U (1) = 1 + max
{∣
∣l(1)

1
∣
∣,

∣
∣L(1)

1
∣
∣, |m1|, |M1|

}
+ max

{∣
∣l(1)

2
∣
∣,

∣
∣L(1)

2
∣
∣,

∣
∣m(1)

2
∣
∣,

∣
∣M(1)

2
∣
∣
}

.
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Clearly, 
(1) satisfies condition (i) in Lemma 2.1. When ϕ = (ϕ1,ϕ2)T ∈ ∂
(1) ∩ Ker L =
∂
(1) ∩R

2, then ϕ is a constant vector in R
2 with |ϕ1| + |ϕ2| = U (1). Then

QN

[
ϕ1

ϕ2

]

=

[
1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1} – W1(ϕ1,ϕ2)
1
ω

∫ ω

0 f (t)G1(t, exp{ϕ1}, exp{ϕ2}) dt – d̂ – r̂ exp{ϕ2}

]


=
[

0
0

]

,

where

W1(ϕ1,ϕ2) =
1
ω

∫ ω

0

c(t)G1(t, exp{ϕ1}, exp{ϕ2}) exp{ϕ2}
exp{ϕ1} dt.

Here, we have proved that condition (ii) in Lemma 2.1 is satisfied. To compute the Brouwer
degree, let us consider the homotopy

�(1)
μ

(
(ϕ1,ϕ2)T)

= μQN
(
(ϕ1,ϕ2)T)

+ (1 – μ)� (1)((ϕ1,ϕ2)T)
, μ ∈ [0, 1],

where

� (1)((ϕ1,ϕ2)T)
=

[
1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1}
1
ω

∫ ω

0 f (t)G1(t, exp{ϕ1}, exp{ϕ2}) dt – d̂

]

.

From (2.12), it follows that 0 /∈ �(1)
μ (∂
(1) ∩ R

2) for μ ∈ [0, 1]. In addition, from condi-
tions (H), (P2), and (P5), one can easily show that � (1)((ϕ1,ϕ2)T ) = 0 has a unique solution
(ϕ̃∗

11, ϕ̃∗
21)T in R

2 if �1 > d̂. Let e11 = exp{ϕ̃∗
11} > 0, e21 = exp{ϕ̃∗

21} > 0. From conditions (H)
and (P5), we have

ς
(1)
1 :=

1
ω

∫ ω

0
a(t)

∂F(k(t), e21)
∂y

e21 dt ≤ 0,

ς
(1)
2 :=

1
ω

∫ ω

0
f (t)

∂G1(t, e11, e21)
∂x

e11 dt ≥ 0,

ς
(1)
3 :=

1
ω

∫ ω

0
f (t)

∂G1(t, e11, e21)
∂y

e21 dt < 0.

A direct calculation produces

deg
{
� (1), ∂
(1) ∩ Ker L, 0

}
= sign

∣
∣
∣
∣
∣

–̂be11 ς
(1)
1

ς
(1)
2 ς

(1)
3

∣
∣
∣
∣
∣

= sign
{

–̂be11ς
(1)
3 – ς

(1)
1 ς

(1)
2

}

= 1 
= 0.

Since Im Q = Ker L, then we have J = I . Furthermore, by the invariance property of homo-
topy, we have

deg
{

JQN , ∂
(1) ∩ Ker L, 0
}

= deg
{

QN , ∂
(1) ∩ Ker L, 0
}

= deg
{
� (1), ∂
(1) ∩ Ker L, 0

} 
= 0.
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By Lemma 2.1, if condition (A1) holds, then model (2.1) admits at least one ω-periodic
solution.

Case (ii). Condition (A2) holds.
From (2.7), (2.8), and condition (Q2), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ 2

∫ ω

0
f (t)G2

(
t, exp

{
ϕ1(t)

})
dt

≤ 2
∫ ω

0
f (t)G2

(
t, exp{M1}

)
dt

= 2�̂2ω,

(2.13)

where �2(t) = f (t)G2(t, exp{M1}). From (2.4) and condition (Q3), we have

d̂ω ≤
∫ ω

0
f (t)G2

(
t, exp

{
ϕ1(η1)

})
dt ≤ exp

{
ϕ1(η1)

}
∫ ω

0
f (t)�2(t) dt,

which implies that

ϕ1(η1) ≥ ln

(
d̂

(̂f �2)

)

:= l(2)
1 .

Then, from (2.6), we have

ϕ1(t) ≥ ϕ1(η1) –
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≥ l(2)

1 – 2̂aω := L(2)
1 .

From (2.3) and condition (Q2), we have

�2
(
M1, L(2)

1
)

exp
{
ϕ2(ξ2)

}
ω =

∫ ω

0

c(t)G2(t, exp{L(2)
1 }) exp{ϕ2(ξ2)}

exp{M1} dt

≤
∫ ω

0

c(t)G2(t, exp{ϕ1(t)}) exp{ϕ2(t)}
exp{ϕ1(t)} dt

≤
∫ ω

0
a(t)F

(
k(t), exp

{
ϕ2(t)

})
dt

≤ âω,

which implies that

exp
{
ϕ2(ξ2)

} ≤ â
�2(M1, L(2)

1 )
.

Then, from (2.13), we have

ϕ2(t) ≤ ϕ2(ξ2) +
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ ln

(
â

�2(M1, L(2)
1 )

)

+ 2�̂2ω := M(2)
2 .

If �2 > d̂, then there exists a sufficiently small constant δ2 > 0 such that

�2(δ2) :=
(

a
b

)l

F
(
ku, δ2

)
–

(
c�2

b

)u

δ2 > 0,
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∫ ω

0
f (t)G2

(
t,�2(δ2)

)
dt > d̂ω + r̂δ2ω.

Claim (ii). If �2 > d̂, then exp{ϕ2(η2)} ≥ δ2.
We omit the proof of Claim (ii) here since it is very similar to that of Claim (i).
From Claim (ii) and (2.13), we can obtain

ϕ2(t) ≥ ϕ2(η2) –
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≥ ln(δ2) – 2�̂2ω := L(2)

2 .

Now, let us consider the following algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

[ 1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1}
– 1

ω

∫ ω

0
c(t)G2(t,exp{ϕ1}) exp{ϕ2}

exp{ϕ1} dt] = 0,
1
ω

∫ ω

0 f (t)G2(t, exp{ϕ1}) dt – d̂ – μ̂r exp{ϕ2} = 0

(2.14)

for (ϕ1,ϕ2)T ∈R
2, where μ ∈ [0, 1] is a parameter. By using similar arguments as above, we

can show that any solution (ϕ∗
12,ϕ∗

22)T ∈R
2 of (2.14) with μ ∈ [0, 1] satisfies

l(2)
1 = ln

(
d̂

(̂f �2)

)

≤ ϕ∗
12 ≤ ln

(
â
b̂

)

= m1,

l(2)
2 := ln

(
δ∗

2
) ≤ ϕ∗

22 ≤ ln

(
â

�2(m1, l(2)
1 )

)

:= m(2)
2 ,

(2.15)

where δ∗
2 > 0 satisfies

�∗
2
(
δ∗

2
)

:=
â
b̂

F
(
ku, δ∗

2
)

–
1
b̂

(
1
ω

∫ ω

0
c(t)�2(t) dt

)

δ∗
2 > 0,

1
ω

∫ ω

0
f (t)G2

(
t,�∗

2
(
δ∗

2
))

dt > d̂ + r̂δ∗
2 .

Note that M1, M(2)
2 , L(2)

1 , L(2)
2 , m1, m(2)

2 , l(2)
1 , and l(2)

2 are independent of μ. Define


(2) =
{
ϕ ∈ X | ‖ϕ‖ < U (2)},

where

U (2) = 1 + max
{∣
∣l(2)

1
∣
∣,

∣
∣L(2)

1
∣
∣, |m1|, |M1|

}
+ max

{∣
∣l(2)

2
∣
∣,

∣
∣L(2)

2
∣
∣,

∣
∣m(2)

2
∣
∣,

∣
∣M(2)

2
∣
∣
}

.

Clearly, 
(2) satisfies conditions (i) and (ii) in Lemma 2.1. Let us consider the homotopy

�(2)
μ

(
(ϕ1,ϕ2)T)

= μQN
(
(ϕ1,ϕ2)T)

+ (1 – μ)� (2)((ϕ1,ϕ2)T)
, μ ∈ [0, 1],

where

� (2)((ϕ1,ϕ2)T)
=

[
1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1} – W2(ϕ1,ϕ2)
1
ω

∫ ω

0 f (t)G2(t, exp{ϕ1}) dt – d̂,

]

,
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where

W2(ϕ1,ϕ2) =
1
ω

∫ ω

0

c(t)G2(t, exp{ϕ1}) exp{ϕ2}
exp{ϕ1} dt.

From (2.15), it follows that 0 /∈ �(2)
μ (∂
(2) ∩R

2) for μ ∈ [0, 1]. In addition, from conditions
(H) and (Q2), one can easily show that � (2)((ϕ1,ϕ2)T ) = 0 has a unique solution (ϕ̃∗

12, ϕ̃∗
22)T

in R
2 if �2 > d̂. Let e12 = exp{ϕ̃∗

12} > 0, e22 = exp{ϕ̃∗
22} > 0. From conditions (H) and (Q4),

we have

ς
(2)
1 :=

1
ω

∫ ω

0
a(t)

∂F(k(t), e22)
∂y

e22 dt ≤ 0,

ς
(2)
2 :=

1
ω

∫ ω

0
f (t)

∂G2(t, e12)
∂x

e12 dt > 0.

Note that J = I , by the invariance property of homotopy, we have

deg
{

JQN , ∂
(2) ∩ Ker L, 0
}

= deg
{
� (2), ∂
(2) ∩ Ker L, 0

}

= sign

{

–
(

ς
(2)
1 –

1
ω

∫ ω

0

c(t)G2(t, e12)e22

e12
dt

)

ς
(2)
2

}

= 1 
= 0.

By Lemma 2.1, if condition (A2) holds, then model (2.1) admits at least one ω-periodic
solution.

Case (iii). Condition (A3) holds.
From (2.7), (2.8), and conditions (H2) and (H3), we have

∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ 2

∫ ω

0
f (t)G3

(

ml,
exp{M1}

exp{ϕ2(t)}
)

dt ≤ 2�3
(
ml)f̂ ω := 2�3ω. (2.16)

From (2.5) and condition (H4), we have

d̂ exp
{
ϕ2(ξ2)

} ≤ 1
ω

∫ ω

0
f (t)G3

(

m(t),
exp{ϕ1(t)}
exp{ϕ2(t)}

)

exp
{
ϕ2(t)

}
dt

≤ 1
ω

∫ ω

0
f (t)G3

(

ml,
exp{M1}

exp{ϕ2(t)}
)

exp{ϕ2(t)}
exp{M1} exp{M1}dt

≤ 1
ω

∫ ω

0
f (t)�4

(
ml) exp{M1}dt

= �3(M1) > 0,

which implies that

exp
{
ϕ2(ξ2)

} ≤ �3(M1)
d̂

.

Then, from (2.16), we have

ϕ2(t) ≤ ϕ2(ξ2) +
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≤ ln

(
�3(M1)

d̂

)

+ 2�3ω = M2 := M(3)
2 .
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From ϕ̇2(η2) = 0, we can obtain

f (η2)G3

(

m(η2),
exp{ϕ1(η2)}
exp{ϕ2(η2)}

)

= d(η2) + r(η2) exp
{
ϕ2(η2)

} ≥ d(η2),

which implies that

G3

(

ml,
exp{ϕ1(η2)}
exp{ϕ2(η2)}

)

≥
(

d
f

)l

.

Note that

G3
(
ml,ϒ

(
M(3)

2
))

<
(

d
f

)l

,

then from condition (H2), we have

exp{ϕ1(η2)}
exp{ϕ2(η2)} ≥ ϒ(M2) = ϒ

(
M(3)

2
)
.

Note that

exp{ϕ1(η1)}
exp{ϕ2(η1)} ≥ exp{ϕ1(η2)}

exp{ϕ2(η2)} ≥ ϒ
(
M(3)

2
)

=
( c

a )u( d
f )l

F(ku, exp{M(3)
2 }) ,

then from ϕ̇1(η1) = 0 and conditions (H), (H2), and (H4), we can obtain

exp
{
ϕ1(η1)

}

=
a(η1)
b(η1)

F
(
k(η1), exp

{
ϕ2(η1)

})

–
c(η1)
b(η1)

G3

(

m(η1),
exp{ϕ1(η1)}
exp{ϕ2(η1)}

)
exp{ϕ2(η1)}
exp{ϕ1(η1)}

≥ a(η1)
b(η1)

F
(
k(η1), exp

{
ϕ2(η1)

})

–
c(η1)
b(η1)

G3

(

m(η1),
exp{ϕ1(η2)}
exp{ϕ2(η2)}

)
exp{ϕ2(η2)}
exp{ϕ1(η2)}

≥ a(η1)
b(η1)

F
(
ku, exp

{
M(3)

2
})

–
c(η1)
b(η1)

G3(ml,ϒ(M(3)
2 ))

ϒ(M(3)
2 )

≥ a(η1)
b(η1)

F
(
ku, exp

{
M(3)

2
})

[

1 –
(

c
a

)u G3(ml,ϒ(M(3)
2 ))

F(ku, exp{M(3)
2 })ϒ(M(3)

2 )

]

=
a(η1)

b(η1)( d
f )l

F
(
ku, exp

{
M(3)

2
})

[(
d
f

)l

– G3
(
ml,ϒ

(
M(3)

2
))

]

> 0,

which implies that

ϕ1(η1) ≥ ln

{ ( a
b )l

( d
f )l

F
(
ku, exp

{
M(3)

2
})

[(
d
f

)l

– G3
(
ml,ϒ

(
M(3)

2
))

]}

:= ˜l(3)
1 . (2.17)
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Then, from (2.6) and (2.17), we have

ϕ1(t) ≥ ϕ1(η1) –
∫ ω

0

∣
∣ϕ̇1(t)

∣
∣dt ≥ ˜l(3)

1 – 2̂aω := L(3)
1 .

If �3(mu )̂f > d̂, then there exists sufficiently small δ3 > 0 such that

G3

(

mu,
exp{L(3)

1 }
δ3

)

f̂ > d̂ + r̂δ3. (2.18)

Claim (iii). If �3(mu )̂f > d̂, then exp{ϕ2(η2)} ≥ δ3.
If the claim is not true, then exp{ϕ2(η2)} < δ3. From (2.4) and condition (H2), we have

d̂ω + r̂δ3ω ≥
∫ ω

0

[
d(t) + r(t) exp

{
ϕ2(t)

}]
dt

=
∫ ω

0
f (t)G3

(

m(t),
exp{ϕ1(t)}
exp{ϕ2(t)}

)

dt

≥
∫ ω

0
f (t)G3

(

mu,
exp{L(3)

1 }
δ3

)

dt

= G3

(

mu,
exp{L(3)

1 }
δ3

)

f̂ ω,

which is a contradiction to (2.18). This proves the claim.
From Claim (iii) and (2.16), we can obtain

ϕ2(t) ≥ ϕ2(η2) –
∫ ω

0

∣
∣ϕ̇2(t)

∣
∣dt ≥ ln(δ3) – 2�3ω := L(3)

2 .

Let (ϕ1,ϕ2)T ∈R
2 satisfy the following algebraic equations:

⎧
⎪⎪⎨

⎪⎪⎩

[ 1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1}
– 1

ω

∫ ω

0 μc(t)G3(m(t), exp{ϕ1}
exp{ϕ2} ) exp{ϕ2}

exp{ϕ1} dt] = 0,
1
ω

∫ ω

0 f (t)G3(m(t), exp{ϕ1}
exp{ϕ2} ) dt – d̂ – μ̂r exp{ϕ2} = 0,

(2.19)

where μ ∈ [0, 1] is a parameter. By using similar arguments as above, we can show that any
solution (ϕ∗

13,ϕ∗
23)T ∈R

2 of (2.19) with μ ∈ [0, 1] satisfies

l(3)
1 := ln

{
â

b̂( d
f )l

F
(
ku, exp

{
m(3)

2
})

[(
d
f

)l

–
ĉ

â( c
a )u G3

(
ml,ϒ

(
m(3)

2
))

]}

≤ ϕ∗
13 ≤ ln

(
â
b̂

)

= m1,

l(3)
2 := ln

(
δ∗

3
) ≤ ϕ∗

23 ≤ ln

(
�3(m1)

d̂

)

:= m(3)
2 ,

(2.20)

where δ∗
3 > 0 satisfies

G3

(

mu,
exp{l(3)

1 }
δ∗

3

)

f̂ > d̂ + r̂δ∗
3 .
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Note that M1, M(3)
2 , L(3)

1 , L(3)
2 , m1, m(3)

2 , l(3)
1 , and l(3)

2 are independent of μ. Define


(3) =
{
ϕ ∈ X | ‖ϕ‖ < U (3)},

where

U (3) = 1 + max
{∣
∣l(3)

1
∣
∣,

∣
∣L(3)

1
∣
∣, |m1|, |M1|

}
+ max

{∣
∣l(3)

2
∣
∣,

∣
∣L(3)

2
∣
∣,

∣
∣m(3)

2
∣
∣,

∣
∣M(3)

2
∣
∣
}

.

Clearly, 
(3) satisfies conditions (i) and (ii) in Lemma 2.1. To compute the Brouwer degree,
let us consider the homotopy

�(3)
μ

(
(ϕ1,ϕ2)T)

= μQN
(
(ϕ1,ϕ2)T)

+ (1 – μ)� (3)((ϕ1,ϕ2)T)
, μ ∈ [0, 1],

where

� (3)((ϕ1,ϕ2)T)
=

[
1
ω

∫ ω

0 a(t)F(k(t), exp{ϕ2}) dt – b̂ exp{ϕ1}
1
ω

∫ ω

0 f (t)G3(m(t), exp{ϕ1}
exp{ϕ2} ) dt – d̂

]

.

From (2.20), it follows that 0 /∈ �(3)
μ (∂
(3) ∩R

2) for μ ∈ [0, 1]. In addition, from conditions
(H), (H2), and (H3), one can easily show that � (3)((ϕ1,ϕ2)T ) = 0 has a unique solution
(ϕ̃∗

13, ϕ̃∗
23)T in R

2 if �3 > d̂. Let e13 = exp{ϕ̃∗
13} > 0, e23 = exp{ϕ̃∗

23} > 0. From conditions (H)
and (H3), we have

ς
(3)
1 :=

1
ω

∫ ω

0
a(t)

∂F(k(t), e23)e23

∂y
dt ≤ 0,

ς
(3)
2 :=

1
ω

∫ ω

0
f (t)

∂G3(m(t), e13
e23

)
∂z

e13

e23
dt > 0.

A direct calculation produces

deg
{
� (3), ∂
(3) ∩ Ker L, 0

}
= sign

∣
∣
∣
∣
∣

–̂be13 ς
(3)
1

ς
(3)
2 –ς

(3)
2

∣
∣
∣
∣
∣

= sign
{
ς

(3)
2

(
b̂e13 – ς

(3)
1

)}

= 1 
= 0.

Note that J = I , by the invariance property of homotopy, we have

deg
{

JQN , ∂
(3) ∩ Ker L, 0
}

= deg
{

QN , ∂
(3) ∩ Ker L, 0
}

= deg
{
� (3), ∂
(3) ∩ Ker L, 0

} 
= 0.

By Lemma 2.1, if condition (A3) holds, then model (2.1) admits at least one ω-periodic
solution. �
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3 Some remarks
Our results improve and extend some of the previous results. Some of the remarks below
will compare our results with some of the previous results.

If we choose

F(k, y) =
1

1 + ky
, G(t, x, y) ≡ G1(t, x, y) =

x
α1(t) + α2(t)x + α3(t)y + α4(t)xy

,

then model (1.2) becomes the following periodic predator–prey model with Crowley–
Martin functional response:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = x(t)[ a(t)
1+k(t)y(t) – b(t)x(t)

– c(t)y(t)
α1(t)+α2(t)x(t)+α3(t)y(t)+α4(t)x(t)y(t) ],

ẏ(t) = y(t)[–d(t) – r(t)y(t) + f (t)x(t)
α1(t)+α2(t)x(t)+α3(t)y(t)+α4(t)x(t)y(t) ].

(A)

For model (A), an application of our main results is as follows.

Theorem 3.1 Assume that the following condition

(
H (1)

A
)

ĉ > 0,
1
ω

∫ ω

0

f (t)( a
b )l

α1(t) + α2(t)( a
b )l dt > d̂

holds, then model (A) has at least one positive ω-periodic solution.

A direct corollary of Theorem 3.1 is given below.

Corollary 3.1 Assume that the following condition

(
H (2)

A
)

ĉ > 0,
(

a
b

)l(
f̂ – d̂αu

2
)

> αu
1 d̂

holds, then model (A) has at least one positive ω-periodic solution.

Remark 3.1 Recently, Tripathi et al. [14] proved that model (A) has at least one positive
ω-periodic solution under the following condition:

(
H (3)

A
)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k(t) ≡ 0, cl > 0, αl
2 > 0, αl

4 > 0, rl > 0,

dl <
f u( au

bl )

αl
1+αl

2( au
bl )

:= D1, al >
cu( D1–dl

rl )

αl
1+αl

3( D1–dl

rl )
:= D2,

f l( al–D2
bu )

αu
1 +αu

2 ( al–D2
bu )+αu

3 ( D1–dl

rl )+αu
4 ( al–D2

bu )( D1–dl

rl )
> du.

Clearly, our condition (H (2)
A ) of Corollary 3.1 is weaker than condition (H (3)

A ). Thus, our
Corollary 3.1 improves Theorem 8 in [14].
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Remark 3.2 Li and She [10] proved that model (A) has at least one positive ω-periodic
solution under the following condition:

(
H (4)

A
)

⎧
⎨

⎩

k(t) ≡ 0, cl > 0, αl
2 > 0, α4(t) ≡ 0, rl > 0,

αl
3al > cu, ( al

bu – cu

buαl
3

)(f l – duαu
2 ) > αu

1 du.

Clearly, our condition (H (2)
A ) of Corollary 3.1 is weaker than condition (H (4)

A ). Thus, our
Corollary 3.1 improves Theorem 4.2 in [10].

Remark 3.3 Fan and Kuang [7] proved that model (A) has at least one positive ω-periodic
solution under the following condition:

(
H (5)

A
)

⎧
⎨

⎩

k(t) ≡ 0, cl > 0, αl
2 > 0, α4(t) ≡ 0, r(t) ≡ 0,

αl
3al > cu, ( al

bu – cu

buαl
3

)(f l – duαu
2 ) > αu

1 du.

In [7], the authors only assumed that the function α1(t) is nonnegative. If αl
1 > 0, then our

condition (H (2)
A ) of Corollary 3.1 is weaker than condition (H (5)

A ). Thus, our Corollary 3.1
extends Theorem 3.1 in [7].

Remark 3.4 For model (A), or some of its special cases, some scholars have obtained some
plentiful results of the existence of positive periodic solutions [4, 7–9, 14]. Note that our
Theorem 3.1 and Corollary 3.1 do not limit the size of the period ω. Compared with some
results in [4, 7, 9, 14] (see Theorem 3.2 in Fan and Kuang [7], Theorem 3.1 in Bohner et
al. [4], Theorems 1 and 2 in Fazly and Hesaaraki [9], and Theorem 9 in Tripathi [14]), we
obtain different results.

If we choose

F(k, y) ≡ 1, G(t, x, y) ≡ G3

(

m(t),
x
y

)

=
x
y

m(t) + x
y

=
x

m(t)y + x
,

then model (1.2) becomes the following periodic ratio-dependent type predator–prey
model with Michaelis–Menten type functional response:

⎧
⎨

⎩

ẋ(t) = x(t)[a(t) – b(t)x(t) – c(t)y(t)
m(t)y(t)+x(t) ],

ẏ(t) = y(t)[–d(t) – r(t)y(t) + f (t)x(t)
m(t)y(t)+x(t) ].

(B)

For model (B), an application of our main results is as follows.

Theorem 3.2 Assume that the following condition

(
H (1)

B
)

ĉ > 0, f̂ > d̂,
(

c
a

)u[

1 –
(

d
f

)l]

< ml

holds, then model (B) has at least one positive ω-periodic solution.
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Remark 3.5 Li and She [3] proved that model (B) has at least one positive ω-periodic so-
lution under the condition

(
H (2)

B
)

cl > 0, rl > 0, f l > du, al >
cu

ml .

Clearly, our condition (H (1)
B ) of Theorem 3.2 is weaker than condition (H (2)

B ). Thus, our
Theorem 3.2 improves Theorem 3.1 in [3].

Remark 3.6 For model (B), if r(t) ≡ 0, then we would like to mention the following two
facts.

(i) If model (B) degenerates into the corresponding autonomous system (the case of
a(t) ≡ a > 0, b(t) ≡ b > 0, c(t) ≡ c > 0, m(t) ≡ m > 0, d(t) ≡ d > 0, and f (t) ≡ f > 0),
then our condition (H (2)

B ) can be reduced to the sufficient and necessary condition
(f > d, c

a (1 – d
f ) < m) for the existence of the positive equilibrium of model (B) (see

[29]).
(ii) Fan, Wang, and Zou [2] proved that model (B) has at least one positive ω-periodic

solution under the condition

(
H (3)

B
)

cl > 0, f̂ > d̂, â >
(̂

c
m

)

.

As can be seen from (i), we give a different result compared to Theorem 3.5 in [2]. Thus,
our Theorem 3.2 extends Theorem 3.5 in [2].

4 Conclusions and numerical simulations
In this paper, the existence of periodic solutions of a class of periodic predator–prey model
with fear effect and general functional responses is investigated by means of the contin-
uation theorem of coincidence degree theory [24]. The general functional responses can
cover the Holling types II and III functional response, the Beddington–DeAngelis func-
tional response, the Crowley–Martin functional response, the ratio-dependent type with
Michaelis–Menten type functional response, etc. The most crucial aspect of using the
coincidence theorem is to find a bounded open set 
 that satisfies the conditions of the
theorem, which requires estimating the upper and lower bounds on the a priori solution
of the corresponding operator equation (Lϕ = μNϕ, 0 < μ < 1). This paper mainly ob-
tains three classes of sufficient conditions for the existence of positive periodic solutions
of model (1.2). Our main results improve or extend some of the known results (see Re-
marks 3.1–3.6 in Sect. 3).

At the end of the paper, we present numerical simulations to illustrate our theoretical
results. We fix the following parameters: a(t) = 4 + 0.5 sin(t), b(t) = 1 + 0.25 cos(t), c(t) =
1 + 0.2 cos(t), d(t) = 0.6 + 0.5 cos(t), r(t) = 3(1 + 0.5 cos(t)), f (t) = 2(1 + 0.5 cos(t)).

(i) Let us further choose k(t) = 3(1 + 0.5 cos(t)), α1(t) = 0.6(1 + 0.45 sin(t)),
α2(t) = 0.3 + 0.2 sin(t), α3(t) = 0.5 + 0.1 sin(t), α4(t) = 2(1 + 0.15 sin(t)). Then we have
ω = 2π , ĉ = 1 > 0,

1
ω

∫ ω

0

f (t)( a
b )l

α1(t) + α2(t)( a
b )l dt ≈ 4.968889 > d̂ = 0.6.
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Figure 1 The phase trajectory and solution curves of model (A) with the initial value (1.5, 0.5)T

Figure 2 The phase trajectory and solution curves of model (B) with the initial value (1.5, 0.5)T



Guo and Ma Advances in Continuous and Discrete Models         (2023) 2023:22 Page 22 of 23

From Theorem 3.1, it follows that model (A) has at least one positive 2π -periodic
solution (see Fig. 1).

(ii) Let us further choose m(t) = 0.5 + 0.1 sin(t). Then we have ω = 2π , ĉ = 1 > 0,

f̂ = 2 > d̂ = 0.6,
(

c
a

)u[

1 –
(

d
f

)l]

≈ 0.282176 < ml = 0.4.

From Theorem 3.2, it follows that model (B) has at least one positive 2π -periodic
solution (see Fig. 2).
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