
Advances in Continuous
and Discrete Models

Le Berre and PomeauAdvances in Continuous and Discrete Models        (2023) 2023:29 
https://doi.org/10.1186/s13662-023-03776-2

R E S E A R C H Open Access

On the statistical background of quantum
mechanics: generalities and a concrete
example
Martine Le Berre1* and Yves Pomeau1

*Correspondence:martine.le-
berre@universite-paris-saclay.fr
1Laboratoire d•Hydrodynamique,
Ladhyx, (CNRS UMR 7646), Ecole
Polytechnique, 91128 Palaiseau,
France

Abstract

We revisit our description of randomness in quantum processes that began in
collaboration of Jean Ginibre. The calculations were performed on a worked example:
the ”uorescence of a single two-level atom pumped by a resonant laser “eld. This
pump laser is described classically (by a function, not an operator). Our aim is “rst to
built a Kolmogorov-type equation (K-equation) for the atomic state, so that the two
parameters� , � that de“ne this density matrix are random functions of time,
therefore the atomic density matrix is a random density matrix. Such an approach,
initiated for gas kinetics, was not yet applied to quantum phenomena, whereas it is
especially tailored to very quick events well separated (in time) like the quantum
jumps observed in spontaneous emission of photons by an atom. Here, we try to
clarify the basis of our statistical approach leading to the K-equation below, and we
present the main results deduced from it. We explain “nally that our approach can be
interpreted in terms of Everett•s theory of many-worlds, because at every emission a
new history begins for the atom, with two nonoverlapping wave functions.

Keywords: Statistical background of quantum mechanics; Quantum jumps; Everett•s
interpretation of spontaneous emission

1 Introduction
Explaining randomness and irreversibility in quantum processes remains di�cult because

the equations of quantum mechanics (Schrödinger and Dirac) are formally deterministic

and the Hamiltonian is a unitary time operator, which seems to forbid the introduction of a

fundamental uncertainty in the predictions one can make from given initial data. However,

in the case of open systems interacting with surroundings and with pump “elds, there are

dissipation (via the surroundings) and refeeding mechanisms (via the pump “elds), both

playing a role when correctly describing a physical system.

For that reason, we began in collaboration with Jean Ginibre to study a concrete exam-

ple, the ”uorescence of a single two-level atom [1], pumped continuously by a quasireso-

nant monomode laser. The atom interacts with the pump and surroundings, that involves

in“nitely many degrees of freedom. Although this problem is a worked example already

treated in many well-recognized publications and textbooks since 1969, see references in
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the paper of this issue by Reynaud [2], we aimed to solve it in another way. Taking into
account the very short duration of each photoemission (named quantum jumps) with re-
spect to other time scales we proposed to treat this type of phenomena by a Kolmogorov
equation for the dynamics of the quantum atomic state.

As shown by Dirac [3] the duration of a quantum jump is about a few periods of the laser
in resonance with the atomic transition,� q.j ≈ few2�

� , whereas in between two successive
•rareŽ quantum jumps, the atomic state undergoes Rabi oscillations of period 2� /� as-
sumed to be much longer than� q.j.. Additionally, the interaction with the surroundings is
responsible for the decay time 1/� , a quantity also derived by Dirac, and supposed to be
much longer than� q.j.. In summary, we have

� q.j � 1
�

,
1
�

. (1)

Notwithstanding its shortness this quantum jump changes by a “nite amount the state of
the atom.

The atom is partly maintained above the ground state by an external drive (or pump-
ing). In our description we treat the pump laser classically, i.e., the electromagnetic “eld is
a complex function of space and time, not an operator. Therefore, our description is dif-
ferent from the dressed-atom representation presented by Serge Reynaud in this issue. We
shall discuss this point below. Our goal is to put together the principles of quantum physics
and nonequilibrium concepts described by a statistical picture involving a Kolmogorov-
type equation because this problem has a structure similar to the kinetic theory of dilute
gases: there the long scale is that of a nonequilibrium process like the mean free ”ight time
and the short one is the duration of a binary collision. The whole process (quick collisions)
and slow macroscopic phenomena are all described by Boltzmann kinetic theory. In the
case of the ”uorescent atom satisfying Eq. (1) the pumping puts the atom in a •pureŽ state
in between two successive quantum jumps, which is described [4] by the wave function

	 at(t) = cos � (t)|g〉 …ie…i(� Lt…� ) sin � (t)|e〉, (2)

where the two atomic states are the ground state|g〉 and the excited state|e〉 and � L =
� e …� g at exact resonance. The phase� is constant between two successive quantum
jumps, but changes randomly at each jump. The phase values in successive time intervals
are supposed to be independent variables and the atomic state is described at this stage by
a probability distribution p(� , � ,t). After integration over the variable� , the Kolmogorov
equation forp(� , � ,t) reduces to what we call below the K-equation for the probability dis-
tribution p(� ,t) of the atomic state indexed by a single random function� (t), see Eq. (12).
An important consequence of our statistical picture is to solve the logical di�culty as-
sociated to the •collapse of the wave packetŽ that has existed from the very beginning of
quantum mechanics. This is done by our description of the atomic density matrix that
becomes a two-by-tworandom matrix with the associated probabilityp(� ,t).

Here, we revisit our K-equation already presented in [1, 4, 5] and the statistical quanti-
ties related to the emission process. We detail in Sect.2 the basis of our statistical theory.
Section3 is devoted to our K-equation. We explain “rst how our K-equation was built up,
then we present our main results, namely the statistics of the quantum jumps (probability
distribution of the time intervals between two successive jumps) that is compared with the
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expression derived in [2, 6] via the dressed-atom method, then we recall how to derive the
spectrum of the spontaneous emission. In Sect.5 we use our method to put into evidence
the irreversible character of the ”uorescence because the quantum jumps are essentially
nonequilibrium processes. Finally, in order to emphasize the key point of our approach
leading to the evolution of the atomic random matrix, we explain in Sect.6 how our de-
scription of the ”uorescence is compatible with Everett•s many-worlds interpretation of
quantum mechanics.

2 Return to Dirac•s work
Our problem is to mingle the random emission of photons by an atom and the continuous
pumping of this atom by a quasiresonant monomode laser “eld. Before laying out our
method, let us make some historical recap that motivated our work. The “rst quantum
theory of the interaction between light and matter was by Einstein and Planck. In modern
terms, it is about the balance of energy of an atom with two quantum levels interacting
with black-body radiation. The atom jumps back and forth between the two levels in such
a way that the ratio of population of the two levels follows the Boltzmann distribution.
We have (after many others but di�erently!) considered a di�erent problem where the
excitation is not by black-body radiation but by a laser wave of amplitude large enough to
act like a classical “eld with negligible quantum ”uctuations.

After Einstein•s model, Dirac in 1927 [3] at the age of 25 imagined the perturbation cal-
culus in quantum mechanics, which is nearly the only task accessible. He derived a Hamil-
tonian describing the interaction of an atom with EM waves (which can be the vacuum
“eld, also named the bath, or surroundings in our words) and showed that his theory leads
to the correct expressions for the Einstein coe�cientsA and B for emission and absorp-
tion of radiation. He derived in Sect. 7 the rate of emission, denoted as� below, which
he interpreted in a probabilistic way. This makes what is called the •Fermi golden ruleŽ
although it was left basically unchanged by Fermi [7]. In modern script it gives


 i→f =
2�
�

∣
∣〈f |H ′|i〉∣∣2� (Ef ), (3)

where〈f |H ′|i〉 is the matrix element (in bra…ket notation) of the perturbationH ′ between
the “nal and initial states,� is the reduced Planck constant, and� (Ef ) is the density of
states (number of continuum states divided bydE in the in“nitesimally small energy in-
terval E, E + dE at the energyEf of the “nal states).

The next order of Dirac•s calculation yields (part of ) the •radiativeŽ corrections to the
energy levels, the small parameter being the coupling constant between radiation and elec-
trons, the so-called “ne-structure constant

� =
e2

4� 
 0�c
, (4)

where e is the election charge,
 0 is the vacuum permittivity, andc is the light velocity
in vacuum. Dirac, without insisting much on the meaning of what he does, introduces
clearly the idea that he computes the probability per unit time of a transition of the atom,
initially in the excited state, to the ground state. Let us set|i〉 = |e〉 and |f 〉 = |g〉. For an
interaction Hamiltonian H ′ = �E.�D, (where �E and �D = er are the EM “eld and transition
dipolar moment operators) and a “nal state at resonance with the atomic transition,Ee =
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Eg + �� , there are a continuum of possible “nal states, those associated to the polarization
and direction of this mode. After integration over these “nal states one obtains an explicit
formula

� =
� 3|d|2

3� 
 0�c3
, (5)

whered is the dipolar transition moment,|d|2 = (� 
 0�c)4� |〈g|r|e〉|2. Therein, Dirac im-
plicitly associates the probabilistic character of the atomic transition with the in“nite
number of degrees of freedom of the quantum-electrodynamics vacuum.

Contrary to Fermi and many others since, Dirac limits himself to the initial stage of the
decay process (� t small) of the (initially excited) atom coupled to the EM-“eld. The expres-
sion for the decay of the amplitude of the excited state is correct only ift� � 1. According
to Dirac, such a secular term (proportional tot) has a statistical meaning. It cannot be used
to de“ne a change of the wave function in the ordinary sense. The exponentially decaying
amplitude of the excited state, proportional toexp(…� t), is obviously correct if the excited
state is not continuously reinitialized by external pumping at the resonant frequency, but
it is not a fair picture of the fairly complex process where the atom decays by spontaneous
emission, whereas it is continuously pumped back to the excited state. In this case there
is no reason in general to assume an exponential decay of the excited state so that the full
picture should include both the spontaneous decay and the pumping without assuming a
particular time dependence of the “elds involved, a dependence that must follow from the
solution of the dynamical problem. This produces the theory we shall present below.

3 Our approach
The need for a statistical theory to describe the randomness of the emission of photons
requires some explanation. The formalism of quantum mechanics makes it abundantly
clear that a complete knowledge of the state of •the systemŽ follows from the knowledge
of its density matrix. In the present case, because of the coupling between the atom and
the “eld of photons, this density matrix must include the atom itself and the quantum
states of in“nitely many degrees of freedom of EM “eld in free space (emitted photons,
plus vacuum and pump laser), not an easy task. However, the problem is made tractable
by observing that the interaction between the atom and the modes of the vacuum “eld
is very quick and so change the state of the atom almost instantaneously with respect
to other processes, like the Rabi oscillations. The way to describe such phenomena with a
very di�erent time scale has been looked at by Kolmogorov [8]. We propose a Kolmogorov
equation for the dynamics of the probability distribution of the variable� (t) (depending on
time) that is actually a Markov random function when the nerly instantaneous quantum
jumps are included.

As written in the introduction, the shortest time is the period of the emitted EM wave,
also the order of magnitude of the duration of the emission process as noted by Dirac. The
two other much longer time scales are 1/� de“ned in (5), and 1/� , where

� = …
dE
�

(6)

is the rate of pumping, or frequency of the Rabi optical oscillations induced by the single-
mode laser (pump) “eld of amplitudeE . Our statistical theory is valid in the range of Eq. (1)



Le Berre and PomeauAdvances in Continuous and Discrete Models        (2023) 2023:29 Page 5 of 19

but otherwise makes no assumption on the relative values of the •long time scalesŽ and is
therefore correct for any time scales much longer than the period of the emitted photon.

This is reminiscent of Boltzmann kinetic theory [9] for a dilute gas, where he only assumes

that the time scales under consideration are much longer than the duration of two-body
collisions, which is the shortest time scale.

In this situation two phenomena take place:

1) The atom oscillates between its two states because of its interaction with the quasires-

onant laser “eld. This is the phenomenon of Rabi oscillations.
2) Spontaneous quantum jumps occur randomly from the excited to the ground state

with a photon emitted. This is the phenomenon of ”uorescence.

Our physical picture of the emission process including these two phenomena is actually
fairly simple.

The quantum jumps performed by the atom from an excited state to the ground state

are assumed to be instantaneous. After each jump the atom begins a new Rabi oscillation
under the e�ect of the driving “eld, an oscillation starting from the ground state. In this

step of its dynamics, its quantum state can be seen as a •random pure stateŽ made of the

addition of the ground-state wave function and of the excited wave function of the excited
state with random amplitudes. After some (random) time the atom jumps back to the

ground state by emitting a photon and the process continues. There is a slightly nonob-

vious point to describe this sequence because, as compared with the situation studied by
Dirac, the initial state before the jump is not a pure exited state, but a linear superposition

of the excited and ground state. This leads to a change in the rate of relaxation by emis-

sion of a photon that depends on the parameter� in Eq. (2), associated to the population

of the two states. Additionally, the phase� , which is constant in phase (1), changes at each
jump. This picture of the dynamics of the atomic state between two consecutive jumps

di�ers from what is usually in the literature where the evolution between two successive

jumps depends explicitly on a damping term due formally to the emission of photons, an
assumption seemingly contradicting the starting point, namely that one is considering an

interval of time between two jumps and so without emission of a photon.

Let ag(t) and ae(t) be the complex amplitudes of the two atomic states. As was done
by Rabi [10], one can write the coupled equations for the amplitudes when an atom is

pumped at the nearly resonance frequency. In the realistic limit of a •smallŽ atom…pump

interaction, with a pump “eld large enough to be classical, the coupled Rabi equations at
exact resonance take a simple form

� tag = …i
�
2

aee…i� ; � tae = …i
�
2

agei� . (7)

Let us evaluate the validity of the semiclassical description we used, although the light
beam illuminating the atom is made of photons. Those photons are supposed to be su�-

ciently numerous to make the quantum ”uctuation of the pumping beam negligible. Fol-

lowing the general principle of quantum mechanics this is correct if the beam is made of a
large enough number of photons. The obvious question is how to compute this number in

a given situation with a given intensity of the light beam? The knowledge of the intensity of

this light beam yields a ”ux of power. Let� be this ”ux, it has the dimension of an energy
times c, speed of light per unit area. This yields also a number of photons per unit area by

dividing by the energy quantum�� . In experiments one tries to focus as much as possible
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of this ”ux in a narrow surface, this being limited by the e�ect of di�raction to an area�

of order of the square of the wavelength. Letr3
0 be the approximate volume of the atom

(of order of the cube of the de Broglie wavelength of the bound electron). Therefore, an

approximation of the number of photons of the light beam inside the atom isN ∼ ( �
�� cr3

0�
).

This number must be large to make the assumption of a classical pump beam valid. Even if

this number is large, as it always is, there are presumably e�ects due to its “niteness. With-

out going into a detailed theory of what happens whenN is large but “nite, as is always

the case, we guess that the quantum ”uctuations ofN yield random time ”uctuations of

the Rabi frequency� . Such ”uctuations should yield a slight departure of the exactness of

the splilting of the wave function of the atom into a sum of the ground state and excited

wave function and so yield a slight departure of the density matrix from its simple form

valid for a coherent superposition of the two eigenfunctions. The e�ect of such a decay of

the coherence of the density matrix could perhaps be detected by decreasing the intensity

of the pumping “eld in Dehmelt-like [11…13] experiments.

Note that the Rabi Eqs. (7) for the amplitudesag and ae are reversible (under complex

conjugation) and linear. The total norm|ag |2 + |ae|2 is a constant of the motion. This norm

is the Noether invariant associated to the invariance under a global phase shift of the equa-

tions. Those properties are trivial in the two-level case, unfortunately they are far less

trivial in the three-level case with two pump “elds.

Neglecting a global phase (identical for the two amplitudes) that plays no role, and set-

ting

� t � =
�
2

(8)

the solution of Eqs. (7) is

ag(t) = cos � (t) ae(t) = …iei� sin � (t), (9)

in agreement with Eq. (2). This periodic solution describes the Rabi oscillations, but a

fundamental physical process is absent from the picture, the random emission of photons

occurring when the atom is in the excited state.

It remains to put into a coherent framework this phenomenon of a spontaneous jump

from the excited to the ground state. As it is random, it is monitored by a time-dependent

probability distribution of the parameters (� , � ), which will be be interpreted below. As

explained in our previous papers [1…4], after integration over the variable� , we have re-

duced the K-equation forp(� , � ,t) to the probability p(� ,t) presented just below. We shall

explain in Sect.6 that this probability is a way to measure the distribution of the states of

the atom in all Everett universes at any given time.

4 K-equation for the random function θ (t)
To describe brie”y what is the generic K-equation, let us introduce a parameter� (which

may di�er from the angle� introduced above) that changes following two physical process.

There is “rst a deterministic evolution such that� changes continuously and smoothly at a

velocityv(� ), whereas it changes abruptly by quantum jumps of “nite amplitude occurring

randomly at a rate depending on� .
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The generic K-equation gives the rate of change of the probability distribution of� ,
denoted asp(� ,t). It is [8]

� tp(� ,t) + � �
(

v(� )p(� ,t)
)

=
∫

d� 1
 (� |� 1)p(� 1,t) …p(� ,t)
∫

d� ′

(

� ′|� )

, (10)

where� t � = v(� ) and 
 (� ′|� ) is the positive probability of transition per unit time from
� to � ′ (the jump). Note that the very existence of the probability transition
 (·) implies
that we are considering a Markov process where the transition rate depends on the present
state of the system only. On the right-hand side the “rst (positive) term (or gain term)
describes the increase of the probability of the� -state due to jumps from other states to
� . The second term represents the loss of probability because of jumps from� to any
other state� ′.

In the case of a ”uorescent atom, we have to de“ne the velocity functionv(� ) and the
transition probability depending on the variable� = � . The function v(� ) in (10) is now
the time derivative of� (t), which is equal to� /2 at exact resonance. The randomness of
� is a consequence of the randomness of the time of jump, which requires to de“ne the
transition kernel 
 (� |� ′), which is the probability that the atom in state� ′ jumps to state� .
This probability is proportional to � (sin � ), � is the Dirac delta function, because all jumps
land on the � = 0 ground state. Moreover, the probability of a jump is proportional to
sin2 � ′ because the excited stateae has amplitudesin2 � ′, and lastly is proportional to� ,
the jump frequency from a pure excited state, the one calculated by Dirac when the atom
is in the excited state characterized by� ′ = � /2.

Therefore, one has

v(� ) =
�
2

, 

(

� |� ′) = � sin2 � ′� (sin � ). (11)

Finally, the K-equation for a two-state single atom submitted to a resonant wave “eld be-
comes

� tp +
�
2

� � p = �
(

�
(

sin(� )
)
(∫ � /2

…� /2
d� ′p

(

� ′,t
)

sin2(� ′)
)

…p(� ,t) sin2(� )
)

. (12)

The left-hand side of this equation describes the Rabi oscillation, which amounts to a uni-
form drift in time of the angle � . The right-hand side represents the e�ect of the sponta-
neous decay of the excited state toward the ground state; it has a gain term for the ground
state� = 0 and a loss term for any other value of� . Our K-equation satis“es the constraints
that a probability remains positive if it is initially so, and that itsL1 norm,

∫ �
0…

d� p(� ,t), is
conserved for any periodic distribution of the variable� .

The calculation of any averaged physical quantity requires the knowledge of both the
stationary probability distribution pst(� ) and the conditional probabilityp(� ,t|� 0).

4.1 Stationary distribution
The stationary distribution was derived in Sect. 3.4 of Ref. [1]. As it is an exact formula,
and plays a crucial role in the following, let us give a ”avor of its derivation from the K-
equation. It results from the formal integration of

� � p̂st(� ) = …� ′ sin2(� )p̂st(� ), (13)
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where� ′ = 2� /� . The solution is

p̂st(� ) = p̂st(0+)e…� ′
4 (2� …sin(2� )). (14)

It can be checked that the solution of Eq. (13) is a periodic function of � of period �
because by integrating the equation from 0 to� one obtains zero on the right-hand side,
whereas the left-hand side is proportional to the di�erencepst(� /2) …pst(…� /2), which is
also zero. This solution is formally not convenient because the exponent is not periodic
with respect to � . The periodicity is restored by noting that the solution has a jump at
� = 0. This jump is such that the value ofpst(� ) for � = 0…is equal top̂st(� ) for � = � …. The
constant of integrationp̂st(0+)

p̂st(0+) = (I� )…1 (15)

is derived from the norm constraint, where

Ix =
∫ x

0
d� � (� ) (16)

and

� (� ) = e…� ′
4 (2� …sin(2� )). (17)

The stationary probability distribution is the wrapped periodic function built by translat-
ing the solution p̂st(� ), with a jump included

pst(� ) =
∞

∑

k=…∞
p̂st(� …k� ). (18)

We plot in Fig. 1 this � -periodic function that is discontinuous for� = k� , and smooth
elsewhere.

Note that formally Eq. (12) is solvable in Laplace transform but the inverse Laplace
transform requires to “nd poles in the complex plane, a di�cult task. Therefore, we
turned to solve directly the K-equation. The smart derivation of a quasianalytical solu-
tion performed by Jean Ginibre is wholly retrieved here in the Appendix as a token of

Figure 1 Stationary probability distributionpst(� ), solution of Eq. (13). (a) In the interval [0,� ], solid line for
� ′ = 0.5, dashed line for� ′ = 2. The periodicity of the wrapped distribution is illustrated in (b) for� ′ = 1 on
the interval [0, 2� ]
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gratitude (“rst published in Ref. [1]). The result is the conditional probabilityp(� ,t|� 0) in

Eq. (50) below, wheret̃ = � t/2. It requires to solve an implicit function for the function

b(t̃) =
∫ � /2

…� /2 d� ′p(� ′, t̃) sin2(� ′).
Let us now present a nontrivial result, very important to derive the intensity of the point

process formed by the emitted photons in the observer word (for a discussion on this topic,

see Sect.6). Considering the atomic wave function in Eq. (2), the populations of the two

levels, or probabilities for the atom to be in the excited or in the ground state at timet,
are, respectively,

� e(t) =
∫ � /2

…� /2
d� p(� ,t) sin2 � (19)

and

� g(t) =
∫ � /2

…� /2
d� p(� ,t)cos2 � . (20)

Their sum is one, as it should be, ifp(� ,t) is normalized to one. From (12) one can derive

an equation for the time derivative of� 1(t) and � 0(t) by multiplying (12) by sin2 � and by

cos2 � , respectively, and integrating the result over� . It gives,

˙� e = …
�
2

∫ � /2

…� /2
d� sin2 �

� p
� �

…�
(∫ � /2

…� /2
d� p(� ,t) sin4 �

)

(21)

and

˙� g = …
�
2

∫ � /2

…� /2
d� cos2 �

� p
� �

+ �
(∫ � /2

…� /2
d� p(� ,t) sin4 �

)

. (22)

In the r.h.s of the rate equations (21) and (22), the “rst term, proportional to the Rabi fre-

quency� , describes the e�ect of the Rabi oscillations, whereas the second term, propor-

tional to � , displays the e�ect of the quantum jumps responsible for theobservable photoe-

mission. The integrand of this latter term indicates that the intensity of the spontaneous-

emission “eld is proportional tosin4 � , see below Eq. (24).

At this stage we emphasize that the right-hand sides of Eqs. (21) and (22) represent the

new history beginning at each step asp(� ,t) includes both the ”uctuations due to the

quantum jumps and the streaming term.

4.2 Statistics of photoemission
Due to the Markovian nature of the function� (t), and its behavior in the two steps labeled

(1) and (2) in Sect.3, we showed in Sect. 3.3.2 [4] that the probability distribution of the

time interval between successive emission of photons, is given by the expression

� (� ) = � (� )e…
∫ �
0 � (t) dt, (23)

where� (t) is the so-called density (or intensity) of the nonstationary point process formed

by the times of photoemission, which depends on� (t) only, not on the past values of� .
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From Eq. (21) we deduce this intensity of the point process at timet, conditionally on the
knowledge of� (t),

� (t) = � sin4 � (t). (24)

This result, which is not so obvious, is of prime importance to derive the statistical prop-
erties of the radiated “eld. In this relation, the exponent 4 comes from two conditions, one
that the atom is in the excited state, and the other one that it emits an observable photon.
One may understand this by using the following argument. The probability for the atom
to be in the excited state isP(e) = � sin2 � . This is the sum of two terms, one is the joint
probability that the atom is in the excited state AND the event •one observable photonŽ
is emitted,P(e, 1ph). The other term,P(e, 0ph), is the joint probability that the atom is in
the excited state AND •zero observable photonŽ is emitted. We have

P(e) = P(e, 1ph) + P(e, 0ph). (25)

The conditional probability that one observable photon is emitted if the atom is in the
excited state is given by

P(1ph|e) = sin2 � (26)

as it yields the relation

P(e, 1ph) = P(1ph|e)P(e) = � sin4(� ), (27)

in agreement with Eq. (24). The two possibilities of emitting one detectable photon or
zero at each quantum jump, are at the heart of the link we make below in Sect.6 with the
Everett•s many-worlds interpretation.

Assuming an observable photon is emitted at timet = 0, the atom undergoes Rabi oscil-
lations in between two successive emission times, which gives� (t) = � t/2. Therefore, the
interemission time distribution for an atom driven by a resonant pump is

� (� ) = � sin4
(

�
2

�
)

e…�
∫ �
0 dt sin4( �

2 t), (28)

which gives
∫ ∞

0 � (� ) d� = 1, as expected. The result is shown in Fig.2 for large, middle, and
small values of the ratio� / � . Our curves in solid lines are compared to those derived in
[2…6] by the picture of the dressed-atom radiative cascade. For the case of weak damping,
or a strong input “eld, � � � , the two methods agree approximately, see Fig.2-a. In this
case, the mean interemission time is of order 1/� , which says that the atom undergoes
many Rabi oscillations in between two successive emissions, therefore the large damping
time drives the emission.

However, our results progressively di�erentiate (from the radiative cascade ones) as the
ratio � / � increases, until they noticeably di�er, as shown in Fig.2-c. In the latter case
(� � � ), an analytical expression of width of� (� ) can also be derived. Our K-derivation
gives a mean delay between successive photons of order

� K =
(

� 4�
)…1/5

=
1
�

(
�
�

)1/5

,
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Figure 2 Probability of emission of the next ”uorescence photon at timet after an emission at time 0,
denoted� (� ) in the text. Solid lines for our Kolmogorov model, dashed lines for the radiative cascade
description, Eq. (4) in Ref. [2], or Eq. (2.14) in Ref. [6]. (a) strong-damping regime,� = 10� . (b) � = � .
(c) strong-pumping regime,� = 0.2� . The characteristic times of the distributions approximately agree in (c),
whereas they noticeably diverge in (a), see a possible explanation in the text. Our coe�cient� corresponds
to 
 de“ned in [6] and [2]

which is mainly of order of the Rabi oscillation time. This seems reasonable since the short

time 1/� makes a large probability of emission as soon as the atom is driven in its excited

state via the Rabi oscillation. In summary, we “nd that the larger time drives the emission

of photons, in the two limits.

However, the authors of Refs [2…6] “nd a very wide and ”at interemission distribution

in this limit, with mean interemission time

� Q = � /� 2 =
1
�

(
�
�

)

,

a time scale much longer than the Rabi period. A possible explanation for this di�cult to

understand result, is the following. The description of ”uorescence as a radiative cascade

in the dressed-atom picture starts with the master equation 2.1 in Ref. [6]. This picture

is very evocative, but unfortunately very di�cult to solve rigorously. Indeed, solving this

equation for the reduced density matrix of the system atom + laser “eld (after tracing

over the bath) leads to an in“nite number of coupled equations describing what happens

in each multiplicity correlated with its two adjacent ones (see Eqs. (2.2) of [6]). Hence, the

authors make an uncontrolled simpli“cation leading to their Eq. (2.3), which amounts to

forgeting the feeding process schematized by the waving arrow joining each multiplicity

with the upper one in their diagram (Fig. 1 of [2] and [6]). By doing this, the authors suc-

ceed in deriving simple analytical expressions for the statistical behavior of the ”uorescent

atom that hopefully agree with experiments as quoted in [2]. However, we conjecture that

the above-mentioned simpli“cations could be especially questionable in the case of large

damping where precisely the feeding of each multiplicity is expected to play a noticeable

role and then cannot be neglected. In our approach we include the dissipation and refeed-
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ing, by using tractable calculations. We hope this discrepancy will be elucidated by an

experiment.

4.3 Fluorescence spectrum
The Markovian property of the ”uorescence was used in our paper [4] to derive the

interemission time distribution � (� ) and the correlation function of the ”uorescence

“eld

C(� ) = � 2〈sin2 � 0 sin2 � (� )e2i(� 0…� (� )〉e…i� L� , (29)

where the quantity inside the brackets must be weighted by the probabilityp(� , � ,t) with

i.c. � 0, � 0. We brie”y mentioned in Sect.3 that the phase� changes abruptly at each jump

occurring at timestj,tj+1, . . .tj+n, . . . . Assuming that the phase di�erences (� tj+1 …� (j)) are

independent random variables, uniformly distributed in an interval (…�� , +�� ), the cor-

relation function vanishes if the two times (0,� ) are separated by one (or more) quantum

jump. Within this frame, we obtain the simple expression

C(� ) = e…i� L�
∫ �

0
d� 0pst(� 0) sin2 � 0 sin2(� 0 + � t/2)

× e…�
∫ �
0 dt sin4(� 0+� t/2), (30)

where the exponential

P(no)(� , � 0) = e…�
∫ �
0 dt sin4(� 0+� bt/2) (31)

implements the constraint that zero photons are emitted in the time interval [0,� ]. The

interested reader can “nd the proof in Sect. 3.3.4 of [4] and the corresponding “g-

ures.

Here, we show another example of the shift spectrum of the EM “eld radiated by the

pumped atom,

S(� …� L) = 2Re
[∫ ∞

0
d� C(� )

]

, (32)

for large pumping, see Fig.3. This three-peaked spectrum displays two sidebands, with

amplitude about one third of the central peak one. We emphasize that our results agree

with those deduced by usual quantum theory (Bloch equations and dressed-atom formal-

ism).

Let us precise that the above expression (30) has been derived by using the Markovian

property of the emission process having a density� (t) deduced from the K-equation. A di-

rect calculation from the solution of our K-equation is also possible. The two methods give

slightly di�erent spectra (see Fig. 5 of [1]). This di�erence comes from the fact that Eq. (30)

is for correlation function (or spectra) in the universe of the observer, although the direct

method yields the same quantities averaged over all universes, see Sect.6.
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Figure 3 Three-peak spectrum versus the shifted frequency
� …� L, for small damping,� /� = 1/6

5 Irreversibility of quantum jumps
In the mathematical literature, irreversibility and reversibility are de“ned by reference to

the equations of motion. For instance, Newtonian mechanics is well known to be reversible

because, by inverting velocities and keeping the same positions, the trajectories of a set

of interacting particles will trace back exactly their history. Seemingly, this property was

already known to Newton himself: he spared computing work by calculating the trajec-

tories of a mass around a center by inverting the speed at the apex to obtain the next

part of the orbit. This de“nition of reversibility does not help much in real life because it

cannot be used •practicallyŽ. Consider for instance ”uctuations in a turbulent ”uid. One

cannot reverse the speeds of all molecules at some time to check if the turbulent ”ow is in

a state of reversible dynamics or not. Therefore, another de“nition of reversibility should

be used to have measurable consequences. This was done by one of us [14]. In this paper,

the idea was introduced that by analyzing some time correlation functions one can decide

if a ”uctuating signal is invariant or not under time reversal.

For a stationary (in time) random function, this excludes pair correlations of the same

observable, like〈F(t)F(t + � )〉, because this is an even function of� , invariant under the

exchange of� and …� . When picking-updifferent random functions at timet and (t + � ),

like

CFG(� ) =
〈

F(t)G(t + � )
〉

this symmetry (� ,…� ) is no longer guaranteed, in general. Various examples of invariance

breaking under time reversal are given in ref. [14]. As pointed out there, generally speaking

this invariance is absent in out-of-equilibrium systems like a model of shear ”ow or tur-

bulent ”ows, which are then irreversible. On the contrary, equilibrium ”uctuations have

the very special property of time-reversal symmetry, as had been shown by Onsager.

Let us apply this method to investigate whether the ”uorescent intensity is reversible or

not under time reversal, by using the following •test functionŽ

	 1,2(� ) =
〈

� (t)� 2(t + � ) …� 2(t)� (t + � )
〉

, (33)

where � (t) is the intensity of emitted ”uorescence light at timet, a stationary random

function de“ned in Eq. (24). The expression (33) is a test function because it is exactly

zero if the signal is invariant under time reversal.

Let us consider the “rst term of Eq. (33)

CI,I2 =
〈

� (t)� 2(t + � )
〉

. (34)
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Figure 4 Test function	 1,2(� ) de“ned in Eq. (33). (a) for� ′ = 10 and (c) for� ′ = 0.6. The role of the parameter
� ′ = 2� /� appears when comparing (b) and (d) that display the two intercorrelation functionsCFG = CI,I2(� )
andCGF = CI2,I(� ). For strong damping the irreversible character is clearly visible in (b) where the solid and
dashed curves are well separated. In (c) and (d) the damping is weaker, and so is the ratio	 12/CFG, see text

The phase angle� does not appear in the latter expression, which involves a product of
intensities at a given time, insensitive to phase di�erences of the quantum states. Let us
derive the test function fromCI,I2(� ) the K-equation solution (50) which yields a result
averaged over all universes, see Sect.6. The conditional probabilityp(� , � |� 0, 0) allows us
to calculate

CI,I2(� ) = � 3
∫ � /2

…� /2
d� 0pst(� 0)

∫ � /2

…� /2
d� p(� , � |� 0, 0)sin4(� 0) sin8(� (� )

)

, (35)

where the initial condition is p(� , 0) = � (sin(� …� 0)) and pst(� 0) is the steady solution of
Kolmogorov equation computed in Sect.4.1.

Numerically, one “nds a clear proof of the irreversible character of the two-level atom
”uorescence. The test function is shown in Figs.4(a) and (c) for large and small damp-
ing rates, respectively. In these “gures, the di�erence	 1,2 = CFG …CGF , whereF = I(t),
G = I(t)2, displays damped oscillations in a time interval of order of the correlation time
of the ”uorescence “eld, which is the width of the correlation functionC(� ). For small
damping the di�erence betweenCFG and CGF is hardly visible on curve (d) of Fig.4 be-
cause it is small, with a ratio	 1,2/CFG of order 6 per cent. This ratio becomes about 55
per cent for � ′ = 10 (Figs.4(a) and (b)). The important result is that this ratio increases
as� ′ increases, as expected, since the irreversible character of the spontaneous emission
comes from quantum jumps (step (2) of the process described in Sect.3).

6 Interpretation by Everett•s theory of many-worlds
Let us explain how Everett•s ideas are appropriate to understand the statistical e�ects ob-
served in ”uorescence, although Everett•s theory of quantum physics [15] is sometimes
considered as philosophical speculations without connection with real physics. When ap-
plied to the ”uorescence by a single atom, the existence of many-worlds relies on the fol-
lowing image: each time a photon is emitted, the universe splits in two. One is the universe
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Figure 5 Schema of the possible trajectories of the atom emitting photons at timesti, {i, 1, 5} in the universe
of the observer. The vertical blue line with an arrow is the trajectory seen by the observer, where the atom
makes Rabi oscillations betweenti and ti+1. The solid red lines stemming from eachti, illustrate the successive
splitting of the observer trajectory (universe) in two parts. On a red trajectory (virtual for the observer) no
photon is emitted atti, but Rabi oscillations persist, until a photon is emitted in this universe. This occurs at
the crossing points of red curves with purple dot-dashed curves. At these crossing points the •virtual red
trajectoryŽ splits into two parts, one (red) with an emitted photon and another one (purple) with no photon
emitted

of the observer where the photon has been emitted and can be detected by him, the other

one is a new universe created at this time (virtual for the observer), in which no photon

is emitted. In this new universe the atom continues to undergo Rabi oscillations indepen-

dently of what happens in the all others created before or after it. Each universe di�ers

from the others by the time of emission of the photons. A 3D schema illustrating a possi-

ble set of trajectories coming from successive emission timesti, is drawn in Fig.5, see the

caption, with the aim of illustrating that the various universes do not overlap.

By di�erent universes one implies two related things. First, the histories of the two uni-

verses are a priori di�erent after the emission event. This does not imply a large di�erence

of course between the two universes because their initial condition at the instant of the

emission are almost the same, but for the absence or presence of a single photon. Mathe-

matically, the two universes are separated because their density matrices do not overlap:

in one of the universes the photon number for the emitted photon is one, although it

is zero in the other. Therefore, one can de“ne in each universe a density matrix that will

evolve in the future without any relationship with the density matrix of the other universe.

Actually, the emission of photons occurs in a very short time, of the order of the period

of the atomic motion, which is also the period of the EM waves emitted by the atom in

its excited state. Therefore, there is a continuous emission of photons and so a continu-

ous creation of new Everett•s universes. In the case of ”uorescence, what happens in all

universes can be described only statistically, the statistics being carried over all universes

existing at a given time. This de“nes a kind of super statistics because probability distribu-

tions are de“ned themselves over an object with a statistical meaning, namely the density

matrix for the quantum state in the universe under consideration. In the case of a pumped

two-level atom, this density matrix depends on the angle� and the phase� , so that the

probability distribution is a probability depending on these two variables only. Our classi-

cal K-equation describing the dynamics of this random process takes into account all the
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various states existing in di�erent Everett universes that cannot interfere with each other

because the nondiagonal elements of the density matrix of the full system are zero.

Contrary to other theories of ”uorescence of a single atom, such a statistical theory has a

built-in statistical structure that is, we believe, necessary to describe the randomness of the

emission process. Such a randomness is intrinsic to the emission process, and it represents

a bifurcation from one Everett universe to two, every time a photon is emitted. Let us note

that from an experimental point of view, it would be impossible to make averages over all

possible universes, because of the lack of overlap of the density matrices attached to the

di�erent universes. Therefore, one is practically restricted to making time averages in the

universe where the observer lies, which poses the question of ergodicity: are these two

averages identical? The case of a pumped atom could be interesting to investigate from

the point of view of ergodic theory.

7 Conclusion
To conclude, our theory for the photo-emission by an atom continuously excited, relies

on a single assumption, namely the smallness of the coupling between the EM “eld and

the electrons in the atom. Because of this smallness the transition (or quantum jump) is

quasi instantaneous compared to the duration of any other relevant processes like the Rabi

oscillations and the intervals between two photo-emissions. Thanks to this di�erence of

time scales we use the Kolmogorov equations to describe the statistics of the ”uorescence

without any supplementary assumption. This shows that a mathematical structure may

emerge for describing a given problem by looking at the pertinent limit for the parameters

involved.

We emphasize that Kolmogorov like equations are the only correct way to represent the

dynamics of a process of “nite jumps at a given rate of occurence, although Lindblad equa-

tion has been mostly used [16]-[17]. Contrary to our approach, Lindblad inspired analysis

of the random process of emission of photons by an atom derive a time dependent dif-

ferential equation for the reduced density matrix of the atom, with a damping coe�cient

representing the e�ect of the random emission. On time scales much longer than the pe-

riod of the emitted photon we do not believe that such a deterministic equation can be

derived from the basic equations of the problem, namely from the equation for the full

density matrix (atom plus EM “eld) because the emission of photon (which is random

and almost instantaneous as shown by Dirac) brings a change of the atomic state offinite
amplitude with a finite rate. Such “nite change of the atomic state is incompatible with

the use of a Lindblad equation which is appropriate for describing only continuous and

di�erentiable changes of the reduced density matrix. The description of quantum jumps

requires to •put a probability on the density matrixŽ (in J. Ginibre•s words) that leads to

derive a Kolmogorov-like equation for this probability.

Kolmogorov approach of dynamical problems has been used forever in theoretical

description of random processes including rare events with “nite amplitude (named

•stochastically determined processŽ by the author [8]. But Kolmogorov approach has not

been yet applied to the class of problems where such randomness shows up in quantum

phenomena. We have had the good luck of working on this class of problems with Jean

Ginibre to whom we remain very indebted. Unfortunately we cannot thank him now for

his kindness and help until the very end of a life devoted to science.
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Appendix: Exact solution of the K-equation
Let us introduce the auxiliary function

b(t) =
∫ � /2

…� /2
d� ′p

(

� ′,t
)

sin2 � ′. (36)

The equation we are trying to solve becomes

� tp +
�
2

� � p + � sin2 � p = � � (sin � )b(t). (37)

Let us take 2
� as the unit of time and introduce the dimensionless parameter� ′ = 2�

� .
Equation (37) becomes

� tp + � � p = g(� ,t) …f (� )p (38)

with

g(� ,t) = � ′� (sin � )b(t), (39)

whereb(t) is still given by Eq. (36) and

f (� ) = � ′ sin2 � . (40)

Let us derive from Eq. (38) the di�erential equation satis“ed by the functionh(� ,t) = p(� +
t,t), which takes the form

� th(� ,t) = g(� + t,t) …f (� + t))h(� ,t). (41)

This can be solved as an initial value problem as follows. Takes(� ,t) = h(� ,t)e
∫ t
0 dt′f (� +t′).

Therefore,s(� , 0) =h(� , 0). The auxiliary functions(� ,t) is a solution of

� ts = g(� + t,t)e
∫ t
0 dt′f (� +t′).

This has the solution

s(� ,t) = s(� , 0) +
∫ t

0
dt′g

(

� + t′,t′)e
∫ t′
0 dt′′f (� +t′′).

The equivalent result for the functionh(� ,t) reads

h(� ,t) = h(� , 0)e…
∫ t
0 dt′f (� +t′)

+
∫ t

0
dt′g

(

� + t′,t′)exp
(∫ t′

0
dt′′f

(

� + t′′) …
∫ t

0
dt′′f

(

� + t′′)
)

.

Tracing back the path from this explicit solution to the original equation, one “nds the
general solution of Eq. (38):

p(� ,t) = p(� …t, 0)� (� ,t) +
∫ t

0
dt′�

(

� ,t′)g
(

� …t′,t …t′), (42)
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where

� (� ,t) = e…
∫ t
0 dt′f (� …t′), (43)

and g(·) is given by Eq. (39). Multiplying both sides of this equation byf (� ) = � ′ sin2 �

and integrating the result over one period for� , one “nds the following Fredholm integral

equation forb(t),

b(t) = m(t) +
∫ t

0
dt′b

(

t′)l
(

t …t′). (44)

In (44) we have

m(t) =
∫

p
d� p(� , 0)f (� + t)� (� + t,t), (45)

wherep stands for the period of the functionf (herep = � ), and

l(t) = f (t)� (t), (46)

where� (t) is the reduction to � = t of the function of two variables� (� ,t) (hopefully no

confusion will arise from the use of the same notation,� for � (� ,t) and � (t,t) = � (t)):

� (t) = � (t,t) = e…
∫ t
0 dt′f (t′). (47)

Note the relation

l(t) = …� t � (t). (48)

For m(t) given,b(t) can be derived from Eq. (44) either by iterations or by Laplace trans-

forming both sides. In the numerics, we use the iteration with the initial condition

p(� ,t = 0) = � (� …� 0), (49)

in view of the derivation of correlation functions, see Sects.4.3and5. It follows that any

mean value calculated by using the probability (42) with initial condition ( 49), is actually a

conditional average and should depend on the parameter� 0 and should be labeledb(t, � 0),

as illustrated in Fig. 2 of [1]. With i.c. (49), the solution of the K-equation becomes the

conditional probability,

p(� ,t|� 0, 0) =� (� …t …� 0)� (� 0,t) +
∫ t

0
dt′�

(

� ,t′)g
(

� …t′,t …t′), (50)

whereg(� ,t) is given by Eq. (39).
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