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Abstract

Self-similar “nite-time singularity solutions of the axisymmetric Euler equations in an
in“nite system with a swirl are provided. Using the Elgindi approximation of the
Biot…Savart kernel for the velocity in terms of vorticity, we show that an axisymmetric
incompressible and inviscid ”ow presents a self-similar “nite-time singularity of
second specie, with a critical exponent� . Contrary to the recent “ndings by Hou and
collaborators, the current singularity solution occurs at the origin of the coordinate
system, not at the system•s boundaries or on an annular rim at a “nite distance. Finally,
assisted by a numerical calculation, we sketch an approximate solution and “nd the
respective values of� . These solutions may be a starting point for rigorous
mathematical proofs.
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1 Introduction
The mechanics of ”uids was founded by Euler more than 250 years ago. Euler described

the evolution in time of an incompressible three-dimensional velocity “eld in three space

dimensions. The ”uid velocity changes according to Newton•s second law, by the action of

”uid pressure. Euler equations are unique because ”uids obey the basic physical principles

of classical mechanics, such as Galilean invariance, Newton•s law, energy conservation,

time-reversal symmetry, etc.

Although easy to write, these equations are hard to solve because they are partial di�er-

ential equations that involve both nonlinearities and nonlocalities: The velocity changes

because of pressure which itself depends on the velocity gradients in the whole space.

As a result, the general comprehension of the true nature of solutions to the Euler equa-

tions remains an open question. In particular, we have the so-called regularity problem or

that of the possible existence of “nite-time singularity solutions: Does a “nite energy and

smooth initial condition for the velocity “eld remain regular for all times as the velocity

”ow evolves in accordance with Euler equations for an inviscid and incompressible ”uid?

By smooth, we mean that the initial condition is di�erentiable everywhere. Since the early

twentieth century, both mathematicians and physicists intend to answer this cumbersome

problem [1].
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The recent numerical observation of a potential singularity in a three-dimensional ax-

isymetrical ”ow by Luo and Hou [2] on the boundary of the domain boosted intensive

research from physical [3] and mathematical points of view [4]. More recently, Chen and

Hou [5] have succeeded to prove the previously observed numerical singularity on the

boundary domain [2].

As suggested by Pomeau and collaborators over the years [6…10], the potential connec-

tion of the putative “nite-time singular solutions of Euler equations with the understand-

ing of the intermittent behavior of turbulent motion makes the question on the existence

of singular solutions of Euler equations of fundamental importance. In particular, in the

framework of the focusing nonlinear Schödinger equation with small dissipation, it has

been observed a scenario of potential singularities being the cause of intermittent behav-

ior and of the anomaly of dissipation in one and two space dimensions [11, 12]. In the case

of Luo and Hou, the singularity is raised on the boundaries, thus it may be a key element on

the boundary layer dynamics. In a di�erent context, by assuming a space anisotropy, one

of the authors has shown that advection may cause a shock-like singularity on a circular

rim of “nite radius [ 13].

The main di�culty of Euler equations arises from the nonlocal character, however, re-

cently, Tarek Elgindi [14] proposes a new endeavor: for a bounded vorticity distribution,

the velocity “eld scales proportionally to spatial coordinates and the general nonlocality

is reduced only to the coe�cient in front. Within this approximation, Elgindi was able to

“nd a self-similar “nite-time singularity as a consequence of a nonsmooth initial condi-

tion without swirl. Contrary to Refs. [2, 5, 13], Elgindi•s solution arises at a single point in

the 3D space [14].

In this paper, we study a point-like “nite-time singularity in the frame of the Euler equa-

tions in the axisymmetric con“guration. Following Elgindi, we approximate the nonlocal

dependence of the Biot…Savart law, but keep both the transport and the swirl velocity in

the original Euler equations for an axisymmetric ”ow. Next, by expanding both the vortic-

ity and the swirl velocity in an asymptotic series of the polar angular variable, we derive an

in“nite hierarchy of partial di�erential equations for the amplitude coe�cients. Assum-

ing a particular self-similarAnsatz, then the hierarchy is reduced to an autonomous set of

in“nitely many ordinary di�erential equations, in which a parameter, named� , remains

unknown. This is a •nonlinear eigenvalueŽ problem [15] which may be tackled via a dy-

namical system approach. The solution of the in“nite hierarchy, together with the right

boundary conditions, selects the value of� . Finally, some special solutions are provided

numerically. The numerical existence of such a solution indicates strongly the possibil-

ity of a positive existence of point-like “nite-time singularities in Euler equations in an

in“nite domain.

The manuscript is structured as follows: in Sect.2, by using the Elgindi approximation,

the Euler equations for the axisymmetric con“guration are simpli“ed to basic model equa-

tions (7)…(10). Next, this basic model is written in spherical coordinates and projected into

an in“nite set of partial di�erential equations for the vorticity and swirl velocity ampli-

tudes. In Sect.3, the search for self-similar solutions transforms the original set of partial

di�erential equations into a set of an autonomous hierarchy of ordinary di�erential equa-

tions, and a qualitative description of the resulting dynamical system is done. Finally, in

Sect.4, assisted by a numerical scheme of the search of solutions, the selection of the non-

linear eigenvalue� is illustrated. To do that, the in“nite hierarchy is truncated up to some
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order N , and a “nite set of 3N di�erential equations is solved by a shooting-like method.

An example of a solution is sketched forN = 2. Finally, we conclude.

2 Basic model
2.1 Euler equations for the axisymmetric ”ow
In an axisymmetric geometry, the ”uid equations are simpler than in the general case. The

”ow is described by the three components of velocity, but no dependence is considered in

the azimuthal variable� . We can assume indistinctly either cylindrical or spherical coor-

dinates. Initially, we use the cylindrical coordinates, thusv = (vr(r,z,t),v� (r,z,t),vz(r,z,t)).
The axial vorticity, � � , and the axial velocity,v� , obey the equations [16]:

(
�
� t

+ vr
�
� r

+ vz
�
� z

)
� � =

vr� �

r
+

1
r

� v2
�

� z
, (1)

(
�
� t

+ vr
�
� r

+ vz
�
� z

)
v� = …

vrv�

r
. (2)

These coupled partial di�erential equations become self-contained if a stream function is

introduced:

vr = …
1
r

� �
� z

, vz =
1
r

� �
� r

, (3)

such that the velocity ”ow remains incompressible, and the axial vorticity component de-

pends on terms of the stream function:

� � =
� vr

� z
…

� vz

� r
= …

1
r

(
� 2�
� r2

…
1
r

� �
� r

+
� 2�
� z2

)
. (4)

This Poisson-like equation introduces a nonlocal dependence of the velocities,vr and vz,

on � � .

In conclusion, equations (1) and (2), together with (3) and (4), are formally a set of two

time-dependent partial di�erential equations for the “elds� (r,z,t) andv� (r,z,t). The pre-

vious system was already numerically studied in the early 1990s [17,18] and, more recently,

but in a “nite domain in [ 2…4].

The boundary conditions for the vorticity and the velocity are such that [2]

� � (r = 0,z,t) = v� (r = 0,z,t) = 0, (5)

and, because of the condition of “nite energy ”ow, both “elds,� � (r = 0,z,t) and v� (r =

0,z,t), decrease to zero asz → ±∞. Equation (2) conservesrv� thus, remarkably, ifv� ≥ 0

initially, then v� ≥ 0 for all times.

2.2 Axisymmetric ”ow with the Elgindi approximation
By analogy with the magneto-statics, the solution of (4) is

� (r,z,t) =
r

4�

∫
cos � ′

(r′2 + r2 … 2r′r cos � ′ + (z …z′)2)1/2
� �

(
r′,z′,t′)r′ dr′ d� ′ dz′. (6)
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Essentially, the Elgindi approximation of the Biot…Savart law considers a punctured do-
main excluding the inner core,r′2 + z′2 < � (r2 + z2), contribution to the integral which is
“nite because|� � (r′,z′,t)| remains bounded. Then the inner behavior of the integrals for
the velocities is regular.1 Finally, the contribution to the Biot…Savart integral (6) inside the
punctured domain may be approximated via a multipolar expansion forr′ � r [14]. The
inclusion of � > 1 ensures that it is always possible to use this multipolar approximation.
Nevertheless, it results that the “nal singularity solution does not depend on this param-
eter � .

From now on, as Elgindi, we assume up…down-symmetric vorticity,� � (r,…z,t) =
…� � (r,z,t), which implies that the vertical velocity is also an odd function,vz(r,…z,t) =
…vz(r,z,t), while the radial velocityvr(r,…z,t) = vr(r,z,t) is an even function ofz. Lastly, as
� � , the swirl velocity is an odd function,v� (r,…z,t) = …v� (r,z,t).

Following the Elgindi approximation, the radial,vr, and vertical,vz, velocity “elds (3)
become

vr(r,z) ≈ …rL[� � ](r,z,t) and vz(r,z) ≈ 2zL[� � ](r,z,t),

where the nonlocal kernel reads [14]

L[� � ](r,z,t) =
3
4

∫
r′2+z′2>� (r2+z2)

r′2z′� � (r′,z′,t)
(r′2 + z′2)5/2

dr′ dz′. (7)

Therefore, the “nal axisymmetric Euler equations simplify to

�� �

� t
+ L[� � ]D� � = …� � L[� � ] +

1
r

� v2
�

� z
, (8)

� v�

� t
+ L[� � ]Dv� = v� L[� � ], (9)

whereD is a free-scale advection or transport de“ned by

D ≡
(

…r
�
� r

+ 2z
�
� z

)
. (10)

Because (8) depends explicitly on terms ofv2
� (r,z,t), and (9) preserves the sign of the initial

condition, namely, if initially for z > 0,v� (r,z,t = 0) is nonnegative, then,v� (r,z,t) will be
nonnegative for all times. Therefore, one de“nes the nonnegative functionW (r,z,t) by

v2
� (r,z,t) =

(
r2 + z2)W (r,z,t). (11)

Moreover, as already noticed by Elgindi, the Biot…Savart approximation (7) becomes sim-
ple in spherical coordinates, that is, by takingz = 	 cos 
 andr = 	 sin 
 . Replacing (11) into
(8) and (9), and after doing the change of variables to spherical coordinates, the equations
for an axisymmetric ”ow become

�� �

� t
…L[� � ]D� � = …L[� � ]� � …

� W
� 


+
cos 

sin 


(
2W + 	

� W
�	

)
, (12)

1This property is known as electrostatic: the electric field generated by a uniform density charge is linear in coordinates,
and it is neglected because it corresponds to the most regular contribution of the original singular integral.
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� W
� t

…L[� � ]DW = 2
(
2sin2 
 …cos2 


)
L[� � ]W , (13)

whereD corresponds to a free scale advection linear operator de“ned in (10), which in

spherical coordinates becomes

D ≡
(

3sin 
 cos 

�
� 


+
(
1 … 3cos2 


)
	

�
�	

)
.

To these equations, one needs to add the nonlocal term in spherical coordinates,

L[� � ] =
3
4

∫ ∞

�	

d	 ′

	 ′

∫ �

0
sin2 
 ′ cos 
 ′� �

(
	 ′, 
 ′,t

)
d
 ′. (14)

Equations (12) and (13), with the nonlocal term (14), provide the basic framework for

our study of the Euler equations in the axisymmetric con“guration.

An important consequence of these equations is that they do not have an a priori intrin-

sic length scale. This has an important consequence, instead of	 , the relevant variable

will be log 	 , therefore any dilation would be a translation in thislog variable. Nonetheless

important, neither the constant� > 1 in (14) is relevant because it is just a translation in

log variables.

2.3 Series expansion in the polar angular variable in spherical coordinates
BecauseL[� � ] in (14) has no dependence on the angular variable, equations (8) and (9)

are •linearŽ in this variable, therefore the “elds� � and v� are expanded in a series of the

form

� � (	 , 
 ,t) =
∞∑

m=1

� m(	 ,t)� m(
 ) and W (	 , 
 ,t) =
∞∑

m=1

Wm(	 ,t)� m(
 ), (15)

where the amplitudes� n(	 ,t) andWn(	 ,t) are functions of	 andt, which follow a coupled

set of PDEs. The special choice of the orthonormal basis� m(
 ) depends on the boundary

condition at the axisr = 0. Indeed, the axisymmetric ”ow requires that both original vari-

ables,� � (r,z,t) and W (r,z,t), vanish on the axis of rotationr = 0, that is, at
 = 0 and


 = � . Moreover, because of the up…down asymmetry of the ”ow, only the odd modes for


 = � /2 are considered.

We de“ne the inner product:2

〈f ,g〉 =
∫ � /2

0
f (
 )g(
 ) d
 , (16)

such that the basis{� n} is orthonormal, 〈� n, � m〉 = 
 nm.

Introducing � � into the integral (7), we obtain

L(	 ,t) =
∞∑

m=1

� m� m(	 ,t) with (17)

2The specific choice of basis will be discussed later on for a specific application.
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� n =
3
2

∫ � /2

0
sin2 
 ′ cos 
 ′� n

(

 ′)d
 ′, and (18)

� n(	 ,t) =
∫ ∞

�	

� n(	 ′,t)
	 ′ d	 ′ ⇔ � n = …	

�� n

�	
and lim

	 →∞ � n(	 ,t) → 0. (19)

The equations for the amplitudes,� n(	 ,t) andWn(	 ,t), are obtained projecting equations

(12) and (13) in spherical coordinates into the basis� n(
 ). By multiplying (12) and (13) by

� n(
 ) and integrating over
 ∈ [0,� /2], one obtains an in“nite matrix representation

�
� t

� n(	 ,t) +L(	 ,t)Dnm� m

= …L(	 ,t)� n …
(

cnmWm + dnm

(
2Wm + 	

� Wm

�	

))
, (20)

�
� t

Wn(	 ,t) +L(	 ,t)DnmWm = L(	 ,t)enmWm, (21)

	
�� n

�	
= …� n(	 ,t), (22)

whereL(	 ,t) is de“ned in (17); moreover, we de“ne the matrix and di�erential operator

Dnm by

Dnm =
(

anm + bnm	
�
�	

)
.

There, the repeated indices,m, stand for the Einstein summation convention. The vector

� n is given by (18) and the matrix elementsanm, bnm, cnm, dnm, andenm are given by

anm = …3
〈
� n,sin 
 cos 


� � m

� 


〉
, bnm = …

〈
� n,

(
1 … 3cos2 


)
� m

〉
,

cnm =
〈
� n,

� � m

� 


〉
, dnm = …

〈
� n,

cos 

sin 


� m

〉
,

enm = 2
〈
� n,

(
2sin2 
 …cos2 


)
� m

〉
= 2(
 nm …bnm).

(23)

All these matrices may be computed easily for a given orthonormal basis, their elements

are just numbers. Among them,bnm, dnm, andenm are symmetric, andcnm is fully antisym-

metric. Finally,anm is neither symmetric nor antisymmetric. On the other hand,anm, bnm,

and enm are tridiagonal, butcnm and dnm are fully completed by numbers. The explicit

coe�cients are given in the Appendix for the Fourier basis (see Eq. (41)).

3 Finite-time self-similar solution
3.1 Self-similarAnsatz
In the following, we look for a particular class of possible solutions of (20) and (21). Set

the self-similar dependence:

� n(	 ,t) =
1

tc …t
Fn

(
	

(tc …t)�

)
, (24)

Wn(	 ,t) =
1

(tc …t)2
Gn

(
	

(tc …t)�

)
, (25)



Cádiz et al.Advances in Continuous and Discrete Models        (2023) 2023:30 Page 7 of 15

� n(	 ,t) =
1

tc …t
Hn

(
	

(tc …t)�

)
, (26)

where the self-similar rescaled variable reads

� =
	

(tc …t)�
,

where � > 0 is a critical exponent to be found [15]. Furthermore, the Elgindi kernel (17)

scales as

L(	 ,t) =
1

tc …t
L(� ) with L(� ) =

∞∑
p=1

� pHp(� ). (27)

Here the exponent� is unknown. As it will be clari“ed later on, the parameter� is a kind

of a •nonlinear eigenvalueŽ, in the sense that the solutions forFn(� ), Gn(� ), andHn(� ) are

determined for a precise set of values for� . This kind of self-similarity is called •2nd-kind

self-similarityŽ [15].

Replacing the self-similarAnsatz into (20) and (21), one obtains

(
Fn + �� F ′

n
)

+ L(� )
(
(anm + 
 nm)Fm + � bnmF ′

m
)

+
(
cnmGm + dnm

(
2Gm + � G′

m
))

= 0, (28)
(
2Gn + �� G′

n
)

+ L(� )
(
(anm …enm)Gm + � bnmG′

m
)

= 0, (29)

� H ′
n = …Fn, (30)

L(� ) =
∞∑

p=1

� pHp(� ). (31)

This dynamical system must be complemented with the following boundary conditions.

The outer “eld becomes asymptotically stationary for	 “nite and t → tc [15]. More pre-

cisely, because of the structure of the self-similar solutions (24) and (25), the dynamics

are such that both� t � n → 0 and � tWn → 0, as� → ∞. Therefore, the outer boundary

conditions read:

(
Fn + �� F ′

n
) → 0 and

(
2Gn + �� G′

n
) → 0, as� → ∞, (32)

whence

Fn(� ) ≈ F (∞)
n

� 1/�
+ h.o.t., Gn(� ) ≈ G(∞)

n

� 2/�
+ h.o.t., Hn(� ) ≈ � F (∞)

n

� 1/�
+ h.o.t. (33)

In conclusion, in the limit � → ∞ all variables vanish,Fn(� ),Gn(� ),Hn(� ) → 0.

On the other hand, for the inner region, a di�erentiability condition must be imposed

at � = 0. Therefore, becauseF ′
n(0) andG′

n(0) are “nite, from the equations (28) and (29), it

follows that Fn(0) = Gn(0) = 0 andHn(0) = H0
n 
= 0.
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3.2 Solution of the equations via dynamical system theory
As already noticed, equations (28)…(31) are free of any scale, therefore, using the variable

s = log � , one obtains an autonomous dynamical system for the hierarchy of di�erential

equations:

(
�
 nm + L(s)bnm

)
F ′

m(s) +
(

 nm + L(s)(anm + 
 nm)

)
Fm

+ (cnm + 2dnm)Gm + dnmG′
m(s) = 0, (34)

(
�
 nm + L(s)bnm

)
G′

m(s) +
(
2
 nm + L(s)(anm …enm)

)
Gm = 0, (35)

H ′
n(s) = …Fn, (36)

L(s) =
∞∑

p=1

� pHp(s). (37)

This dynamical system must be solved in view of satisfying the previously mentioned

boundary conditions. Indeed, these boundary conditions correspond exactly to the “xed

points of the dynamical system. On the other hand, as usual, a dynamical system as well

possesses a number of singular points. Both the “xed points and the singular points will

be discussed next.

3.3 Characterization of the “xed and singular points of the dynamical system
As usually happens in a dynamical system, a qualitative understanding comes from the

knowledge of the attractors, in the current case the “xed points, and their stability. The

“xed points of this dynamical system are characterized by a continuous family,

F∗
n = G∗

n = 0 and H∗
n arbitrary.

A simple stability analysis indicates that the “xed point

F∗
n = G∗

n = H∗
n = 0 (38)

is stable, whereas the “xed point

F (0)
n = G(0)

n = 0 and H(0)
n 
= 0, (39)

may be unstable for, at least, one direction.

It results that the linear stability of the stable “xed point (38) is consistent with the condi-

tion � > 0 and with the asymptotic behavior (33). On the other hand, the unstable manifold

of the “xed point (39) is characterized by an eigenvalue� ∗ > 0 and a nonzero perturba-

tion along aGn direction given by an eigenvector of the matrix (anm …enm + � ∗bnm) with

an eigenvalue, …� , satisfying the condition� = (2+�� ∗)
L(0) .

Moreover, because of the di�erentiability of the self-similar functions at the origin	 = 0

(or � = 0) [15], a supplementary condition on the most unstable eigenvalue,� ∗ is required.

Indeed, the asymptotic solution of (34)…(37) for s → …∞ is governed by the local behavior:

Fn = e� ∗s
 fn, Gn(s) = e� ∗s
 gn, and Hn(s) = H(0)
n + e� ∗s
 hn.
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Figure 1 Plot of a 3D projection of the six-dimensional heteroclinic orbit using the axesF1(s),G1(s), andL(s).
This solution corresponds to the case labeled as 2§ in the Table1. The two planes correspond to the two
singular conditions (40)

Therefore, in the original variable, near� ≈ 0, all functions become power laws:Fn =

� � ∗

 fn, etc., thus the local behavior may not be di�erentiable at� = 0, unless� ∗ is a positive

integer,3 that is, � ∗ = q, with q = 1,2,3, . . . .

In conclusion, the pertinent solution is a heteroclinic orbit that connects, from the limit

s → …∞, the unstable “xed point with the stable “xed pointF∗
n = G∗

n = H∗
n = 0, in the limit

s → ∞. Up to this level, the values of the constantsH(0)
n , as well as the value of� , must be

selected by the full solution of the problem. This is illustrated in the Fig.1 which comes

from a solution for the special case to be discussed in the next section.

Besides the “xed points, the dynamical system (34) and (35) admits singular points.

These are given by the points,s∗, such that

det
[
�
 nm + L(s∗)bnm

]
= 0.

In other words, if{� (b)} denotes the set for the spectrum of the matrixbnm, then the critical

points are given fors∗ such that …�
L(s∗) belongs to the set{� (b)}. Because the matrixbnm is

symmetric, its eigenvalues are real; moreover, let� (b)
max > 0 be the maximum and� (b)

min < 0

the minimum eigenvalue. In general, if

…
1

� (b)
max

<
L(s)
�

<
1

|� (b)
min | , ∀s ∈ R, (40)

then the trajectory of the solutions of the dynamical system will never cross any singular

point, as sketched in Fig.1.

3The condition of analyticity of all functions also implies that � ∗ must be real, since a complex eigenvalue, � ∗ = q+ i� may
produce a behavior of the form � q cos(� log� + 
 ) which is not regular at the origin.
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3.4 Selection mechanism for the nonlinear eigenvalueν

The linear stability of the inner solution imposes a condition for� ,

� =
(2 + � q)

L(0)
,

whereL(0) =
∑∞

n=1 � nH(0)
n , q is an integer, and …� is an eigenvalue of the matrix

(anm …enm + qbnm).

However, the other amplitudes{H(0)
n } remain to be selected. The selection happens be-

cause of the existence of a heteroclinic orbit as a solution to the dynamical system. The

search for such a heteroclinic solution of the ordinary di�erential equations (34)…(37)

passes by a shooting-like method for the unknowns{H(0)
n }, that is, by tuning the param-

eters{H(0)
n }, to select the right solution that satis“es the right boundary conditions (32).

Additionally, the function L(s), de“ned through equation (37), has to satisfy condition (40).

Naturally, because this hierarchy is in“nite, this is not an easy task. As we see in the

next section, this problem may be cumbersome even for a truncation keeping a moderate

number of variables. Nevertheless, some solutions do exist. In the following section, we

provide a numerical example of a solution.

4 Numerical search of a solution and for the second kind similarity exponent
To solve in practice the in“nite ordinary di�erential equations system (34)…(37), it is

necessary to truncate these equations up to some orderN , that is, the matrices indices

run from n = 1 up to n = N . Under this assumption,anm, bnm, etc., areN × N matri-

ces, and the self-similar functions are arrays of orderN . Thus, (F1(s),F2(s), . . . ,FN (s)),
(G1(s),G2(s), . . . ,GN (s)), and (H1(s),H2(s), . . . ,HN (s)).

For a given integerq = 1,2,3 . . . , it is required to solve a 3N -dimensional dynamical

system that needsN independently selected parameters.

A shooting method withN parameters can be done easily forN = 1, and perhaps forN =

2, however, for higher values ofN it may be a cumbersome scheme. Therefore, we use a

di�erential evolution approach [19] to estimate the shooting parameters for the dynamical

set of equations (34)…(37), together with the boundary conditions (32) as an error estimate

[20].

In the following, we use a Fourier orthonormal basis with the inner product (16),

� n(
 ) =
2√
�

sin(2n
 ). (41)

In the Appendix, the speci“c values of the coe�cients� n and the matricesa, b, etc., are

provided. Within this basis, we have found a large number of solutions of the problem

which are listed in Table1.

Among these solutions, we notice “rst that forN = 1 the only existing solution is for

q = 1 and� = 0.89005. Although in this case the vorticity,� � , is di�erentiable, since� � ∼
	 sin(2
 ), the swirl velocity,v� ∼ 	 3/2| sin(2
 )|, is not di�erentiable more than once at the

origin. Nevertheless, it is possible to relax the condition admitting to the space of solutions

the initial nonnegative swirl velocities which are smooth inv2
� (r,z,t = 0).
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Table 1 Summary of some numerically obtained solutions

N q # nodes � L(0) H(0)
1 H(0)

2 H(0)
3 H(0)

4

1 1• 1 0.89005 5.7801 12.8062 … … …

2 1§ 0 1.82365 1.53912 3.62004 0.73507 … …

2 2§ 0 1.10091 1.40061 3.13151 0.09930 … …
2 2• 1 1.31387 1.54258 2.84748 …1.99573 … …

3 2‚ 2 1.92233 1.94822 7.17371 6.01831 23.8935 …

3 3§ 0 0.6306 0.94388 1.85984 …0.756781 …0.31851 …

4 2‚ 2 2.7186 2.47909 4.33713 …4.58815 4.88998 …4.4704
4 2‚ 2 3.4453 2.9636 2.2837 …16.2556 9.9944 …6.5697

• The functionL(s) has a single node. Because of the oscillations, this may be called an •excited state solutionŽ of the
dynamical system.
§In this case, the functionL(s) has no node. Because of the simplest heteroclinic trajectory, this may be called the •ground
state solutionŽ of the dynamical system.
‚ The functionL(s) has two nodes corresponding to a higher •excited stateŽ.

Figure 2 Numerical solutions of the system for the caseN = 2. (a) Plots of the Fourier amplitudesF1(s) and
F2(s) (red and red-dashed),G1(s) andG2(s) (blue and blue-dashed), andH1(s) andH2(s) (green and
green-dashed). The solution selects� = 1.10091,H(0)

1 = 3.13151, andH(0)
2 = 0.0993008. (Inset) The plot of the

functionL(s) shows that it never crosses the critical points de“ned by condition (40). FromL(s),F1(s), andG1(s),
we built the 3D heteroclinic orbit of Fig.1. (b) Same plot as (a) but in semilog scale, log|Fn(s)|, log|Gn(s)|, and
log |Hn(s)| vs.s. One notices readily the exponential behavior for the inner behavior of the amplitudes
Fn(s)∼ e2s andGn(s)∼ e2s. Additionally, we observe the right slopes 1/� and 2/� in the larges limit

For N = 2 we have observed the existence of multiple possible solutions for allq ≥ 1. For

N = 3 and q = 1, it follows that there is no suitable solution. In general, forq = 1 and N
odd and greater than 3, we have not found any suitable solution, therefore these solutions

either do not exist or are rare. A large number of solutions are obtained forN = 4.

Graphically we provide the particular case ofN = 2 and q = 2. Figure2(a) shows the

solutions for the six amplitudes,F1(s), F2(s), G1(s), G2(s), andH1(s), H2(s), as functions of

the variable,s.
Figure2(b) shows the same plot in a semilog scale, that is, in a log…log scale if considering

the original variable� = log s. This plot clearly shows the power law behaviors as� → 0

and � → ∞.

As it can be seen in Fig.2(a), the amplitudesF1(s), G1(s), andH1(s) have no nodes (ze-

roes), therefore, by analogy with the spectral theory of linear eigensystems, we call these

solutions as the •ground statesŽ (see the parameter solutions labeled with a § in Table1.

In the same vein, the “rst and second •excited statesŽ are also obtained.
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Figure 3 (a) The self-similar function� � (� r ,� z) representing the “nite-time singular behavior of the vorticity
“eld. (b) The self-similar functionV� (� r ,� z) representing the “nite-time singular behavior of the swirl velocity

Finally, to represent the physical ”ow, Figs.3(a) and3(b) show the contour plots of the

self-similar vorticity (a) and the self-similar swirl velocity (b), de“ned by

� � (� r, � z) =
∑
m=1

� m(
 )Fm(� ) and V� (� r, � z) = �
(∑

m=1

� m(
 )Gm(� )
)1/2

,

where the self-similar variables are de“ned in the cylindrical rescaled variables,

� r = � sin 
 and � z = � cos 
 .

The self-similar vorticity “eld, Fig. 3(a), as well as the swirl velocity, Fig.3(b), show a

global circulation in the “rst quadrant, in the self-similar variables (� r, � z). After a recon-

struction of the full three-dimensional space, the main ”ow realized by the self-similar

solution has a quadrupolar structure.

5 Conclusions and discussion
By approximating the nonlocal Biot…Savart law and projecting the axial vorticity,� � , as

well as the swirl velocity,v� , in an adequate basis, the original coupled set of partial di�er-

ential equations for an axisymmetric ”ow is mapped into an in“nite set of partial di�er-

ential equations for the corresponding vorticity and swirl velocity amplitudes. The “nal

set of nonlinear partial di�erential equations admits a possible “nite-time self-similar be-

havior. The existence of this “nite-time singularity is possible by the solution of an in“nite

system of ordinary di�erential equations with adequate boundary conditions.

Although the formal proof of an existing solution for the full in“nite system seems to

be a great challenge, the existence of such a solution may be mapped into a dynamical

system problem, in which the required solution is selected by a high-dimensional shooting

argument. This scheme is corroborated via the numerical solution of the original in“nite

dynamical system truncated up to a “nite orderN . We provide numerical solutions of the

truncated system, indicating strong evidence of the existence of a “nite-time self-similar

solution of the axisymmetric Euler equations for incompressible ”uids.
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We end this paper with the following remarks:

1 The validity of the approximate equations (8) and (9) depends on the Elgindi
approximation, that is, the contribution to the Biot–Savart integral from the inner
core must be negligible regarding the full integral. In other words, the following
inequality must be satisfied:

∣∣∣∣
∫ ∞

�	

d	 ′

	 ′

∫ � /2

0
sin2 
 ′ cos 
 ′� �

(
	 ′, 
 ′,t

)
d
 ′

∣∣∣∣
�

∣∣∣∣
∫ �	

0

d	 ′

	 ′

∫ � /2

0
sin2 
 ′ cos 
 ′� �

(
	 ′, 
 ′,t

)
d
 ′

∣∣∣∣.

Here the left-hand side corresponds to Elgindi approximation and the right-hand
side to the inner contribution, assumed negligible. By using the series expansion
(15), the inequality becomes

∣∣∣∣∣
∞∑

n=1

� n

∫ ∞

��
Fn

(
� ′)d� ′

� ′

∣∣∣∣∣ �
∣∣∣∣∣

∞∑
n=1

� n

∫ ��

0
Fn

(
� ′)d� ′

� ′

∣∣∣∣∣.

By the results of Sect. 3.3, the value of the inner core solution of the self-similar
vorticity becomes Fn(� ) ∼ � q, therefore we conclude

∣∣∣∣∣
∞∑

n=1

� n

∫ ∞

��
Fn

(
� ′)d� ′

� ′

∣∣∣∣∣ � (�� )q

q

∞∑
n=1

� n.

Because � n ∼ 1/n3, the series converges,4 the right-hand side may be as small as
desired as � → 0, therefore, negligible regarding the Elgindi approximation.5

2 Neglecting advective terms, that is, whenever the matrix elements anm, bnm are
zero, and also setting the swirl velocity to zero (Gn = 0) in equations (28) and (29),
makes possible finding an exact solution of the resulting self-similar equation for
the vorticity (28). The resulting dynamical system simplifies to

Fn + �� F ′
n + L(� )Fn = 0, and � L′(� ) = …

∞∑
p=1

� pFp(s). (42)

This infinite set of ordinary differential equations corresponds to Elgindi solution
[14]. It can be integrated directly

L(� ) = …
2

K � 1/� + 1
, (43)

which is not smooth at � = 0, unless 1/� is a positive integer, whereas Elgindi
showed that advection may be discarded if and only if 1/� → 0. Nevertheless, an
interesting feature of this solution is that L(� = 0) < 0, contrary to the numerically
obtained solutions for the full ODE system in Sect. 4.

4More specifically,
∑∞

n=1 � n → 0.2821. . ..
5S.R. is indebted to Isabelle Gallagher who motivated this remark.
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3 Additionally, setting the swirl velocity to zero, i.e., Gn ≡ 0 ∀n, the system (34)–(37)
cannot be integrated analytically, but it can be solved numerically. As expected, the
possible numerical solutions do not satisfy the outer boundary conditions, therefore
there is no possible solution in the case of zero swirl, in agreement with
Ukhovskii–Yudovich [21].

Appendix: Computation of the matrix elements
In the following, we compute explicitly the matrix elements de“ned in equation (23):

� n = 2
3
4

∫ � /2

0
� n

(

 ′) sin2 
 ′ cos 
 ′ d
 ′ = …

12n√
� (4n2 … 9)(4n2 … 1)

,

anm = …
〈
� n, 3sin 
 cos 


� � m

� 


〉
=

3
2

⎧⎪⎪⎨
⎪⎪⎩

(n + 1) if m = n + 1,

…(n … 1) ifm = n … 1,

0 otherwise,

bnm = …
〈
� n,

(
1 … 3cos2 


)
� m

〉
=

1
4

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if n = m,

3 if m = n + 1,

3 if m = n … 1,

0 otherwise,

cnm =
〈
� n,

� � m

� 


〉
=

4
�

mn((…1)m+n … 1)
(m2 …n2)

,

dnm = …
〈
� n,

cos 

sin 


� m

〉
,

enm =
〈
� n, 2

(
2sin2 
 …cos2 


)
� m

〉
=

1
2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if n = m,

…3 ifm = n + 1,

…3 ifm = n … 1,

0 otherwise.

No simple closed expression was found for the matrix elementsdnm.
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