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Abstract
In this paper, we investigate a discrete relativistic Toda lattice (dRTL+(α)) system,
which may describe particle vibrations in lattices with an exponential interaction
force. First, we construct its discrete generalized (m, 2N –m)-fold Darboux
transformation, from which we can explicitly give its analytic solutions, such as
discrete multi-soliton solutions, position controllable rational and semi-rational
solutions and their hyperbolic-and-rational mixed solutions, whose properties and
dynamics are analyzed and shown graphically. Second, the asymptotic behaviors of
diverse exact solutions are analyzed, which shows that the interactions among
different solutions are always elastic. In particular, the position of controllable rational
solutions and asymptotic state analysis of discrete hyperbolic-and-rational mixed
solutions are obtained and discussed for the first time. Finally, we study some
integrable properties of this system, such as the integrable hierarchy and relevant
Hamiltonian structures and conservation laws from a discrete spectral problem. These
results may be helpful for understanding nonlinear lattice dynamics.

Keywords: Discrete relativistic Toda lattice system; Discrete generalized
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1 Introduction
In recent years, discrete nonlinear differential-difference equations (NDDEs), viewed as
spatially discrete counterparts of nonlinear partial differential equations, have aroused
increasing interest. NDDEs can model many interesting physical phenomena such as
particle vibrations in lattices and pulses in biological chains, currents in electrical net-
works [1–6]. Some meaningful NDDEs have been proposed, such as the Ablowitz–Ladik
lattice equation and its discrete nonlocal version [2–5], nonlinear self-dual network equa-
tion [3, 6, 7], discrete KdV equation [3, 8], Volterra lattice equation [6, 9], Toda lattice
(TL) system [10–16] and its relativistic version [17–26] and so on. Among these ND-
DEs, the TL system equation is a very important class of NDDEs, which can describe a
one-dimensional lattice dynamics of particles (see Fig. 1 in Ref. [6]). In order to better
describe the nonlinear lattice dynamics, Ref. [26] proposed a new Hamiltonian function
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Figure 1 A one-dimensional lattice with fixed ends (also
see the first figure in Ref. [6])

H =
∑N

n=1
eαpn –1–αpn

α2 + exn+1–xn+αpn , whose corresponding Hamiltonian motion equation is
the following discrete integrable relativistic Toda lattice (RTL) system with an arbitrary
constant parameter α (see also Eq. (8.2.6) in Ref. [26]) as

⎧
⎨

⎩

xn,t = eαpn –1
α

+ αexn+1–xn+αpn ,

pn,t = exn+1–xn+αpn – exn–xn–1+αpn–1 ,
(1)

where xn = x(n, t), pn = p(n, t) are the real functions of variables n, t. In Ref. [26], several
kinds of RTL and modified TL systems have been proposed and investigated, all of which
can be reduced to TL system. In this paper, we will only study Eq. (8.2.6) in Ref. [26],
which is abbreviated as dRTL+(α) system by Suris. Therefore, in what follows, we still
use this abbreviated name to call Eq. (1). When α → 0, Eq. (1) reduces to the famous TL
system [6], which is the first integrable NDDE proposed by Toda in 1967. TL system has
received extensive attention due to its potential application [6, 10–16, 26]. Equation (1)
has Lax pair in the form [26]:

Eφn = Unφn =

(
eαpn – z–2 αz–1exn

–αz–1e–xn+αpn 0

)

φn, (2)

φn,t = Vnφn =

(
z–2

2α
– 1

α
+ αexn–xn–1+αpn–1 –z–1exn

z–1e–xn–1+αpn–1 – z–2

2α

)

φn, (3)

where φn = (ϕn,ψn)T is an eigenfunction vector, z is the spectral parameter independent
of time t, and E is the shift operator defined by Ef (n, t) = f (n + 1, t), E–1f (n, t) = f (n – 1, t).
The integrability condition Un,t = (EVn)Un – UnVn between the spatial part (2) and time
evolution part (3) of Lax pair yields Eq. (1). Here, we want to say that the above dRTL+(α)
system (1) is different from ones described in the literature [17–25]. The Darboux trans-
formation (DT) method is a very powerful tool for constructing soliton solutions of the
Lax integrable NDDEs from a trivial seed [7, 12, 13, 23, 24, 27–30]. The above Lax pair (2)
and (3) is inconvenient to construct DT due to exponential function, for the sake of later
discussion, we take un = eαpn , vn = exn ,λ = 1

z , then Eq. (1) is equivalent to the following
equation

⎧
⎨

⎩

un,t = αun(unvn–1vn+1–un–1v2
n)

vnvn–1
,

vn,t = α2unvn+1+unvn–vn
α

,
(4)

whose corresponding Lax pair is given from (2) and (3) as below:

Eφn = Un(u,λ)φn =

(
–λ2 + un αλvn

– αλun
vn

0

)

φn, (5)

φn,t = Vnφn =

(
λ2

2α
+ αvnun–1

vn–1
– 1

α
–λvn

λun–1
vn–1

– λ2

2α

)

φn. (6)
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Recently, a discrete generalized (m, 2N – m)-fold DT has been proposed, compared
with the usual DT, the main advantage of this technique is that it can give not only stan-
dard soliton solutions but also rational and semi-rational solutions and their mixed solu-
tions [14, 17, 31]. To the best of our knowledge, the discrete generalized (m, 2N – m)-fold
DT, diverse analytic solutions, asymptotic state analysis and dynamics, and associated in-
tegrable properties for Eq. (1) or (4) have not been investigated, in particular, the position-
controlled rational solutions and asymptotic analysis of discrete hyperbolic-and-rational
mixed solutions have not been reported before. Therefore, in this paper, we will study
diverse analytic solutions of Eq. (4) by constructing the discrete generalized (m, 2N – m)-
fold DT, and discuss their asymptotic state analysis and dynamics, then consider its inte-
grable properties such as the conservation laws, lattice hierarchy, and relevant Hamilto-
nian structures via the Tu scheme [10]. The previous 2 × 2 Lax pair (5) and (6) of Eq. (4)
is easier to construct the discrete generalized (m, 2N – m)-fold DT, so we first investigate
Eq. (4), then we use the transformations pn = ln un

α
, xn = ln vn to give analytic solutions of

Eq. (1).
The paper is divided into five sections. Section 2 is devoted to constructing the discrete

generalized (m, 2N – m)-fold DT of Eq. (4) from its known Lax pair (5) and (6). Section 3
gives different types of analytic solutions of Eq. (4) using the special cases of the resulting
DT and discusses their limit states via the asymptotic analysis technique. Section 4 in-
vestigates the integrable properties of Eq. (4), including the discrete integrable hierarchy,
Hamiltonian structures, and infinite conservation laws. The final section is our conclu-
sion.

2 Discrete generalized (m, 2N – m)-fold DT
In this section, we will proceed to establish the discrete generalized (m, 2N – m)-fold DT
of Eq. (4). To achieve that, we consider the following gauge transformation

φ̃n = Tnφn, (7)

which can transform the Lax pair (5) and (6) into the same type Lax pair, namely,

φ̃n+1 = Ũnφ̃n, φ̃n,t = Ṽnφ̃n, (8)

with Ũn = Tn+1UnT–1
n and Ṽn = (Tn,t + VnTn)T–1

n . According to the knowledge of the Dar-
boux transformation, we know that Ũn, Ṽn have the same forms as Un, Vn in addition to
replacing the old potentials un, vn with the new potentials ũn, ṽn. To achieve this special
purpose, we must define a special matrix Tn as

Tn =

(
an bn

cn dn

)

=

(
λ2N +

∑N–1
j=0 a(2j)

n λ2j ∑N
j=1 b(2j–1)

n λ2j–1
∑N

j=1 c(2j–1)
n λ2j–1 ∑N

j=1 d(2j)
n λ2j + 1

)

, (9)

in which λi(λi �= λj), i �= j, i = 1, 2, . . . , 2N are 2N arbitrary parameters, a(2j)
n , b(2j–1)

n , c(2j–2)
n and

d(2j)
n are some unknown functions of the variables n, t determined below.
From the definition of the matrix Tn, we know that det Tn is a (4N)-th order polynomial

of λ. If we assume that λi(λi �= 0, i = 1, 2, . . . m) (1 ≤ m ≤ 2N) are the m roots of det Tn. Let
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φi,n = (φ1,n(λi),φ2,n(λi))T be the solutions of spectral problem (5) and (6) with λ = λi (1 ≤
m ≤ 2N), to determine 4N functions a(2j)

n , b(2j–1)
n , c(2j–1)

n , d(2j)
n , for every λi, we expand

T(λi + ε)φi,n(λi + ε) =
N–1∑

K=0

k∑

j=0

T (j)(λi)φ
(k–j)
i,n (λi)εk (10)

in which we expand Tn(λi + ε) using binomial expansions as below

T(λi + ε) = T (0)
n + T (1)

n ε + · · · + T (mi)
n εmi , (11)

and expand φi,n(λi + ε) by utilizing Taylor series around ε = 0 as

φi,n(λi + ε) = φ
(0)
i,n (λi) + φ

(1)
i,n (λi)ε + φ

(2)
i,n (λi)ε2 + φ

(3)
i,n (λi)ε3 + · · · , (12)

where φ
(k)
n (λi) = 1

k!
∂k

∂λk
i
φn(λi), and ε is a small parameter. Taking

lim
ε→0

Tn(λi + ε)φn(λi + ε)
εki

= 0,

(

i = 1, 2, . . . , m, ki = 0, 1, . . . , vi, 2N = m +
m∑

i=1

vi

)

(13)

from which we can get 4N algebraic equations for 4N unknown functions a(2j)
n , b(2j–1)

n ,
c(2j–1)

n , d(2j)
n , i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (0)(λi)φ(0)
i,n (λi) = 0,

T (0)(λi)φ(1)
i,n (λi) + T (1)(λi)φ(0)

i,n (λi) = 0,

T (0)
n (λi)φ(2)

i,n (λi) + T (1)
n (λi)φ(1)

i,n (λi) + T (2)
n (λi)φ(0)

i,n (λi) = 0,

· · · ,
∑vi

j=0 T (j)(λi)φ
(vi–j)
i,n (λi) = 0..

(14)

Here, the authors would like to say: the number m denotes the number of the distinct
spectral parameter we use, the number 2N denotes the order number of DT, vi means the
order number of the highest derivative in the Taylor series expansion for every φi,n(λi), and
2N – m =

∑m
i=1 vi is the order number sum of the highest derivative of the Darboux matrix

Tn or the vector eigenfunction φi,n(λi). When the m spectral parameters λi are suitably
chosen, the determinant of the coefficients for system (14) is nonzero. In this way, the 4N
undetermined functions a(2j)

n , b(2j–1)
n , c(2j–1)

n , d(2j)
n in the Darboux matrix Tn can be uniquely

determined by (14). From the above analysis, one can sum up the following generalized
(m, 2N – m)-fold DT theorem:

Theorem 1 Let φi,n(λi) = (ϕi,n,ψi,n)T be m column vector solutions of Lax pair (5) and (6)
for the spectral parameters λi (i = 1, 2, . . . , m) with the initial solutions un, vn of Eq. (4), then
the transformations of Eq. (4) from the old solutions un, vn to the new solutions ũn, ṽn are
given by

ũn =
una(0)

n+1

a(0)
n

, ṽn =
αvn + b(2N–1)

n

αd(2N)
n

, (15)
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where

a(0)
n =

	a(0)
n

	1
, b(2N–1)

n =
	b(2N–1)

n

	1
, d(2N)

n =
	d(2N)

n

	2
. (16)

with 	1 = (	(1)
1 ,	(2)

1 , . . . ,	(m)
1 )T,	2 = (	(1)

2 ,	(2)
2 , . . . ,	(m)

2 )T,	(i)
1 = (	(i)

1,j,s)2(vi+1)×2N ,	(i)
2 =

(	(i)
2,j,s)2(vi+1)×2N in which 	

(i)
1,j,s, 	

(i)
2,j,s(1 ≤ j ≤ 2(vi + 1), 1 ≤ s ≤ 2N , i = 1, 2, . . . , m) are ex-

pressed as

	
(i)
1,j,s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑j–1
k=0 Ck

2N–2sλ
2N–2s–k
i ϕ

(j–1–k)
i,n

for l +
∑l–1

i=1 vi ≤ j ≤ l +
∑l

i=1(1 ≤ l ≤ m), 1 ≤ s ≤ N ,
∑j–1

k=0 Ck
4N–2s+1λ

4N–2s–k+1
i ψ

(j–1–k)
i,n

for l +
∑l–1

i=1 vi ≤ j ≤ l +
∑l

i=1(1 ≤ l ≤ m), N + 1 ≤ s ≤ 2N ,

	
(i)
2,j,s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑j–1
k=0 Ck

2N–2s+1λ
2N–2s–k+1
i ϕ

(j–1–k)
i,n

for l +
∑l–1

i=1 vi ≤ j ≤ l +
∑l

i=1(1 ≤ l ≤ m), 1 ≤ s ≤ N ,
∑j–1

k=0 Ck
4N–2s+2λ

4N–2s–k+2
i ψ

(j–1–k)
i,n

for l +
∑l–1

i=1 vi ≤ j ≤ l +
∑l

i=1(1 ≤ l ≤ m), N + 1 ≤ s ≤ 2N ,

where 	a(0)
n and b(2N–1)

n are given from the determinant 	1 by replacing their N-th and (N +
1)-th columns by the column vector (f (1)

1 , f (1)
2 , . . . , f (1)

(v1+1), . . . , f (i)
1 , f (i)

2 , . . . , f (i)
(vi+1), . . . , f (m)

1 , f (m)
2 ,

. . . , f (m)
(vm+1)) with f (i)

j = –λ2N
i ϕ

(j–1)
i,n , respectively, while 	d(2N)

n is obtained from the determi-
nant 	2 by replacing (N +1)-th columns by the column vector (r(1)

1 , r(1)
2 , . . . , r(1)

(v1+1), . . . , r(i)
1 , r(i)

2 ,
. . . , r(i)

(vi+1), . . . , r(m)
1 , r(m)

2 , . . . , r(m)
(vm+1)) with r(i)

j = –ψ
(j–1)
i,n (1 ≤ j ≤ (vi + 1), 1 ≤ i ≤ m).

Remark 1 Here we describe the transformations (7) and (15) using m distinct spectral
parameters as the discrete generalized (m, 2N – m)-fold DT of Eq. (4). Now we discuss
several kinds of special cases:

• If m = 1 and mi = 2N – 1, the discrete generalized (m, 2N – m)-fold DT reduces to the
discrete generalized (1, 2N – 1)-fold DT that is used to derive higher-order rational and
semi-rational solutions;

• If m = 2 and mi = 2N – 2, the discrete generalized (m, 2N – m)-fold DT reduces to the
discrete generalized (2, 2N – 2)-fold DT that is used to obtain mixed solutions of usual
soliton solutions and rational or semi-rational solutions;

• If m = 2N and mi = 0, the discrete generalized (m, 2N – m)-fold DT reduces to the
discrete generalized (2N , 0)-fold DT that can include the discrete 2N-fold DT if we do not
make the Taylor series expansion for every φi,n(λi);

• If 2 < m < 2N , we can derive the other discrete generalized DTs, which can give the
new discrete mixed solutions and are not discussed in this paper.

3 Analytic solutions and their asymptotic analysis of Eq. (4)
In this section, we will obtain the discrete soliton solutions, rational and semi-rational
solutions and their mixed solutions of Eq. (4) using the discrete generalized (m, 2N – m)-
fold DT with three cases m = 1, 2, 2N . In what follows, we first give the solutions of Lax
pair (5) and (6).
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3.1 The solutions of Lax pair
Taking the seed solutions un = 1

α2+1 , vn = 1 of Eq. (4) into Lax pair (5) and (6), with the aid
of symbolic computation Maple, we can obtain the following eigenfunction solutions with
regard to λi (i = 1, 2, . . . 2N):

φi,n =

(
ϕi,n(λi)
ψi,n(λi)

)

= C1,i

(
τ n

1,ieρ1,it+ζ (ε)

– αλi
(1+α2)τ1,i

τ n
1,ieρ1,it+ζ (ε)

)

+ C2,i

(
τ n

2,ieρ2,it–ζ (ε)

– αλi
(1+α2)τ2,i

τ n
2,ieρ2,it–ζ (ε)

)

, (17)

where

τ1,i =
–α2λ2

i – λ2
i + 1 +

√
α4λ4

i – 4α4λ2
i + 2α2λ4

i – 6α2λ2
i + λ4

i – 2λ2
i + 1

2(α2 + 1)
,

τ2,i =
–α2λ2

i – λ2
i + 1 –

√
α4λ4

i – 4α4λ2
i + 2α2λ4

i – 6α2λ2
i + λ4

i – 2λ2
i + 1

2(α2 + 1)
,

ρ1,i =
α2λ2

i + λ2
i – 1 –

√
α4λ4

i – 4α4λ2
i + 2α2λ4

i – 6α2λ2
i + λ4

i – 2λ2
i + 1

2α(α2 + 1)
,

ρ2,i =
α2λ2

i + λ2
i – 1 +

√
α4λ4

i – 4α4λ2
i + 2α2λ4

i – 6α2λ2
i + λ4

i – 2λ2
i + 1

2α(α2 + 1)
,

ζ (ε) =
√

α4λ4
i – 4α4λ2

i + 2α2λ4
i – 6α2λ2

i + λ4
i – 2λ2

i + 1
2N∑

j=0

ejε
j,

in which ej is the arbitrary real constant. It should be noted that these parameters ej can
control the position of the solution, which is also different from our previous work. Below,
we first discuss the case where m takes both ends in the discrete generalized (m, 2N – m)-
fold DT (i.e., m = 1, 2N ) and then discuss the case where m takes the middle in the discrete
generalized (m, 2N – m)-fold DT (1 < m < 2N), and take m = 2 as an example.

3.2 Position controllable rational and semi-rational solutions and asymptotic
analysis

In this subsection, we will investigate some rational and semi-rational solutions of Eq. (4)
using the discrete generalized (1, 2N – 1)-fold DT (i.e., generalized (m, 2N – m)-fold DT
with m = 1). To give rational and semi-rational solutions, we fix the spectral parameter
λ = λ1 + ε, then expand the vector function φ1,n in (17) with λ1 = 1 + α√

α2+1
as two Taylor

series around ε = 0.

φ1,n(h) = φ
(0)
1,n + φ

(1)
1,nε + φ

(2)
1,nε

2 + φ
(3)
1,nε

3 + φ
(4)
1,nε

4 + φ
(5)
1,nε

5 + · · · , (18)

To give more abundant rational and semi-rational solutions, we will enumerate two kinds
of different expansions:

• Type I Setting α = 3
4 (i.e., λ1 = 8

5 ), C1,1 = C2,1 = 1, we obtain

φ
(0)
1,n =

(
ϕ

(0)
1,n

ψ
(0)
1,n

)

=

(
2(– 24

25 )ne
32
25 t

8
5 (– 24

25 )ne
32
25 t

)

, φ
(1)
1,n =

(
ϕ

(1)
1,n

ψ
(1)
1,n

)

, φ
(2)
1,n =

(
ϕ

(2)
1,n

ψ
(2)
1,n

)

, (19)
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in which

ϕ
(1)
1,n =

1
300

(

–
24
25

)n

e
32
25 t(625n2 + 1600nt – 3750ne0 + 1024t2 – 4800te0 + 5625e2

0

+ 375n + 1280t
)
,

ψ
(1)
1,n =

1
375

(

–
24
25

)n

e
32
25 t(625n2 + 1600nt – 3750ne0 + 1024t2 – 4800te0 + 5625e2

0

– 875n – 320t + 3750e0 + 625
)
,

ϕ
(2)
1,n =

1
1,080,000

(

–
24
25

)n

e
32
25 t(390,625n4 + 2,000,000n3t – 4,687,500n3e0

+ 3,840,000n2t2 – 18,000,000n2te0 + 21,093,750n2e2
0 + 3,276,800nt3

– 23,040,000nt2e0 + 54,000,000nte2
0 – 42,187,500ne3

0 + 1,048,576t4

– 9,830,400t3e0 + 34,560,000t2e2
0 – 54,000,000te3

0 + 31,640,625e4
0

+ 1,406,250n3 + 8,400,000n2t – 8,437,500n2e0 + 14,592,000nt2

– 39,600,000nte0 + 12,656,250ne2
0 + 7,864,320t3 – 36,864,000t2e0

+ 43,200,000te2
0 – 250,000n2 + 6,760,000nt – 9,093,750ne0 – 13,500,000ne1

+ 10,982,400t2 – 28,440,000te0 – 17,280,000te1 + 33,328,125e2
0

+ 40,500,000e0e1 – 421,875n + 1,440,000t
)
,

ψ
(2)
1,n =

1
1,350,000

(

–
24
25

)n

e– 32
25 t(390,625n4 + 2,000,000n3t – 4,687,500n3e0

+ 3,840,000n2t2 – 18,000,000n2te0 + 21,093,750n2e2
0 + 3,276,800nt3

– 23,040,000nt2e0 + 54,000,000nte2
0 – 42,187,500ne3

0 + 1,048,576t4

– 9,830,400t3e0 + 34,560,000t2e2
0 – 54,000,000te3

0 + 31,640,625e4
0 – 156,250n3

+ 2,400,000n2t + 5,625,000n2e0 + 6,912,000nt2 – 3,600,000nte0

– 29,531,250ne2
0 + 4,587,520t3 – 13,824,000t2e0 – 10,800,000te2

0

+ 42,187,500e3
0 – 718,750n2 – 440,000nt – 14,718,750ne0 – 13,500,000ne1

+ 2,534,400t2 – 17,640,000te0 – 17,280,000te1 + 54,421,875e2
0

+ 40,500,000e0e1 + 765,625n + 360,000t + 13,781,250e0 + 13,500,000e1

– 281,250
)
.

The rest (ϕ(j)
1,n,ψ (j)

1,n)T (j = 4, 5, . . .) are omitted here.
• Type II Setting α = 3

4 , (i.e., λ1 = 8
5 ), C1,1 = –C2,1 = 1

ε
, we can give different Taylor ex-

pansions as follows:

φ
(0)
1,n =

(
ϕ

(0)
1,n

ψ
(0)
1,n

)

=

(
–

√
3

15 (– 24
25 )ne

32
25 t(25n + 32t – 75e0)

– 4
√

3
75 (– 24

25 )ne
32
25 t(25n + 32t – 75e0 – 25)

)

, φ
(1)
1,n =

(
ϕ

(1)
1,n

ψ
(1)
1,n

)

, (20)



Qin and Wen Advances in Continuous and Discrete Models         (2023) 2023:27 Page 8 of 29

in which

ϕ
(1)
1,n =

√
3

108,000

(

–
24
25

)n

e
32
25 t(–62,500n3 – 240,000n2t + 562,500n2e0 – 307,200nt2

+ 1,440,000nte0 – 1,687,500ne2
0 – 131,072t3 + 921,600t2e0 – 2,160,000te2

0

+ 1,687,500e3
0 – 112,500n2 – 528,000nt + 337,500ne0 – 491,520t2

+ 1,152,000te0 + 26,875n – 189,600t + 444,375e0 + 540,000e1
)
,

ψ
(1)
1,n =

√
3

135,000

(

–
24
25

)n

e
32
25 t(–62,500n3 – 240,000n2t + 562,500n2e0 – 307,200nt2

+ 1,440,000nte0 – 1,687,500ne2
0 – 131,072t3 + 921,600t2e0 – 2,160,000te2

0

+ 1,687,500e3
0 + 75,000n2 – 48,000nt – 787,500ne0 – 184,320t2 – 288,000te0

+ 1,687,500e2
0 – 48,125n – 45,600t + 1,006,875e0 + 540,000e1 + 35,625

)
.

Case (1) Taking N = 1, the first-order position controllable rational solutions of Eq. (4) can
be expressed as

ũn =
a(0)

n+1

(1 + α2)a(0)
n

, ṽn =
α + b(1)

n

αd(2)
n

, (21)

where a(0)
n = 	a(0)

n
	1

, b(1)
n = 	b(1)

n
	1

and d(2)
n = 	d(2)

n
	2

, in which

	1,n =

∣
∣
∣
∣
∣

ϕ
(0)
1 λ1ψ

(0)
1,n

ϕ
(1)
1,n λ1ψ

(1)
1,n + ψ

(0)
1,n

∣
∣
∣
∣
∣
, 	2 =

∣
∣
∣
∣
∣

λ1ϕ
(0)
1,n λ2

1ψ
(0)
1,n

λ1ϕ
(1)
1,n + ϕ

(0)
1,n λ2

1ψ
(1)
1,n + 2λ1ψ

(0)
1,n

∣
∣
∣
∣
∣
,

	b(1)
n =

∣
∣
∣
∣
∣

ϕ
(0)
1,n –λ2

1ϕ
(0)
1,n

ϕ
(1)
1,n –λ2

1ϕ
(1)
1,n – 2λ1ϕ

(0)
1,n

∣
∣
∣
∣
∣
,

	a(0)
n =

∣
∣
∣
∣
∣

–λ2
1ϕ

(0)
1,n λ1ψ

(0)
1,n

–λ2
1ϕ

(1)
1,n – 2λ1ϕ

(0)
1,n λ1ψ

(1)
1,n + ψ

(0)
1,n

∣
∣
∣
∣
∣
, 	d(2)

n =

∣
∣
∣
∣
∣

λ1ϕ
(0)
1,n –ψ

(0)
1,n

λ1ϕ
(1)
1,n + ϕ

(0)
1,n –ψ

(1)
1,n.

∣
∣
∣
∣
∣

Using Type I expansion, direct calculation leads to specific analytical expressions of posi-
tion controllable rational solution (21) as

ũn =
16
25

–
240

(25n + 32t + 5 – 75e0)(25n + 32t – 5 – 75e0)
,

ṽn = 1 –
2225n + 2848t + 1155 – 6675e0

625n + 800t – 125 – 1875e0
,

(22)

from which, we can see that ũn possesses singularity at two paralleled straight lines, i.e.,
L1 : 25n + 32t + 5 – 75e0 = 0 and L2 : 25n + 32t – 5 – 75e0 = 0, while ṽn has singularity at
one straight line, i.e., L : 625n + 800t – 125 – 1875e0 = 0. It should be noted that there is an
arbitrary constant e0 in these singular lines, so we can change the position of the solution
through it. Moreover, we can conclude that ũn → 16

25 , ṽn → 1 as n → ±∞, t → ±∞.
Through the transformations un = eαpn , vn = exn , we can give the solutions of (1) as

p̃n =
4
3

ln

∣
∣
∣
∣
16
25

–
240

(25n + 32t + 5 – 75e0)(25n + 32t – 5 – 75e0)

∣
∣
∣
∣,
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Figure 2 (Color online) First-order rational solutions: (a1)(b1) Three-dimensional plots of un and vn with
e0 = 0 in (21); (a2)(b2) The trajectory plot of solutions un and vn via expressions (22) with e0 = 0 corresponding
to (a1),(b1); (c1)(d1) Three-dimensional plots of un and vn with e0 = 10 in (21); (c2)(d2) The controllable
moving trajectory plot of solutions un and vn via expressions (22) with e0 = 10 corresponding to (c1)(d1)

x̃n = ln

∣
∣
∣
∣1 –

2225n + 2848t + 1155 – 6675e0

625n + 800t – 125 – 1875e0

∣
∣
∣
∣.

We draw the three-dimensional figures of solution (22) and its trajectory two-
dimensional plots by choosing e0 = 0 and e0 = 10, as shown in Fig. 2.

It is important to note that we can derive the first-order semi-rational solutions if we fix
the spectral parameter λ = λ1 + ε with λ1 �= 1 + α√

α2+1
, for example, here we choose λ1 = 2

and expand the vector function φ1,n in (17). Here we omit those expansions and just list
the results of the first-order semi-rational solutions with e0 = e1 = 0 as follows:

ũn =
a(0)

n+1

(1 + α2)a(0)
n

=
Q1

Q2
, ṽn =

α + b(1)
n

αd(2)
n

=
R1

R2
, (23)

with

Q1 = 96
[
80,000

√
6(7

√
6 – 12) cosh ξ2 + 2(–7 + 2

√
6)

(
161,472n2 + 979,968nt

+ 1,486,848t2 – 255,625
)

– 800(7
√

6 – 12)(319n + 968t) sinh ξ2

+ 31,250(–7 + 2
√

6) cosh(ξ1 + ξ2)
]
,

Q2 = 25
[
48(–7 + 2

√
6)(29n + 88t + 4) + 2(192

√
6 – 672) cosh ξ1

+ 2(1572 – 917
√

6) sinh ξ1
][

48(29n + 88t – 4)

+ 262
√

6 sinh ξ2 – 192 cosh ξ2
]
,

R1 = –192(29n + 88t + 25) – 4800 cosh ξ2 – 2200
√

6 sinh ξ2,

R2 = 48(29n + 88t – 4) + 131
√

6 sinh ξ2 – 96 cosh ξ2,

where

ξ1 =
n
2

ln
2628 + 1008

√
6

2628 – 1008
√

6
+

32
√

6
25

t, ξ2 =
n
2

ln
65,700 + 25,200

√
6

65,700 – 125,200
√

6
+

32
√

6
25

t.
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From (23), we can see that the semi-rational solutions are made up of polynomial and
hyperbolic or exponential functions, which are different from the above rational solutions
and soliton solutions to be discussed later.

Case (2) Taking N = 2, the second-order position controllable rational solutions of
Eq. (4) can be expressed as

ũn =
a(0)

n+1

(1 + α2)a(0)
n

=
Q1

Q2
, ṽn =

α + b(3)
n

αd(4)
n

=
R1

R2
. (24)

Here we omit the determinant representations of a(0)
n , b(3)

n , d(4)
n , direct calculation yields the

specific analytic expressions of solution (24) given by

Q1 = 16
(
η6 – 450η5e0 + 84,375η4e2

0 – 8,437,500η3e3
0 + 474,609,375η2e4

0

– 14,238,281,250ηe5
0 + 177,978,515,625e6

0 – 120η5 + 45,000η4e0

– 6,750,000η3e2
0 + 506,250,000η2e3

0 – 18,984,375,000ηe4
0

+ 284,765,625,000e5
0 + 109,375η3n + 337,500η3e1 – 24,609,375η2ne0

– 75,937,500η2e0e1 + 1,845,703,125ηne2
0 + 5,695,312,500ηe2

0e1

– 46,142,578,125ne3
0 – 142,382,812,500e3

0e1 + 240,000η3 – 6,562,500η2n

– 54,000,000η2e0 – 20,250,000η2e1 + 984,375,000ηne0 + 4,050,000,000ηe2
0

+ 3,037,500,000ηe0e1 – 36,914,062,500ne2
0 – 101,250,000,000e3

0

– 113,906,250,000e2
0e1 – 7,200,000η2 + 242,578,125ηn + 1,080,000,000ηe0

+ 499,921,875ηe1 – 303,750,000ηe2 – 2,392,578,125n2 – 18,193,359,375ne0

– 14,765,625,000ne1 – 40,500,000,000e2
0 – 37,494,140,625e0e1

+ 22,781,250,000e0e2 – 22,781,250,000e2
1 + 398,437,500n + 6,201,562,500e1

+ 6,075,000,000e2
)(

η6 – 450η5e0 + 84,375η4e2
0 – 8,437,500η3e3

0

+ 474,609,375η2e4
0 – 14,238,281,250ηe5

0 + 177,978,515,625e6
0 + 120η5

– 45,000η4e0 + 6,750,000η3e2
0 – 506,250,000η2e3

0 + 18,984,375,000ηe4
0

– 284,765,625,000e5
0 + 109,375η3n + 337,500η3e1 – 24,609,375η2ne0

– 75,937,500η2e0e1 + 1,845,703,125ηne2
0 + 5,695,312,500ηe2

0e1

– 46,142,578,125ne3
0 – 142,382,812,500e3

0e1 – 240,000η3 + 6,562,500η2n

+ 54,000,000η2e0 + 20,250,000η2e1 – 984,375,000ηne0 – 4,050,000,000ηe2
0

– 3,037,500,000ηe0e1 + 36,914,062,500ne2
0 + 101,250,000,000e3

0

+ 113,906,250,000e2
0e1 – 7,200,000η2 + 242,578,125ηn + 1,080,000,000ηe0

+ 499,921,875ηe1 – 303,750,000ηe2 – 2,392,578,125n2 – 18,193,359,375ne0

– 14,765,625,000ne1 – 40,500,000,000e2
0 – 37,494,140,625e0e1

+ 22,781,250,000e0e2 – 22,781,250,000e2
1 – 398,437,500n – 6,201,562,500e1
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– 6,075,000,000e2
)
,

R1 = 4096
(
η6 – 450η5e0 + 84,375η4e2

0 – 8,437,500η3e3
0 + 474,609,375η2e4

0

– 14,238,281,250ηe5
0 + 177,978,515,625e6

0 + 120η5 – 45,000η4e0

+ 6,750,000η3e2
0 – 506,250,000η2e3

0 + 18,984,375,000ηe4
0 – 284,765,625,000e5

0

+ 109,375η3n + 337,500η3e1 – 24,609,375η2ne0 – 75,937,500η2e0e1

+ 1,845,703,125ηne2
0 + 5,695,312,500ηe2

0e1 – 46,142,578,125ne3
0

– 142,382,812,500e3
0e1 – 240,000η3 + 6,562,500η2n + 54,000,000η2e0

+ 20,250,000η2e1 – 984,375,000ηne0 – 4,050,000,000ηe2
0 – 3,037,500,000ηe0e1

+ 36,914,062,500ne2
0 + 101,250,000,000e3

0 + 113,906,250,000e2
0e1 – 7,200,000η2

+ 242,578,125ηn + 1,080,000,000ηe0 + 499,921,875ηe1 – 303,750,000ηe2

– 2,392,578,125n2 – 18,193,359,375ne0 – 14,765,625,000ne1

– 40,500,000,000e2
0 – 37,494,140,625e0e1 + 22,781,250,000e0e2

– 22,781,250,000e2
1 – 398,437,500n – 6,201,562,500e1 – 6,075,000,000e2

)
,

Q2 = 25
(
η6 – 450η5e0 + 84,375η4e2

0 – 8,437,500η3e3
0 + 474,609,375η2e4

0

– 14,238,281,250ηe5
0 + 177,978,515,625e6

0 + 30η5 – 11,250η4e0 + 1,687,500η3e2
0

– 126,562,500η2e3
0 + 4,746,093,750ηe4

0 – 71,191,406,250e5
0 – 5625η4

+ 109,375η3n + 1,687,500η3e0 + 337,500η3e1 – 24,609,375η2ne0

– 189,843,750η2e2
0 – 75,937,500η2e0e1 + 1,845,703,125ηne2

0 + 9,492,187,500ηe3
0

+ 5,695,312,500ηe2
0e1 – 46,142,578,125ne3

0 – 177,978,515,625e4
0

– 142,382,812,500e3
0e1 – 88,125η3 + 1,640,625η2n + 19,828,125η2e0

+ 5,062,500η2e1 – 246,093,750ηne0 – 1,487,109,375ηe2
0 – 759,375,000ηe0e1

+ 9,228,515,625ne2
0 + 37,177,734,375e3

0 + 28,476,562,500e2
0e1 – 450,000η2

+ 119,531,250ηn + 67,500,000ηe0 + 120,234,375ηe1 – 303,750,000ηe2

– 2,392,578,125n2 – 8,964,843,750ne0 – 14,765,625,000ne1 – 2,531,250,000e2
0

– 9,017,578,125e0e1 + 22,781,250,000e0e2 – 22,781,250,000e2
1 + 33,750,000η

– 714,843,750n – 2,531,250,000e0 – 3,448,828,125e1 – 1,518,750,000e2
)

× (
η6 – 450η5e0 + 84,375η4e2

0 – 8,437,500η3e3
0 + 474,609,375η2e4

0

– 14,238,281,250ηe5
0 + 177,978,515,625e6

0 – 30η5 + 11,250η4e0 – 1,687,500η3e2
0

+ 126,562,500η2e3
0 – 4,746,093,750ηe4

0 + 71,191,406,250e5
0 – 5625η4

+ 109,375η3n + 1,687,500η3e0 + 337,500η3e1 – 24,609,375η2ne0

– 189,843,750η2e2
0 – 75,937,500η2e0e1 + 1,845,703,125ηne2

0 + 9,492,187,500ηe3
0

+ 5,695,312,500ηe2
0e1 – 46,142,578,125ne3

0 – 177,978,515,625e4
0

– 142,382,812,500e3
0e1 + 88,125η3 – 1,640,625η2n – 19,828,125η2e0
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– 5,062,500η2e1 + 246,093,750ηne0 + 1,487,109,375ηe2
0 + 759,375,000ηe0e1

– 9,228,515,625ne2
0 – 37,177,734,375e3

0 – 28,476,562,500e2
0e1 – 450,000η2

+ 119,531,250ηn + 67,500,000ηe0 + 120,234,375ηe1 – 303,750,000ηe2

– 2,392,578,125n2 – 8,964,843,750ne0 – 14,765,625,000ne1 – 2,531,250,000e2
0

– 9,017,578,125e0e1 + 22,781,250,000e0e2 – 22,781,250,000e2
1 – 33,750,000η

+ 714,843,750n + 2,531,250,000e0 + 3,448,828,125e1 + 1,518,750,000e2
)
,

R2 = 625
(
η6 – 450η5e0 + 84,375η4e2

0 – 8,437,500η3e3
0 + 474,609,375η2e4

0

– 14,238,281,250ηe5
0 + 177,978,515,625e6

0 – 30η5 + 11,250η4e0 – 1,687,500η3e2
0

+ 126,562,500η2e3
0 – 4,746,093,750ηe4

0 + 71,191,406,250e5
0 – 5625η4

+ 109,375η3n + 1,687,500η3e0 + 337,500η3e1 – 24,609,375η2ne0

– 189,843,750η2e2
0 – 75,937,500η2e0e1 + 1,845,703,125ηne2

0 + 9,492,187,500ηe3
0

+ 5,695,312,500ηe2
0e1 – 46,142,578,125ne3

0 – 177,978,515,625e4
0

– 142,382,812,500e3
0e1 + 88,125η3 – 1,640,625η2n – 19,828,125η2e0

– 5,062,500η2e1 + 246,093,750ηne0 + 1,487,109,375ηe2
0 + 759,375,000ηe0e1

– 9,228,515,625ne2
0 – 37,177,734,375e3

0 – 28,476,562,500e2
0e1 – 450,000η2

+ 119,531,250ηn + 67,500,000ηe0 + 120,234,375ηe1 – 303,750,000ηe2

– 2,392,578,125n2 – 8,964,843,750ne0 – 14,765,625,000ne1 – 2,531,250,000e2
0

– 9,017,578,125e0e1 + 22,781,250,000e0e2 – 22,781,250,000e2
1 – 33,750,000η

+ 714,843,750n + 2,531,250,000e0 + 3,448,828,125e1 + 1,518,750,000e2
)
,

where η = 25n + 32t.
For better understanding the above second-order rational solutions, we do the asymp-

totic analysis of the rational solutions ũn and ṽn. Letξ1 = η + ( 112
25 + 336

125

√
5) 1

3 t 1
3 , ξ2 =

η + ( 112
25 – 336

125

√
5) 1

3 t 1
3 and c = ( 112

25 + 336
125

√
5) 1

3 – ( 112
25 – 336

125

√
5) 1

3 > 0, then we can find that
the solutions ũn and ṽn have the following different asymptotic states when |t| → ∞:

(i) If ξ1 = η + ( 112
25 + 336

125

√
5) 1

3 t 1
3 = O(1), from ξ2 = ξ1 – ct 1

3 , we have ξ2 → ∓∞ when t →
±∞, then calculating the limit states of solutions ũn and ṽn in (24) gives the following
asymptotic expressions as

ũn → u±
1 =

16
25

–
240

ξ 2
1 – 150e0ξ1 + 5625e2

0 – 25
,

ṽn → v±
1 = 1 +

3471ξ1 – 260,325e0 + 85,045
625ξ1 – 46,875e0 – 3125

.
(25)

(ii) If ξ2 = η + ( 112
25 – 336

125

√
5) 1

3 t 1
3 = O(1), from ξ1 = ξ2 + ct 1

3 , we have ξ1 → ±∞ when
t → ±∞, then calculating the limits of solutions ũn and ṽn in (24) produces the following
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Figure 3 (Color online) Second-order rational solutions: (a1) Three dimensional plot of un with e0 = 0 in (24);
(b1) The trajectory plot of solution un by expressions (25) and (26) with e0 = 0 corresponding to (a1); (a2)
Three dimensional plot of vn with e0 = 0 in (24); (b2) The trajectory plot of solution vn by expressions (25) and
(26) with e0 = 0 corresponding to (a2)

asymptotic expressions in the form

ũn → u±
2 =

16
25

–
240

ξ 2
2 – 150e0ξ2 + 5625e2

0 – 25
,

ṽn → v±
2 = 1 +

3471ξ2 – 260,325e0 + 85,045
625ξ2 – 46,875e0 – 3125

.
(26)

It can be seen that u±
1 and u±

2 have singularity at four position controllable curves, i.e.,
L1 : ξ1 – 75e0 + 5 = 0, L2 : ξ1 – 75e0 – 5 = 0, L3 : ξ2 – 75e0 + 5 = 0, L4 : ξ2 – 75e0 – 5 = 0, which
also are the four center trajectories of solution ũn, while v±

1 and v±
2 have singularity at two

curves, i.e., L1 : 625ξ1 – 46,875e0 – 3125 = 0, L2 : 625ξ2 – 46,875e0 – 3125 = 0, which are also
the two center trajectories of solution ṽn. To show the correctness of our analysis results,
we plot the rational solutions (24) and their trajectory plots, as shown in Fig. 3. Through
comparison, we find that the singularity of rational solutions is completely consistent with
these trajectories, showing the correctness of our asymptotic analysis results of second-
order rational solutions. In addition, from the asymptotic expressions (25) and (26), we
can also clearly see that the asymptotic expressions of second-order rational solutions are
consistent with the expressions of the first-order rational solutions. The main difference
is that the first-order rational solutions’ trajectories are straight lines, while the trajectory
lines of second-order rational solutions are curves.

When N ≥ 3, we can give more complex rational solutions, which will not be discussed
here. Below, we omit their analytical expressions and only summarize some mathematical
properties of these higher-order rational solutions for Eq. (4). If we use the first kind of
Taylor expansion Type I, the highest powers in the numerator and denominator for the
rational solution un of order j are both 2j(2j–1), while the highest powers in the numerator
and denominator for the rational solution vn of order j are both j(2j – 1). If we use the first
kind of Taylor expansion Type II, the highest powers in the numerator and denominator
for the rational solution un of order j are both 2j(2j + 1), while the highest powers in the
numerator and denominator for the rational solution vn of order j are both j(2j + 1). In
either case, the background of un is 1

1+α2 , and the background of vn is 1.

3.3 Bell-shaped and kink-shaped soliton solutions and dynamics
In this subsection, we will give the discrete soliton solutions of Eq. (4) by use of the discrete
generalized (m, 2N – m)-fold DT with m = 2N (i.e., the usual 2N-fold DT), then discuss
their dynamic behaviors via numerical simulations.
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When m = 2N , the discrete generalized (m, 2N – m)-fold DT reduces to the discrete
generalized (2N , 0)-fold DT, which includes the usual 2N-fold DT if we do not make the
Taylor expansion. Next, we will use the usual 2N-fold DT to give multi-soliton solutions
of Eq. (4) based on (17). Here, we take ζ (ε) = 0. It is worth noting that higher-order soliton
solutions will degenerate into lower-order soliton solutions if we take λi = 1 + α√

α2+1
, 1 –

α√
α2+1

, –1 + α√
α2+1

, –1 – α√
α2+1

. Below, we uniformly choose 1 + α√
α2+1

. Next, we only discuss
the case of N = 1.

When N = 1, we need two spectral parameters λi, i = 1, 2, from (15), one can give the
following exact solutions as

ũn =
a(0)

n+1

(1 + α2)a(0)
n

, ṽn =
α + b(1)

n

αd(2)
n

, (27)

where a(0)
n = 	a(0)

n
	1

, b(1)
n = 	b(1)

n
	1

and d(2)
n = 	d(2)

n
	2

in which

	1,n =

∣
∣
∣
∣
∣

ϕ1,n λ1ψ1,n

ϕ2,n λ2ψ2,n

∣
∣
∣
∣
∣
, 	2,n =

∣
∣
∣
∣
∣

λ1ϕ1,n λ2
1ψ1,n

λ2ϕ2,n λ2
2ψ2,n

∣
∣
∣
∣
∣
, 	a(0)

n =

∣
∣
∣
∣
∣

–λ2
1ϕ1,n λ1ψ1,n

–λ2
2ϕ2,n λ2ψ2,n

∣
∣
∣
∣
∣
,

	b(1)
n =

∣
∣
∣
∣
∣

ϕ1,n –λ2
1ϕ1,n

ϕ2,n –λ2
2ϕ2,n

∣
∣
∣
∣
∣
, 	d(2)

n =

∣
∣
∣
∣
∣

λ1ϕ1,n –ψ1,n

λ2ϕ2,n –ψ2,n

∣
∣
∣
∣
∣
.

Direct calculation gives the analytical expressions of solution (27) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũn = ([λ1 cosh(ξ1 + X1) cosh ξ2 – λ2 cosh ξ1 cosh(ξ2 + X2)]

× [λ1 cosh(ξ1 – X1) cosh ξ2 – λ2 cosh ξ1 cosh(ξ2 – X2)])

/((1 + α2)[λ1 cosh ξ1 cosh(ξ2 + X2) – λ2 cosh(ξ1 + X1) cosh ξ2]

× [λ1 cosh ξ1 cosh(ξ2 – X2) – λ2 cosh(ξ1 – X1) cosh ξ2]),

ṽn = R1/(α
√

1 + α2[λ1 cosh(ξ1 – X1) cosh ξ2 – λ2 cosh ξ1 cosh(ξ2 – X2)]

× [λ1 cosh ξ1 cosh(ξ2 – X2) – λ2 cosh(ξ1 – X1) cosh ξ2]),

(28)

in which

R1 = λ1λ2
[
α
√

1 + α2λ1 cosh(ξ1 – X1) cosh ξ2 – α
√

1 + α2λ2 cosh ξ1 cosh(ξ2 – X2)

+
(
λ2

1 – λ2
2
)

cosh ξ1 cosh ξ2
][

λ1 cosh(ξ1 – X1) cosh ξ2 – λ2 cosh ξ1 cosh(ξ2 – X2)
]
,

ξi =
1
2

(ρ1,i – ρ2,i)t +
n
2

(ln τ1,i – ln τ2,i) +
1
2

(ln C1,i – ln C2,i), Xi =
1
2

(ln τ1,i – ln τ2,i),

i = 1, 2.

If one of the λ1,λ2 is 1 + α√
α2+1

, we here set λ1 = 1 + α√
α2+1

= A, and the solutions (28) can
be rewritten as

⎧
⎨

⎩

ũn = [A cosh ξ2–λ2 cosh(ξ2+X2)][A cosh ξ2–λ2 cosh(ξ2–X2)]
(1+α2)[A cosh(ξ2+X2)–λ2 cosh ξ2][A cosh(ξ2–X2)–λ2 cosh ξ2] ,

ṽn = Aλ2[α
√

1+α2A cosh ξ2–α
√

1+α2λ2 cosh(ξ2–X2)+(A2–λ2
2) cosh ξ2][A cosh ξ2–λ2 cosh(ξ2–X2)]

α
√

1+α2[A cosh ξ2–λ2 cosh(ξ2–X2)][A cosh(ξ2–X2)–λ2 cosh ξ2]
,

(29)
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Figure 4 (Color online) Bell-shaped and kink-shaped one-soliton structures via solutions (27) with parameters
λ1 = 8

5 ,λ2 = 3,α = 3
4 ,C1,1 = C2,1 = C1,2 = –C2,2 = 1. (a1)–(d1) The profiles of one-soliton solutions ũn , p̃n , ṽn and

x̃n . (a2)–(d2) The propagation processes for ũn , p̃n , ṽn and x̃n at t = –5 (dash-doted line), t = 0 (long dashed
line) and t = 5 (solid line)

whose corresponding evolution plots are shown in Fig. 4 from which can be seen that
the solutions (29) are one-soliton solutions. Figures 4(a1)–(a2) present the bell-shaped
anti-dark soliton structure of the component ũn on nonzero seed background. Fig-
ures 4(b1)–(b2) show the anti-kink-shaped one-soliton structure for the component ṽn.
Figures 4(c1)–(c2) display the bell-shaped anti-dark soliton structures of the component
p̃n of the original equation. Figures 4(d1)–(d2) show the kink-shaped one-soliton struc-
ture for the component x̃n of the original equation. From Fig. 4, we can clearly see that
one-soliton keeps its same amplitude and shape during propagation.

When neither of λ1 and λ2 is 1 + α√
α2+1

, the solutions (28) are two-soliton solutions.
For solutions (28), without loss of generality, we assume that α > 0. To exactly analyze the
two-soliton solutions ũn, ṽn in (28), we perform their asymptotic analysis and arrive at the
following four asymptotic patterns:

Before collision t → –∞:
(i) if ξ1 is invariant, then ξ2 → +∞:

ũn → ξ– = L1
(
r–

n1
)

=
([

λ1 cosh(ξ1 + X1) – λ2eX2 cosh ξ1
][

λ1 cosh(ξ1 – X1) – λ2e–X2 cosh ξ1
])

/
((

1 + α2)[λ1eX2 cosh ξ1 – λ2 cosh(ξ1 + X1)
]

× [
λ1e–X2 cosh ξ1 – λ2 cosh(ξ1 – X1)

])
,

ṽn → v–
n1 =

(
λ1λ2

[
α
√

1 + α2λ1 cosh(ξ1 – X1) – α
√

1 + α2λ2e–X2 cosh ξ1

+
(
λ2

1 – λ2
2
)

cosh ξ1
][

λ1 cosh(ξ1 – X1) – λ2e–X2 cosh ξ1
])

/
(
α
√

1 + α2
[
λ1 cosh(ξ1 – X1) – λ2e–X2 cosh ξ1

]

× [
λ1e–X2 cosh ξ1 – λ2 cosh(ξ1 – X1)

])
,

(ii) if ξ2 is invariant, then ξ1 → +∞:

ũn → u–
n2 =

([
λ1eX1 cosh ξ2 – λ2 cosh(ξ2 + X2)

][
λ1e–X1 cosh ξ2 – λ2 cosh(ξ2 – X2)

])
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/
((

1 + α2)[λ1 cosh(ξ2 + X2) – λ2eX1 cosh ξ2
]

× [
λ1 cosh(ξ2 – X2) – λ2e–X1 cosh ξ2

])
,

ṽn → v–
n2 =

(
λ1λ2

[
α
√

1 + α2λ1e–X1 cosh ξ2 – α
√

1 + α2λ2 cosh(ξ2 – X2)

+
(
λ2

1 – λ2
2
)

cosh ξ2
][

λ1e–X1 cosh ξ2 – λ2 cosh(ξ2 – X2)
])

/
(
α
√

1 + α2
[
λ1e–X1 cosh ξ2 – λ2 cosh(ξ2 – X2)

]

× [
λ1 cosh(ξ2 – X2) – λ2e–X1 cosh ξ2

])
.

After collision t → +∞:
(iii) if ξ1 is invariant, then ξ2 → –∞:

ũn → u+
n1 =

([
λ1 cosh(ξ1 – X1) – λ2eX2 cosh ξ1

][
λ1 cosh(ξ1 + X1) – λ2e–X2 cosh ξ1

])

/
((

1 + α2)[λ1eX2 cosh ξ1 – λ2 cosh(ξ1 – X1)
]

× [
λ1e–X2 cosh ξ1 – λ2 cosh(ξ1 + X1)

])
,

ṽn → v+
n1 =

(
λ1λ2

[
α
√

1 + α2λ1 cosh(ξ1 – X1) – α
√

1 + α2λ2eX2 cosh ξ1

+
(
λ2

1 – λ2
2
)

cosh ξ1
][

λ1 cosh(ξ1 – X1) – λ2eX2 cosh ξ1
])

/
(
α
√

1 + α2
[
λ1 cosh(ξ1 – X1) – λ2eX2 cosh ξ1

]

× [
λ1eX2 cosh ξ1 – λ2 cosh(ξ1 – X1)

])
,

(iv) if ξ2 is invariant, then ξ1 → –∞:

ũn → u+
n2 =

([
λ1eX1 cosh ξ2 – λ2 cosh(ξ2 – X2)

][
λ1e–X1 cosh ξ2 – λ2 cosh(ξ2 + X2)

])

/
((

1 + α2)[λ1 cosh(ξ2 – X2) – λ2eX1 cosh ξ2
]

× [
λ1 cosh(ξ2 + X2) – λ2e–X1 cosh ξ2

])
,

ṽn → v+
n2 =

(
λ1λ2

[
α
√

1 + α2λ1eX1 cosh ξ2 – α
√

1 + α2λ2 cosh(ξ2 – X2)

× +
(
λ2

1 – λ2
2
)

cosh ξ2
][

λ1eX1 cosh ξ2 – λ2 cosh(ξ2 – X2)
])

/
(
α
√

1 + α2
[
λ1eX1 cosh ξ2 – λ2 cosh(ξ2 – X2)

]

× [
λ1 cosh(ξ2 – X2) – λ2eX1 cosh ξ2

])
.

From the above analysis, we can see that the asymptotic expressions of two solitons for
solution ũn hardly change, only shift in phase, while the asymptotic expressions of two
solitons for solution ṽn have changed obviously. So we can infer that the interaction be-
tween two solitons for solution ũn is elastic, whereas the interaction between two solitons
for solution ṽn is inelastic. Next we will draw their plots to verify our analysis results. The
evolution structures of solution (28) is shown in Fig. 5. Figures 5(a1)–(a2) demonstrate the
head-on elastic interaction between one bell-shaped anti-dark soliton and one dark soli-
ton of the component ũn, from which we can clearly see that the amplitudes and shapes
of two solitons have not changed. Figures 5(b1)–(b2) display the inelastic interaction be-
tween two kink-shaped solitons for the component ṽn from which we can clearly see that
the amplitudes and shapes of two kink-shaped solitons have changed. Figures 5(c1)–(c2)
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Figure 5 (Color online) Two-soliton interaction structures via the solutions (27) with parameters
λ1 = 1

6 ,λ2 = 5
2 ,α = 1,C1,1 = 1,C2,1 = 2,C1,2 = 1,C2,2 = 1

2 . (a1)–(d1) The profiles of two-soliton solutions
ũn , p̃n , ṽn and x̃n . (a2)–(d2) The propagation processes for ũn , p̃n , ṽn and x̃n at t = –10 (dash-dotted line), t = 0
(long dashed line) and t = 10 (solid line)

demonstrate the head-on elastic interaction between one bell-shaped anti-dark soliton
and one dark soliton of the component p̃n of the original equation. Figures 5(d1)–(d2) ex-
hibit the elastic interaction between two kink-shaped solitons for the component x̃n of the
original equation. It should be noted that we find a very interesting phenomenon. The in-
teraction of two kink-shaped solitons in Eq. (4) is inelastic, and the action of two torsional
solitons in the original Eq. (1) is elastic. The main reason for this phenomenon is due to
nonlinear transformation between x̃n and ṽn. However, this nonlinear transformation has
no effect on the elastic interaction of two bell-shaped solitons the components ũn and p̃n,
and their interactions are still elastic before and after transformation. We think this is a
very interesting phenomenon that deserves further study.

Next, we will illustrate the dynamical behaviors of the previous one- and two-soliton
solutions of Eq. (4) using numerical simulations. Figures 6–7 exhibit the evolution behav-
iors of one- and two-soliton solutions, respectively. In Figs. 6–7, the first columns show
exact soliton solutions corresponding to Figs. 4–5, the second columns present the nu-
merical solutions without any noise by means of exact solutions as initial conditions of
the difference scheme algorithm, and the last two columns present the perturbed numer-
ical solutions through adding 2% and 8% small noises to exact solutions as initial con-
ditions, respectively. From Fig. 6–7(a1),(b1)–(a2),(b2), we can clearly see that the wave
evolutions of soliton solutions without any noise are almost identical to their correspond-
ing exact soliton solutions which also show the accuracy of our numerical scheme. When
a 2% small noise is added to both the initial exact solutions, the time evolutions are also
almost the same as their corresponding exact soliton solutions for a relatively long time
(see Figs. 6–7(c1)–(c2)). However, if an 8% noise is added to the initial exact solutions,
the wave evolutions have an obviously small oscillation in a relatively short time (see
Figs. 6–7(d1)–(d2)). In other words, the one- and two-soliton solutions have stable evolu-
tions and are robust against a small noise.

When N ≥ 2, we can give more higher-order soliton solutions, which will not be dis-
cussed here.
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Figure 6 (Color online) One-soliton solutions (27) with the same parameters as Fig. 4. (a1)–(a2) Exact
solutions. (b1)–(b2) Numerical solutions without noise. (c1)–(c2) Numerical solutions with a 2% noise.
(d1)–(d2) Numerical solutions with an 8% noise

Figure 7 (Color online) Two-soliton solutions (27) with the same parameters as Fig. 5. (a1)(a2) Exact solutions.
(b1)(b2) Numerical solutions without noise. (c1)(c2) Numerical solutions with a 2% noise. (d1)(d2) Numerical
solutions with an 8% noise

3.4 Hyperbolic-and-rational mixed solutions with m = 2
In this subsection, we will give some hyperbolic-and-rational form mixed solutions of
standard soliton and rational solutions of Eq. (4) using the discrete generalized (2, 2N – 2)-
fold DT with two spectral parameters (i.e., generalized (2, 0)-fold DT). Next, we will only
discuss the case N = 1.

When N = 1, we set that λ1 = 8
5 (i.e., α = 3

4 ) and λ2 �= 8
5 (e.g., λ2 = 3), then we let the spec-

tral parameter λ in (17) as λ = λ1 + ε and expand the vector function φn in (18) as Taylor
series around ε = 0 by choosing C1,1 = –C2,1 = 1

ε
, and for λ2, we choose C1,2 = –C2,2 = 1,

based on the discrete generalized (2, 0)-fold DT, we can obtain the mixed solutions of
standard soliton and rational solutions of Eq. (4) as

ũn =
a(0)

n+1

(1 + α2)a(0)
n

=
Q1

Q2
, ṽn =

α + b(1)
n

αd(2)
n

=
R1

R2
, (30)
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where a(0)
n = 	a(0)

n
	1

, b(1)
n = 	b(1)

n
	1

and d(2)
n = 	d(2)

n
	2

in which

	1,n =

∣
∣
∣
∣
∣

ϕ
(0)
1,n λ1ψ

(0)
1,n

ϕ2,n λ2ψ2,n

∣
∣
∣
∣
∣
, 	2,n =

∣
∣
∣
∣
∣

λ1ϕ
(0)
1,n λ2

1ψ
(0)
1,n

λ2ϕ2,n λ2
2ψ2,n

∣
∣
∣
∣
∣
,

	a(0)
n =

∣
∣
∣
∣
∣

–λ2
1ϕ

(0)
1,n λ1ψ

(0)
1,n

–λ2
2ϕ2,n λ2ψ2,n

∣
∣
∣
∣
∣
, 	b(1)

n =

∣
∣
∣
∣
∣

ϕ
(0)
1,n –λ2

1ϕ
(0)
1,n

ϕ2,n –λ2
2ϕ2,n

∣
∣
∣
∣
∣
,

	d(2)
n =

∣
∣
∣
∣
∣

λ1ϕ
(0)
1,n –ψ

(0)
1,n

λ2ϕ2,n –ψ2,n

∣
∣
∣
∣
∣
.

Through direct calculation, the simplified analytic expressions of solution (30) are given
by

Q1 = 5625
[
30

(
3,864,000 cosh ξ2 – 6440

√
35,581ξ1 sinh ξ2 + 25,921ξ 2

1 cosh ξ2
)

+ 161
(
30,751ξ 2

1 – 720,000
)]

,

Q2 = 6750
(
13,584,375 cosh ξ2 – 6440

√
35,581ξ1 sinh ξ2 + 25,921ξ 2

1 cosh ξ2
)

+ 322
(
595,217ξ 2

1 – 284,765,625
)
,

R1 = 36
[
(
√

35,581 + 161)(–3220 + 20
√

35,581 – 161ξ1)eξ2 – (
√

35,581 – 161)

× (3220 + 20
√

35,581 + 161ξ1)
]
,

R2 =
[
(4

√
35,581 + 161)(161ξ1 – 805 + 20

√
35,581) – (4

√
35,581 – 161)

× (20
√

35,581 – 161ξ1 + 805)eξ2
]
,

where ξ1 = 25n + 32t, ξ2 = n ln 209+
√

35,581
209–

√
35,581 + 4

√
35,581
75 t. From the above expressions, we can

see that the solutions are made up of hyperbolic and rational functions, and we call these
solutions hyperbolic-and-rational mixed solutions. Next we will analyze these solutions
using asymptotic analysis technique. The asymptotic expressions for solution (30) when
t → ±∞ are given as follows:

Before collision t → –∞:
(i) if ξ1 is unchanged, then ξ2 → –∞:

ũn → u–
n1 =

16
25

–
130,410,000

[(4
√

35,581 + 161)ξ1 + 16,875][(4
√

35,581 – 161)ξ1 + 16,875]
,

ṽn → v–
n1 = 1 –

5(8
√

35,581 – 1127)ξ1 + 60,075
(4

√
35,581 + 161)ξ1 + 16,875

.

(ii) if ξ2 is unchanged, then ξ1 → –∞:

ũn → u–
n2 =

16
25

+
45,828,328

25(543,375 cosh ξ2 + 595,217)
,

ṽn → v–
n2

= 1 –
√

139
3

cosh

[
1
2

ln
75(22,033 + 112

√
35,581)

139(3697 – 8
√

35,581)

]
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–
√

139
3

sinh

[
1
2

ln
75(22,033 + 112

√
35,581)

139(3697 – 8
√

35,581)

]

tanh

[
1
2
ξ2 +

4
√

35,581 – 161√
543,375

]

.

After collision t → +∞:
(iii) if ξ1 is unchanged, then ξ2 → +∞:

ũn → u–
n1 =

16
25

–
130,410,000

[(4
√

35,581 – 161)ξ1 – 16,875][(4
√

35,581 + 161)ξ1 – 16,875]
,

ṽn → v+
n1 = 1 –

5(8
√

35,581 + 1127)ξ1 + 60,075
(4

√
35,581 – 161)ξ1 – 16,875

.

(iv) if ξ2 is unchanged, then ξ1 → +∞:

ũn → u+
n2 =

16
25

+
45,828,328

25(543,375 cosh ξ2 + 595,217)
,

ṽn → v+
n2

= 1 –
√

139
3

cosh

[
1
2

ln
75(22,033 + 112

√
35,581)

139(3697 – 8
√

35,581)

]

–
√

139
3

sinh

[
1
2

ln
75(22,033 + 112

√
35,581)

139(3697 – 8
√

35,581)

]

tanh

[
1
2
ξ2 +

4
√

35,581 – 161√
543,375

]

.

For simplicity, we have converted the exponential function to the hyperbolic function in
the asymptotic analysis results by taking advantage of the relationship between the expo-
nential and hyperbolic functions. From the above analysis, we can observe that the solu-
tion ũn in (30) is consisted of hyperbolic function soliton solutions and rational solution,
while the solution ṽn in (30) is consisted by kink-shaped soliton solution and rational so-
lution, just as shown in Fig. 8. Next, we analyze ũn, ṽn in (30), respectively:

• For solution ũn, before collision, ũn has three trajectory lines: L–
1 : 4

√
35,581 + 161)ξ1 +

16,875 = 0, L–
2 : (4

√
35,581–161)ξ1 +16,875 = 0 and ξ– : ξ2 = 0. As t → –∞, the rational so-

lution in ũn possesses singularities in two trajectory lines L–
1 , L–

2 , and the bell-shaped soli-
ton in ũn has maximum. After collision ũn three trajectory lines: L+

1 : 4
√

35,581 – 161)ξ1 –
16,875 = 0, L+

2 : (4
√

35,581 + 161)ξ1 – 16,875 = 0 and ξ+ : ξ2 = 0. As t → +∞, the solution
ũn possesses singularities in two trajectory lines L+

1 , L+
2 , and the bell-shaped soliton in ũn

has maximum. Before and after collisions, the rational solutions and hyperbolic-soliton in
the hybrid solution ũn keep their shapes and velocities, so their interactions are elastic.

• For solution ṽn, before collision, ṽn has one singular trajectory line: L–
1 : (4

√
35,581 +

161)ξ1 + 16,875 = 0. As t → –∞, the rational solution in ṽn possesses singularity in line
L–

1 , and the kink-shaped soliton in ṽn has no trajectory. After collision, ṽn has one singular
trajectory line L+

1 : (4
√

35,581 – 161)ξ1 – 16,875 = 0. As t → +∞, the rational solution
in ṽn possesses singularity in singular line L+

1 , and the kink-shaped soliton in ṽn has no
trajectory. Before and after collisions, the rational solution and hyperbolic-soliton in the
hybrid solution ṽn keep their shapes and velocities, so the interactions are elastic.

To show the correctness of our asymptotic analysis results, we draw the hybrid solu-
tions ũn and ṽn, including their three-dimensional plots, propagation processes, two-
dimensional density plot, and trajectory plots after asymptotic analysis, as shown in
Fig. 8. Figures 8(a1)–(a2) exhibit the three-dimensional figures of solutions ũn and
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Figure 8 (Color online) Hybrid solutions of hyperbolic-and-rational solutions ũn , ṽn via expressions (30):
(a1)(a2) Three-dimensional structure; (b1)(b2) Propagation processes at different times; (c1)(c2) Density plots;
(d1)(d2) Trajectory line plots

ṽn; Figs. 8(b1)–(b2) exhibit the propagation processes of solutions ũn and ṽn. Form
Figs. 8(a1)(b1)–(a2)(b2), we can see that the solution ũn is the mixed solution of one
bell-shaped soliton solution and rational solution, while ṽn is the mixed solution of one
kink-shaped soliton solution and rational solution. Figures 8(c1)–(c2) exhibit the two-
dimensional density figures of solutions ũn and ṽn corresponding to Figs. 8(a1)–(a2), re-
spectively; Figs. 8(d1)–(d2) exhibit the trajectory plots of solutions ũn and ṽn after asymp-
totic analysis, L1(u–

n1) and L2(u–
n1) are the trajectory curve lines of the rational solution in

ũn before collision, L1(u+
n1) and L2(u+

n1) are the trajectory curve lines after collision, while
ξ– and ξ+ are the same straight line, which also means that the soliton in solution ũn does
not change its propagation direction in the interaction with the rational solutions when
t → ±∞. This new property is completely different from the interaction between two
usual solitons with changing their phases after the collision. From Fig. 8, we can clearly
see that the trajectory lines and density plots are completely consistent with our asymp-
totic analysis results, which also show the correctness of our analysis.

Remark 2 From the above analysis, we can clearly see that the solitons in the hyperbolic-
and-rational mixed solutions un and vn are bell-shaped and kink-shaped, respectively,
which are also completely consistent with the soliton solutions in the above subsection.
These mixed solutions are consistent with the analysis results of the individual soliton or
rational solutions. These rational solutions are singular before and after asymptotic anal-
ysis, and the shapes and structures of the rational solutions and soliton solutions remain
unchanged. From this respect, the interaction of mixed solutions can be considered as
elastic.

4 Integrable properties of Eq. (4)
In this section, we will study some integrable aspects of Eq. (4), such as Hamiltonian struc-
tures and conservation laws.
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4.1 A hierarchy associated with of Eq. (4) and its Hamiltonian structures
In this subsection, we will use the Tu scheme [10] to construct the lattice hierarchy of
Eq. (4) and then construct its Hamiltonian structures. We first solve the following station-
ary discrete zero-curvature equation

Pn+1Un – UnPn = 0, (31)

with

Pn =

(
An Bn

Cn –An

)

.

Substituting the following expansions

An =
∞∑

j=0

A(j)
n λ–2j, Bn =

∞∑

j=0

B(j)
n λ–2j+1, Cn =

∞∑

j=0

C(j)
n λ–2j+1,

into (31) yields

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un(A(j)
n+1 – A(j)

n ) – A(j+1)
n+1 + A(j+1)

n – αun
vn

B(j+1)
n+1 – αvnC(j+1)

n = 0,

αvn(A(j)
n+1 + A(j)

n ) + B(j+1)
n – unB(j)

n = 0,
αun
vn

(A(j)
n+1 + A(j)

n ) – C(j+1)
n+1 + unC(j)

n+1 = 0,

αvnC(j)
n+1 + αun

vn
B(j)

n = 0,

(32)

where A(j)
n , B(j)

n and C(j)
n are the functions of un, vn. Now we choose the initial condition

A(0)
n = 1

2α
, B(0)

n = C(0)
n = 0 using the recursion relations (32), the following formulae can be

obtained as

B(1)
n = – vn, C(1)

n =
un–1

vn–1
, A(1)

n =
αvnun–1

vn–1
–

1
α

,

B(2)
n = –unvn –

α2v2
nun–1

vn–1
– α2vn+1un + 2vn,

C(2)
n =

u2
n–1

vn–1
+

α2vnu2
n–1

v2
n–1

+
α2un–1un–2

vn–2
–

2un–1

vn–1
,

A(2)
n =

αvnun–1un

vn–1
+

αvnu2
n–1

vn–1
+

α3v2
nu2

n–1
v2

n–1
+

α3vnun–1un–2

vn–2

+
α3vn+1unun–1

vn–1
–

2αvnun–1

vn–1
,

B(3)
n = –u2

nvn – 2α2u2
nvn+1 + 2unvn –

2unv2
nα

2un–1

vn–1
– α2unun+1vn+1 + 2α2unvn+1 (33)

–
α4u2

nv2
n+1

vn
–

2α4vnunun–1vn+1

vn–1
– α4unun+1vn+2 –

α2v2
nu2

n–1
vn–1

+
2v2

nα
2un–1

vn–1

–
α4v3

nu2
n–1

v2
n–1

–
α4v2

nun–1un–2

vn–2
,

C(3)
n =

u3
n–1

vn–1
+

2α2u3
n–1vn

v2
n–1

–
2u2

n–1
vn–1

+
2u2

n–1α
2un–1

vn–2
+

α2u2
n–1unvn

v2
n–1

–



Qin and Wen Advances in Continuous and Discrete Models         (2023) 2023:27 Page 23 of 29

2α2u2
n–1vn

v2
n–1

+
α4u3

n–1v2
n

v3
n–1

+
2α4u2

n–1un–2vn

vn–1vn–1
+

α4u2
n–1unvn+1

v2
n–1

+
un–1α

2u2
n–2

vn–2

–
2un–1α

2un–2

vn–2
+

vn–1un–1α
4u2

n–2
v2

n–2
+

un–1α
4un–1un–3

vn–3
· · · .

Now we truncate Pn as

P(m)
n = λ2mPn =

( ∑m
j=0 A(j)

n λ2m–2j ∑m
j=0 B(j)

n λ2m–2j+1
∑m

j=0 C(j)
n λ2m–2j+1 –

∑m
j=0 A(j)

n λ2m–2j

)

, m ≥ 0,

from Eq. (31) together with (33), we arrive at

EP(m)
n Un – UnP(m)

n =

(
un(A(m)

n+1 – A(m)
n ) –λB(m+1)

n

λC(m+1)
n+1 0

)

. (34)

To get the lattice hierarchy of Eq. (4), we need to change P(m)
n in (34), here we set

V (m)
n = P(m)

n +

(
0 0
0 A(m)

n

)

=

( ∑m
j=0 A(j)

n λ2m–2j ∑m
j=0 B(j)

n λ2m–2j+1
∑m

j=0 C(j)
n λ2m–2j+1 –

∑m
j=0 A(j)

n λ2m–2j + A(m)
n

)

, m ≥ 0,

then we have

EV (m)
n Un – UnV (m)

n =

(
un(A(m)

n+1 – A(m)
n ) –λB(m+1)

n – αλvnAm
n

λC(m+1)
n+1 – αλ un

vn
A(m)

n+1 0

)

. (35)

Assuming that the time evolution of φn satisfies φn,tm = V (m)
n φn, then the compatibility

condition Eφn,tm = (Eφn)tm implies

Un,tm =
(
EV (m)

n
)
Un – UnV (m)

n , m ≥ 0, (36)

which yields the following integrable lattice hierarchy:

⎧
⎨

⎩

un,tm = un(A(m)
n+1 – A(m)

n ),

vn,tm = – (B(m+1)
n +αvnA(m)

n )
α

.
(37)

The first few equations of this hierarchy can be obtained using (33).
(1) Taking m = 0, the hierarchy (37) reduces to the following trivial equation

⎧
⎨

⎩

un,t0 = un(A(0)
n+1 – A(0)

n ) = 0,

vn,t0 = –(B(1)
n +αvnA(0)

n )
α

= vn
α

,
(38)

whose time part of Lax pair is

φn,t0 = V (0)
n φn =

(
1

2α
0

0 0

)

φn. (39)



Qin and Wen Advances in Continuous and Discrete Models         (2023) 2023:27 Page 24 of 29

(2) Taking m = 1, the hierarchy (37) reduces to Eq. (4), i.e.,

⎧
⎪⎨

⎪⎩

un,t1 = un(A(1)
n+1 – A(1)

n ) = αun(unvn–1vn+1–un–1v2
n)

vnvn–1
,

vn,t1 = –(B(2)
n +αvnA(1)

n )
α

= α2unvn+1+unvn–vn
α

,
(40)

whose time part of Lax pair is

φn,t1 = V (1)
n φn =

(
λ2

2α
+ αvnun–1

vn–1
– 1

α
–λvn

λun–1
vn–1

– λ2

2α

)

φn. (41)

(3) Taking m = 2, the hierarchy (37) reduces to the following new equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un,t2 = un(A(2)
n+1 – A(2)

n )
= un(αunun+1vn+1

vn
+ αvn+1u2

n
vn

– 2αvn+1un
vn

+ α3u2
nv2

n+1
v2

n

+ α3unun+1vn+2
vn

– unαvnun–1
vn–1

– αvnu2
n–1

vn–1
+ 2αvnun–1

vn–1

– α3v2
nu2

n–1
v2

n–1
– α3vnun–1un–2

vn–2
),

vn,t2 = –(B(3)
n +αvnA(2)

n )
α

= αunv2
nun–1

vn–1
+ α3vnunun–1vn+1

vn–1
+ u2

nvn
α

+ 2αu2
nvn+1 – 2unvn

α
+ αunun+1vn+1 – 2αunvn+1

+ α3u2
nv2

n+1
vn

+ α3unun+1vn+2,

(42)

whose time part of Lax pair is

φn,t2 = V (2)
n φn =

(
V11 V12

V21 V22

)

φn (43)

in which

V11 =
λ4

2α
–

λ2

α
+

α3vnun–1un–2

vn–2

+
un–1

vn–1

(

αλ2vn + αunvn + αvnun–1 – 2αvn +
α3v2

nun–1

vn–1
+ α3unvn+1

)

,

V12 = –λ3vn – λunvn – λα2unvn+1 + 2λvn –
λv2

nα
2un–1

vn–1
,

V21 =
un–1

vn–1

(

λ3 + λun–1 +
λα2un–1vn

vn–1
– 2λ

)

+
λun–1α

2un–2

vn–2
,

V22 = –
λ4

2α
+

λ2

α
–

λ2αvnun–1

vn–1
.

We call Eq. (42) the second-order relativistic Toda lattice system, which is a new discrete
system that deserves further study.

Our next target is to write the lattice hierarchy (37) into its Hamiltonian form. First
of all, we need to understand the meaning of the symbol. The variational derivative
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of the scalar function fn with regard to ui is defined as δfn
δui

=
∑

k∈Z E–k ∂fn
∂ui+k

. The for-
mula (fn, gn) =

∑
n∈Z

∑p
i=0 fi,ngi,n denotes the inner product between vector functions fn =

(f1,n, f2,n, . . . , fp,n)T and gn = (g1,n, g2,n, . . . , gp,n)T. The Poisson bracket [10] for the Hamilto-
nian operator J between functions fn and gn is defined by {fn, gn} = (J δfn

δu , δgn
δu ). The operator

J∗ defined by (fn, J∗gn) = (Jfn, gn) is called the adjoint operator of J with respective to the
inner product in which J is described as the skew-symmetric operator if J = –J∗.

Define 〈U , V 〉 = tr(UV ), where U and V are arbitrary square matrices. Set

Vn = PnU–1
n =

(
An Bn

Cn –An

)(
0 – vn

αλun
1

αλvn
–λ2+un
α2λ2un

)

=

(
Bn

αλvn
– vnAn

αλun
+ (–λ2+un)Bn

α2λ2un
–An
αλvn

– vnCn
αλun

– (–λ2+un)An
α2λ2un

)

, (44)

then we have
〈

Vn,
∂Un

∂λ

〉

= –
(λ2 + un)Bn

αλ2vn
,

〈

Vn,
∂Un

∂un

〉

=
λBn

αvnun
+

An

un
,

〈

Vn,
∂Un

∂vn

〉

=
unBn

αλv2
n

–
λBn

αv2
n

–
2An

vn
.

(45)

Using the trace identity [10]

δ

δu
∑

n∈Z

〈

Vn,
∂Un

∂λ

〉

=
(

λ–ε ∂

∂λ
λε

)〈

Vn,
∂Un

∂ui

〉

, i = 1, 2, (46)

we have

δ

δu
∑

n∈Z

[

–
(λ2 + un)Bn

αλ2vn

]

=
(

λ–ε ∂

∂λ
λε

)(
λBn

αvnun
+ An

un
unBn
αλv2

n
– λBn

αv2
n

– 2An
vn

)

. (47)

Direct calculations and equating the coefficients of λ–2m–1 on both sides of Eq. (47) yield

(
δ

δun
δ

δvn

)

.
∑

n∈Z

(

–
B(m+1)

n

αvn
–

unB(m)
n

αvn

)

= (ε – 2m)

⎛

⎝
B(m+1)

n
αvnun

+ A(m)
n
un

unB(m)
n

αv2
n

– B(m+1)
n
αv2

n
– 2A(m)

n
vn

⎞

⎠ . (48)

To fix the constant ε, we simply set m = 0, from Eq. (48), we have ε = 0. Let H (m)
n =

∑
n∈Z

B(m+1)
n +unB(m)

n
2mαvn

, then

δH (m)
n

δu
=

⎛

⎝
B(m+1)

n
αvnun

+ A(m)
n
un

unB(m)
n

αv2
n

– B(m+1)
n
αv2

n
– 2A(m)

n
vn

⎞

⎠ , (49)

if we set f (m)
n = B(m+1)

n
αvnun

+ A(m)
n
un

, g(m)
n = unB(m)

n
αv2

n
– B(m+1)

n
αv2

n
– 2A(m)

n
vn

, then we have

A(m)
n = (E – 1)–1vng(m)

n , B(m)
n =

αvnunf (m)
n + αvn(E – 1)–1vn+1g(m+1)

n+1
un

,

C(m)
n = –

αun–1E–1f (m)
n + α(E – 1)–1vng(m)

n

vn–1
.

(50)
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Then Eq. (37) can be rewritten as the following Hamiltonian form:

Utm =

(
un,tm

vn,tm

)

= J
δH (m)

n

δu
= J

(
f (m)
n

g(m)
n

)

, (51)

with

J =

(
0 unvn

–unvn 0

)

from which we can see that the matrix J is skew-symmetric. Taking η =
( η11 η12

η21 η22

)
to satisfy

δH(m)
n

δu = η
δH(m–1)

n
δu , then by recursion relations (32), we have

η11 = un –
(E – 1)–1

un

(
α2u2

nvn+1

vn
–

α2vn+2un+1un+2E2

vn+1

)

,

η12 = (E – 1)–1vn+1E – (E + 1)(E – 1)–1vn

–
1

un
(E – 1)–1

[

un+1vn+1E –
α2un+1vn+2(E – 1)–1vn+3E3

vn+1

+
α2un+1vn+2(E + 1)(E – 1)–1vn+2E2

vn+1

–
α2unvn+1(E + 1)(E – 1)–1vn

vn
+

α2unvn+1(E – 1)–1vn+1E
vn

]

,

η21 = –
α2unvn+1un+1E

v2
n

+
α2u2

n–1E–1

vn–1
,

η22 = un –
α2unvn+1(E – 1)–1vn+2E2

v2
n

+
α2unvn+1(E + 1)(E – 1)–1vn+1E

v2
n

–
α2un–1(E + 1)(E – 1)–1vn–1E–1

vn–1

+
α2qn–1(E – 1)–1rn

rn–1
.

Therefore, we have rewritten the lattice hierarchy (37) into the following Hamiltonian
form:

Utm = J
δH (m)

n

δu
= J

(
f (m)
n

g(m)
n

)

= Jη

(
f (m–1)
n

g(m–1)
n

)

= · · · = Jηm

(
f (0)
n

g(0)
n

)

= Jηm

(
– 1

2αun

0

)

. (52)

It can be verified that J and Jη are skew-symmetric operators, and, moreover, the Hamil-
tonian functions H (m)

n (m ≥ 0) denoted by Eq. (49) are pairwise involutory with respect to
the Poisson bracket.

4.2 An infinite number of conservation laws of Eq. (4)
As is known, the conservation law plays a very important role in the study of integrable
systems [6, 32]. So, in this subsection, we will present an infinite number of conservation
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laws of Eq. (4) based on its known Lax pair (5) and (6). From the 2 × 2 matrix spectral
problem (5), we have

⎧
⎨

⎩

ϕn+1 = (–λ2 + un)ϕn + αλvnψn,
ψn+1 = –αλun

vn
ϕn,

(53)

Set θn = ϕn
ψn

, from (53), we can get

(
–λ2 + un + αλvnθn

)
θn+1 +

αλun

vn
= 0. (54)

Inserting θn =
∑n

j=0 θ
(j)
n λj into (54) and collecting the coefficients of same powers of λ, we

obtain the following recursion relations:

θ
(0)
n+1 = 0, θ

(1)
n+1 = –

α

vn
, θ

(2)
n+1 = 0,

θ
(3)
n+1 = –

α

un

(
1
vn

+
α2

vn–1

)

, θ
(4)
n+1 = 0,

θ
(5)
n+1 = –

α

u2
nvn

–
α3

u2
nvn–1

–
α3vn

un

(
1

vn–1vnun
+

α2

v2
n–1un

+
1

vn–1vnun–1
+

α2

vn–2vnun–1

)

, . . . ,

θ
(2j)
n+1 = 0, θ

(2j+1)
n+1 =

θ
(2j–1)
n+1 – αvn

∑2j
i=0 θ

(i)
n θ

(2j–i)
n+1

un
, j ≥ 3.

(55)

At the same time, from Eqs. (41) and (53), a straightforward calculation yields conservation
laws for Eq. (4) as

[
ln

(
–λ2 + un + αλvnθn

)]
t = (E – 1)

(
λ2

2α
+

αvnun–1

vn–1
–

1
α

+ λvnθn

)

. (56)

Substituting the expressions (55) into (56) and comparing the same powers of λ on both
sides of (56), we can get an infinite number of conservation laws for Eq. (4). The first three
conservation laws usually stand for the energy conservation, momentum conservation,
and Hamiltonian conservation, which are listed as follows:

[ln un]t = (E – 1)
(

αvnun–1

vn–1
–

1
α

)

, (57)

[

–
1

un

(
α2vn

vn–1
– 1

)]

t
= (E – 1)

(
1

2α
–

αvn

vn–1

)

, (58)

[

–
α2vn

un–1un

(
1

vn–1
+

α2

vn–2

)

–
1

2u2
n

(
α4v2

n
v2

n–1
+

2α2vn

vn–1
+ 1

)]

t

= (E – 1)
(

–
α3vn

un–1vn–2
–

αvn

un–1vn–1

)

.
(59)
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5 Conclusions
In this paper, we have studied the relativistic Toda lattice equation (4), which might explain
particle vibrations in lattices. The main achievements of this paper are as follows: (i) Based
on the known Lax pair of Eq. (4), we have constructed its discrete (m, 2N – m)-fold DT for
the first time; (ii) By using the special cases of the resulting DT, various analytic solutions
such as the rational and semi-rational solutions, soliton solutions and their mixed solu-
tions of Eq. (4), and the asymptotic analysis technique is used to discuss their limit states.
We have especially discussed the elastic and inelastic interactions of two-soliton solutions.
And numerical simulations are used to illustrate the dynamical behaviors of one- and two-
soliton solutions, showing that the evolutions are robust against a small noise. It is a very
interesting phenomenon that there are both elastic and inelastic interactions in the same
equation, which is worthy of further study. In addition, we also have summarized some
mathematical features of different-order rational solutions of Eq. (4). Through the asymp-
totic state analysis of rational solutions, we find that the singularities of rational solutions
are completely consistent with the trajectories of their asymptotic state expressions, from
which we can better understand the characteristics of these rational solutions; (iii) We
have investigated some integrable aspects of Eq. (4) such as the infinitely many conser-
vation laws, relevant discrete integrable hierarchy, and Hamiltonian structures via the Tu
scheme, which can better help us understand this equation. The results presented in this
paper might help understand some physical phenomena in lattice dynamics.
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