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Abstract
In this paper, a model of branching processes with random control functions and
affected by viral infectivity in independent and identically distributed random
environments is established, and the Markov property of the model and a sufficient
condition for the model to be certainly extinct under some conditions are discussed.
Then, the limit properties of the model are studied. Under the normalization factor
{Sn : n ∈ N}, the normalization processes {Ŵn : n ∈ N} are studied, and the sufficient
conditions of {Ŵn : n ∈ N} a.s., L1 and L2 convergence are given; A sufficient condition
and a necessary condition for convergence to a nondegenerate at zero random
variable are obtained. Under the normalization factor {In : n ∈ N}, the normalization
processes {W̄n : n ∈ N} are studied, and the sufficient conditions of {W̄n : n ∈ N} a.s.,
and L1 convergence are obtained.

Keywords: Branching processes; Random environments; Viral infectivity; Limit
properties; Random control functions; Certainly extinct

1 Introduction
As an extension of the classical branching process, Sevast’yanov and Zubkov ([1]) estab-
lished the branching process controlled by a real-valued function and studied the extinc-
tion and nonextinction probability of the model. Subsequently, Zubkov and Yanev ([2, 3])
generalized the model and established a controlled branching process with random con-
trol functions and discussed the conditions of extinction and nonextinction of the model.
Yanev, Yanev, and Holzheimejr ([4–6]) studied some properties of the controlled branch-
ing processes in random environments, such as the extinction probability and extinction
conditions. By using the properties of a conditional probability generating function, Bi and
Li ([7]) obtained a sufficient condition for the inevitable extinction of a controlled branch-
ing process in random environments. Fang, Yang, and Li ([8]) studied the convergence
rate of the limit of a normalized controlled branching process with random control func-
tion in random environments. Li, et al. ([9]) discussed the Markov property of a controlled
branching process in random environments and the limit properties of the process after
proper normalization, such as the conditions for convergence almost everywhere, con-
vergence in L1 and L2. More research on controlled branching processes in random envi-
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ronments can be found in the literature ([10–14]). The reproduction process of species is
affected by many factors such as natural environment and social environment, and highly
infectious viruses such as the influenza virus, the SARS virus, and the novel coronavirus
all have direct or indirect effects on the reproduction of species. Around 50 million people
worldwide died of influenza in 1918, and according to the WHO, around 6.3 million peo-
ple have died of the novel coronavirus as of June 30, 2022. Based on these issues, Ren et al.
studied the Markov property of branching processes affected by viral infectivity in random
environments, the limit properties of normalized processes, such as sufficient conditions
for convergence almost everywhere and convergence in L1 and the bisexual branching
process affected by viral infectivity in random environments, and gave the Markov prop-
erty of the model, the properties of the probability generating function, and the extinction
condition of the processes ([15, 16]).

In this paper, we mainly study the Markov property, extinction probability, and some
limit properties of the branching process with random control functions and affected by
virus infectivity in random environments, and discuss the limit properties of the normal-
ized processes {Ŵn, n ∈ N} and {W̄n, n ∈ N}, such as the conditions for convergence almost
everywhere and convergence in L1 and L2.

The remainder of this paper is organized as follows. In Sect. 2, some notations, defini-
tions, and conventions are introduced. Sections 3–6 are devoted to presenting the main
results, including the Markov property, the extinction probability, and the limit properties.

2 Preliminaries
In this section we present a convention, some notations, and basic definitions, which will
be used in the remainder of the paper.

Let (�,F, P) be a probability space, (�,�) a measurable space, �ξ = {ξ0, ξ1, . . .} an inde-
pendent and identically distributed (i.i.d.) sequence of random variables mapping from
(�,F, P) to (�,�), and N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}. T is a shift operator such that T(�ξ ) =
{ξ1, ξ2, . . .}. {Xnj, n ∈ N , j ∈ N+} is a cluster of random variables mapping from (�,F, P) to N .
Let {Pi(θ ) : θ ∈ �, i ∈ N+}, {Q(θ ; k, i) : θ ∈ �, k, i ∈ N} and {αx(θ )(1 – α(θ ))1–x, θ ∈ �, x =
0, 1} be probability distribution sequences. Let {φn(k) : n, k ∈ N} be a cluster of i.i.d. ran-
dom functions with respect to n, from N to N , with distribution Q(ξn; k, i) = P(φn(k) = i|�ξ ),
i ∈ N .

Definition 2.1 If {Zn, n ∈ N} satisfies
(i) Z0 = N0, Zn+1 =

∑φn(Zn)
j=1 XnjInj, n ∈ N , N0, j ∈ N+;

(ii) P(Xnj = r|�ξ ) = Pr(ξn), r, n ∈ N , j ∈ N+, P(Inj = x|�ξ ) = αx(ξn)(1 – α(ξn))(1–x), x = 0 or 1,
n ∈ N , j ∈ N+;

(iii) P(Xnj = rnj, 1 ≤ j ≤ l, 0 ≤ n ≤ m|�ξ ) =
∏m

n=0
∏l

j=1 P(Xnj = rnj|�ξ ), rnj ∈ N , 1 ≤ j ≤ l,
0 ≤ n ≤ m, m ∈ N , l ∈ N+;

(iv) for given
−→
ξ , {Xnj : n ∈ N , j ∈ N+}, {Inj : n ∈ N , j ∈ N+} and {φn(k) : n, k ∈ N} are of

mutually conditional independence; furthermore, for given n, {(Xnj, Inj) : j ∈ N+} is a
sequence of i.i.d. two-dimensional random variables.

Then, {Zn, n ∈ N} is called a branching process with random control functions and af-
fected by virus infectivity in random environments.

In the model under consideration, Xnj represents the number of offspring produced by
the jth particle in the nth generation. We set Inj = 0 when the jth particle in the nth gener-
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ation dies of a viral infection, that is, it does not participate in the reproduction of the next
generation; Inj = 1 means the jth particle in the nth generation does not have the virus or
was cured of it, that is, it normally participates in the reproduction of the next generation,
α(ξn) represents the probability that the nth-generation particles will not be affected by
the virus. Zn+1 represents the total number of the (n + 1)th-generation particles, φn(·) rep-
resents the control function in the reproduction process of the nth-generation particles
and φn(k) = i means that when the total number of the nth-generation particles is k, of
which the number of particles participating in the reproduction of offspring is i.

We further introduce some convention and notations, which will be used in the follow-
ing discussion.

In order to avoid the trivialities of the process, we assume throughout that
(A1) For any n ∈ N , it holds that

0 < P0(ξn) + P1(ξn) < 1, 0 < P
(
φn(k) = k|�ξ)

< 1, a.s., k ∈ N+.

(A2) For any n ∈ N , it holds that

0 < α(ξn) < 1, a.s.

Otherwise, if α(ξn) = 1, a.s., for any n ∈ N , then the model under consideration will be the
one in reference [9].

We give some notations by

Fn(�ξ ) = σ (Z0, Z1, . . . , Zn; �ξ ), m(ξn) = E(Xn1|�ξ ), m2(ξn) = E
(
X2

n1|�ξ
)
,

ε(ξn, Zn) = Z–1
n E

(
φn(Zn)|�ξ)

, ε(ξn) = sup
Zn≥0

ε(ξn, Zn), ε1(ξn) = inf
Zn≥0

ε(ξn, Zn),

εZn (ξn) = ε(ξn) – ε(ξn, Zn), δ2(ξn, k) = Var
(
φn(k)|�ξ)

,

δ2(ξn) = sup
k≥1

δ2(ξn, k), n ∈ N , k ∈ N+.

A =

{

(rl, dl) :
k∑

l=1

rldl = j, rl ∈ N , dl = 0 or 1, l = 1, 2, . . . , k, k ∈ N+

}

.

3 Markov property
Definition 3.1 If for any x, n ∈ N , it holds that

P(X0 = x0|�ξ ) = P(X0 = x0|ξ0), (3.1)

P(Xn+1 = x|X0, X1, . . . , Xn, �ξ ) = P(ξn; Xn, x). (3.2)

Then, �X is defined as a Markov chain in random environment �ξ .

Theorem 3.2 {Zn, n ≥ 0} is a Markov chain in random environment �ξ with the one-step
transition probabilities

P(ξn; i, j) =
∞∑

k=0

Q(ξn; i, k) ·
∑

(rl ,dl)∈A

k∏

l=1

prl (ξn)αdl (ξn)
(
1 – α(ξn)

)(1–dl).
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Proof From the definition of {Zn, n ≥ 0}, we have P(Z0 = N0|�ξ ) = P(Z0 = N0|ξ0), namely
equation (3.1) holds.

The following is to prove equation (3.2) is true. When �ξ is given, for any n ∈ N , k ∈ N+,
φn(k), Xnk and Ink are mutually independent, hence we obtain, for any i, j, i1, . . . , in–1 ∈ N+,

P(Zn+1 = j|Z0 = N0, Z1 = i1, . . . , Zn–1 = in–1, Zn = i, �ξ )

= P

(
φn(Zn)∑

l=1

XnlInl = j
∣
∣
∣Z0 = N0, Z1 = i1, . . . , Zn–1 = in–1, Zn = i, �ξ

)

=
P(

∑φn(Zn)
l=1 XnlInl = j, Z0 = N0, Z1 = i1, . . . , Zn–1 = in–1, Zn = i|�ξ )

P(Z0 = N0, Z1 = i1, . . . , Zn–1 = in–1, Zn = i|�ξ )

=
∞∑

k=0

P

(
φn(i)∑

l=1

XnlInl = j,φn(i) = k
∣
∣
∣�ξ

)

=
∞∑

k=0

Q(ξn; i, k) ·
∑

(rl ,dl)∈A

k∏

l=1

prl (ξn)αdl (ξn)
(
1 – α(ξn)

)(1–dl).

By Definition 3.1, it is immediately obvious that {Zn, n ≥ 0} is a Markov chain in random
environment �ξ with one-step transition probabilities

P(ξn; i, j) =
∞∑

k=0

Q(ξn; i, k) ·
∑

(rl ,dl)∈A

k∏

l=1

prl (ξn)αdl (ξn)
(
1 – α(ξn)

)(1–dl).
�

Lemma 3.3 For any n ∈ N , it holds that
(i) E(Zn+1|Fn(�ξ )) = Znm(ξn)α(ξn)ε(ξn, Zn) a.s.

In particular, it follows that

N0

n–1∏

i=0

m(ξi)α(ξi)ε1(ξi) ≤ E(Zn|�ξ ) ≤ N0

n–1∏

i=0

m(ξi)α(ξi)ε(ξi).

(ii) Var(Zn+1|Fn(�ξ )) = Znε(ξn, Zn) Var(Xn1In1|�ξ ) + m2(ξn)α2(ξn)δ2(ξn, Zn).

Proof (i) Theorem 3.2 implies that

E
(
Zn+1|Fn(�ξ )

)
=

∞∑

j=0

jP(ξn; Zn, j)

=
∞∑

j=0

j ·
∞∑

k=0

Q(ξn; Zn, k) ·
∑

(rl ,dl)∈A

k∏

l=1

prl (ξn)αdl (ξn)
(
1 – α(ξn)

)(1–dl)

=
∞∑

k=0

Q(ξn; Zn, k) ·
∞∑

j=0

j ·
{

∑

(rl ,dl)∈A

k∏

l=1

prl (ξn)αdl (ξn)
(
1 – α(ξn)

)(1–dl)
}

=
∞∑

k=0

Q(ξn; Zn, k) ·
∞∑

j=0

j · P

( k∑

l=1

XnlInl = j
∣
∣
∣�ξ

)
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=
∞∑

k=0

Q(ξn; Zn, k)km(ξn)α(ξn) = m(ξn)α(ξn)E
(
φn(Zn)|�ξ)

= Znm(ξn)α(ξn)ε(ξn, Zn).

Since

E(Zn+1|�ξ ) = E
(
E
(
Zn+1|Fn(�ξ )

)|�ξ)
= m(ξn)α(ξn)ε(ξn, Zn)E(Zn|�ξ ), (3.3)

the recurrence relation of equation (3.3) gives

E(Zn+1|�ξ ) = N0

n∏

i=0

m(ξi)α(ξi)ε(ξi, Zi).

By the definitions of ε(ξn) and ε1(ξn), we deduce that

N0

n–1∏

i=0

m(ξi)α(ξi)ε1(ξi) ≤ E(Zn|�ξ ) ≤ N0

n–1∏

i=0

m(ξi)α(ξi)ε(ξi).

(ii) Using Theorem 3.2 gives

E
(
Z2

n+1|Fn(�ξ )
)

=
∞∑

j=0

j2P(ξn; Zn, j)

=
∞∑

j=0

j2 ·
∞∑

k=0

Q(ξn; Zn, k)
∑

(rl ,dl)∈A

k∏

l=1

prl (ξn)αdl (ξn)
(
1 – α(ξn)

)(1–dl)

=
∞∑

k=0

Q(ξn; Zn, k)
∞∑

j=0

j2 · P

( k∑

l=1

XnlInl = j
∣
∣
∣�ξ

)

=
∞∑

k=0

Q(ξn; Zn, k)E

(( k∑

l=1

XnlInl

)2∣
∣
∣�ξ

)

=
∞∑

k=0

Q(ξn; Zn, k)kE
(
X2

n1I2
n1|�ξ

)
+

∞∑

k=0

Q(ξn; Zn, k)k(k – 1)
(
E(Xn1In1|�ξ )

)2

=
∞∑

k=0

Q(ξn; Zn, k)k
{

E
(
X2

n1I2
n1|�ξ

)
–

(
E(Xn1In1|�ξ )

)2}

+
∞∑

k=0

Q(ξn; Zn, k)k2(m(ξn)α(ξn)
)2

= Zn Var(Xn1In1|�ξ )ε(ξn, Zn) + m2(ξn)α2(ξn)
(
δ2(ξn, Zn) + Z2

nε
2(ξn, Zn)

)
.

Thus, it holds that

Var
(
Zn+1|Fn(�ξ )

)
= E

(
Z2

n+1|Fn(�ξ )
)

– (E
(
Zn+1|Fn(�ξ )

)2

= Znε(ξn, Zn) Var(Xn1In1|�ξ ) + m2(ξn)α2(ξn)δ2(ξn, Zn). �
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4 The extinction probability of {Zn, n ∈ N}
An important tool in the analysis of the branching process in random environments is the
generating function. In order to discuss the extinction probability of the model, we first
introduce the relevant conditional probability generating function of the model as follows

�ξn (s) = E
(
sZn |�ξ , Z0 = N0

)
, fξn (s) = E

(
sXni |�ξ , Z0 = N0

)
, n ∈ N , 0 ≤ s ≤ 1.

For any n ∈ N , i ∈ N+, from the independence of Xni and Ini, we obtain

E
(
sXniIni |�ξ , Z0 = N0

)
= 1 – α(ξn) + α(ξn)fξn (s)

and we designate B(w) = {w : Zn = 0, n ∈ N+}, q(�ξ ) = P(B(w)|�ξ , Z0 = N0) and q = P(B(w)|
Z0 = N0), then q = E(q(�ξ )).

If for some n ∈ N , q = 1, then we say {Zn, n ∈ N} is certainly extinct; otherwise, {Zn, n ∈
N} is noncertainly extinct.

Lemma 4.1 If there exists a sequence of i.i.d. random variables {ηn, n ∈ N} such that for
any n ∈ N , supk≥1

φn(k)
k ≤ ηn a.s., then

�ξn (s) ≥ {
1 – α(ξ0) + α(ξ0)fξ0

[(
1 – α(ξ1) + α(ξ1)fξ1

(
. . .

(
1 – α(ξn–1)

+ α(ξn–1)fξn–1 (s)
)ηn–1 · · · ))η1]}η0N0 . (4.1)

Proof From the assumed condition, the properties of the generating functions of condi-
tional probability and the fact that for any fixed n, XnjInj is i.i.d. with respect to j, it follows
that

E
(
sZ1 |�ξ , Z0 = N0

)
= E

(
s
∑φ0(Z0)

j=1 X0jI0j |�ξ , Z0 = N0
)

= E
((

1 – α(ξ0) + α(ξ0)fξ0 (s)
)φ0(N0)|�ξ)

=
{

1 – α(ξ0) + α(ξ0)fξ0 (s)
}φ0(N0)

≥ {
1 – α(ξ0) + α(ξ0)fξ0 (s)

}η0N0 ,

namely (4.1) holds for n = 1. Supposing (4.1) holds for n = k, we deduce by induction, for
n = k + 1,

�ξk+1 (s) = E
(
E
(
sZk+1 |Z0 = N0, Z1, . . . , Zk , �ξ)|�ξ , Z0 = N0

)

= E
(
E
(
s
∑φk (Zk )

j=1 XkjIkj |Z0 = N0, Z1, . . . , Zk , �ξ)|�ξ , Z0 = N0
)

= E
((

1 – α(ξk) + α(ξk)fξk (s)
)φk (Zk )|�ξ , Z0 = N0

)

≥ E
(((

1 – α(ξk) + α(ξk)fξk (s)
)ηk )Zk |�ξ , Z0 = N0

)

≥ {
1 – α(ξ0) + α(ξ0)fξ0

[(
1 – α(ξ1) + α(ξ1)fξ1

(· · · (1 – α(ξk)

+ α(ξk)fξk (s)
)ηk · · · ))η1]}η0N0 ,
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namely (4.1) holds for n = k + 1, which completes the proof of Lemma 4.1,

μn(�ξ , �η) =
{

1 – α(ξ0) + α(ξ0)fξ0

[(
1 – α(ξ1) + α(ξ1)fξ1

(· · · (1 – α(ξn–1)

+ α(ξn–1)fξn–1 (0)
)ηn–1 · · · ))η1]}η0N0 , n ∈ N+.

By the properties of generating functions,

0 ≤ μn(�ξ , �η) ≤ μn+1(�ξ , �η) ≤ 1, a.s.

and

μn(�ξ , �η) =
[
1 – α(ξ0) + α(ξ0)fξ0

(
μn–1(T�ξ , T �η)

)]η0N0 .

Thus, μ(�ξ , �η) = limn→∞ μn(�ξ , �η) a.s., and

μ(�ξ , �η) =
[
1 – α(ξ0) + α(ξ0)fξ0

(
μ(T�ξ , T �η)

)]η0N0 a.s.

For q(�ξ ) = limn→∞ �ξn (0), then by (4.1)

q(�ξ ) ≥ μ(�ξ , �η) a.s. �

Lemma 4.2 Suppose for any n ∈ N ,
(a) If there exists a sequence of i.i.d. random variables {ηn, n ∈ N} such that

sup
k≥1

φn(k)
k

≤ ηn a.s.;

(b) E((logη0N0α(ξ0)f ′
ξ0

(1))+) < ∞ and 1–(1–α(ξ0)+α(ξ0)fξ0 (s))η0N0

1–s is strictly monotonically
increasing with respect to s on (0, 1].

Then, on {q(�ξ ) < 1}, it holds that
(i) E(| log 1–μ(�ξ ,�η)

1–μ(T�ξ ,T �η) |) < ∞, E(log 1–μ(�ξ ,�η)
1–μ(T�ξ ,T �η) ) = 0;

(ii) E(| log N0η0α(ξ0)f ′
ξ0

(1)|) < ∞, E(log N0η0α(ξ0)f ′
ξ0

(1)) > 0.

Proof To prove (i), by Lemma 4.1, we obtain

q(�ξ ) ≥ μ(�ξ , �η) a.s.,

hence,

{
q(�ξ ) < 1

} ⊂ {
μ(�ξ , �η) < 1

}
.

If

P
(
q(�ξ ) < 1

)
> 0,

then

P
(
μ(�ξ , �η) < 1

)
> 0.
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Denote

h(�ξ , �η) = – log
(
1 – μ(�ξ , �η)

)
, f (�ξ , �η) = – log

1 – μ(�ξ , �η)
1 – μ( �Tξ , �Tη)

,

then

P
(
0 < h(�ξ , �η) < ∞)

> 0.

Since

– log
(
1 – μ(�ξ , �η)

)
= – log

1 – μ(�ξ , �η)
1 – μ( �Tξ , �Tη)

– log
(
1 – μ(T�ξ , T �η)

)
,

then

h(�ξ , �η) = f (�ξ , �η) + h(T�ξ , T �η)

and iterating this gives

h(�ξ , �η) = f (�ξ , �η) + f (T�ξ , T �η) + · · · + f
(
Tn�ξ , Tn �η)

+ h
(
Tn+1�ξ , Tn+1 �η)

.

Hence, on {q(�ξ ) < 1}, by the nonnegativity of h(�ξ , �η), we arrive at

n∑

j=0

f
(
Tj�ξ , Tj �η) ≤ h(�ξ , �η),

i.e.,

n–1

{ n∑

j=0

f +(
Tj�ξ , Tj �η)

–
n∑

j=0

f –(
Tj�ξ , Tj �η)

}

≤ n–1h(�ξ , �η). (4.2)

From the monotonicity of 1–[1–α(ξ0)+α(ξ0)fξ0 (s))]η0N0

1–s , it follows that

0 ≤ E
(
f –(�ξ , �η)

)
= E

(
–f (�ξ , �η), f (�ξ , �η) ≤ 0

)

= E
(

log
1 – [1 – α(ξ0) + α(ξ0)fξ0 (μ(T�ξ , T �η))]η0N0

1 – μ(T�ξ , T �η)
,

1 – [1 – α(ξ0) + α(ξ0)fξ0 (μ(T�ξ , T �η))]η0N0

1 – μ(T�ξ , T �η)
≥ 1

)

≤ E
(
logη0N0α(ξ0)f ′

ξ0 (1)
[
1 – α(ξ0) + α(ξ0)fξ0 (1)

]η0N0–1,η0N0α(ξ0)f ′
ξ0 (1) ≥ 1

)

≤ E
(
logη0N0α(ξ0)f ′

ξ0 (1),η0N0α(ξ0)f ′
ξ0 (1) ≥ 1

)

= E
((

logη0N0α(ξ0)f ′
ξ0 (1)

)+)
< ∞.
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On {q(�ξ ) < 1}, it holds that limn→∞ n–1h(�ξ , �η) = 0. Since (�ξ , �η) are i.i.d., according to (4.2),
we arrive at

0 ≤ lim sup
n→∞

n–1
n∑

j=0

f +(
Tj�ξ , Tj �η) ≤ E

((
logη0N0α(ξ0)f ′

ξ0 (1)
)+)

< ∞.

By the law of large numbers, we have E(f +(�ξ , �η)) < ∞, so E(|f (�ξ , �η)|) < ∞. As

E
(
f (�ξ , �η)

)
= lim

n→∞ n–1
n∑

j=0

f
(
Tj�ξ , Tj �η)

= lim
n→∞ n–1{h(�ξ , �η) – h

(
Tn+1�ξ , Tn+1 �η)}

,

limn→∞ n–1h(�ξ , �η) = 0 and (�ξ , �η) are i.i.d., then limn→∞ n–1h(Tn+1�ξ , Tn+1 �η) = 0.
Thus, we have E(f (�ξ , �η)) = 0, which completes the proof of (i).
Now, we turn to prove (ii). We only need to show that

E
((

logη0N0α(ξ0)f ′
ξ0 (1)

)–) ≤ E
((

logη0N0α(ξ0)f ′
ξ0 (1)

)+)
.

A direct calculation gives

E
((

logη0N0α(ξ0)f ′
ξ0 (1)

)–)

= E
(
– logη0N0α(ξ0)f ′

ξ0 (1),η0N0α(ξ0)f ′
ξ0 (1) ≤ 1

)

≤ E
(

– log
1 – [1 – α(ξ0) + α(ξ0)fξ0 (μ(T�ξ , T �η))]η0N0

1 – μ(T�ξ , T �η)
,η0N0α(ξ0)f ′

ξ0 (1) ≤ 1
)

= E
(

– log
1 – μ(�ξ , �η)

1 – μ(T�ξ , T �η)
,η0N0α(ξ0)f ′

ξ0 (1) ≤ 1
)

≤ E
(
f (�ξ , �η), f (�ξ , �η) ≥ 0

)
= E

(
f +(�ξ , �η)

)

≤ E
((

logη0N0α(ξ0)f ′
ξ0 (1)

)+)
< ∞.

If

E
((

logη0N0α(ξ0)f ′
ξ0 (1)

)+)
= E

((
logη0N0α(ξ0)f ′

ξ0 (1)
)–)

,

then

E
(
logη0N0α(ξ0)f ′

ξ0 (1)
)

= 0

and since E(f (�ξ , �η)) = 0, then

E
(
f (�ξ , �η) + logη0N0α(ξ0)f ′

ξ0 (1)
)

= 0.

From the assumed monotonicity it follows that

P
(
f (�ξ , �η) + logη0N0α(ξ0)f ′

ξ0 (1) ≥ 0
)

= 1,
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and

P
(
f (�ξ , �η) + logη0N0α(ξ0)f ′

ξ0 (1) > 0
)

> 0,

unless P(P1(ξn) = 1) = 1, which contradicts with

P
(
P0(ξn) + P1(ξn) < 1

)
= 1.

Thus, it holds that

E
(
logη0N0α(ξ0)f ′

ξ0 (1)
)

> 0. �

Theorem 4.3 Suppose for any n ∈ N ,
(i) If there exists a sequence of i.i.d. random variables {ηn, n ∈ N} such that

sup
k≥1

φn(k)
k

≤ ηn a.s.;

(ii) E((logη0N0α(ξ0)f ′
ξ0

(1))+) < ∞ and 1–(1–α(ξ0)+α(ξ0)fξ0 (s))η0N0

1–s is strictly monotonically
increasing with respect to s on (0, 1].

Then, when E((logη0N0α(ξ0)f ′
ξ0

(1))) ≤ 0, we have P(q(�ξ ) = 1) = 1, i.e., {Zn, n ∈ N} is cer-
tainly extinct.

Proof We proceed with the proof by contradiction. Suppose P(q(�ξ ) = 1) < 1 when
E((logη0N0α(ξ0)f ′

ξ0
(1))) ≤ 0, then

P
(
q(�ξ ) < 1

)
= 1 – P

(
q(�ξ ) = 1

)
> 0.

From Lemma 4.2 we obtain that the assumed conditions (i) and (ii) in this theorem hold,
then on {q(�ξ ) < 1},

E
((

logη0N0α(ξ0)f ′
ξ0 (1)

))
> 0,

which contradicts our assumption and completes the proof. �

Since the expression of the conditional expectation of the process cannot be calculated
precisely, using the upper and lower bounds of the conditional expectation of the process
given by Lemma 3.3, we define two random sequences {Sn, n ∈ N} and {In, n ∈ N}, where

Sn = N0

n–1∏

k=0

m(ξk)α(ξk)ε(ξk), In = N0

n–1∏

k=0

m(ξk)α(ξk)ε1(ξk), n ∈ N+,

and obviously S0 = I0 = N0. Regarding Sn and In as normalized factors, we define two ran-
dom sequences as Ŵn = ZnS–1

n , W̄n = ZnI–1
n , n ∈ N .

In what follows, we discuss the limit properties of {Ŵn, n ∈ N} and {W̄n, n ∈ N}.
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5 The limit properties of {Ŵn, n ∈ N}
Theorem 5.1 {Ŵn,Fn(�ξ ), n ∈ N} is a nonnegative supermartingale, and there exists a non-
negative finite random variable Ŵ such that

lim
n→∞ Ŵn = Ŵ a.s.

and

E(Ŵ |�ξ ) ≤ 1.

Proof From Lemma 3.3 we obtain

E
(
Ŵn+1|Fn(�ξ )

)
= S–1

n+1E(Zn+1|�ξ ) = S–1
n+1Znm(ξn)α(ξn)ε(ξn, Zn) ≤ S–1

n Zn = Ŵn, (5.1)

namely {Ŵn,Fn(�ξ ), n ∈ N} is a nonnegative supermartingle. According to the Doob mar-
tingale convergence theorem, there exists a nonnegative, finite random variable Ŵ satis-
fying

lim
n→∞ Ŵn = Ŵ a.s.

Taking the conditional expectation with respect to ξ on both sides of of (5.1), we are able
to obtain recursively

E(Ŵn+1|�ξ ) = E
(
E
(
Ŵn+1|Fn(�ξ )

)|�ξ) ≤ E(Ŵn|�ξ ) ≤ · · · ≤ E(Ŵ0|�ξ ) = 1.

Using the Fatou Lemma gives

E(Ŵ |�ξ ) = E
(

lim inf
n→∞ Ŵn

∣
∣�ξ

)
≤ lim inf

n→∞ E(Ŵn|�ξ ) ≤ 1,

which completes the proof. �

Theorem 5.2 If
∑∞

i=0 E( m2(ξi)
Sim2(ξi)α(ξi)ε(ξi)

) < ∞ and
∑∞

i=0 E( δ2(ξi)
S2

i ε2(ξi)
) < ∞, then {Ŵn, n ∈ N} is

bounded in L2 and converges in L1 to Ŵ .

Proof From Lemma 3.3 and the fact that for given �ξ and any n ∈ N , k ∈ N+, Xnk and Ink

are mutually independent, one can derive

E
(
Ŵ 2

n+1|Fn(�ξ )
)

= S–2
n+1E

(
Z2

n+1|Fn(�ξ )
)

= S–2
n+1

{
Znε(ξn, Zn) Var(Xn1In1|�ξ ) + m2(ξn)α(ξn)

[
δ2(ξn, Zn)

+ Z2
nε

2(ξn, Zn)
]}

≤ Ŵ 2
n + Ŵn

Var(Xn1In1|�ξ )
Snm2(ξn)α2(ξn)ε(ξn)

+
δ2(ξn)

S2
nε

2(ξn)

≤ Ŵ 2
n + Ŵn

m2(ξn)
Snm2(ξn)α(ξn)ε(ξn)

+
δ2(ξn)

S2
nε

2(ξn)
. (5.2)
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Taking the conditional expectation on both sides of (5.2) and combining with Theo-
rem 5.1, we have

E
(
Ŵ 2

n+1|�ξ
)

= E
(
E
(
Ŵ 2

n+1|Fn(�ξ )
)|�ξ)

≤ E
(
Ŵ 2

n |�ξ)
+ E

((

Ŵn · m2(ξn)
Snα(ξn)ε(ξn)m2(ξn)

+
δ2(ξn)

S2
nε

2(ξn)

)∣
∣
∣�ξ

)

≤ E
(
Ŵ 2

n |�ξ)
+

m2(ξn)
Snα(ξn)ε(ξn)m2(ξn)

+
δ2(ξn)

S2
nε

2(ξn)
. (5.3)

Taking the expectation on both sides of (5.3), it is deduced recursively that

E
(
Ŵ 2

n+1
) ≤ 1 + E

( n∑

i=0

m2(ξi)
Siα(ξi)ε(ξi)m2(ξi)

)

+ E

( n∑

i=0

δ2(ξi)
S2

i ε
2(ξi)

)

. (5.4)

Owing to the assumed condition, we obtain that {EŴ 2
n , n ∈ N} is bounded, namely

{Ŵn, n ∈ N} is bounded in L2. Hence, {Ŵn, n ∈ N} is uniformly integrable, which combined
with Theorem 5.1 yields the desired result that {Ŵn, n ∈ N} converges in L1 to Ŵ . �

Now, we give the condition that the limit Ŵ of {Ŵn, n ∈ N} is nondegenerate, beginning
by introducing a Lemma.

Lemma 5.3 ([10]) Set R+ = (0, +∞), when �ξ is given, for any fixed n ∈ N ,
(i) If {aj(ξn), j ∈ N+} is a nondecreasing sequence, there exists a nondecreasing function

ϕξn (·) on R+ such that ϕξn (x) ≥ a1(ξn), x > 0; ϕξn (j) ≤ aj(ξn), j ∈ N+ and
ϕ∗

ξn (x) ≡ x · ϕξn (x), x > 0 is convex.
(ii) If {aj(ξn), j ∈ N+} is a nonincreasing sequence, there exists a nonincreasing function

ψξn (·) on R+ such that ψξn (x) ≤ a1(ξn), x > 0; ψξn (j) ≥ aj(ξn), j ∈ N+ and
ψ∗

ξn (x) ≡ x · ψξn (x), x > 0 is concave.

For any fixed n ∈ N , let {ε(ξn, k) : k ∈ N+} be a nondecreasing sequence, then by
Lemma 5.3 there exists a nondecreasing ϕξn (·) on R+ such that ϕξn (x) ≥ ε(ξn; 1), x > 0;
ϕξn (j) ≤ ε(ξn; j), j ∈ N+ and ϕ∗

ξn (x) ≡ xϕξn (x), x > 0 is convex.

Theorem 5.4 For any fixed n ∈ N , if {ε(ξn; k) : k ∈ N+} is a nondecreasing sequence and

E

( ∞∏

i=0

ϕξi (N0
∏i–1

j=0 m(ξj)α(ξj)ε1(ξj))
ε(ξi)

)

> 0,

then E(Ŵ ) > 0, i.e., P(Ŵ > 0) > 0.

Proof From the Lemmas 3.3 and 5.3, one obtains

E
(
Ŵn+1|Fn(�ξ )

)
= S–1

n+1Znm(ξn)α(ξn)ε(ξn; Zn)

≥ S–1
n+1Znm(ξn)α(ξn)ϕξn (Zn)

= S–1
n+1m(ξn)α(ξn)ϕ∗

ξn (Zn) a.s. (5.5)
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Since for any n ∈ N , ϕξn (·) is nondecreasing and ϕ∗
ξn (·) is convex, taking the conditional

expectation on both sides of (5.5) and combining the Jensen inequality and Lemma 3.3
yields

E(Ŵn+1|�ξ ) ≥ S–1
n+1m(ξn)α(ξn)E

(
ϕ∗

ξn (Zn)|�ξ)

≥ S–1
n+1m(ξn)α(ξn)ϕ∗

ξn

(
E(Zn|�ξ )

)

= S–1
n+1m(ξn)α(ξn)E(Zn|�ξ )ϕξn

(
E(Zn|�ξ )

)

= E(Ŵn|�ξ )
ϕξn (E(Zn|�ξ ))

ε(ξn)

≥ E(Ŵn|�ξ )
ϕξn (N0

∏n–1
i=0 m(ξi)α(ξi)ε1(ξi))

ε(ξn)
. (5.6)

Iterating (5.6) with respect to n, we obtain

E(Ŵn+1|�ξ ) ≥
n∏

i=0

ϕξi (N0
∏i–1

j=0 m(ξj)α(ξj)ε1(ξj))
ε(ξi)

.

By the assumed condition of Theorem 5.4 and Fatou Lemma, we deduce that

E(Ŵ ) = E
(

E
(

lim
n→∞ Ŵn

∣
∣�ξ

))
≥ E

(
lim sup

n→∞
E(Ŵn|�ξ )

)

≥ E

( ∞∏

i=0

ϕξi (N0
∏i–1

j=0 m(ξj)α(ξj)ε1(ξj))
ε(ξi)

)

,

from which it follows E(Ŵ ) > 0, which completes the proof. �

Theorem 5.5 If P(Ŵ > 0) > 0, then it holds on {Ŵ > 0}

∞∑

k=0

[

1 –
ε(ξk ; Zn)

ε(ξk)

]

< ∞, a.s.

Proof For any n ∈ N , Lemma 3.3 implies

E
(
Ŵn+1|Fn(�ξ )

)
= S–1

n+1Znm(ξn)α(ξn)ε(ξn; Zn) =
Ŵnε(ξn; Zn)

ε(ξn)
= Ŵn –

ŴnεZn (ξn)
ε(ξn)

.

Hence,

E(Ŵn+1) = E(Ŵn) – E
(

ŴnεZn (ξn)
ε(ξn)

)

. (5.7)

Since E(Ŵ0) = 1, iterating (5.7) gives

E(Ŵn+1) = 1 –
n∑

k=0

E
(

ŴkεZk (ξk)
ε(ξk)

)

≥ 0. (5.8)



Ren and Zhang Advances in Continuous and Discrete Models         (2023) 2023:26 Page 14 of 18

In (5.8), letting n → ∞, we arrive at

0 ≤
∞∑

k=0

E
(

ŴkεZk (ξk)
ε(ξk)

)

≤ 1.

Thus,

∞∑

k=0

ŴkεZk (ξk)
ε(ξk)

< ∞ a.s. (5.9)

From (5.9), we have for almost everywhere w ∈ {Ŵ > 0}, it holds that

∞∑

k=0

Ŵk(w)εZk (ξk(w))
ε(ξk(w))

< ∞.

Since limn→∞ Ŵn(w) = Ŵ (w) > 0, by the sign-preserving property of the limit, there ex-
ists k(w) satisfying 0 < k(w) < Ŵ (w) and n0(w) ∈ N+ such that when n > n0(w), it holds
that

k(w)
∞∑

k=0

{

1 –
ε(ξk(w); Zk(w))

ε(ξk(w))

}

≤
∞∑

k=0

Ŵk(w)
ε(ξk(w))

[
ε
(
ξk(w)

)
– ε

(
ξk(w); Zk(w)

)]
< ∞.

Therefore, on {Ŵ > 0}, we have
∑∞

k=0[1 – ε(ξk ;Zn)
ε(ξk ) ] < ∞, a.s. �

Below, we prove the convergence in L2 of {Ŵn, n ∈ N}.

Theorem 5.6 Under the condition of Theorem 5.2, if

∞∑

i=0

[

E
(

ε(ξi) – ε1(ξi)
ε(ξi)

)2] 1
2

< ∞,
∞∑

i=0

[

E

( i–1∑

j=0

δ2(ξj)
S2

j ε
2(ξj)

)] 1
2

< ∞

and

∞∑

i=0

[

E

( i–1∑

j=0

m2(ξj)
Sjm2(ξj)α(ξj)ε(ξj)

)] 1
2

< ∞.

Then, {Ŵn, n ∈ N} converge in L2 to Ŵ .

Proof Since {Ŵn,Fn(�ξ ), n ∈ N} is a nonnegative supermartingale, from the Doob mar-
tingale decomposition theorem, it follows that, for any n ∈ N , Ŵn = Yn – Tn, where
{Yn,Fn(�ξ ), n ∈ N} is a martingale, {Tn, n ∈ N} is an increasing process with

T0 = 0, Tn =
n–1∑

i=0

ŴiεZi (ξi)
ε(ξi)

.

In what follows, we prove {Tn, n ∈ N} is bounded in L2.
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Since

‖Tn‖2 =

∥
∥
∥
∥
∥

n–1∑

i=0

ŴiεZi (ξi)
ε(ξi)

∥
∥
∥
∥
∥

2

≤
n–1∑

i=0

∥
∥
∥
∥

ŴiεZi (ξi)
ε(ξi)

∥
∥
∥
∥

2
=

n–1∑

i=0

[

E
(Ŵ 2

i ε2
Zi

(ξi)
ε2(ξi)

)] 1
2

,

from (5.4) we can derive

E
(Ŵ 2

i ε2
Zi

(ξi)
ε2(ξi)

∣
∣
∣�ξ

)

≤ E
(

Ŵ 2
i

(
ε(ξi) – ε1(ξi)

ε(ξi)

)2∣
∣
∣�ξ

)

=
(

ε(ξi) – ε1(ξi)
ε(ξi)

)2

E
(
Ŵ 2

i |�ξ)

≤
(

ε(ξi) – ε1(ξi)
ε(ξi)

)2
{

1 +
i–1∑

j=0

[
m2(ξj)

Sjα(ξj)ε(ξj)m2(ξj)
+

δ2(ξj)
S2

j ε
2(ξj)

]}

.

Thus,

E
(Ŵ 2

i ε2
Zi

(ξi)
ε2(ξi)

)

≤ E
((

ε(ξi) – ε1(ξi)
ε(ξi)

)2)

+
i–1∑

j=0

E
(

m2(ξj)
Sjα(ξj)ε(ξj)m2(ξj)

)

+
i–1∑

j=0

E
(

δ2(ξj)
S2

j ε
2(ξj)

)

.

Therefore,

‖Tn‖2 ≤
n–1∑

i=0

[

E
((

ε(ξi) – ε1(ξi)
ε(ξi)

)2)] 1
2

+
n–1∑

i=0

[

E

( i–1∑

j=0

m2(ξj)
Sjα(ξj)ε(ξj)m2(ξj)

)] 1
2

+
n–1∑

i=0

[

E

( i–1∑

j=0

δ2(ξj)
S2

j ε
2(ξj)

)] 1
2

.

According to the assumed condition of Theorem 5.6, {Tn, n ∈ N} is bounded in L2, from
which and the fact {Tn, n ∈ N} is a nonnegative increasing process, it follows that {Tn, n ∈
N} converges in L2. From Theorem 5.2, we have {Ŵn, n ∈ N} is bounded in L2, so {Yn, n ∈
N} is bounded in L2. Since {Yn,Fn(�ξ ), n ∈ N} is a martingale, {Yn, n ∈ N} converges in L2,
and therefore {Ŵn, n ∈ N} converges in L2 to Ŵ . �

6 The limit properties of {W̄n, n ∈ N}
Theorem 6.1 If E(

∏∞
k=0

ε(ξk )
ε1(ξk ) ) < ∞, then there exists a nonnegative, infinite random vari-

able W̄ such that limn→∞ W̄n = W̄ a.s., and E(W̄ ) < ∞.

Proof From Lemma 3.3, it follows that

E
(
W̄n+1|Fn(�ξ )

)
= I–1

n+1E
(
Zn+1|Fn(�ξ )

)
= I–1

n+1Znm(ξn)α(ξn)ε(Zn; ξn)

= W̄n · ε(Zn; ξn)
ε1(ξn)

≥ W̄n.
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Namely, {W̄n,Fn(�ξ ), n ∈ N} is a nonnegative submartingale and

E(W̄n|�ξ ) = E
(
I–1

n Zn|�ξ
) ≤ I–1

n N0

n–1∏

i=0

m(ξi)α(ξi)ε(ξi) ≤
n–1∏

i=0

ε(ξi)
ε1(ξi)

. (6.1)

Taking expectation on both sides of (6.1), we arrive at

E(W̄n) ≤ E

(n–1∏

i=0

ε(ξi)
ε1(ξi)

)

.

An immediate consequence of the assumed condition of Theorem 6.1 is supn≥0 E(W̄n) <
∞. By the submartingale convergence theorem, there exists a nonnegative random vari-
able W̄ such that

lim
n→∞ W̄n = W̄ , a.s.

and E(W̄ ) < ∞.
Below, we discuss the condition of {W̄n, n ∈ N} converges in L1.
We set

rk(ξn) = k–1E
(∣
∣Zn+1 – kε1(ξn)m(ξn)α(ξn)

∣
∣|Zn = k,Fn(�ξ )

)
, k ∈ N+, n ∈ N ,

then it holds that E( |W̄n+1–W̄n|
W̄n

|Zn,Fn(�ξ )) = (ε1(ξn)m(ξn))–1rZn (ξn). for fixed n ∈ N , let
{rk(ξn), k ∈ N+} be a nonincreasing sequence. Namely, as the number of particles in-
creases, the absolute value of the average growth rate of W̄n is required to decrease. By
Lemma 5.3, there exists a nonincreasing function ψξn (·) on R+ such that ψξn (x) ≤ r1(ξn),
x > 0; ψξn (j) ≥ rj(ξn), j ∈ N+ and ψ∗

ξn (x) ≡ xψξn (x), x > 0 is concave. �

Lemma 6.2 Suppose

∞∑

n=0

E

(n–1∏

k=0

ε(ξk)
ε1(ξk)

· ψξn (N0
∏n–1

i=0 m(ξi)α(ξi)ε1(ξi))
m(ξn)α(ξn)ε1(ξn)

)

< ∞

and for given n, {rk(ξn) : k ∈ N+} is a nonincreasing sequence, then {W̄n, n ∈ N} converges
in L1 to nonnegative, infinite random variable W̄ .

Proof We begin with proving {W̄n, n ∈ N} is a L1-Cauchy sequence. By considering
Lemma 5.3, it suffices to show that

E
(|W̄n+1 – W̄n||�ξ

)
= I–1

n+1E
(∣
∣Zn+1 – ε1(ξn)m(ξn)α(ξn)Zn

∣
∣�ξ)

= I–1
n+1E

(
E
[∣
∣Zn+1 – ε1(ξn)m(ξn)α(ξn)Zn

∣
∣Fn(�ξ )

]|�ξ)

= I–1
n+1E

(
ZnrZn (ξn)|�ξ) ≤ I–1

n+1E
(
Znψξn (Zn)|�ξ)

= I–1
n+1E

(
ψ∗

ξn (Zn)|�ξ)
.
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Since ψξn (·) is nondecreasing and ψ∗
ξn (·) is concave, then by Jensen’s inequality, we obtain

E
(|W̄n+1 – W̄n||�ξ

) ≤ I–1
n+1ψ

∗
ξn

(
E(Zn|�ξ )

)
= I–1

n+1E(Zn|�ξ )ψξn

(
E(Zn|�ξ )

)

=
E(W̄n|�ξ )ψξn (E(Zn|�ξ ))

ε1(ξn)m(ξn)α(ξn)
.

Lemma 3.3 implies that

E
(|W̄n+1 – W̄n||�ξ

) ≤ ψξn (N0
∏n–1

i=0 ε(ξi)m(ξi)α(ξi))
ε1(ξn)m(ξn)α(ξn)

·
∏n–1

i=0 ε(ξi)m(ξi)α(ξi)
∏n–1

i=0 ε1(ξi)m(ξi)α(ξi)

=
ψξn (N0

∏n–1
i=0 ε(ξi)m(ξi)α(ξi))

ε1(ξn)m(ξn)α(ξn)
·

n–1∏

i=0

ε(ξi)
ε1(ξi)

.

Thus, we have

E
(|W̄n+1 – W̄n|

) ≤ E

(
ψξn (N0

∏n–1
i=0 ε(ξi)m(ξi)α(ξi))

ε1(ξn)m(ξn)α(ξn)
·

n–1∏

i=0

ε(ξi)
ε1(ξi)

)

. (6.2)

Summing (6.2) with respect to n gives

∞∑

n=0

E
(|W̄n+1 – W̄n|

) ≤
∞∑

n=0

E

(
ψξn (N0

∏n–1
i=0 ε(ξi)m(ξi)α(ξi))

ε1(ξn)m(ξn)α(ξn)
·

n–1∏

i=0

ε(ξi)
ε1(ξi)

)

.

Considering the assumed condition of Lemma 6.2, it is immediately clear that

lim
n→∞ E

(|W̄n+1 – W̄n|
)

= 0.

Namely, {W̄n, n ∈ N} is a L1-Cauchy sequence, so {W̄n, n ∈ N} converges in L1 to a non-
negative, finite random variable W̄ . �

7 Conclusion
A model of branching processes with random control functions and affected by viral in-
fectivity in an i.i.d. random environment is established, and the Markov property of the
model, the sufficient conditions for certain extinction, and some limit properties of the
normalized processes are studied. The relevant conclusions of the branching processes
are extended and their application fields are expanded. Next, we intend to study the limit
theory of the model further, such as the convergence rate of the limit and the central limit
theorem, and some properties of the branching processes with random control functions
and affected by viral infectivity in i.i.d. random environments with different distributions
and stationary traversal random environments, and will try to give application examples.

Acknowledgements
The authors want to express their sincere thanks to the referee for his or her valuable remarks and suggestions, which
made this paper more readable.

Funding
This survey is supported by the National Natural Science Foundation of China (Grant No. 11971034), the Natural Science
Foundation of Anhui Universities (Grant No. 2022AH051370,Grant No. KJ2021A1101, Grant No. KJ2020A0731), and the
Humanities and Social Science Foundation of Anhui Universities (Grant No. SK2020A0527).



Ren and Zhang Advances in Continuous and Discrete Models         (2023) 2023:26 Page 18 of 18

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author contributions
MR was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Received: 4 July 2022 Accepted: 9 May 2023

References
1. Sevast’yanov, B.A., Zubkov, A.M.: Controlled branching process. Theory Probab. Appl. 19(1), 12–24 (1974)
2. Yanev, N.M.: Conditions for degeneracy of ϕ-branching processes with random ϕ . Theory Probab. Appl. 20, 421–428

(1975)
3. Zubkov, A.M., Yanev, N.M.: Conditions for extinction of controlled branching processes. Math. Educ. Math. 12,

550–555 (1989)
4. Yanev, N.M.: Controlled branching processes in random environments. Math. Balk. 7, 137–156 (1977)
5. Yanev, G.P., Yanev, N.M.: Extinction of controlled branching processes in random environment. Math. Balk. 4, 368–380

(1990)
6. Holzheimejr, J.: φ-Branching processes in a random environment. Zastos. Mat. 18, 351–358 (1984)
7. Bi, Q.X., Li, J.F.: Controlled branching process in random environments. J. Math. 23(4), 437–442 (2003)
8. Fang, L., Yang, X.Q., Li, Y.Q.: Convergence rates for a controlled branching process with random control functions in

the varying environment. J. Univ. Chin. Acad. Sci. 31(2), 160–164 (2014)
9. Li, Y.Q., Li, D.R., Pan, S., Peng, X.L.: Limit theorems for controlled branching processes in random environments. Acta

Math. Sinica (Chin. Ser.) 61(2), 317–326 (2018)
10. Rosenkranz, G.: Diffusion approximation of controlled branching processes with random environment. Stoch. Anal.

Appl. 3(3), 363–377 (1985)
11. Wang, W.G., Hu, D.H.: Stability of controlled branching processes in random environment. J. Math. 29(3), 237–241

(2009)
12. Hu, Y.L., Wang, J., Wang, H.S.: Controlled branching processes with random comtrol function. J. Math. 30(2), 333–337

(2010)
13. Wang, Y.P., Peng, Z.H., Li, N.S.: The convergence rate of controlled branching process in random environment. J.

Hunan Univ. Arts Sci. (Sci. Technol.) 30(4), 8–12 (2018)
14. Tan, K., Chen, Y., Wang, Y.P.: Limit properties of controlled branching process in a random environment. J. Hunan Univ.

Arts Sci. (Sci. Technol.) 32(1), 1–3 (2020)
15. Ren, M.: Limit properties for branching process affected by communicable diseases in random environments. J.

Zhejiang Univ. Sci. 49(1), 53–59 (2022)
16. Ren, M., Wang, J.J., Wang, Y.P.: Probability generating functions and extinction conditions for the bisexual branching

processes affected by infectivity of virus in random environments. Wuhan Univ. J. Nat. Sci. 67(3), 263–269 (2021)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Some properties of branching processes with random control functions and affected by viral infectivity in random environments
	Abstract
	Keywords

	Introduction
	Preliminaries
	Markov property
	The extinction probability of {Zn,ninN}
	The limit properties of {Wn,ninN}
	The limit properties of {Wn,ninN}
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	References
	Publisher's Note


