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1 Introduction and main results
The fractional Laplace operator as a classical nonlocal operator has many applications
in many fields of mathematics, such as harmonic analysis, finance, game theory, and so
on. Especially, it has become a popular research object in partial differential equations in
the past decade. The definition of the fractional Laplace operator in R

N for 0 < s < 1 and
μ ∈ C∞

0 (RN ) is given as follows:

(–�)sμ(x) = CN ,sP.V .
∫
RN

μ(x) –μ(y)
|x – y|N+2s dy, x ∈R

N ,

where CN ,s > 0 is an explicit constant, and P.V . denotes the Cauchy principle value; see
[16]. As far as we know, the Lévy process is one of the most classical applications of this
type of operator, see [5, 23] and their references. There are many studies devoted to replac-
ing the Laplacian with the fractional Laplacian or other more general calculus operators,
and these results can better describe various phenomena in nature compared with the
previous ones; we refer to [6, 10, 13, 16, 36].

In particular, numerical approximation of the fractional Laplace operator is becoming
very tricky because of its nonlocality and singularity, which makes it necessary to exploit
more effective approaches to investigate the existence of solutions; see, e.g., [1, 12, 19, 22]
and references therein.
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Let

�s =
{
μ : ZG → R

∣∣∣∑
ξ∈Z

|μ(ξ )|
(1 + |ξ |)1+2s < ∞

}
, ZG = {Gξ : ξ ∈ Z},

where G > 0 is a fixed positive constant. Ciaurri et al. [15] gave a definition of the fractional
discrete Laplace operator on ZG as

(–�G)sμ(ζ ) =
∑

ξ∈Z,ξ �=ζ

(
μ(ζ ) –μ(ξ )

)
KG

s (ζ – ξ ),

where 0 < s < 1, μ ∈ �s, and

KG
s (ζ ) =

⎧⎨
⎩

4s�(1/2+s)√
π |�(–s)| · �(|ζ |–s)

G2s�(|ζ |+1+s) , ζ ∈ Z\{0},
0, ζ = 0.

The kernel KG
s (ζ ) has the following property:

cs

G2s|ζ |1+2s ≤ KG
s (ζ ) ≤ Cs

G2s|ζ |1+2s , ζ ∈ Z\{0},

where 0 < cs ≤ Cs are two constants. Let�G be the discrete Laplace operator onZG defined
as

�Gμ(ζ ) =
1
G2

(
μ(ζ + 1) – 2μ(ζ ) +μ(ζ – 1)

)
.

Furthermore, if μ is bounded, then lims→1– (–�G)sμ(ζ ) = –�Gμ(ζ ). Ciaurri et al. also
proved that the fractional discrete Laplacian can approximate the fractional Laplacian as
G → 0 under certain conditions.

Next, we elaborate some results of different fractional discrete Laplacian equations
through several references. Xiang and Zhang [33] studied the following discrete fractional
Laplacian equation:

⎧⎨
⎩

(–�1)sμ(ξ ) + V (ξ )μ(ξ ) = λf (ξ ,μ(ξ )) for ξ ∈ Z,

μ(ξ ) → 0 as |ξ | → ∞,
(1.1)

where

(–�1)sμ(ζ ) = 2
∑

ξ∈Z,ξ �=ζ

(
μ(ζ ) –μ(ξ )

)
Ks(ζ – ξ ), ζ ∈ Z,

V : Z → (0,∞), λ > 0, and f (ζ , ·) ∈ C(R,R) for all ζ ∈ Z. They obtained at least two ho-
moclinic solutions of Eq. (1.1) by the mountain pass theorem and Ekeland’s variational
principle under appropriate assumptions. Ju et al. [21] investigated the following discrete
fractional p-Laplacian equation:

⎧⎪⎪⎨
⎪⎪⎩

(–�1)s
pμ(ξ ) + V (ξ )|μ(ξ )|p–2μ(ξ )

= λa(ξ )|μ(ξ )|q–2μ(ξ ) + b(ξ )|μ(ξ )|r–2μ(ξ ) for ξ ∈ Z,

μ(ξ ) → 0, as |ξ | → ∞,

(1.2)
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where (–�1)s
p is the fractional discrete p-Laplace operator (defined later), V : Z → (0,∞),

λ > 0, 1 < q < p < r < ∞, a ∈ �
p

p–q , and b ∈ �∞. They detected at least two homoclinic so-
lutions of Eq. (1.2) via the Nehari manifold method under suitable hypotheses. Using dif-
ferent kinds of Clark’s theorem, Ju and Zhang [20] gained multiple solutions of fractional
discrete Laplacian equations with different nonlinear terms. Through the results of the
above literature, we know that Eq. (1.1) can be reduced to the well-known discrete form
of Schrödinger equation

–�μ(ξ ) + V (ξ )μ(ξ ) = λf
(
ξ ,μ(ξ )

)
, ξ ∈ Z. (1.3)

Agarwal et al. [2] first studied a discrete Laplacian equation similar to (1.3) by variational
methods. There are a number of recent papers that use critical point theory to study
second-order difference equations; see [24–26, 28, 37]. At the same time, we note that
the Kirchhoff–type problems have attracted wide attention in recent years. Specifically,
Kirchhoff built a well-known model via the following equation:

ρ
∂2μ

∂t2 –
(

p0

h
+

E
2L

∫ L

0

∣∣∣∣∂μ∂x

∣∣∣∣
2

dx
)
∂2μ

∂x2 = 0, (1.4)

where ρ , p0, h, E, and L are constants with some physical background. Equation (1.4) is
regarded as an extension of the classical D’Alembert wave equation. Fiscella and Valdinoci
[18] deduced a continuous expression of the fractional Kirchhoff model. Since then, there
have been a lot of papers considering qualitative properties of solutions for Kirchhoff–
type fractional Laplacian problems; see, e.g., [4, 11, 29–32, 34, 35]. To the beest of our
knowledge, there are no results on the existence of solutions for Kirchhoff-type fractional
discrete Laplacian problems.

In the present paper, we use the fountain theorem and the dual fountain theorem to
investigate the multiplicity of homoclinic solutions for the following fractional discrete
Kirchhoff–Schrödinger equation:

(
a + b[μ]p

s,p
)
(–�1)s

pμ(κ) + V (κ)
∣∣μ(κ)

∣∣p–2
μ(κ) = f

(
κ ,μ(κ)

)
for κ ∈ Z, (1.5)

where

[μ]p
s,p =

∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣pKs,p(ζ – ξ ),

a, b > 0 and 0 < s < 1 < p < ∞ are constants, V (κ) : Z → R
+, f (κ , ·) ∈ C(R,R) for all κ ∈ Z,

and the fractional discrete p-Laplace operator (–�1)s
p is defined as

(–�1)s
pμ(ζ ) = 2

∑
ξ∈Z,ξ �=ζ

∣∣μ(ζ ) –μ(ξ )
∣∣p–2(

μ(ζ ) –μ(ξ )
)
Ks,p(ζ – ξ ), ζ ∈ Z,

with discrete kernel Ks,p such that
⎧⎨
⎩

cs,p
|ξ |1+ps ≤ Ks,p(ξ ) ≤ Cs,p

|ξ |1+ps , ξ ∈ Z \ {0},
Ks,p(0) = 0,

(1.6)

where 0 < cs,p ≤ Cs,p are two positive constants.
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Note that the operator (–�1)s
p goes back to (–�1)s with p = 2. The counting measure

of interval T is denoted by M(T ). The neighborhood in Z with center δ and radius γ is
denoted by Uγ (δ). If μ(i) → 0 as |i| → ∞, then we call the solution μ of problem (1.5)
homoclinic. Assume that V (κ) : Z →R

+ and f (κ , ·) ∈ C(R,R) for all κ ∈ Z satisfies:
(V1) V0 is a positive constant such that V (κ) ≥ V0 for all κ ∈ Z;
(V2) For all σ > 0, there is a positive integer γ such that lim|δ|→∞ M({κ ∈ Z|V (κ) ≤ σ } ∩

Uγ (δ)) = 0;
(f1) |f (κ ,μ)| ≤ C(|μ|p–1 + |μ|q–1) for any κ ∈ Z andμ ∈R, where C is a positive constant,

and p < q < ∞;
(f2) lim|μ|→∞ F(κ ,μ)

μ2p = +∞ uniformly for all κ ∈ Z, where F(κ ,μ) =
∫ μ

0 f (κ , ζ ) dζ ;
(f3) There exist R > 0, ϕ ≥ 2p, and α ≥ 0 such that F(κ ,μ) ≤ 1

ϕ
f (κ ,μ)μ + α|μ|p + � (κ)

for all κ ∈ Z and μ ≥ R, where � ∈ �1 ∩ �∞ and � ≥ 0 (�1 and �∞ are defined in
Sect. 2);

(f4) f (κ ,μ) is odd in μ.
Assumption (V2) is weaker than the coercivity, and the former is a discrete version of the
continuous form proposed by Bartsch and Wang [8] to overcome the lack of compactness.
Moreover, hypothesis (f3) is weaker than the general Ambrosetti–Rabinowitz condition [3]

(AR) For any κ ∈ Z and μ≥ R,

0 < ϕF(κ ,μ) ≤ f (κ ,μ)μ.

We give the following example satisfying (f1)–(f4).

Example 1.1

f (ξ ,μ) = R
∣∣μ(ξ )

∣∣γ–2
μ(ξ ) + T

∣∣μ(ξ )
∣∣τ–2

μ(ξ ), p ≤ γ < 2p < τ ,

where R ∈R and T > 0 are two constants.

Now we state the following main results by the fountain theorem and the dual fountain
theorem. The space E and functional J will be defined in Sect. 2.

Theorem 1.1 Assume that (V1)–(V2) and (f1)–(f4) are satisfied. Then problem (1.5) pos-
sesses infinitely many nontrivial homoclinic solutions {μn} ⊂ E with energy J(μn) → ∞ as
n → ∞.

Theorem 1.2 Assume that (V1)–(V2) and (f1)–(f4) are satisfied. Then problem (1.5) pos-
sesses infinitely many nontrivial homoclinic solutions {μn} ⊂ E with energy J(μn) < 0 such
that J(μn) → 0 as n → ∞.

Remark 1.1 We briefly summarize the highlights of this paper:
(a) The fractional discrete Schrödinger equations with Kirchhoff term is discussed for

the first time.
(b) Under the same hypotheses, Theorems 1.1 and 1.2 acquire two sequences of diverse

homoclinic solutions for Eq. (1.5).
(c) The fountain theorem and the dual fountain theorem are used for the first time to

study fractional discrete Kirchhoff–Schrödinger equations.
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Ultimately, we point out that the case of concave and convex nonlinearities f (ξ ,μ) =
|μ(ξ )|r–2μ(ξ ) + |μ(ξ )|t–2μ(ξ ) with 1 < r < p < 2p < t < ∞, as a classical application of
the fountain theorem in a bounded domain (see, e.g., [34]), is not covered by Theo-
rems 1.1 and 1.2, because the compact embedding is not valid when 1 < r < p (the com-
pact embedding lemma is introduced in Sect. 2). Also, we point out that the case of
f (ξ ,μ(ξ )) = c(ξ )|μ(ξ )|r–2μ(ξ )+d(ξ )|μ(ξ )|t–2μ(ξ ) with 1 < r < p < t < ∞, as the nonlinearity
of a non-Kirchhoff-type fractional discrete p-Laplacian problem, has been investigated by
a new version of Clark’s theorem presented by Liu and Wang [27]. However, the excessive
limitations of the coefficients c(ξ ) and d(ξ ) make the obtained result imperfect. Therefore,
how to solve Eq. (1.5) with combined effect of concave and convex nonlinearities in the
Kirchhoff setting by a new approach is an interesting problem, which we will investigate
in the near future.

The rest of this paper consists of the following: Sect. 2 presents the variational structure
of Eq. (1.5). Section 3 verifies the compactness condition and describes the related lem-
mas used later. Section 4 proves infinite solutions to problem (1.5) through the fountain
theorem [7]. Section 5 is devoted to verifying the existence of infinitely many homoclinic
solutions to problem (1.5) via the dual fountain theorem [9].

2 Variational framework
First, we revisit some fundamental definitions.

For 1 ≤ � < ∞, the space (��,‖ · ‖�) is defined as

�� :=
{
ν : Z →R

∣∣∣∑
ζ∈Z

∣∣ν(ζ )
∣∣� < ∞

}
, ‖ν‖� =

(∑
ζ∈Z

∣∣ν(ζ )
∣∣�

)1/�

.

In addition, the space (�∞,‖ · ‖∞) is defined as

�∞ :=
{
ν : Z →R

∣∣∣ sup
ζ∈Z

∣∣ν(ζ )
∣∣ < ∞

}
, ‖ν‖∞ = sup

ζ∈Z

∣∣ν(ζ )
∣∣.

By the corresponding results in [17] the spaces (��,‖ · ‖�) and (�∞,‖ · ‖∞) are Banach
spaces. Evidently, ��1 ↪→ ��2 if 1 ≤ �1 ≤ �2 ≤ ∞.

Now we present a variational framework and relevant theorems to study Eq. (1.5). Set

E =
{
ν : Z →R

∣∣∣∑
ζ∈Z

∑
ξ∈Z

∣∣ν(ζ ) – ν(ξ )
∣∣pKs,p(ζ – ξ ) +

∑
τ∈Z

V (τ )
∣∣ν(τ )

∣∣p < ∞
}

.

The norm of space E is given by

‖ν‖p
E = [ν]p

s,p +
∑
τ∈Z

V (τ )
∣∣ν(τ )

∣∣p

=
∑
ζ∈Z

∑
ξ∈Z

∣∣ν(ζ ) – ν(ξ )
∣∣pKs,p(ζ – ξ ) +

∑
τ∈Z

V (τ )
∣∣ν(τ )

∣∣p.

Lemma 2.1 (See [21]) ψ ∈ �σ ⇒ [ψ]s,σ < ∞. Besides, [ψ]s,σ ≤ C(s,σ )‖ψ‖σ for all ψ ∈ �σ ,
where C(s,σ ) is a positive constant.
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Lemma 2.2 (See [20, 21]) Suppose that (V1) is satisfied. Then there is the following equiv-
alent norm in (E,‖ · ‖E):

‖ψ‖ :=
(∑
ξ∈Z

V (ξ )
∣∣ψ(ξ )

∣∣p
)1/p

.

Besides, (E,‖ · ‖) is a reflexive and separable Banach space.

Proof For the proof of equivalent norm and Banach space, see [21]. For the proof of re-
flexivity, see [20]. Here we only give the proof of separability. Let

A :=
∞⋃

n=0

{
v(i) ∈ E, i ∈ Z|v(i) ∈ Q for |i| ≤ n, v(i) = 0 for |i| ≥ n + 1

}
.

Then the set A is countably infinite as a countably infinite union of countably infinite sets.
Given any u ∈ E and any ε > 0, there exists n0(u, ε) ≥ 1 such that

∑
|i|≥n0+1

V (i)
∣∣u(i)

∣∣p ≤ εp

2
. (2.1)

For 1 ≤ i ≤ n0, there exists v(i) ∈Q such that

∑
|i|≤n0

V (i)
∣∣u(i) – v(i)

∣∣p ≤ εp

2
. (2.2)

By (2.1) and (2.2) we know that v(i) ∈ A and ‖v – u‖ ≤ ε. So A is dense in E. This proves
the separability of E. �

Lemma 2.3 (See [20]) Suppose that (V1)–(V2) are satisfied, then for all p ≤ ι ≤ ∞, the
embedding E ↪→ �ι is compact.

Lemma 2.4 (See [21]) Let D ⊂ E be a compact subset. Then for all θ > 0, there is τ0 ∈ N

such that

[ ∑
|ζ |>τ0

V (ζ )
∣∣μ(ζ )

∣∣p
]1/p

< θ for all μ ∈D.

Next, we define the energy functional J : E → R associated with problem (1.5) as

J(μ) = A(μ) – B(μ),

where

A(μ) =
1
p
(
a[μ]p

s,p + ‖μ‖p) +
b

2p
(
[μ]p

s,p
)2

and

B(μ) =
∑
ζ∈Z

F
(
ζ ,μ(ζ )

)
.
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Lemma 2.5 Suppose that (V1) is satisfied. Then A(μ) ∈ C1(E,R) with

〈
A′(μ),ν

〉
=

(
a + b[μ]p

s,p
)∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–2

× (
μ(ζ ) –μ(ξ )

)(
ν(ζ ) – ν(ξ )

)
Ks,p(ζ – ξ )

+
∑
ζ∈Z

V (ζ )
∣∣μ(ζ )

∣∣p–2
μ(ζ )ν(ζ )

for all μ,ν ∈ E.

Proof By Lemmas 2.1 and 2.3 we can easily deduce that A is well–defined on E. Fix
μ,ν ∈ E. By an argument similar to that of [21] we have

lim
τ→0+

a
[μ + τν]p

s,p – [μ]p
s,p

pτ

= a
∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–2(

μ(ζ ) –μ(ξ )
)(
ν(ζ ) – ν(ξ )

)
Ks,p(ζ – ξ ) (2.3)

and

lim
τ→0+

‖μ + τν‖p – ‖μ‖p

pτ
=

∑
ζ∈Z

V (ζ )
∣∣μ(ζ )

∣∣p–2
μ(ζ )ν(ζ ). (2.4)

By (2.3) we can derive that

lim
τ→0+

b
([μ + τν]p

s,p)2 – ([μ]p
s,p)2

2pτ

= b lim
τ→0+

([μ + τν]p
s,p + [μ]p

s,p)([μ + τν]p
s,p – [μ]p

s,p)
2pτ

= b
(

1
2

lim
τ→0+

(
[μ + τν]p

s,p + [μ]p
s,p

) · lim
τ→0+

[μ + τν]p
s,p – [μ]p

s,p

pτ

)

= b[μ]p
s,p

∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–2(

μ(ζ ) –μ(ξ )
)(
ν(ζ ) – ν(ξ )

)
Ks,p(ζ – ξ ). (2.5)

With the help of (2.3), (2.4), and (2.5) we get

〈
A′(μ),ν

〉
=

(
a + b[μ]p

s,p
)∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–2

× (
μ(ζ ) –μ(ξ )

)(
ν(ζ ) – ν(ξ )

)
Ks,p(ζ – ξ )

+
∑
ζ∈Z

V (ζ )
∣∣μ(ζ )

∣∣p–2
μ(ζ )ν(ζ ).

So A is Gâteaux differentiable.
Finally, we prove that A′ is continuous. Let {μn}n is a sequence in E such that μn → μ in

E as n → ∞. For convenience, we denote λ(μ) = |μ|p–2μ. By Lemma 2.4 and Lemma 2.5
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in [21] we can get that for any ε > 0,

∣∣∣∣
∑
ζ∈Z

∑
ξ∈Z

[
λ
(
μn(ζ ) –μn(ξ )

)
– λ

(
μ(ζ ) –μ(ξ )

)](
ν(ζ ) – ν(ξ )

)
Ks,p(ζ – ξ )

∣∣∣∣ ≤ Cε‖ν‖

and
∣∣∣∣
∑
ζ∈Z

V (ζ )
[
λ
(
μn(ζ )

)
– λ

(
μ(ζ )

)]
ν(ζ )

∣∣∣∣ ≤ Cε‖ν‖

as n → ∞, where C is a positive constant. From this we obtain that

∥∥A′(μn) – A′(μ)
∥∥ = sup

‖ν‖≤1

∣∣〈A′(μn) – A′(μ),ν
〉∣∣

≤ sup
‖ν‖≤1

[(
a + b[μn –μ]p

s,p
)
Cε‖ν‖ + Cε‖ν‖] → 0

as n → ∞. Therefore A(μ) ∈ C1(E,R). �

Lemma 2.6 Suppose that (V1) and (f1) are satisfied. Then B(μ) ∈ C1(E,R) with

〈
B′(μ),ν

〉
=

∑
τ∈Z

f
(
τ ,μ(τ )

)
ν(τ )

for all μ,ν ∈ E.

Proof By (f1) and Lemma 2.3 we have

∑
κ∈Z

F(κ ,μ) ≤ C1
∑
κ∈Z

|μ|p + C2
∑
κ∈Z

|μ|q

≤ C1Cp‖μ‖p + C2Cq‖μ‖q < ∞,

where C1, C2, Cp, Cq > 0 are constants. So B is well–defined on E. For given μ,ν ∈ E, we
show that

lim
τ→0+

B(μ + τν) – B(μ)
τ

=
∑
ζ∈Z

f
(
ζ ,μ(ζ )

)
ν(ζ ). (2.6)

The proof is analogous to that of Lemma 2.6 in [20]. We give it for the convenience of the
reader.

Choose a positive constant W such that ‖μ‖ ≤ W and ‖ν‖ ≤ W . For all ε > 0, there
exists κ1 ∈ N such that

∑
|ζ |>κ1

V (ζ )
∣∣ν(ζ )

∣∣p <
(

ε

6CC2(p–1)
p (2W )p–1

)p

. (2.7)

Moreover, there is 0 < τ0 < 1 such that for all 0 < τ ≤ τ0,

∑
|ζ |≤κ1

∣∣∣∣F(ζ ,μ(ζ ) + τν(ζ )) – F(ζ ,μ(ζ ))
τ

– f
(
ζ ,μ(ζ )

)
ν(ζ )

∣∣∣∣ <
ε

3
. (2.8)
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Fix 0 < τ < τ0. By the mean value theorem, for any |ζ | ≥ κ1, there is 0 ≤ τζ ≤ τ such that

F(ζ ,μ(ζ ) + τν(ζ )) – F(ζ ,μ(ζ ))
τ

= f
(
ζ ,μ(ζ ) + τζ ν(ζ )

)
ν(ζ ). (2.9)

Let ω ∈ E and

ω(ζ ) =

⎧⎨
⎩

0 if ζ ≤ κ1,

μ(ζ ) + τζ ν(ζ ) if ζ > κ1.

Thus ‖ω‖ ≤ ‖μ‖+‖ν‖ ≤ 2W . Hence by the Hölder inequality, (2.7), (2.8), (2.9), Lemma 2.3,
and (f1) we get

∣∣∣∣B(μ + τν) – B(μ)
τ

–
∑
ζ∈Z

f
(
ζ ,μ(ζ )

)
ν(ζ )

∣∣∣∣

≤
∑
ζ∈Z

∣∣∣∣F(ζ ,μ(ζ ) + τν(ζ )) – F(ζ ,μ(ζ ))
τ

– f
(
ζ ,μ(ζ )

)
ν(ζ )

∣∣∣∣

≤ ε

3
+

∑
|ζ |>κ1

∣∣f (ζ ,ω(ζ )
)
ν(ζ )

∣∣ +
∑
|ζ |>κ1

∣∣f (ζ ,μ(ζ )
)
ν(ζ )

∣∣

≤ ε

3
+ C

( ∑
|ζ |>κ1

∣∣ω(ζ )
∣∣p–1∣∣ν(ζ )

∣∣ +
∑
|ζ |>κ1

∣∣μ(ζ )
∣∣p–1∣∣ν(ζ )

∣∣
)

≤ ε

3
+ C

[( ∑
|ζ |>κ1

|ω|p
) p–1

p
+

( ∑
|ζ |>κ1

|μ|p
) p–1

p
]( ∑

|ζ |>κ1

|ν|p
) 1

p

≤ ε

3
+ C

(
C(p–1)

p ‖ω‖p–1 + C(p–1)
p ‖μ‖p–1) · C(p–1)

p ‖ν‖

≤ ε

3
+ CC2(p–1)

p
[
(2W )p–1 + (W )p–1] ε

6CC2(p–1)
p (2W )p–1

< ε.

Thus (2.6) is established, and hence B is Gâteaux differentiable.
Eventually, we verify the continuity of B′. Assume that μn → μ in E as n → ∞. Then by

Lemma 2.3 we know that μn(ξ ) → μ(ξ ) for all ξ ∈ Z. By Lemma 2.4 there exists κ2 ∈ N+

such that for small ε > 0,

( ∑
|ξ |>κ2

V (ξ )
∣∣μn(ξ )

∣∣p
) 1

p
<
ε

6
for all n ∈N

and

( ∑
|ξ |>κ2

V (ξ )
∣∣μ(ξ )

∣∣p
) 1

p
<
ε

6
.

In addition, we can derive that

∣∣μ(ξ )
∣∣ <

ε

6V
1
p

0

,
∣∣μn(ξ )

∣∣ <
ε

6V
1
p

0

for all n ∈N and |ξ | > κ2.
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From (f1) we can get that

∑
|ξ |>κ2

∣∣f (ξ ,μn(ξ )
)

– f
(
ξ ,μ(ξ )

)∣∣ p
p–1

≤ C
p

p–1
∑
|ξ |>κ2

(|μn|p–1 + |μ|p–1) p
p–1

≤ (
2Cp) 1

p–1
∑
|ξ |>κ2

(|μn|p + |μ|p)

≤ (2Cp)
1

p–1

V0

∑
|ξ |>κ2

V (ξ )
(|μn|p + |μ|p)

<
(2Cp)

1
p–1

V0

((
ε

6

)p

+
(
ε

6

)p)

=
(2C)

p
p–1 εp

6pV0
. (2.10)

Besides, since μn(ξ ) → μ(ξ ) for each ξ ∈ Z as n → ∞, by the continuity of f (ξ , ·) we have
that there exists an integer n0 such that

∑
|ξ |≤κ2

∣∣f (ξ ,μn(ξ )
)

– f
(
ξ ,μ(ξ )

)∣∣ p
p–1 ≤ (6p – 2

p
p–1 )C

p
p–1 εp

6pV0
for all n ≥ n0. (2.11)

By (2.10), (2.11), and the Hölder inequality, for any ν ∈ E with ‖ν‖ ≤ 1 and n ≥ n0, we get

∣∣∣∣
∑
ξ∈Z

[
f
(
ξ ,μn(ξ )

)
– f

(
ξ ,μ(ξ )

)]
ν(ξ )

∣∣∣∣

≤
(∑
ξ∈Z

∣∣f (ξ ,μn(ξ )
)

– f
(
ξ ,μ(ξ )

)∣∣ p
p–1

) p–1
p

(∑
ξ∈Z

∣∣ν(ξ )
∣∣p

) 1
p

≤ 1

V
1
p

0

(
C

p
p–1 εp

V0

) p–1
p

(∑
ξ∈Z

V (ξ )
∣∣ν(ξ )

∣∣p
) 1

p

≤ Cεp–1

V0
.

Then B′(μn) → B′(μ) in E∗ as n → ∞. Therefore we have verified that B(μ) ∈ C1(E,
R). �

By Lemmas 2.5 and 2.6 we get J ∈ C1(E,R).

Lemma 2.7 Assume that (V1) and (f1) are satisfied. If μ ∈ E is a critical point of J , then μ

is a homoclinic solution of Eq. (1.5).

Proof Let μ ∈ E be a critical point of J , i.e. J ′(μ) = 0. Then

(
a + b[μ]p

s,p
)∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–2(

μ(ζ ) –μ(ξ )
)(
ν(ζ ) – ν(ξ )

)
Ks,p(ζ – ξ )
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+
∑
ζ∈Z

V (ζ )
∣∣μ(ζ )

∣∣p–2
μ(ζ )ν(ζ ) =

∑
τ∈Z

f
(
τ ,μ(τ )

)
ν(τ ) (2.12)

for all ν ∈ E. For any ζ ∈ Z, we define eη ∈ E as

eη(ζ ) :=

⎧⎨
⎩

1 if ζ = η,

0 if ζ �= η.

Letting ν = eη in (2.12), we obtain

2
(
a + b[μ]p

s,p
) ∑
ξ∈Z,ξ �=η

∣∣μ(η) –μ(ξ )
∣∣p–2(

μ(η) –μ(ξ )
)
Ks,p(η – ξ ) + V (η)

∣∣μ(η)
∣∣p–2

μ(η)

= f
(
η,μ(η)

)
.

Consequently, μ is a solution of Eq. (1.5). Additionally, by μ ∈ E and Lemma 2.3 we eas-
ily get that μ(ξ ) → 0 as |ξ | → ∞. Eventually, we show μ is a homoclinic solution of
Eq. (1.5). �

3 Auxiliary results
In this section, we recall some definitions, lemmas, and their proofs to reveal the main
results.

By Lemma 2.2, E is a reflexive and separable Banach space. Then there are {en} ⊂ E and
{f ∗

n } ⊂ E∗ such that

E = span{en|n = 1, 2, . . .}, E∗ = span
{

f ∗
n |n = 1, 2, . . .

}
,

and

〈
f ∗
ζ , eξ

〉
=

⎧⎨
⎩

1 if ζ = ξ ,

0 if ζ �= ξ .

For brevity, we define Eκ = span{eκ}, Yκ =
⊕κ

i=1 Ei, Zκ =
⊕∞

i=κ Ei for κ ∈N+.

Lemma 3.1 Suppose that (V1) is satisfied. Then for all p ≤ q ≤ ∞,

βκ (q) := sup
{‖μ‖q|μ ∈ Zκ ,‖μ‖ = 1

} → 0 as κ → ∞.

Proof Obviously, 0 ≤ βκ+1(q) ≤ βκ (q), so there is β(q) ≥ 0 such that βκ (q) → β(q) as κ →
∞. For every κ ∈ N+, there exists μκ ∈ Zκ with ‖μκ‖ = 1 such that

‖μκ‖q >
βκ (q)

2
. (3.1)

By the definition of Zκ , Lemma 2.2, and the boundedness of {μκ} there exists a subse-
quence of {μκ} (still denoted by {μκ}) such that μκ ⇀ μ as κ → ∞ in E. Next, we show
that μ = 0. For any f ∗

m ∈ {f ∗
n |n = 1, 2, . . .}, we have

〈
f ∗
m,μ

〉
= lim

κ→∞
〈
f ∗
m,μκ

〉
= 0.
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So μκ ⇀ 0 in E. From Lemma 2.3 we know that μκ → 0 in �q. Let κ → ∞ in (3.1). Then
we get βκ (q) → 0. �

Next, we introduce the Cerami condition ((C) for short), which is provided in [14]. Let E
be a reflexive and separable Banach space. For J ∈ C1(E,R), we say that J satisfies (C) if any
sequence {μn} ⊂ E such that {J(μn)} is bounded and (1 + ‖μn‖)‖J ′(μn)‖ → 0 as n → ∞
includes a convergent subsequence. Then we introduce condition (C)∗ (with respect to
Yn). We say that J satisfies (C)∗ if any sequence {μn} ⊂ E such that μn ∈ Yn, {J(μn)} is
bounded, and (1 + ‖μn‖)‖J ′|Yn (μn)‖ → 0 as n → ∞ contains a convergent subsequence.
Clearly, condition (C)∗ implies condition (C).

Lemma 3.2 Let (V1)–(V2) and (f1)–(f3) hold. Then the functional J satisfies condition (C)∗.

Proof Suppose {μn} ⊂ E is a (C)∗ sequence, that is, μn ∈ Yn for some n,

∣∣J(μn)
∣∣ ≤ M, and

(
1 + ‖μn‖

)∥∥J ′|Yn (μn)
∥∥ → 0 as n → ∞. (3.2)

First, we prove that {μn} is bounded in E. By contradiction assume that ‖μn‖ → ∞ as
n → ∞. Let νn = μn

‖μn‖ . By Lemmas 2.2 and 2.3, up to a subsequence (still denoted by {νn}),
we can get νn ⇀ν in E and νn → ν in �p. Consider two cases: ν = 0 or ν �= 0. If ν = 0, then
by Lemma 2.2, (f1), (f3), and (3.2), we obtain

0 = lim
n→∞

1
‖μn‖p (M + 1)

≥ lim
n→∞

1
‖μn‖p

(
J|Yn (μn) –

1
ϕ

〈
J ′|Yn (μn),μn

〉)

≥ lim
n→∞

1
‖μn‖p

((
1
p

–
1
ϕ

)
min{a, 1}‖μn‖p

E –
∑
ζ∈Z

F(ζ ,μn) +
1
ϕ

∑
ζ∈Z

f (ζ ,μn)μn

)

≥
(

1
p

–
1
ϕ

)
CE min{a, 1} + lim

n→∞
1

‖μn‖p

∑
ζ∈Z

(
1
ϕ

f (ζ ,μn)μn – F(ζ ,μn)
)

=
(

1
p

–
1
ϕ

)
CE min{a, 1} + lim

n→∞
1

‖μn‖p

∑
{ζ ||μ|≥R}

(
1
ϕ

f (ζ ,μn)μn – F(ζ ,μn)
)

+ lim
n→∞

1
‖μn‖p

∑
{ζ ||μ|<R}

(
1
ϕ

f (ζ ,μn)μn – F(ζ ,μn)
)

≥
(

1
p

–
1
ϕ

)
CE min{a, 1} – lim

n→∞α
∑

{ζ ||μ|≥R}
|νn|p – lim

n→∞
1

‖μn‖p

∑
{ζ ||μ|≥R}

� (ζ )

+ lim
n→∞

1
‖μn‖p

∑
{ζ ||μ|<R}

[
–
(

C
ϕ

+ C1

)
|μn|p

]

≥
(

1
p

–
1
ϕ

)
CE min{a, 1} – α lim

n→∞‖νn‖p
p – lim

n→∞
1

‖μn‖p

∥∥� (ζ )
∥∥

1

–
(

C
ϕ

+ C1

)
lim

n→∞‖νn‖p
p

=
(

1
p

–
1
ϕ

)
CE min{a, 1},
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where CE > 0 is a constant. This is a contradiction. If ν �= 0, then we set

� :=
{
ζ ∈ Z|ν(ζ ) �= 0

} �= ∅.

For all ξ ∈�, we have

|μn| = |νn| · ‖μn‖ → ∞ as n → ∞.

From (f2) we obtain

lim
n→∞

F(ξ ,μn)
|μn|2p |νn|2p = +∞.

Together with the Fatou lemma, this means that

lim
n→∞

∑
ξ∈�

F(ξ ,μn)
|μn|2p |νn|2p = lim

n→∞
∑
ξ∈�

F(ξ ,μn)
‖μn‖2p = +∞. (3.3)

By (f2) there exists S ∈ (0, 1) such that

F(ξ ,μ) > 0 for all ξ ∈ Z and |μ| > S. (3.4)

For fixed S, by (f1) we have

∣∣F(ξ ,μ)
∣∣ ≤ C1|μ|p for all ξ ∈ Z and |μ| ≤ S. (3.5)

With the help of (3.4) and (3.5), we acquire

F(ξ ,μ) ≥ –C1|μ|p for all ξ ∈ Z and μ ∈R.

By Lemma 2.3 from this inequality we have

lim
n→∞

∑
ξ∈Z\�

F(ξ ,μn)
|μn|2p |νn|2p = lim

n→∞
∑
ξ∈Z\�

F(ξ ,μn)
‖μn‖2p

≥ lim
n→∞ –

C1

‖μn‖2p

∑
ξ∈Z\�

|μn|p

≥ lim
n→∞ –C1

‖μn‖p
p

‖μn‖2p

≥ lim
n→∞ –

C1Cp

‖μn‖p = 0. (3.6)

By the definition of J and Lemma 2.2 there exists a positive constant Ce such that

J(μn) +
∑
ξ∈Z

F(ξ ,μn) =
1
p
(
a[μn]p

s,p + ‖μn‖p) +
b

2p
(
[μn]p

s,p
)2

≤ 1
p

max{a, 1}‖μn‖p
E +

b
2p

‖μn‖2p
E
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≤ Ce

p
max{a, 1}‖μn‖p +

bC2
e

2p
‖μn‖2p.

Dividing both sides of this inequality by ‖μn‖2p and taking the limit as n → ∞, by (3.3)
and (3.6) we deduce that

bC2
e

2p
≥ lim

n→∞
∑
ξ∈Z

F(ξ ,μn)
‖μn‖2p = lim

n→∞

(∑
ξ∈�

F(ξ ,μn)
‖μn‖2p +

∑
ξ∈Z\�

F(ξ ,μn)
‖μn‖2p

)
= +∞.

This is also a contradiction. So {μn} is bounded in E.
Now we verify that μn → μ in E. By the above discussion and Lemma 2.2, up to

a subsequence (still denoted by {μn}), we assume that μn ⇀ μ in E. Because E =
span{en|n = 1, 2, . . .} =

⋃
n Yn, where Yn are finite-dimensional spaces, we can choose

νn ∈ Yn such that νn → μ in E. Hence we acquire

〈
J ′(μn) – J ′(μ),μn –μ

〉

=
〈
J ′(μn),μn –μ

〉
–

〈
J ′(μ),μn –μ

〉

=
〈
J ′|Yn (μn),μn – νn

〉
–

〈
J ′(μn),μ – νn

〉
–

〈
J ′(μ),μn –μ

〉

≤ ∥∥J ′|Yn (μn)
∥∥ · ‖μn – νn‖ –

〈
J ′(μn),μ – νn

〉

–
〈
J ′(μ),μn –μ

〉 → 0 as n → ∞. (3.7)

Besides, by Lemma 2.3 we have

μn → μ in �p,

μn → μ a.e. in Z

(3.8)

as n → ∞, and there is a function ϑ ∈ �p such that

|μn| ≤ ϑ a.e. for all n ∈ Z. (3.9)

By (f1), f (κ , ·) ∈ C(R,R) for all κ ∈ Z, (3.8), (3.9), and Lebesgue’s dominated convergence
theorem we have

∑
ξ∈Z

f (ξ ,μn)μn →
∑
ξ∈Z

f (ξ ,μn)μ (3.10)

and

∑
ξ∈Z

f (ξ ,μ)μn →
∑
ξ∈Z

f (ξ ,μ)μ (3.11)

as n → ∞. Combining (3.10) and (3.11), we infer that

∑
ξ∈Z

(
f (ξ ,μn) – f (ξ ,μ)

)
(μn –μ) → 0 as n → ∞. (3.12)
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Then we define the functional D(μ) : E →R by

〈
D(μ),υ

〉
=

∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–2(

μ(ζ ) –μ(ξ )
)(
υ(ζ ) – υ(ξ )

)
Ks,p(ζ – ξ ), υ ∈ E.

We claim that D(μ) is a continuous linear functional. Indeed, by the Hölder inequality we
obtain

∣∣〈D(μ),υ
〉∣∣ ≤

∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣p–1∣∣υ(ζ ) – υ(ξ )

∣∣Ks,p(ζ – ξ )

≤
(∑
ζ∈Z

∑
ξ∈Z

∣∣μ(ζ ) –μ(ξ )
∣∣(p–1) p

p–1 Ks,p(ζ – ξ )
) p–1

p

×
(∑
ζ∈Z

∑
ξ∈Z

∣∣υ(ζ ) – υ(ξ )
∣∣pKs,p(ζ – ξ )

) 1
p

≤ ‖μ‖p–1
E ‖υ‖E .

We know from the above argument that

〈
D(μ),μn –μ

〉 → 0 as n → ∞. (3.13)

Restate the previous definition and set some new definitions:

λ(μ) = |μ|p–2μ, !(ζ ) = μn(ζ ) –μ(ζ ),

�n = μn(ζ ) –μn(ξ ), � = μ(ζ ) –μ(ξ ).

Recall the fundamental inequality

(|x|p–2x – |y|p–2y
)
(x – y) ≥

⎧⎨
⎩

cp|x – y|2(|x| + |y|)p–2, 1 < p < 2,

Cp|x – y|p, p ≥ 2,

where cp and Cp are two positive constants depending only on p. By the fundamental
inequality we can deduce that

〈
J ′(μn) – J ′(μ),μn –μ

〉

=
〈
J ′(μn),μn –μ

〉
–

〈
J ′(μ),μn –μ

〉

=
(
a + b[μn]p

s,p
)∑
ζ∈Z

∑
ξ∈Z

λ(�n)
(
!(ζ ) –!(ξ )

)
Ks,p(ζ – ξ )

–
(
a + b[μ]p

s,p
)∑
ζ∈Z

∑
ξ∈Z

λ(�)
(
!(ζ ) –!(ξ )

)
Ks,p(ζ – ξ )

+
∑
ζ∈Z

V (ζ )
(
λ(μn) – λ(μ)

)
!(ζ )

–
∑
ζ∈Z

(
f
(
ζ ,μn(ζ )

)
– f

(
ζ ,μ(ζ )

))(
μn(ζ ) –μ(ζ )

)
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=
(
a + b[μn]p

s,p
)∑
ζ∈Z

∑
ξ∈Z

(
λ(�n) – λ(�)

)(
!(ζ ) –!(ξ )

)
Ks,p(ζ – ξ )

– b
(
[μ]p

s,p – [μn]p
s,p

)∑
ζ∈Z

∑
ξ∈Z

λ(�)
(
!(ζ ) –!(ξ )

)
Ks,p(ζ – ξ )

+
∑
ζ∈Z

V (ζ )
(
λ(μn) – λ(μ)

)
!(ζ )

–
∑
ζ∈Z

(
f
(
ζ ,μn(ζ )

)
– f

(
ζ ,μ(ζ )

))(
μn(ζ ) –μ(ζ )

)

≥ a
∑
ζ∈Z

∑
ξ∈Z

(
λ(�n) – λ(�)

)
(�n –�)Ks,p(ζ – ξ )

+
∑
ζ∈Z

V (ζ )
(
λ(μn) – λ(μ)

)
!(ζ )

– b
(
[μ]p

s,p – [μn]p
s,p

)∑
ζ∈Z

∑
ξ∈Z

λ(�)(�n –�)Ks,p(ζ – ξ )

–
∑
ζ∈Z

(
f
(
ζ ,μn(ζ )

)
– f

(
ζ ,μ(ζ )

))(
μn(ζ ) –μ(ζ )

)

≥ Cf min{a, 1}‖μn –μ‖p
E

– b
(
[μ]p

s,p – [μn]p
s,p

)∑
ζ∈Z

∑
ξ∈Z

λ(�)(�n –�)Ks,p(ζ – ξ )

–
∑
ζ∈Z

(
f
(
ζ ,μn(ζ )

)
– f

(
ζ ,μ(ζ )

))(
μn(ζ ) –μ(ζ )

)
, (3.14)

where Cf is a positive constant. Together with (3.7), (3.12), (3.13), and (3.14), we can de-
duce that ‖μn –μ‖E → 0 as n → ∞ and get μn → μ in E. So J satisfies condition (C)∗. �

4 Proof of Theorem 1.1
In this section, we use the fountain theorem to prove Theorem 1.1. Let us first recall this
theorem.

Theorem 4.1 (See [7]) Let H be a Banach space, and let " ∈ C1(H ,R) be an even func-
tional. Assume that ∀κ ∈ N, ∃rκ > γκ > 0 such that

(T1) inf{"(μ)|μ ∈ Zκ ,‖μ‖H = γκ} → ∞ as κ → ∞;
(T2) max{"(μ)|μ ∈ Yκ ,‖μ‖H = rκ} ≤ 0;
(T3) " satisfies condition (C).

Then there exists {μd} ⊂ H such that " ′(μd) = 0 and "(μd) → ∞ as d → ∞.

Proof of Theorem 1.1 By Lemma 3.2 and the definition of J , J is even and satisfies (T3).
Next, we just need to verify conditions (T1) and (T2) of Theorem 4.1.

Verification of (T1): For μ ∈ Zκ , by (f1) we get

J(μ) =
1
p
(
a[μ]p

s,p + ‖μ‖p) +
b

2p
(
[μ]p

s,p
)2 –

∑
ζ∈Z

F(ζ ,μ)

≥ CE min{a, 1}
p

‖μ‖p –
∑
ζ∈Z

F(ζ ,μ)
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≥ CE min{a, 1}
p

‖μ‖p – C1‖μ‖p
p – C2‖μ‖q

q. (4.1)

In terms of Lemma 3.1, there is a sufficiently large m ∈N+ such that

‖μ‖p
p =

∥∥∥∥ μ

‖μ‖
∥∥∥∥

p

p
‖μ‖p ≤ CE min{a, 1}

2pC1
‖μ‖p for any μ ∈ Zm. (4.2)

Combining (4.1), (4.2), and Lemma 3.1, we obtain

J(μ) ≥ CE min{a, 1}
p

‖μ‖p –
CE min{a, 1}

2p
‖μ‖p – C2

∥∥∥∥ μ

‖μ‖
∥∥∥∥

q

q
‖μ‖q

≥ CE min{a, 1}
2p

‖μ‖p – C2β
q
κ (q)‖μ‖q (4.3)

= ‖μ‖p
(

CE min{a, 1}
2p

– C2β
q
κ (q)‖μ‖q–p

)
, (4.4)

where κ > m is large enough. Choose

γκ =
(

CE min{a, 1}
2qC2β

q
κ (q)

) 1
q–p

. (4.5)

Thanks to Lemma 3.1 and 1 < p < q, it is easy to see that γκ → ∞ as κ → ∞. Together
with (4.4) and (4.5), for any μ ∈ Zκ and ‖μ‖ = γκ , we have

J(μ) ≥ ‖μ‖p
(

CE min{a, 1}
2p

– C2β
q
κ (q)

CE min{a, 1}
2qC2β

q
κ (q)

)

=
CE min{a, 1}

2

(
1
p

–
1
q

)
γ p
κ → ∞

as κ → ∞. Hence (T1) is established.
Verification of (T2): By the definition of Yκ we know that Yκ is finite-dimensional, so

there exists a positive constant CF such that

‖μ‖2p
E ≤ CF‖μ‖2p

2p. (4.6)

For M > bCF
2p > 0, by (f2) there exists L ∈ (0, 1) such that

F(ξ ,μ) > Mμ2p for all ξ ∈ Z and |μ| > L. (4.7)

For fixed L, by (f1), we obtain

F(ξ ,μ) ≥ –C1|μ|p for all ξ ∈ Z and |μ| ≤ L. (4.8)

With the help of (4.7) and (4.8), we acquire

F(ξ ,μ) ≥ Mμ2p – C1|μ|p for all ξ ∈ Z and μ ∈ R. (4.9)
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For μ ∈ Yκ , by Lemma 2.3, (4.6), and (4.9) we have

J(μ) =
1
p
(
a[μ]p

s,p + ‖μ‖p) +
b

2p
(
[μ]p

s,p
)2 –

∑
ζ∈Z

F(ζ ,μ)

≤ max{a, 1}
p

‖μ‖p
E +

b
2p

‖μ‖2p
E – M‖μ‖2p

2p + C1‖μ‖p
p

≤ max{a, 1}
p

‖μ‖p
E +

b
2p

‖μ‖2p
E –

M
CF

‖μ‖2p
E + C′‖μ‖p

E

= C′′‖μ‖p
E –

(
M
CF

–
b

2p

)
‖μ‖2p

E , (4.10)

where C′, C′′ > 0 are two constants. For any μ ∈ Yκ and ‖μ‖ = rκ , we get

J(μ) ≤ 0,

provided that rκ > γκ > 1 are sufficiently large. Therefore (T2) is proved.
By applying Lemma 2.7 and Theorem 4.1, we obtain that problem (1.5) possesses infinite

nontrivial homoclinic solutions with unbounded energy. �

5 Proof of Theorem 1.2
In the last section, we show Theorem 1.2 with the aid of the dual fountain theorem, which
is given below for the reader’s convenience.

Theorem 5.1 (See [9]) Let H be a Banach space, and let " ∈ C1(H ,R) be an even func-
tional. Assume that ∀κ ≥ κ0, ∃rκ > γκ > 0, such that

(D1) inf{"(μ)|μ ∈ Zκ ,‖μ‖H = rκ} ≥ 0;
(D2) aκ := max{"(μ)|μ ∈ Yκ ,‖μ‖H = γκ} < 0;
(D3) bκ := inf{"(μ)|μ ∈ Zκ ,‖μ‖H ≤ rκ} → 0 as κ → ∞;
(D4) " satisfies condition (C)∗.

Then there exists {μd} ⊂ H such that " ′(μd) = 0, "(μd) < 0, and "(μd) → 0 as d → ∞.

Proof of Theorem 1.2 By Lemma 3.2 and the definition of J , J is even and satisfies (D4).
Next, we just need to verify conditions (D1), (D2), and (D3) of Theorem 4.1.

Verification of (D1): For μ ∈ Zκ and (4.3), we can choose

rκ =
(

4pC2

CE min{a, 1}β
q
κ (q)

) 1
p–q

. (5.1)

Clearly, by Lemma 3.1 we know that limκ→∞ rκ = ∞. Then there exists κ0 ∈ N+ such that
rκ > 1 for κ ≥ κ0. Letting ‖μ‖ = rκ , by (4.3) we can derive that

J(μ) ≥ CE min{a, 1}
2p

‖μ‖p – C2β
q
κ (q)‖μ‖q =

CE min{a, 1}
4p

‖μ‖p ≥ 0. (5.2)

So condition (D1) is satisfied.
Verification of (D2): For μ ∈ Yκ and (4.10), we can also find M > bCF

2p > 0 large enough.
Then we deduce that

J(μ) → –∞ as ‖μ‖E → +∞.
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Hence there exists 1 < γκ < ∞ such that

J(μ) < 0 for all μ ∈ Yκ with ‖μ‖E = γκ . (5.3)

Then we can find κ1 > κ0 such that rκ > γκ > 1 for all κ ≥ κ1. Hence we can conclude that
(D2) is fulfilled.

Verification of (D3): By means of Yκ ∩ Zκ �= ∅, 1 < γκ < rκ , and (5.3) we get

bκ = inf
μ∈Zκ ,‖μ‖≤rκ

J(μ)

≤ inf
μ∈Zκ ,‖μ‖≤γκ

J(μ)

≤ inf
μ∈Yκ∩Zκ ,‖μ‖≤γκ

J(μ)

≤ inf
μ∈Yκ∩Zκ ,‖μ‖=γκ

J(μ)

≤ max
μ∈Yκ∩Zκ ,‖μ‖=γκ

J(μ)

≤ max
μ∈Yκ ,‖μ‖=γκ

J(μ) = aκ < 0. (5.4)

Therefore, for ν ∈ Zκ with ‖ν‖ = 1, μ = tν with 0 < t ≤ rκ , and (4.3), we obtain

J(μ) = J(tν)

≥ CE min{a, 1}
2p

‖tν‖p – C2β
q
κ (q)‖tν‖q

≥ –C2tqβq
κ (q)‖ν‖q ≥ –C2rq

κβ
q
κ (q)‖ν‖q. (5.5)

Combining (5.4) and (5.5), we derive that

0 > bκ ≥ –C2rq
κβ

q
κ (q)‖ν‖q for all κ ≥ κ0.

By Lemma 3.1 we know that bκ → 0 as κ → ∞. Consequently, (D3) also holds.
By means of Theorem 5.1 and Lemma 2.7 we get that Eq. (1.5) has infinitely many non-

trivial homoclinic solutions with negative energy converging to 0. �
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29. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Cambridge

University Press, Cambridge (2015)
30. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations

involving the fractional p-Laplacian in R
N . Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

31. Wang, L., Zhang, B.: Infinitely many solutions for Schrödinger–Kirchhoff type equations involving the fractional
p-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016, 339 (2016)

32. Xiang, M., Pucci, P., Squassina, M., Zhang, B.: Nonlocal Schrödinger-Kirchhoff equations with external magnetic field.
Discrete Contin. Dyn. Syst. 37, 1631–1649 (2017)

33. Xiang, M., Zhang, B.: Homoclinic solutions for fractional discrete Laplacian equations. Nonlinear Anal. 198, 111886
(2020)

34. Xiang, M., Zhang, B., Guo, X.: Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem.
Nonlinear Anal. 120, 299–313 (2015)

35. Xie, Q., Xiao, H.: Infinitely many solutions for the discrete Schrödinger equations with a nonlocal term. Bound. Value
Probl. 2022, 2 (2022)



Ju et al. Advances in Continuous and Discrete Models         (2023) 2023:31 Page 21 of 21

36. Yang, L., An, T., Zuo, J.: Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field.
Bound. Value Probl. 2019, 196 (2019)

37. Zhou, Z., Ma, D.: Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded
potentials. Sci. China Math. 58, 781–790 (2015)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Inﬁnitely many homoclinic solutions for fractional discrete Kirchhoff-Schrodinger equations
	Abstract
	MSC
	Keywords

	Introduction and main results
	Variational framework
	Auxiliary results
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Acknowledgements
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


