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Abstract
In this paper, we try to recover an unknown source in a time-fractional diffusion
equation. In order to overcome the influence of boundary conditions on source
conditions, we introduce the Jacobi polynomials to construct the approximation and
a modified Tikhonov regularization method is proposed to deal with the illposedness.
Error estimates are obtained under a discrepancy principle as the parameter choice
rule. Numerical results are also presented to demonstrate the effectiveness of the
proposed method.
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1 Introduction
In recent years, fractional differential equations have attracted much attention since they
play an important role in widespread fields such as biochemistry, physics, biology, chem-
istry, and finance; please refer to [1–6]. The interest of the study of fractional differen-
tial equations lies in the fact that the fractional-order derivatives and integrals enable the
description of memory and hereditary properties of various materials and processes [7].
Time-fractional diffusion equations, obtained from the standard diffusion equation by re-
placing the standard time derivative with a time-fractional derivative, have been stud-
ied with respect to their direct problems in different contexts, see [8–16] and references
therein.

In some practical problems, we need to determine the diffusion coefficients, initial data
or source term by additional measured data that will lead to some fractional diffusion
inverse problems. Among them, the inverse source problems for the time-fractional dif-
fusion equations have been widely studied. A large number of studies has been done to
research the uniqueness [17–19], conditional stability [18–20], and numerical computa-
tions [18–25] of these problems. Many methods for solving these problems are based on
the eigenfunction system of a corresponding differential operator [19–24]. This leads to
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a problem: only when the solution satisfies certain boundary conditions can the methods
obtain better convergence results. Next, we illustrate this with the inverse source problem
considered in this paper.

We consider the following unknown source problem in a time-fractional diffusion equa-
tion [20]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0∂
α
t u – uxx = f (x), 0 < x < 1, 0 < t < T ,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x, T) = g(x), 0 ≤ x ≤ 1,

(1)

where 0∂
α
t u is the left-sided Caputo fractional derivative of order α defined by

0∂
α
t u =

1
�(1 – α)

∫ t

0

∂u(x, s)
∂s

ds
(t – s)α

, 0 < α < 1,

where �(·) is the Gamma function. Our goal is to recover the source term f (x) from the
final data u(x, T) = g(x). Since the data g(x) is usually based on the observation, they must
contain errors and we assume the noisy data gδ satisfies

∥
∥gδ – g

∥
∥ ≤ δ. (2)

To obtain the solution of problem (1), we solve the following Sturm–Liouville Problem
(SLP)

⎧
⎨

⎩

X ′′ + λX = 0, in (0, 1),

X(0) = X(1) = 0.
(3)

Its solution is

λ� = �2π2, X� =
√

2 sin�πx, � = 1, 2, . . . .

If we define the generalized Mittag–Leffler function as

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, (4)

where α > 0, β ∈R, then it can be deduced that the solution of (1) has the form [20]:

u(x, t) =
∞∑

�=1

1 – Eα,1(–λ�tα)
λ�

(f , X�)X�.

Hence, we can obtain

g(x) =
∞∑

�=1

1 – Eα,1(–�2π2Tα)
�2π2 (f , X�)X�.
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Define operator K : f → g as

Kf (x) =
∞∑

�=1

1 – Eα,1(–�2π2Tα)
�2π2 (f , X�)X� = g(x), (5)

then a singular system {σ�,φ�,ϕ�} of K can be given as

σ� =
1 – Eα,1(–λ�Tα)

λ�

, φ� = ϕ� = X�. (6)

Hence, the inverse problem (1) can be transformed into solving the following compact
operator equation

Kf = gδ . (7)

Based on the above singular system, we can obtain the stable solution of (7) by differ-
ent regularization schemes and the complete process of the truncation method has been
given in [20]. In this framework, the following source condition is needed to obtain the
convergence rates of the regularization solution:

( ∞∑

�=1

λr
�

∣
∣〈f , X�〉

∣
∣2

) 1
2

≤ E1, r > 0, (8)

where E1 > 0 is a constant. In other words, the smoothness of the function is character-
ized by the decay rate of the expansion coefficient with respect to X�. However, it is well
known that the Fourier-sine coefficients of a function can decay rapidly only if the function
satisfies certain boundary conditions. Specifically, if boundary condition

f (0) = f (1) = 0

does not hold, then even if the function is sufficiently smooth, the condition (8) holds
only for r < 1. The fundamental reason for this situation is that the SLP in formula (3)
is regular, i.e., a smooth function can be approximated by the eigenfunctions of (3) with
spectral accuracy if and only if all its even derivatives vanish at the boundary [26].

Hence, in this paper we change the approach to approximate the source term f . A di-
rect idea is that we can construct an approximation by Jacobi polynomials that are eigen-
functions of the singular SLPs. Jacobi polynomials as recommended basis functions have
been used to solve some inverse problems [27–30]. In this paper, we will use the Jacobi
polynomials instead of eigenfunctions {X�}. Moreover, we introduce a modified Tikhonov
method to overcome the illposedness of the problem (7). The method has been used to
solve a numerical differentiation problem in [30]. A discrepancy principle will be used to
choose the regularization parameter and the new method can self-adaptively obtain the
convergence rate without the limitation of boundary conditions.

The outline of the paper is as follows: we construct the regularization solution by a mod-
ified Tikhonov regularization method with Jacobi polynomials in Sect. 2. In Sect. 3, the
detailed theoretical analysis of the method is carried out. Some numerical examples are
given in Sect. 4 to confirm the effectiveness of the method. Finally, we end this paper with
a brief conclusion in Sect. 5.
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2 A modified Tikhonov regularization method based on Jacobi polynomials
The kth Jacobi polynomials are defined by [26]

Pα,β
k (x) =

(–1)k

2kk!
1

(1 – x)α(1 + x)β
dk

dxk

[
(1 – x)k+α(1 + x)k+β

]
,

k = 0, 1, . . . , α,β > –1.
(9)

They satisfy the orthogonality relations

∫ 1

–1
ωα,β (x)Pα,β

k (x)Pα,β
j (x) dx = γ

α,β
k δk,j,

where

γ
α,β
k =

2α+β+1�(k + α + 1)�(k + β + 1)
(2k + α + β + 1)k!�(k + α + β + 1)

.

From [26], the following derivative relations hold

dj

dxj Pα,β
k (x) = dα,β

k,j Pα+j,β+j
k–j (x), k ≥ j, (10)

where

dα,β
k,j =

�(k + j + α + β + 1)
2j�(k + α + β + 1)

.

Since we consider the problem in the interval � = [0, 1], we introduce the functions
Lk(x), Jk(x) by coordinate transformation:

Lk(x) =
√

2k + 1P0,0
k (2x – 1),

Jk(x) =
√

(2k + 5)(k + 3)(k + 4)
4
√

(k + 1)(k + 2)
P2,2

k (2x – 1), x ∈ [0, 1].
(11)

The following related properties can be easily obtained:

Lk(0) = (–1)k
√

2k + 1, Lk(1) =
√

2k + 1, and L′′
k (x) = ηkJk–2(x), (12)

where

ηk =
√

(k – 1)k(k + 1)(k + 2)
4

.

The orthogonality relations of Lk and Jk can be given as:

∫

�

Lk(x)Lj(x) dx = δk,j,
∫

�

ω(x)Jk(x)Jj(x) dx = δk,j,
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with

ω(x) = ω2,2(2x – 1) =
(
4x – 4x2)2.

The weighted space L2
ω(�) is defined as

L2
ω(�) =

{

f : ‖f ‖L2
ω

=
(∫

�

ω(x)f 2(x) dx
)1/2

< ∞
}

. (13)

For a function f ∈ L2
ω(�), we can obtain

f (x) =
∞∑

k=0

f̂k Jk(x),

with

f̂k =
∫

�

ω(x)f (x)Ĵk(x) dx.

By the Parseval equality

‖f ‖2
L2
ω

=
∞∑

k=0

f̂ 2
k .

Let vector �f = (f̂0, f̂1, . . . f̂n, . . .)T that contains all expansion coefficients of f ∈ L2
ω(�) with

respect to Jk(x), and we define the operators

(J �f)(x) =
∞∑

k=0

f̂k Jk(x),

PN�f = (f̂0, f̂1, . . . , f̂N , 0, 0, . . .)T ,

R�f =
(
f̂0, ef̂1, . . . , enf̂n, . . .

)T ,

(14)

where N is a nonnegative integer and e is the natural constant.
We introduce the following variable Hilbert scale spaces

W ψ
2 :=

{

f ∈ L2
ω(�) : ‖f ‖2

ψ :=
∞∑

k=0

ψ2(k)f̂ 2
k < ∞

}

, (15)

where ψ : [0,∞) → (0,∞) is a nondecreasing function satisfying limx→∞ ψ(x) = ∞. In this
paper, we will consider the following two cases:

1. Finitely smoothing case:

ψ(x) = φr(x) =

⎧
⎨

⎩

1, x < 1,

xr , x ≥ 1,
r > 1. (16)

2. Infinitely smoothing case:

ψ(x) = ϕλ(x) = eλx, λ > 0. (17)
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In both cases, the regularization solution of problem (1) is defined as the minimizer of the
following Tikhonov functional:

∥
∥Kh – gδ

∥
∥2 + ρ‖h‖2

ϕ1 , (18)

where ρ is a regularization parameter and it will be chosen by the Morozov discrepancy
principle: ρ is the solution of the equation

∥
∥Kh – gδ

∥
∥ = Cδ, (19)

with a given constant C > 1.
If we let A = KJ and h = J �h, then (18) becomes

∥
∥A�h – gδ

∥
∥2 + ρ‖R�h‖2

�2 , (20)

hence, the minimizer of (18) can be given as

hδ
ρ = J �hδ

ρ , (21)

where �hδ
ρ is the solution of equation

(
A∗A + ρR2)�h = A∗gδ . (22)

In this case, the equation (19) converts to

∥
∥A�hδ

ρ – gδ
∥
∥ = Cδ. (23)

Lemma 1 [20] For 0 < α < 1, Eα,1 is a monotone decreasing function for t ≥ 0 and we have

1 = Eα,1(0) > Eα,1(–t) > 0, t > 0. (24)

Lemma 2 [31] If we let B = AR–1, then by using functional calculus, we have

�hδ
ρ = R–1dρ

(
B∗B

)
B∗gδ with dρ(λ) =

1
λ + ρ

. (25)

The function dρ : (0,‖B‖2] → (0,∞) such that

sup
λ>0

λ1/2∣∣dρ(λ)
∣
∣ ≤ 1

2√
ρ

, sup
λ>0

λ
∣
∣dρ(λ)

∣
∣ ≤ 1 (26)

and

sup
λ>0

λ1/2∣∣1 – λdρ(λ)
∣
∣ ≤

√
ρ

2
, sup

λ>0

∣
∣1 – λdρ(λ)

∣
∣ ≤ 1. (27)



Tang et al. Advances in Continuous and Discrete Models         (2023) 2023:33 Page 7 of 19

3 Convergence rates of the regularization solution
We will derive the error estimates of the method in this section. For any f ∈ W 2

ψ , let �f =
(f̂0, f̂1, . . . , f̂n, . . .)T ,

�fN = PN�f , fN = J (PN�f) (28)

and we define �fρ,N by

�fρ,N = R–1dρ

(
B∗B

)
B∗A�fN . (29)

It should be noted that we only use the parameter N for theoretical derivation and it does
not appear in practical computing. In the following different proof process, N has to be
chosen properly. This approach is borrowed from [31].

It is easy to obtain that

A
(�hδ

ρ – �fρ,N
)

= Bdρ

(
B∗B

)
B∗(gδ – A�fN

)
,

A(�fN – �fρ,N ) = B
[
I – dρ

(
B∗B

)
B∗B

]
R�fN ,

R
(�hδ

ρ – �fρ,N
)

= dρ

(
B∗B

)
B∗(gδ – A�fN

)
,

R(�fN – �fρ,N ) =
[
I – dρ

(
B∗B

)
B∗B

]
R�fN .

(30)

Lemma 3 If f ∈ W ψ
2 , then we have

‖R�fN‖�2 ≤
(

max
0≤k≤N

e2k

ψ2(k)

) 1
2 ‖f ‖ψ . (31)

Proof From (14) and (15)

‖R�fN‖2
�2 =

N∑

k=0

e2k f̂ 2
k =

N∑

k=0

e2k

ψ2(k)
ψ2(k)f̂ 2

k

≤ max
0≤k≤N

e2k

ψ2(k)

N∑

k=0

ψ2(k)f̂ 2
k ≤ max

0≤k≤N

e2k

ψ2(k)
‖f ‖ψ . �

Now, we define an operator K̂ as

K̂ f =
∞∑

�=1

1
�2π2 (f , X�)X�. (32)

Then, it is easily to see that

‖Kf ‖ ≤ ‖K̂ f ‖ ≤ 1
1 – Eα,1(–π2Tα)

‖Kf ‖. (33)

Lemma 4 If f ∈ W ψ
2 , then there exists a constant c1 > 0 such that

∥
∥A(I – PN )�f∥∥ ≤ c1

Nψ(N)
‖f ‖ψ . (34)
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Proof Let h1 = J �f , h2 = J (PN�f) and qi = K̂hi, i = 1, 2. Then, it can be deduced that qi are
the solutions of the following equations:

⎧
⎨

⎩

–q′′
i = hi(x), x ∈ (0, 1),

qi(0) = qi(1) = 0.

Then, from (12), we can obtain

q1(x) = –
∞∑

k=0

f̂k

ηk+2
Lk+2(x) +

( ∞∑

k=0

[1 + (–1)k+1]
√

2k + 5f̂k

ηk+2
x +

∞∑

k=0

(–1)k
√

2k + 5f̂k

ηk+2

)

(35)

and

q2(x)= –
N∑

k=0

f̂k

ηk+2
Lk+2(x) +

( N∑

k=0

[1 + (–1)k+1]
√

2k + 5f̂k

ηk+2
x +

N∑

k=0

(–1)k
√

2k + 5f̂k

ηk+2

)

.

By using the Cauchy inequality, we have

∞∑

k=N+1

√
2k + 5|f̂k|
ηk+2

≤
( ∞∑

k=N+1

2k + 5
η2

k+2

) 1
2
( ∞∑

k=N+1

f̂ 2
k

) 1
2

≤ 2
Nψ(N)

( ∞∑

k=N+1

ψ2(k)f̂ 2
k

) 1
2

.

Hence, we can obtain

∥
∥A(I – PN )�f∥∥

≤ ∥
∥K̂J (I – PN )�f∥∥ =

∥
∥q1(x) – q2(x)

∥
∥

=

∥
∥
∥
∥
∥

–
∞∑

k=N+1

f̂k

ηk+2
Lk+2(x) +

( ∞∑

k=N+1

[1 + (–1)k+1]
√

2k + 5f̂k

ηk+2
x +

∞∑

k=N+1

(–1)k
√

2k + 5f̂k

ηk+2

)∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

k=N+1

f̂k

ηk+2
Lk+2(x)

∥
∥
∥
∥
∥

+
∞∑

k=N+1

√
2k + 5|f̂k|
ηk+2

‖x + 1‖

≤ 2
N2ψ(N)

( ∞∑

k=N+1

ψ2(k)f̂ 2
k

) 1
2

+
2
√

3
Nψ(N)

( ∞∑

k=N+1

ψ2(k)f̂ 2
k

) 1
2

≤ c1

Nψ(N)
‖f ‖ψ . �

Lemma 5 If f ∈ W ψ
2 , then we have

∥
∥A

(�hδ
ρ – �fN

)∥
∥ ≤ (C + 1)δ +

c1

Nψ(N)
‖f ‖ψ ,

∥
∥R

(�hδ
ρ – �fN

)∥
∥

�2 ≤ 1
2√

ρ

(

δ +
c1

Nψ(N)
‖f ‖ψ

)

+
(

max
0≤k≤N

e2k

ψ2(k)

) 1
2 ‖f ‖ψ ,

∥
∥A�hδ

ρ – gδ
∥
∥ ≤ δ +

c1

Nψ(N)
‖f ‖ψ +

√
ρ

2

(

max
0≤k≤N

e2k

ψ2(k)

) 1
2 ‖f ‖ψ .
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Proof Using the triangle inequality, (2), (23), and Lemma 4, we obtain
∥
∥A

(�hδ
ρ – �fN

)∥
∥ ≤ ∥

∥A�hδ
ρ – gδ

∥
∥ +

∥
∥gδ – g

∥
∥ +

∥
∥A(I – PN )�f∥∥

≤ (C + 1)δ +
c1

Nψ(N)
‖f ‖ψ .

Due to the triangle inequality, (30), (2), and Lemmas 2–4
∥
∥R

(�hδ
ρ – �fN

)∥
∥

�2 ≤ ∥
∥R

(�hδ
ρ – �fρ,N

)∥
∥

�2 +
∥
∥R(�fρ,N – �fN )

∥
∥

�2

≤ 1
2√

ρ

∥
∥gδ – A�fN

∥
∥ + ‖R�fN‖�2

≤ 1
2√

ρ

(∥
∥gδ – g

∥
∥ +

∥
∥A(I – PN )�f∥∥)

+
(

max
0≤k≤N

e2k

ψ2(k)

) 1
2 ‖f ‖ψ

≤ 1
2√

ρ

(

δ +
c1

Nψ(N)
‖f ‖ψ

)

+
(

max
0≤k≤N

e2k

ψ2(k)

) 1
2 ‖f ‖ψ .

Let Sρ = I – dρ(BB∗)BB∗, then we use the representation gδ – A�hδ
ρ = Sρgδ and obtain from

the triangle inequality, (2), and Lemmas 2–4
∥
∥A�hδ

ρ – gδ
∥
∥ =

∥
∥Sρgδ

∥
∥ ≤ ∥

∥Sρ

(
gδ – g

)∥
∥ +

∥
∥Sρ(g – A�fN )

∥
∥ + ‖SρA�fN‖

≤ δ +
∥
∥A(I – PN )�f∥∥ + ‖SρB‖ · ‖R�fN‖�2

≤ δ +
c1

Nψ(N)
‖f ‖ψ +

√
ρ

2

(

max
0≤k≤N

e2k

ψ2(k)

) 1
2 ‖f ‖ψ . �

3.1 Convergence rates for ψ (x) = φr(x)
Lemma 6 If f ∈ W ψ

2 with ψ(x) = φr(x) (r > 1), then there exists a constant c2 such that

‖f ‖L2
ω

≤ c2‖Kf ‖ r
r+2 ‖f ‖ 2

r+2
ψ . (36)

Proof By using the Hölder inequality

‖f ‖2
L2
ω

=
∞∑

k=0

f̂ 2
k =

∞∑

k=0

(
1

φ2
2 (k)

f̂ 2
k

) r
r+2 (

φ2
r (k)f̂ 2

k
) 2

r+2

≤
( ∞∑

k=0

1
φ2

2 (k)
f̂ 2
k

) r
r+2

( ∞∑

k=0

φ2
r (k)f̂ 2

k

) 2
r+2

.

(37)

From (35)

‖K̂ f ‖

=

∥
∥
∥
∥
∥

–
∞∑

k=0

f̂k

ηk+2
Lk+2(x) +

( ∞∑

k=0

[1 + (–1)k+1]
√

2k + 5f̂k

ηk+2
x +

∞∑

k=0

(–1)k
√

2k + 5f̂k

ηk+2

)∥
∥
∥
∥
∥

≥
∥
∥
∥
∥
∥

∞∑

k=0

f̂k

ηk+2
Lk+2(x)

∥
∥
∥
∥
∥

=

( ∞∑

k=0

f̂ 2
k

η2
k+2

) 1
2

≥ 1√
6

( ∞∑

k=0

1
φ2

2 (k)
f̂ 2
k

) 1
2

.

(38)

We can finish the proof by using (37), (38), and (33). �
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Lemma 7 For the vector sequences �hδ = (ĥδ
1, ĥδ

2, . . . , ĥδ
n, . . .)T , if

∥
∥A�hδ

∥
∥ ≤ c3δ,

∥
∥R�hδ

∥
∥

�2 ≤ c4ec5δ
– 1

r+1
δ

r
r+1 , as δ → 0 (39)

hold with some nonnegative constants c3, c4, c5, then there exists a constant M1 such that

∥
∥
(
J �hδ

)∥
∥

φr–1
≤ M1. (40)

Proof Using the properties of the exponential function and the power function,

ec5δ
– 1

r+1 >
cr+1

5
δ

, ∀δ < δ0

holds for a constant δ0. Now, we prove the lemma for δ < δ0, let

N = c5δ
– 1

r+1 ,

then by using the triangle inequality

∥
∥J �hδ

∥
∥

φr–1
≤ ∥

∥JPN �hδ
∥
∥

φr–1
+

∥
∥J (I – PN )�hδ

∥
∥

φr–1
= I1 + I2.

For the first term I1,

I2
1 =

∥
∥JPN �hδ

∥
∥2

φr–1
=

N∑

k=0

φ2
r–1(k)f̂ 2

k =
N∑

k=0

φ2
r+1(k)
φ2

2 (k)
f̂ 2
k ≤ N2(r+1)

N∑

k=0

1
φ2

2 (k)
f̂ 2
k .

For the second term I2,

I2
2 =

∥
∥J (I – PN )�f∥∥2

φr–1
=

∞∑

k=N+1

φ2
r–1(k)f̂ 2

k =
∞∑

k=N+1

φ2
r–1(k)
e2k

(
ek f̂k

)2

≤ N2r–2

e2N

∥
∥R�fδ

∥
∥2

�2 → 0.

This finishes the proof. �

Theorem 8 Suppose that f ∈ W ψ
2 with ψ(x) = φr(x) (r > 1) and the condition (2) holds. If

the regularization solution hδ
ρ is defined by (21)–(23), then

∥
∥hδ

ρ – f
∥
∥

L2
ω

= O
(
δ

r–1
r+1

)
. (41)

Proof From Lemma 5,

∥
∥A

(�hδ
ρ – �fN

)∥
∥ ≤ (C + 1)δ +

c1

Nr+1 ‖f ‖ψ ,

∥
∥R

(�hδ
ρ – �fN

)∥
∥

�2 ≤ 1
2√

ρ

(

δ +
c1

Nr+1 ‖f ‖ψ

)

+ max

(

1,
eN

Nr

)

‖f ‖ψ ,

Cδ =
∥
∥A�hδ

ρ – gδ
∥
∥ ≤ δ +

c1

Nr+1 ‖f ‖ψ +
√

ρ

2
max

(

1,
eN

Nr

)

‖f ‖ψ .
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Now, we choose N such that

c1

Nr+1 ‖f ‖ψ =
C – 1

2
δ,

then we can obtain that there exist constants C1, C2, C3 such that

∥
∥A

(�hδ
ρ – �fN

)∥
∥ ≤ C1δ

∥
∥R

(�hδ
ρ – �fN

)∥
∥

�2 ≤ C2eC3δ
– 1

r+1
δ

r
r+1 .

Hence, from Lemma 7, there exists a constant M2 such that

∥
∥J

(�hδ
ρ – �fN

)∥
∥

φr–1
≤ M2.

Hence, by using the triangle inequality

∥
∥hδ

ρ – f
∥
∥

φr–1
≤ ∥

∥J
(�hδ

ρ – �fN
)∥
∥

φr–1
+ ‖f – fN‖φr–1 ≤ M2 + ‖f ‖ψ . (42)

Moreover, from (2), (23), and the triangle inequality

∥
∥A�hδ

ρ – g
∥
∥ ≤ ∥

∥A�hδ
ρ – gδ

∥
∥ +

∥
∥gδ – g

∥
∥ ≤ (C + 1)δ. (43)

It follows from Lemma 6 that the assertion of this theorem is true. �

3.2 Convergence rates for ψ (x) = ϕλ(x)(λ > 0)
Lemma 9 If the functions sequences f δ satisfy

∥
∥Kf δ

∥
∥ ≤ c6δ,

∥
∥f δ

∥
∥

ϕλ
≤ c7, δ → 0, (44)

where c6, c7 are two fixed nonnegative constants, then we can obtain

∥
∥f δ

∥
∥

L2
ω

= O
(

δ

(

log

(
1
δ

))2)

. (45)

Proof Let

N =
1
λ

[

log

(
1
δ

)

– log

(

log

(
1
δ

))2]

,

then we have

∥
∥PN f δ

∥
∥2

L2
ω

=
N∑

k=0

(
f̂ δ
k
)2 ≤ 1

N4

N∑

k=0

1
φ2

2 (k)
(
f̂ δ
k
)2

and

∥
∥(I – PN )f δ

∥
∥2

L2
ω

=
∞∑

k=N+1

(
f̂ δ
k
)2 ≤ 1

e2λN

∞∑

k=N+1

e2λk(f̂ δ
k
)2. �
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Theorem 10 Suppose that f ∈ W ψ
2 with ψ(x) = ϕλ(x) (λ > 0) and the condition (2) holds.

If the regularization solution hδ
ρ is defined by (21)–(23), then

∥
∥hδ

ρ – f
∥
∥

L2
ω

= O
(

δ

(

log

(
1
δ

))2)

. (46)

Proof From Lemma 5, for 0 < λ < 1,

∥
∥A

(�hδ
ρ – �fN

)∥
∥ ≤ (C + 1)δ +

c1

NeλN ‖f ‖ψ ,

∥
∥R

(�hδ
ρ – �fN

)∥
∥

�2 ≤ 1
2√

ρ

(

δ +
c1

NeλN ‖f ‖ψ

)

+ e(1–λ)N‖f ‖ψ ,

∥
∥A�hδ

ρ – gδ
∥
∥ ≤ δ +

c1

NeλN ‖f ‖ψ +
√

ρ

2
e(1–λ)N‖f ‖ψ .

Now, we choose N such that

c1

NeλN ‖f ‖ψ =
C – 1

2
δ,

then

∥
∥A

(�hδ
ρ – �fN

)∥
∥ ≤ c4δ

and

∥
∥R

(�hδ
ρ – �fN

)∥
∥

�2 ≤ c5δ
λ–1
λ

hold with two constants c4 and c5. Hence, it is easy to obtain by the Hölder inequality that
there exists a constant M3

∥
∥J

(�hδ
ρ – �fN

)∥
∥

ϕλ
≤ M3. (47)

Hence, we can obtain

∥
∥hδ

ρ – f
∥
∥

ϕλ
≤ ∥

∥J
(�hδ

ρ – �fN
)∥
∥

ϕλ
+ ‖fN – f ‖ϕλ

≤ M3 + ‖f ‖ϕλ
. (48)

Secondly, for λ > 1, noting that �hδ
ρ is the minimizer of (18), hence, we can obtain

∥
∥Khδ

ρ – gδ
∥
∥2 + ρ

∥
∥hδ

ρ

∥
∥2

ϕ1
≤ ∥

∥Kf – gδ
∥
∥2 + ρ‖f ‖2

ϕ1 .

Hence,

∥
∥hδ

ρ

∥
∥2

ϕ1
≤ ‖f ‖2

ϕ1 +
1
ρ

(∥
∥Kf – gδ

∥
∥2 –

∥
∥Khδ

ρ – gδ
∥
∥2) ≤ ‖f ‖2

ϕ1 .

Therefore,

∥
∥hδ

ρ – f
∥
∥

ϕ1
≤ 2‖f ‖ϕ1 . (49)
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Moreover, by the triangle inequality

∥
∥A�hδ

ρ – g
∥
∥ ≤ ∥

∥A�hδ
ρ – gδ

∥
∥ +

∥
∥gδ – g

∥
∥ ≤ (C + 1)δ. (50)

It follows from Lemma 9 that the assertion of this theorem is true. �

4 Numerical experiments
In this section, we present several numerical results from our method. Let xi = i

M , i =
0, 1, . . . , M. For noisy data, we use

gδ(xi) = g(xi)(1 + εi),

where {εi}N
i=1 are generated by Function (2 ∗ rand(N , 1) – 1) ∗ δ1 in Matlab. Since the exact

solution of the fractional diffusion equation is difficult to obtain, we generate the addi-
tional data g(x) by the method in [20].

We obtain �hδ
ρ approximatively by solving the following equation:

(
A∗A + B

)
h = Agδ ,

where

A =
2
M

⎡

⎢
⎢
⎢
⎢
⎣

sinπx1 sin 2πx1 . . . sin Nπx1

sinπx2 sin 2πx2 . . . sin Nπx2
...

...
...

...
sinπxM sin 2πxM . . . sin NπxM

⎤

⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

a1 sinπx1 a1 sinπx2 . . . a1 sinπxM

a2 sin 2πx1 a2 sin 2πx2 . . . a2 sin 2πxM
...

...
...

...
aN sin Nπx1 aN sin Nπx2 . . . aN sin NπxM

⎤

⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

J0(x0) J1(x0) . . . JM(x0)
J0(x1) J1(x1) . . . JM(x1)

...
...

... . . .
J0(xM) J1(xM) . . . JM(xM)

⎤

⎥
⎥
⎥
⎥
⎦

,

with al = 1–Eα,1(–l2π2)
l2π2 , l = 0, 1, . . . , N and Jk(x), which is defined in (11), k = 0, 1, . . . , M and

gδ = (gδ(x0), gδ(x1), . . . , gδ(xM))T , B is a diagonal matrix with the elements of (1, e2, e4, . . . ,
e2M)T on the main diagonal.

Then, the regularization parameter ρ is chosen by

∥
∥Ah – gδ

∥
∥

l2 = Cδ̂,

with C = 1.01, where δ̂ =
√

M + 1δ1.
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Numerical tests for four examples are investigated as follows. We take T = 1 and M =
N = 256 in all of the examples. The relative error of the numerical solution is measured by

er(f ) =
(∑M

i=0(hδ
ρ(xi) – f (xi))2

∑M
i=0 f (xi)2

) 1
2

.

We also give the comparison of the numerical results between our method (M1) and the
one in [20] (M2).

Example 1 Take

f (x) = ex,

then f (0) �= 0, f (1) �= 0 and f (x) is smooth.

In Fig. 1(a), the comparisons between the exact solution and numerical approximations
with δ1 = 1e-2 are shown and we give the variation of er(f ) with δ1 in Fig. 1(b). Moreover,
we present the relative errors for various α and δ1 in Table 1. We can see that the results
of M1 are much better than those of M2 when the boundary condition does not hold.

Figure 1 Numerical results of Example 1 with α = 0.5
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Table 1 Relative errors of Example 1

δ1 α = 0.1 α = 0.5 α = 0.9

M1 M2 M1 M2 M1 M2

1e-1 2.32e-02 3.10e-1 2.21e-2 3.09e-1 1.66e-2 3.09e-1
1e-2 3.81e-3 2.21e-01 3.50e-3 2.20e-1 2.57e-3 2.19e-1
1e-3 8.66e-4 1.73e-1 6.47e-4 1.69e-1 6.44e-4 1.68e-1

Table 2 Relative errors of Example 2 with α = 0.5

δ1 1e-1 1e-2 1e-3 1e-4

M1 1.79e-1 2.07e-2 2.06e-3 2.85e-4
M2 1.89e-1 6.22e-2 1.78e-2 6.34e-3

Figure 2 Numerical results of Example 2 with α = 0.5

For different α, there is little difference in the numerical results. Hence, in the following
experiments we only give the results for α = 0.5.

Example 2 [20] We take

f (x) = x(x – 0.1)(x – 0.4)(x – 0.6)(x – 0.8)(x – 1),

then f (0) = f (1) = 0 and f (x) is smooth.



Tang et al. Advances in Continuous and Discrete Models         (2023) 2023:33 Page 16 of 19

Figure 3 Numerical results of Example 3 with α = 0.5

The relative error has been listed in Table 2. Figure 2(a) shows the comparisons between
the exact solution and numerical solutions and Fig. 2(b) exhibits the changes of er(f ) with
δ1. We can see that the results of M1 are still better than those of M2. The advantage of
M1 becomes obvious as δ1 decreases.

Next, we consider the case of piecewise-smooth functions. Example 3 does not satisfy
the boundary condition but Example 4 does.

Example 3 Take

f (x) =

⎧
⎨

⎩

–2x + 1, 0 ≤ x ≤ 0.5,

2x – 1, 0.5 < x ≤ 1.

Example 4 Take

f (x) =

⎧
⎨

⎩

2x, 0 ≤ x ≤ 0.5,

–2x + 2, 0.5 < x ≤ 1.
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Figure 4 Numerical results of Example 4 with α = 0.5

Table 3 Relative errors of Example 3 with α = 0.5

δ1 1e-1 1e-2 1e-3 1e-4

M1 7.53e-2 4.72e-2 2.49e-2 1.33e-2
M2 4.09e-1 2.97e-1 2.28e-1 1.81e-1

Table 4 Relative errors of Example 4 with α = 0.5

δ1 1e-1 1e-2 1e-3 1e-4

M1 1.17e-1 5.06e-2 2.41e-2 1.25e-2
M2 5.12e-2 2.22e-2 1.16e-2 6.54e-3

From the results of Figs. 3 and 4 and Tables 3 and 4, we can see that the results of the two
examples using M1 are close. However, the results of Example 4 using M2 are obviously
better than those of Example 3. The results of M1 in Example 3 are better than those of
M2, but the results of M2 in Example 4 are slightly better than those of M1. These results
are consistent with theoretical analysis.
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5 Conclusion
To overcome the dependence of previous methods on boundary conditions, we present a
modified Tikhonov method based on Jacobi polynomials to identify an unknown source
in a time-fractional diffusion equation. The convergence results of the new method are no
longer restricted by boundary conditions, and the method has obvious advantages when
the solution has high smoothness.
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