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Abstract
Self-similar finite-time singularity solutions of the axisymmetric Euler equations in an
infinite system with a swirl are provided. Using the Elgindi approximation of the
Biot–Savart kernel for the velocity in terms of vorticity, we show that an axisymmetric
incompressible and inviscid flow presents a self-similar finite-time singularity of
second specie, with a critical exponent ν . Contrary to the recent findings by Hou and
collaborators, the current singularity solution occurs at the origin of the coordinate
system, not at the system’s boundaries or on an annular rim at a finite distance. Finally,
assisted by a numerical calculation, we sketch an approximate solution and find the
respective values of ν . These solutions may be a starting point for rigorous
mathematical proofs.
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1 Introduction
The mechanics of fluids was founded by Euler more than 250 years ago. Euler described
the evolution in time of an incompressible three-dimensional velocity field in three space
dimensions. The fluid velocity changes according to Newton’s second law, by the action of
fluid pressure. Euler equations are unique because fluids obey the basic physical principles
of classical mechanics, such as Galilean invariance, Newton’s law, energy conservation,
time-reversal symmetry, etc.

Although easy to write, these equations are hard to solve because they are partial differ-
ential equations that involve both nonlinearities and nonlocalities: The velocity changes
because of pressure which itself depends on the velocity gradients in the whole space.

As a result, the general comprehension of the true nature of solutions to the Euler equa-
tions remains an open question. In particular, we have the so-called regularity problem or
that of the possible existence of finite-time singularity solutions: Does a finite energy and
smooth initial condition for the velocity field remain regular for all times as the velocity
flow evolves in accordance with Euler equations for an inviscid and incompressible fluid?
By smooth, we mean that the initial condition is differentiable everywhere. Since the early
twentieth century, both mathematicians and physicists intend to answer this cumbersome
problem [1].

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-023-03774-4
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-023-03774-4&domain=pdf
https://orcid.org/0000-0003-0695-6700
mailto:sergio.rica@uc.cl
http://creativecommons.org/licenses/by/4.0/


Cádiz et al. Advances in Continuous and Discrete Models         (2023) 2023:30 Page 2 of 15

The recent numerical observation of a potential singularity in a three-dimensional ax-
isymetrical flow by Luo and Hou [2] on the boundary of the domain boosted intensive
research from physical [3] and mathematical points of view [4]. More recently, Chen and
Hou [5] have succeeded to prove the previously observed numerical singularity on the
boundary domain [2].

As suggested by Pomeau and collaborators over the years [6–10], the potential connec-
tion of the putative finite-time singular solutions of Euler equations with the understand-
ing of the intermittent behavior of turbulent motion makes the question on the existence
of singular solutions of Euler equations of fundamental importance. In particular, in the
framework of the focusing nonlinear Schödinger equation with small dissipation, it has
been observed a scenario of potential singularities being the cause of intermittent behav-
ior and of the anomaly of dissipation in one and two space dimensions [11, 12]. In the case
of Luo and Hou, the singularity is raised on the boundaries, thus it may be a key element on
the boundary layer dynamics. In a different context, by assuming a space anisotropy, one
of the authors has shown that advection may cause a shock-like singularity on a circular
rim of finite radius [13].

The main difficulty of Euler equations arises from the nonlocal character, however, re-
cently, Tarek Elgindi [14] proposes a new endeavor: for a bounded vorticity distribution,
the velocity field scales proportionally to spatial coordinates and the general nonlocality
is reduced only to the coefficient in front. Within this approximation, Elgindi was able to
find a self-similar finite-time singularity as a consequence of a nonsmooth initial condi-
tion without swirl. Contrary to Refs. [2, 5, 13], Elgindi’s solution arises at a single point in
the 3D space [14].

In this paper, we study a point-like finite-time singularity in the frame of the Euler equa-
tions in the axisymmetric configuration. Following Elgindi, we approximate the nonlocal
dependence of the Biot–Savart law, but keep both the transport and the swirl velocity in
the original Euler equations for an axisymmetric flow. Next, by expanding both the vortic-
ity and the swirl velocity in an asymptotic series of the polar angular variable, we derive an
infinite hierarchy of partial differential equations for the amplitude coefficients. Assum-
ing a particular self-similar Ansatz, then the hierarchy is reduced to an autonomous set of
infinitely many ordinary differential equations, in which a parameter, named ν , remains
unknown. This is a “nonlinear eigenvalue” problem [15] which may be tackled via a dy-
namical system approach. The solution of the infinite hierarchy, together with the right
boundary conditions, selects the value of ν . Finally, some special solutions are provided
numerically. The numerical existence of such a solution indicates strongly the possibil-
ity of a positive existence of point-like finite-time singularities in Euler equations in an
infinite domain.

The manuscript is structured as follows: in Sect. 2, by using the Elgindi approximation,
the Euler equations for the axisymmetric configuration are simplified to basic model equa-
tions (7)–(10). Next, this basic model is written in spherical coordinates and projected into
an infinite set of partial differential equations for the vorticity and swirl velocity ampli-
tudes. In Sect. 3, the search for self-similar solutions transforms the original set of partial
differential equations into a set of an autonomous hierarchy of ordinary differential equa-
tions, and a qualitative description of the resulting dynamical system is done. Finally, in
Sect. 4, assisted by a numerical scheme of the search of solutions, the selection of the non-
linear eigenvalue ν is illustrated. To do that, the infinite hierarchy is truncated up to some
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order N , and a finite set of 3N differential equations is solved by a shooting-like method.
An example of a solution is sketched for N = 2. Finally, we conclude.

2 Basic model
2.1 Euler equations for the axisymmetric flow
In an axisymmetric geometry, the fluid equations are simpler than in the general case. The
flow is described by the three components of velocity, but no dependence is considered in
the azimuthal variable φ. We can assume indistinctly either cylindrical or spherical coor-
dinates. Initially, we use the cylindrical coordinates, thus v = (vr(r, z, t), vφ(r, z, t), vz(r, z, t)).

The axial vorticity, ωφ , and the axial velocity, vφ , obey the equations [16]:

(
∂

∂t
+ vr

∂

∂r
+ vz

∂

∂z

)
ωφ =

vrωφ

r
+

1
r

∂v2
φ

∂z
, (1)

(
∂

∂t
+ vr

∂

∂r
+ vz

∂

∂z

)
vφ = –

vrvφ

r
. (2)

These coupled partial differential equations become self-contained if a stream function is
introduced:

vr = –
1
r

∂ψ

∂z
, vz =

1
r

∂ψ

∂r
, (3)

such that the velocity flow remains incompressible, and the axial vorticity component de-
pends on terms of the stream function:

ωφ =
∂vr

∂z
–

∂vz

∂r
= –

1
r

(
∂2ψ

∂r2 –
1
r

∂ψ

∂r
+

∂2ψ

∂z2

)
. (4)

This Poisson-like equation introduces a nonlocal dependence of the velocities, vr and vz,
on ωφ .

In conclusion, equations (1) and (2), together with (3) and (4), are formally a set of two
time-dependent partial differential equations for the fields ψ(r, z, t) and vφ(r, z, t). The pre-
vious system was already numerically studied in the early 1990s [17, 18] and, more recently,
but in a finite domain in [2–4].

The boundary conditions for the vorticity and the velocity are such that [2]

ωφ(r = 0, z, t) = vφ(r = 0, z, t) = 0, (5)

and, because of the condition of finite energy flow, both fields, ωφ(r = 0, z, t) and vφ(r =
0, z, t), decrease to zero as z → ±∞. Equation (2) conserves rvφ thus, remarkably, if vφ ≥ 0
initially, then vφ ≥ 0 for all times.

2.2 Axisymmetric flow with the Elgindi approximation
By analogy with the magneto-statics, the solution of (4) is

ψ(r, z, t) =
r

4π

∫
cosφ′

(r′2 + r2 – 2r′r cosφ′ + (z – z′)2)1/2 ωφ

(
r′, z′, t′)r′ dr′ dφ′ dz′. (6)
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Essentially, the Elgindi approximation of the Biot–Savart law considers a punctured do-
main excluding the inner core, r′2 + z′2 < η(r2 + z2), contribution to the integral which is
finite because |ωφ(r′, z′, t)| remains bounded. Then the inner behavior of the integrals for
the velocities is regular.1 Finally, the contribution to the Biot–Savart integral (6) inside the
punctured domain may be approximated via a multipolar expansion for r′ � r [14]. The
inclusion of η > 1 ensures that it is always possible to use this multipolar approximation.
Nevertheless, it results that the final singularity solution does not depend on this param-
eter η.

From now on, as Elgindi, we assume up–down-symmetric vorticity, ωφ(r, –z, t) =
–ωφ(r, z, t), which implies that the vertical velocity is also an odd function, vz(r, –z, t) =
–vz(r, z, t), while the radial velocity vr(r, –z, t) = vr(r, z, t) is an even function of z. Lastly, as
ωφ , the swirl velocity is an odd function, vφ(r, –z, t) = –vφ(r, z, t).

Following the Elgindi approximation, the radial, vr , and vertical, vz, velocity fields (3)
become

vr(r, z) ≈ –rL[ωφ](r, z, t) and vz(r, z) ≈ 2zL[ωφ](r, z, t),

where the nonlocal kernel reads [14]

L[ωφ](r, z, t) =
3
4

∫
r′2+z′2>η(r2+z2)

r′2z′ωφ(r′, z′, t)
(r′2 + z′2)5/2 dr′ dz′. (7)

Therefore, the final axisymmetric Euler equations simplify to

∂ωφ

∂t
+ L[ωφ]Dωφ = –ωφL[ωφ] +

1
r

∂v2
φ

∂z
, (8)

∂vφ

∂t
+ L[ωφ]Dvφ = vφL[ωφ], (9)

where D is a free-scale advection or transport defined by

D ≡
(

–r
∂

∂r
+ 2z

∂

∂z

)
. (10)

Because (8) depends explicitly on terms of v2
φ(r, z, t), and (9) preserves the sign of the initial

condition, namely, if initially for z > 0, vφ(r, z, t = 0) is nonnegative, then, vφ(r, z, t) will be
nonnegative for all times. Therefore, one defines the nonnegative function W (r, z, t) by

v2
φ(r, z, t) =

(
r2 + z2)W (r, z, t). (11)

Moreover, as already noticed by Elgindi, the Biot–Savart approximation (7) becomes sim-
ple in spherical coordinates, that is, by taking z = ρ cos θ and r = ρ sin θ . Replacing (11) into
(8) and (9), and after doing the change of variables to spherical coordinates, the equations
for an axisymmetric flow become

∂ωφ

∂t
– L[ωφ]Dωφ = –L[ωφ]ωφ –

∂W
∂θ

+
cos θ

sin θ

(
2W + ρ

∂W
∂ρ

)
, (12)

1This property is known as electrostatic: the electric field generated by a uniform density charge is linear in coordinates,
and it is neglected because it corresponds to the most regular contribution of the original singular integral.
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∂W
∂t

– L[ωφ]DW = 2
(
2 sin2 θ – cos2 θ

)
L[ωφ]W , (13)

where D corresponds to a free scale advection linear operator defined in (10), which in
spherical coordinates becomes

D ≡
(

3 sin θ cos θ
∂

∂θ
+

(
1 – 3 cos2 θ

)
ρ

∂

∂ρ

)
.

To these equations, one needs to add the nonlocal term in spherical coordinates,

L[ωφ] =
3
4

∫ ∞

ηρ

dρ ′

ρ ′

∫ π

0
sin2 θ ′ cos θ ′ωφ

(
ρ ′, θ ′, t

)
dθ ′. (14)

Equations (12) and (13), with the nonlocal term (14), provide the basic framework for
our study of the Euler equations in the axisymmetric configuration.

An important consequence of these equations is that they do not have an a priori intrin-
sic length scale. This has an important consequence, instead of ρ , the relevant variable
will be logρ , therefore any dilation would be a translation in this log variable. Nonetheless
important, neither the constant η > 1 in (14) is relevant because it is just a translation in
log variables.

2.3 Series expansion in the polar angular variable in spherical coordinates
Because L[ωφ] in (14) has no dependence on the angular variable, equations (8) and (9)
are “linear” in this variable, therefore the fields ωφ and vφ are expanded in a series of the
form

ωφ(ρ, θ , t) =
∞∑

m=1

�m(ρ, t)ϕm(θ ) and W (ρ, θ , t) =
∞∑

m=1

Wm(ρ, t)ϕm(θ ), (15)

where the amplitudes �n(ρ, t) and Wn(ρ, t) are functions of ρ and t, which follow a coupled
set of PDEs. The special choice of the orthonormal basis ϕm(θ ) depends on the boundary
condition at the axis r = 0. Indeed, the axisymmetric flow requires that both original vari-
ables, ωφ(r, z, t) and W (r, z, t), vanish on the axis of rotation r = 0, that is, at θ = 0 and
θ = π . Moreover, because of the up–down asymmetry of the flow, only the odd modes for
θ = π/2 are considered.

We define the inner product:2

〈f , g〉 =
∫ π/2

0
f (θ )g(θ ) dθ , (16)

such that the basis {ϕn} is orthonormal, 〈ϕn,ϕm〉 = δnm.
Introducing ωφ into the integral (7), we obtain

L(ρ, t) =
∞∑

m=1

κm�m(ρ, t) with (17)

2The specific choice of basis will be discussed later on for a specific application.
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κn =
3
2

∫ π/2

0
sin2 θ ′ cos θ ′ϕn

(
θ ′)dθ ′, and (18)

�n(ρ, t) =
∫ ∞

ηρ

�n(ρ ′, t)
ρ ′ dρ ′ ⇔ �n = –ρ

∂�n

∂ρ
and lim

ρ→∞�n(ρ, t) → 0. (19)

The equations for the amplitudes, �n(ρ, t) and Wn(ρ, t), are obtained projecting equations
(12) and (13) in spherical coordinates into the basis ϕn(θ ). By multiplying (12) and (13) by
ϕn(θ ) and integrating over θ ∈ [0,π/2], one obtains an infinite matrix representation

∂

∂t
�n(ρ, t) + L(ρ, t)Dnm�m

= –L(ρ, t)�n –
(

cnmWm + dnm

(
2Wm + ρ

∂Wm

∂ρ

))
, (20)

∂

∂t
Wn(ρ, t) + L(ρ, t)DnmWm = L(ρ, t)enmWm, (21)

ρ
∂�n

∂ρ
= –�n(ρ, t), (22)

where L(ρ, t) is defined in (17); moreover, we define the matrix and differential operator
Dnm by

Dnm =
(

anm + bnmρ
∂

∂ρ

)
.

There, the repeated indices, m, stand for the Einstein summation convention. The vector
κn is given by (18) and the matrix elements anm, bnm, cnm, dnm, and enm are given by

anm = –3
〈
ϕn, sin θ cos θ

∂ϕm

∂θ

〉
, bnm = –

〈
ϕn,

(
1 – 3 cos2 θ

)
ϕm

〉
,

cnm =
〈
ϕn,

∂ϕm

∂θ

〉
, dnm = –

〈
ϕn,

cos θ

sin θ
ϕm

〉
,

enm = 2
〈
ϕn,

(
2 sin2 θ – cos2 θ

)
ϕm

〉
= 2(δnm – bnm).

(23)

All these matrices may be computed easily for a given orthonormal basis, their elements
are just numbers. Among them, bnm, dnm, and enm are symmetric, and cnm is fully antisym-
metric. Finally, anm is neither symmetric nor antisymmetric. On the other hand, anm, bnm,
and enm are tridiagonal, but cnm and dnm are fully completed by numbers. The explicit
coefficients are given in the Appendix for the Fourier basis (see Eq. (41)).

3 Finite-time self-similar solution
3.1 Self-similar Ansatz
In the following, we look for a particular class of possible solutions of (20) and (21). Set
the self-similar dependence:

�n(ρ, t) =
1

tc – t
Fn

(
ρ

(tc – t)ν

)
, (24)

Wn(ρ, t) =
1

(tc – t)2 Gn

(
ρ

(tc – t)ν

)
, (25)
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�n(ρ, t) =
1

tc – t
Hn

(
ρ

(tc – t)ν

)
, (26)

where the self-similar rescaled variable reads

ξ =
ρ

(tc – t)ν
,

where ν > 0 is a critical exponent to be found [15]. Furthermore, the Elgindi kernel (17)
scales as

L(ρ, t) =
1

tc – t
L(ξ ) with L(ξ ) =

∞∑
p=1

κpHp(ξ ). (27)

Here the exponent ν is unknown. As it will be clarified later on, the parameter ν is a kind
of a “nonlinear eigenvalue”, in the sense that the solutions for Fn(ξ ), Gn(ξ ), and Hn(ξ ) are
determined for a precise set of values for ν . This kind of self-similarity is called “2nd-kind
self-similarity” [15].

Replacing the self-similar Ansatz into (20) and (21), one obtains

(
Fn + νξF ′

n
)

+ L(ξ )
(
(anm + δnm)Fm + ξbnmF ′

m
)

+
(
cnmGm + dnm

(
2Gm + ξG′

m
))

= 0, (28)
(
2Gn + νξG′

n
)

+ L(ξ )
(
(anm – enm)Gm + ξbnmG′

m
)

= 0, (29)

ξH ′
n = –Fn, (30)

L(ξ ) =
∞∑

p=1

κpHp(ξ ). (31)

This dynamical system must be complemented with the following boundary conditions.
The outer field becomes asymptotically stationary for ρ finite and t → tc [15]. More pre-
cisely, because of the structure of the self-similar solutions (24) and (25), the dynamics
are such that both ∂t�n → 0 and ∂tWn → 0, as ξ → ∞. Therefore, the outer boundary
conditions read:

(
Fn + νξF ′

n
) → 0 and

(
2Gn + νξG′

n
) → 0, as ξ → ∞, (32)

whence

Fn(ξ ) ≈ F (∞)
n

ξ 1/ν + h.o.t., Gn(ξ ) ≈ G(∞)
n

ξ 2/ν + h.o.t., Hn(ξ ) ≈ νF (∞)
n

ξ 1/ν + h.o.t. (33)

In conclusion, in the limit ξ → ∞ all variables vanish, Fn(ξ ), Gn(ξ ), Hn(ξ ) → 0.
On the other hand, for the inner region, a differentiability condition must be imposed

at ξ = 0. Therefore, because F ′
n(0) and G′

n(0) are finite, from the equations (28) and (29), it
follows that Fn(0) = Gn(0) = 0 and Hn(0) = H0

n = 0.
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3.2 Solution of the equations via dynamical system theory
As already noticed, equations (28)–(31) are free of any scale, therefore, using the variable
s = log ξ , one obtains an autonomous dynamical system for the hierarchy of differential
equations:

(
νδnm + L(s)bnm

)
F ′

m(s) +
(
δnm + L(s)(anm + δnm)

)
Fm

+ (cnm + 2dnm)Gm + dnmG′
m(s) = 0, (34)

(
νδnm + L(s)bnm

)
G′

m(s) +
(
2δnm + L(s)(anm – enm)

)
Gm = 0, (35)

H ′
n(s) = –Fn, (36)

L(s) =
∞∑

p=1

κpHp(s). (37)

This dynamical system must be solved in view of satisfying the previously mentioned
boundary conditions. Indeed, these boundary conditions correspond exactly to the fixed
points of the dynamical system. On the other hand, as usual, a dynamical system as well
possesses a number of singular points. Both the fixed points and the singular points will
be discussed next.

3.3 Characterization of the fixed and singular points of the dynamical system
As usually happens in a dynamical system, a qualitative understanding comes from the
knowledge of the attractors, in the current case the fixed points, and their stability. The
fixed points of this dynamical system are characterized by a continuous family,

F∗
n = G∗

n = 0 and H∗
n arbitrary.

A simple stability analysis indicates that the fixed point

F∗
n = G∗

n = H∗
n = 0 (38)

is stable, whereas the fixed point

F (0)
n = G(0)

n = 0 and H (0)
n = 0, (39)

may be unstable for, at least, one direction.
It results that the linear stability of the stable fixed point (38) is consistent with the condi-

tion ν > 0 and with the asymptotic behavior (33). On the other hand, the unstable manifold
of the fixed point (39) is characterized by an eigenvalue σ ∗ > 0 and a nonzero perturba-
tion along a Gn direction given by an eigenvector of the matrix (anm – enm + σ ∗bnm) with
an eigenvalue, –φ, satisfying the condition φ = (2+νσ∗)

L(0) .
Moreover, because of the differentiability of the self-similar functions at the origin ρ = 0

(or ξ = 0) [15], a supplementary condition on the most unstable eigenvalue, σ ∗ is required.
Indeed, the asymptotic solution of (34)–(37) for s → –∞ is governed by the local behavior:

Fn = eσ∗sδfn, Gn(s) = eσ∗sδgn, and Hn(s) = H (0)
n + eσ∗sδhn.
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Figure 1 Plot of a 3D projection of the six-dimensional heteroclinic orbit using the axes F1(s), G1(s), and L(s).
This solution corresponds to the case labeled as 2§ in the Table 1. The two planes correspond to the two
singular conditions (40)

Therefore, in the original variable, near ξ ≈ 0, all functions become power laws: Fn =
ξσ∗

δfn, etc., thus the local behavior may not be differentiable at ξ = 0, unless σ ∗ is a positive
integer,3 that is, σ ∗ = q, with q = 1, 2, 3, . . . .

In conclusion, the pertinent solution is a heteroclinic orbit that connects, from the limit
s → –∞, the unstable fixed point with the stable fixed point F∗

n = G∗
n = H∗

n = 0, in the limit
s → ∞. Up to this level, the values of the constants H (0)

n , as well as the value of ν , must be
selected by the full solution of the problem. This is illustrated in the Fig. 1 which comes
from a solution for the special case to be discussed in the next section.

Besides the fixed points, the dynamical system (34) and (35) admits singular points.
These are given by the points, s∗, such that

det
[
νδnm + L(s∗)bnm

]
= 0.

In other words, if {λ(b)} denotes the set for the spectrum of the matrix bnm, then the critical
points are given for s∗ such that – ν

L(s∗) belongs to the set {λ(b)}. Because the matrix bnm is
symmetric, its eigenvalues are real; moreover, let λ

(b)
max > 0 be the maximum and λ

(b)
min < 0

the minimum eigenvalue. In general, if

–
1

λ
(b)
max

<
L(s)
ν

<
1

|λ(b)
min|

, ∀s ∈ R, (40)

then the trajectory of the solutions of the dynamical system will never cross any singular
point, as sketched in Fig. 1.

3The condition of analyticity of all functions also implies that σ ∗ must be real, since a complex eigenvalue, σ ∗ = q+ iβ may
produce a behavior of the form ξ q cos(β logξ + δ) which is not regular at the origin.
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3.4 Selection mechanism for the nonlinear eigenvalue ν

The linear stability of the inner solution imposes a condition for ν ,

φ =
(2 + νq)

L(0) ,

where L(0) =
∑∞

n=1 κnH (0)
n , q is an integer, and –φ is an eigenvalue of the matrix

(anm – enm + qbnm).

However, the other amplitudes {H (0)
n } remain to be selected. The selection happens be-

cause of the existence of a heteroclinic orbit as a solution to the dynamical system. The
search for such a heteroclinic solution of the ordinary differential equations (34)–(37)
passes by a shooting-like method for the unknowns {H (0)

n }, that is, by tuning the param-
eters {H (0)

n }, to select the right solution that satisfies the right boundary conditions (32).
Additionally, the function L(s), defined through equation (37), has to satisfy condition (40).

Naturally, because this hierarchy is infinite, this is not an easy task. As we see in the
next section, this problem may be cumbersome even for a truncation keeping a moderate
number of variables. Nevertheless, some solutions do exist. In the following section, we
provide a numerical example of a solution.

4 Numerical search of a solution and for the second kind similarity exponent
To solve in practice the infinite ordinary differential equations system (34)–(37), it is
necessary to truncate these equations up to some order N , that is, the matrices indices
run from n = 1 up to n = N . Under this assumption, anm, bnm, etc., are N × N matri-
ces, and the self-similar functions are arrays of order N . Thus, (F1(s), F2(s), . . . , FN (s)),
(G1(s), G2(s), . . . , GN (s)), and (H1(s), H2(s), . . . , HN (s)).

For a given integer q = 1, 2, 3 . . . , it is required to solve a 3N-dimensional dynamical
system that needs N independently selected parameters.

A shooting method with N parameters can be done easily for N = 1, and perhaps for N =
2, however, for higher values of N it may be a cumbersome scheme. Therefore, we use a
differential evolution approach [19] to estimate the shooting parameters for the dynamical
set of equations (34)–(37), together with the boundary conditions (32) as an error estimate
[20].

In the following, we use a Fourier orthonormal basis with the inner product (16),

ϕn(θ ) =
2√
π

sin(2nθ ). (41)

In the Appendix, the specific values of the coefficients κn and the matrices a, b, etc., are
provided. Within this basis, we have found a large number of solutions of the problem
which are listed in Table 1.

Among these solutions, we notice first that for N = 1 the only existing solution is for
q = 1 and ν = 0.89005. Although in this case the vorticity, ωφ , is differentiable, since ωφ ∼
ρ sin(2θ ), the swirl velocity, vφ ∼ ρ3/2| sin(2θ )|, is not differentiable more than once at the
origin. Nevertheless, it is possible to relax the condition admitting to the space of solutions
the initial nonnegative swirl velocities which are smooth in v2

φ(r, z, t = 0).
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Table 1 Summary of some numerically obtained solutions

N q # nodes ν L(0) H(0)
1 H(0)

2 H(0)
3 H(0)

4

1 1† 1 0.89005 5.7801 12.8062 – – –

2 1§ 0 1.82365 1.53912 3.62004 0.73507 – –

2 2§ 0 1.10091 1.40061 3.13151 0.09930 – –
2 2† 1 1.31387 1.54258 2.84748 –1.99573 – –

3 2‡ 2 1.92233 1.94822 7.17371 6.01831 23.8935 –

3 3§ 0 0.6306 0.94388 1.85984 –0.756781 –0.31851 –

4 2‡ 2 2.7186 2.47909 4.33713 –4.58815 4.88998 –4.4704
4 2‡ 2 3.4453 2.9636 2.2837 –16.2556 9.9944 –6.5697

† The function L(s) has a single node. Because of the oscillations, this may be called an “excited state solution” of the
dynamical system.
§In this case, the function L(s) has no node. Because of the simplest heteroclinic trajectory, this may be called the “ground
state solution” of the dynamical system.
‡The function L(s) has two nodes corresponding to a higher “excited state”.

Figure 2 Numerical solutions of the system for the case N = 2. (a) Plots of the Fourier amplitudes F1(s) and
F2(s) (red and red-dashed), G1(s) and G2(s) (blue and blue-dashed), and H1(s) and H2(s) (green and
green-dashed). The solution selects ν = 1.10091, H(0)

1 = 3.13151, and H(0)
2 = 0.0993008. (Inset) The plot of the

function L(s) shows that it never crosses the critical points defined by condition (40). From L(s), F1(s), and G1(s),
we built the 3D heteroclinic orbit of Fig. 1. (b) Same plot as (a) but in semilog scale, log |Fn(s)|, log |Gn(s)|, and
log |Hn(s)| vs. s. One notices readily the exponential behavior for the inner behavior of the amplitudes
Fn(s) ∼ e2s and Gn(s) ∼ e2s . Additionally, we observe the right slopes 1/ν and 2/ν in the large s limit

For N = 2 we have observed the existence of multiple possible solutions for all q ≥ 1. For
N = 3 and q = 1, it follows that there is no suitable solution. In general, for q = 1 and N
odd and greater than 3, we have not found any suitable solution, therefore these solutions
either do not exist or are rare. A large number of solutions are obtained for N = 4.

Graphically we provide the particular case of N = 2 and q = 2. Figure 2(a) shows the
solutions for the six amplitudes, F1(s), F2(s), G1(s), G2(s), and H1(s), H2(s), as functions of
the variable, s.

Figure 2(b) shows the same plot in a semilog scale, that is, in a log–log scale if considering
the original variable ξ = log s. This plot clearly shows the power law behaviors as ξ → 0
and ξ → ∞.

As it can be seen in Fig. 2(a), the amplitudes F1(s), G1(s), and H1(s) have no nodes (ze-
roes), therefore, by analogy with the spectral theory of linear eigensystems, we call these
solutions as the “ground states” (see the parameter solutions labeled with a § in Table 1.
In the same vein, the first and second “excited states” are also obtained.
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Figure 3 (a) The self-similar function �φ (ξr ,ξz ) representing the finite-time singular behavior of the vorticity
field. (b) The self-similar function Vφ (ξr ,ξz ) representing the finite-time singular behavior of the swirl velocity

Finally, to represent the physical flow, Figs. 3(a) and 3(b) show the contour plots of the
self-similar vorticity (a) and the self-similar swirl velocity (b), defined by

�φ(ξr , ξz) =
∑
m=1

ϕm(θ )Fm(ξ ) and Vφ(ξr , ξz) = ξ

(∑
m=1

ϕm(θ )Gm(ξ )
)1/2

,

where the self-similar variables are defined in the cylindrical rescaled variables,

ξr = ξ sin θ and ξz = ξ cos θ .

The self-similar vorticity field, Fig. 3(a), as well as the swirl velocity, Fig. 3(b), show a
global circulation in the first quadrant, in the self-similar variables (ξr , ξz). After a recon-
struction of the full three-dimensional space, the main flow realized by the self-similar
solution has a quadrupolar structure.

5 Conclusions and discussion
By approximating the nonlocal Biot–Savart law and projecting the axial vorticity, ωφ , as
well as the swirl velocity, vφ , in an adequate basis, the original coupled set of partial differ-
ential equations for an axisymmetric flow is mapped into an infinite set of partial differ-
ential equations for the corresponding vorticity and swirl velocity amplitudes. The final
set of nonlinear partial differential equations admits a possible finite-time self-similar be-
havior. The existence of this finite-time singularity is possible by the solution of an infinite
system of ordinary differential equations with adequate boundary conditions.

Although the formal proof of an existing solution for the full infinite system seems to
be a great challenge, the existence of such a solution may be mapped into a dynamical
system problem, in which the required solution is selected by a high-dimensional shooting
argument. This scheme is corroborated via the numerical solution of the original infinite
dynamical system truncated up to a finite order N . We provide numerical solutions of the
truncated system, indicating strong evidence of the existence of a finite-time self-similar
solution of the axisymmetric Euler equations for incompressible fluids.
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We end this paper with the following remarks:
1 The validity of the approximate equations (8) and (9) depends on the Elgindi

approximation, that is, the contribution to the Biot–Savart integral from the inner
core must be negligible regarding the full integral. In other words, the following
inequality must be satisfied:

∣∣∣∣
∫ ∞

ηρ

dρ ′

ρ ′

∫ π/2

0
sin2 θ ′ cos θ ′ωφ

(
ρ ′, θ ′, t

)
dθ ′

∣∣∣∣
�

∣∣∣∣
∫ ηρ

0

dρ ′

ρ ′

∫ π/2

0
sin2 θ ′ cos θ ′ωφ

(
ρ ′, θ ′, t

)
dθ ′

∣∣∣∣.

Here the left-hand side corresponds to Elgindi approximation and the right-hand
side to the inner contribution, assumed negligible. By using the series expansion
(15), the inequality becomes

∣∣∣∣∣
∞∑

n=1

κn

∫ ∞

ηξ

Fn
(
ξ ′)dξ ′

ξ ′

∣∣∣∣∣ �
∣∣∣∣∣

∞∑
n=1

κn

∫ ηξ

0
Fn

(
ξ ′)dξ ′

ξ ′

∣∣∣∣∣.

By the results of Sect. 3.3, the value of the inner core solution of the self-similar
vorticity becomes Fn(ξ ) ∼ ξ q, therefore we conclude

∣∣∣∣∣
∞∑

n=1

κn

∫ ∞

ηξ

Fn
(
ξ ′)dξ ′

ξ ′

∣∣∣∣∣ � (ηξ )q

q

∞∑
n=1

κn.

Because κn ∼ 1/n3, the series converges,4 the right-hand side may be as small as
desired as ξ → 0, therefore, negligible regarding the Elgindi approximation.5

2 Neglecting advective terms, that is, whenever the matrix elements anm, bnm are
zero, and also setting the swirl velocity to zero (Gn = 0) in equations (28) and (29),
makes possible finding an exact solution of the resulting self-similar equation for
the vorticity (28). The resulting dynamical system simplifies to

Fn + νξF ′
n + L(ξ )Fn = 0, and ξL′(ξ ) = –

∞∑
p=1

κpFp(s). (42)

This infinite set of ordinary differential equations corresponds to Elgindi solution
[14]. It can be integrated directly

L(ξ ) = –
2

Kξ 1/ν + 1
, (43)

which is not smooth at ξ = 0, unless 1/ν is a positive integer, whereas Elgindi
showed that advection may be discarded if and only if 1/ν → 0. Nevertheless, an
interesting feature of this solution is that L(ξ = 0) < 0, contrary to the numerically
obtained solutions for the full ODE system in Sect. 4.

4More specifically,
∑∞

n=1 κn → 0.2821. . . .
5S.R. is indebted to Isabelle Gallagher who motivated this remark.
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3 Additionally, setting the swirl velocity to zero, i.e., Gn ≡ 0 ∀n, the system (34)–(37)
cannot be integrated analytically, but it can be solved numerically. As expected, the
possible numerical solutions do not satisfy the outer boundary conditions, therefore
there is no possible solution in the case of zero swirl, in agreement with
Ukhovskii–Yudovich [21].

Appendix: Computation of the matrix elements
In the following, we compute explicitly the matrix elements defined in equation (23):

κn = 2
3
4

∫ π/2

0
ϕn

(
θ ′) sin2 θ ′ cos θ ′ dθ ′ = –

12n√
π (4n2 – 9)(4n2 – 1)

,

anm = –
〈
ϕn, 3 sin θ cos θ

∂ϕm

∂θ

〉
=

3
2

⎧⎪⎪⎨
⎪⎪⎩

(n + 1) if m = n + 1,

–(n – 1) if m = n – 1,

0 otherwise,

bnm = –
〈
ϕn,

(
1 – 3 cos2 θ

)
ϕm

〉
=

1
4

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if n = m,

3 if m = n + 1,

3 if m = n – 1,

0 otherwise,

cnm =
〈
ϕn,

∂ϕm

∂θ

〉
=

4
π

mn((–1)m+n – 1)
(m2 – n2)

,

dnm = –
〈
ϕn,

cos θ

sin θ
ϕm

〉
,

enm =
〈
ϕn, 2

(
2 sin2 θ – cos2 θ

)
ϕm

〉
=

1
2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if n = m,

–3 if m = n + 1,

–3 if m = n – 1,

0 otherwise.

No simple closed expression was found for the matrix elements dnm.
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