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Abstract
In this paper, necessary and sufficient conditions for the polyhedron set to be a
positively invariant polyhedron of a discrete-time positive linear system subject to
external disturbances are established. By solving a set of inequalities, which is also a
linear programming, necessary and sufficient conditions for the existence of positive
invariant polyhedra for discrete-time positive linear systems are proposed, and the
relationship between Lyapunov stability and positively invariant polyhedron is also
investigated, numerical examples illustrate our results.
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1 Introduction
Positive invariance in control theory of dynamical systems has received extensive attention
over the past few decades [1]. Any state trajectory emanating from a set in the state space
still remains within the set, such a set is called a positively invariant set. Invariant sets,
especially positively invariant sets, play an important role in the theory and application of
dynamical systems. Problems related to disturbance rejection can be analyzed and solved
with the help of positively invariant sets [2]. Similarly, many constrained control problems
of dynamical systems can also be represented and solved by positively invariant sets [3].

For discrete-time linear systems, [4] and [5, 6] give descriptions of necessary and suf-
ficient algebraic conditions for the positive invariance of convex polyhedra under both
unperturbed and bounded perturbations, respectively. In the form of linear relationship,
a set of inequalities is derived, and the invariant set of related systems is defined by the
method of linear programming [7]. There are also many studies on the computational
methods of invariant sets [8], and a different linear programming algorithm is proposed
in [9] to give sufficient and necessary conditions for any set of polyhedrons to be posi-
tively invariant sets for discrete-time linear systems. However, since the algorithm is lim-
ited, some algorithms are not suitable for computing all polyhedron positively invariant
sets. Daniel Rubin et al. proposed a special supplementary algorithm [10], and they also
proposed a new algorithm to compute the polyhedron positively invariant set [11]. Dis-
turbance is also a common problem in the research and analysis of dynamical systems.
Reference [12] generalizes not only the concept of self-bounded (A, B) invariant subspaces
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to sets of convex polyhedra for general discrete-time systems, but also their results to sys-
tems subject to control constraints and bounded additive disturbances. A solution to the
problem of computing a robustly positively invariant outer approximation of the minimal
robustly positively invariant set for a discrete-time linear time-invariant system is pro-
posed in [13]. An algorithm for computing the maximal robustly positively invariant set
is described, and sufficient conditions for finite termination of this algorithm are given
[14]. [15] presents an algorithm for the computation of full-complexity polytopic robust
control invariant sets, which can be extended to linear discrete-time systems subject to
additive disturbances and structured norm-bounded or polytopic uncertainties.

For positive systems, their stability has been extensively studied [16]. [17] studied the
stability and control problems of positive delayed systems. [18] studied the synthesis prob-
lem of interval positive linear systems. About the problems investigated in this paper for
positive continuous-time linear systems, reference [19] gives excellent research results,
related results can also be found in the references therein. The main contribution of this
paper is to give necessary and sufficient conditions for the existence of positively invariant
polyhedra for discrete-time positive linear systems by solving a set of linear programming.
The same method is applied to discrete-time positive linear systems with external inputs
to obtain the conditions for the existence of robustly positively invariant polyhedra. In this
paper, some properties of regular invariant polyhedra are elucidated, and their relations
with Lyapunov stability are investigated.

The rest of the paper is organized as follows. Section 2 presents a preliminary case of
discrete-time positive linear systems. Section 3 defines the positively invariant polyhe-
dron and reveals the close connection between the Lyapunov stability and the positively
invariant polyhedron. Section 4 establishes the necessary and sufficient condition for the
existence of robustly positively invariant polyhedra under two external input conditions.

Throughout the paper, the following notations are used.
N , N+ set of integers, set of positive integers

N0 {0} ∪ N
R, Rn set of real numbers, set of n-dimensional real vectors
Rm×n set of m × n real matrices

R̄n
+, Rn

+ nonnegative and positive orthants of Rn

1, I vector [1, 1, . . . , 1]T , identity matrix
[1] matrix with all entries assigned to 1
AT transpose of matrix A

‖x(k)‖1
∑n

i=1 |x(k)|
‖x(k)‖∞ maxn

i=1 |xi(t)|
‖ω(k)‖∞,1 maxn

i=1 ‖ω(k)‖1

‖ω(k)‖∞,∞ maxn
i=1 ‖ω(k)‖∞

In this paper, capital letters denote real matrices and lower case letters denote col-
umn vectors of scalars. If A = (aij) is a real matrix, then |A| = (|aij|), A+ = (a+

ij) with
a+

ij = max(aij, 0) and A– = (a–
ij) with a–

ij = min(aij, 0). x ≥ 0 denotes that every component
of x is nonnegative, A ≥ 0 denotes that every component of A is nonnegative. It is always
assumed that all vectors and matrices have compatible dimensions without specification.

2 Preliminaries
In this section, some definitions and lemmas related to invariant sets of discrete-time lin-
ear systems are introduced. Consider a discrete-time linear dynamical system described



Wang and Yang Advances in Continuous and Discrete Models         (2023) 2023:34 Page 3 of 25

by a difference equations in the following form:

S0 : x(k + 1) = Ax(k), k ∈ N0, (1)

where x(k) ∈ Rn is system state, k ∈ N0 N0 = {0} ∪ N , and A ∈ Rn×n is a constant system
state matrix.

Definition 1 Any nonempty convex polyhedron in Rn can be characterized by a matrix
G ∈ Rr×n and a vector γ ∈ Rr , r ∈ N+, n ∈ N+, which is defined by

P[G,γ ] =
{

x ∈ Rn : Gx ≤ γ , G ∈ Rr×n,γ ∈ Rr}.

In particular, in this paper we mainly study the polyhedron described by a matrix G ∈
Rr×n and a vector γ ∈ Rr

+ (γi > 0) defined as

R[G,γ ] =
{

x ∈ Rn : –γ ≤ Gx ≤ γ , G ∈ Rr×n,γ ∈ Rr
+
}

.

And the polyhedron described by a matrix G ∈ Rr×n and two vectors γ1,γ2 ∈ Rr
+ (γ1 >

0,γ2 > 0) is defined as

Q[G,γ1,γ2] =
{

x ∈ Rn : –γ1 ≤ Gx ≤ γ2, G ∈ Rr×n,γ1,γ2 ∈ Rr
+
}

.

Definition 2 A nonempty subset M ∈ Rn is said to be a positively invariant set of system
S0 if for each initial state x0 ∈ M the motion emanating from x0 remains in M.

From Definitions 1 and 2, one can derive that a nonempty polyhedron R[G,γ ] is posi-
tively invariant polyhedron for system S0 if and only if

[
G

–G

]

Akx0 ≤
[
γ

γ

]

for any

[
G

–G

]

x0 ≤
[
γ

γ

]

, k ∈ N0.

Likewise, the polyhedron Q[G,γ1,γ2] is a positively invariant polyhedron for system S0

if and only if

[
G

–G

]

Akx0 ≤
[
γ2

γ1

]

for any

[
G

–G

]

x0 ≤
[
γ2

γ1

]

, k ∈ N0.

The following lemma proposed in [9] provides a sufficient and necessary algebraic con-
dition for the positive invariance of R[G,γ ] and Q[G,γ1,γ2].
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Lemma 1 [9] The polyhedron P[G,γ ] is a positively invariant polyhedron of system S0 in
(1) if and only if there exists a nonnegative matrix H ∈ Rr×r

+ such that

GA – HG = 0,

(H – I)γ≤0.

3 Positive invariance and its relationship with stability
A linear system becomes a positive linear system when matrix A is nonnegative, that is,

S1 : x(k + 1) = Ax(k), k ∈ N0, (2)

where x(k) ∈ Rn
+ is system state and A ∈ Rn×n

+ is nonnegative, k ∈ N0, x0 ≥ 0 is the initial
state. A polyhedron with respect to system S1 is characterized by

R+[G,γ ] =
{

x ∈ Rn
+ : –γ ≤ Gx ≤ γ , G ∈ Rr×n

+ ,γ ∈ Rr
+
}

(3)

or

Q+[G,γ1,γ2] =
{

x ∈ Rn
+ : –γ1 ≤ Gx ≤ γ2, G ∈ Rr×n

+ ,γ1,γ2 ∈ Rr
+
}

. (4)

3.1 Conditions of a positively invariant set
Since A is nonnegative, x(k) = Akx0 ∈ Rn

+ [20] and a necessary and sufficient condition for
the existence of a positively invariant polyhedron R+[G,γ ] and Q+[G,γ1,γ2] with respect
to system S1 can be derived from Lemma 1, as stated in the following theorem.

Theorem 1 The nonempty set R+[G,γ ] is a positively invariant polyhedron of system S1 in
(2) if and only if there exists a matrix H ∈ Rr×r such that

GA – HG ≤ 0,
(|H| – I

)
γ ≤ 0.

Proof Only the necessary condition is proven. According to the description of R+[G,γ ] in
(3), it can be rewritten as

R+[G,γ ] = R[G,γ ] ∩ P[–I, 0].

Observe that the polyhedral set R[G,γ ] can be written in the form

R[G,γ ] =

{

x ∈ Rn :

[
G

–G

]

x ≤
[
γ

γ

]}

,

then the polyhedral set R+[G,γ ] can be written in the form

R+[G,γ ] = R[G,γ ] ∩ P[–I, 0] =

⎧
⎪⎨

⎪⎩
x ∈ Rn :

⎡

⎢
⎣

G
–G
–I

⎤

⎥
⎦x ≤

⎡

⎢
⎣

γ

γ

0

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.
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From Lemma 1, R+[G,γ ] is a positively invariant polyhedron of system S1 in (2) if and only
if there exists a nonnegative matrix H ∈ R(2r+n)×(2r+n)

+ ,

H =

⎡

⎢
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥
⎦

with H11, H12, H21, H22 ∈ Rr×r
+ ,H13, H23 ∈ Rr×n

+ ,H31, H32 ∈ Rn×r
+ ,H33 ∈ Rn×n

+ such that

⎡

⎢
⎣

G
–G
–I

⎤

⎥
⎦A –

⎡

⎢
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥
⎦

⎡

⎢
⎣

G
–G
–I

⎤

⎥
⎦ = 0,

⎛

⎜
⎝

⎡

⎢
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥
⎦ – I

⎞

⎟
⎠

⎡

⎢
⎣

γ

γ

0

⎤

⎥
⎦≤ 0.

In particular,

GA – (H11 – H12)G + H13 = 0,

– A – (H31 – H32)G + H33 = 0,

(H11 + H12 – I)γ ≤ 0,

(H31 + H32)γ ≤ 0.

One can set H31 = H32 = 0 and H33 = A, without losing generality, which is equivalent to

GA – (H11 – H12)G + H13 = 0,

(H11 + H12 – I)γ ≤ 0.

Now set H = H11 – H12, then |H| ≤ H11 + H12,

GA – HG + H13 = 0,
(|H| – I

)
γ ≤ 0.

Note that H13 is nonnegative, it concludes that

GA – HG ≤ 0,
(|H| – I

)
γ ≤ 0. �

Remark 1 For any matrix H that satisfies the algebraic inequalities condition in Theo-
rem 1, Theorem 1 guarantees the positive invariance of R+[G,γ ] for system S1 and does
not have any requirements for the matrix G.
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Note that the positively invariant polyhedron R+[G,γ ] is symmetric in Theorem 1. Next
we consider the more general case where the polyhedral sets Q+[G,γ1,γ2] are not sym-
metric. In the following theorem, we establish conditions for the positive invariance of
polyhedral sets Q+[G,γ1,γ2] of system S1.

Theorem 2 The polyhedral set Q+[G,γ1,γ2] is a positively invariant polyhedron of system
S1 in (2) if and only if there exists a matrix H ∈ Rr×r such that

GA – HG ≤ 0,
([

H+ –H–

–(–H)– (–H)+

]

– I

)[
γ2

γ1

]

≤0.

Proof Only the necessary condition is proven. The polyhedral sets Q+[G,γ1,γ2] on the
basis of observation and description of Q+[G,γ1,γ2] in (4) can be rewritten in the form

Q+[G,γ1,γ2] = Q[G,γ1,γ2] ∩ P[–I, 0] =

⎧
⎪⎨

⎪⎩
x ∈ Rn :

⎡

⎢
⎣

G
–G
–I

⎤

⎥
⎦x ≤

⎡

⎢
⎣

γ2

γ1

0

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

By virtue of Lemma 1, the positive invariance of Q+[G,γ1,γ2] implies the existence of a
nonnegative matrix H ∈ R(2r+n)×(2r+n)

+ ,

H =

⎡

⎢
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥
⎦

with H11, H12, H21, H22 ∈ Rr×r
+ ,H13, H23 ∈ Rr×n

+ ,H31, H32 ∈ Rn×r
+ ,H33 ∈ Rn×n

+ , such that

⎡

⎢
⎣

G
–G
–I

⎤

⎥
⎦A –

⎡

⎢
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥
⎦

⎡

⎢
⎣

G
–G
–I

⎤

⎥
⎦ = 0,

⎛

⎜
⎝

⎡

⎢
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥
⎦ – I

⎞

⎟
⎠

⎡

⎢
⎣

γ2

γ1

0

⎤

⎥
⎦≤ 0,

which can be rewritten as

GA – (H11 – H12)G + H13 = 0,

– GA – (H21 – H22)G + H23 = 0,

– A – (H31 – H32)G + H33 = 0,

(H11 – I)γ2 + H12γ1 ≤ 0,

H21γ2 + (H22 – I)γ1 ≤ 0,

H31γ2 + H32γ1 ≤ 0.
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One can set H31 = H32 = 0 and H33 = A, without losing generality, which is equivalent to

GA – (H11 – H12)G + H13 = 0, (5)

– GA – (H21 – H22)G + H23 = 0, (6)

(H11 – I)γ2 + H12γ1 ≤ 0, (7)

H21γ2 + (H22 – I)γ1 ≤ 0. (8)

Note that H13≥0 and H23 ≥ 0, from (5) and (6) it can be obtained that

GA – (H11 – H12)G≤0,

– GA – (H21 – H22)G≤0.

Now, setting H = H11 – H12 = H21 – H22, we conclude that

GA – HG≤0.

From (7) and (8), which can be written as

H11γ2 + H12γ1 ≤ γ2,

H21γ2 + H22γ1 ≤ γ1,

then they can be rewritten as

[
H11 H12

H21 H22

][
γ2

γ1

]

≤
[
γ2

γ1

]

.

So,
[
γ2

γ1

]

≥
[

H11 H12

H21 H22

][
γ2

γ1

]

≥
[

(H11 – H12)+ –(H11 – H12)–

–(H22 – H21)– (H22 – H21)+

][
γ2

γ1

]

=

[
H+ –H–

–(–H)– (–H)+

][
γ2

γ1

]

,

which are further equivalent to

([
H+ –H–

–(–H)– (–H)+

]

– I

)[
γ2

γ1

]

≤ 0. �

Vectors γ , γ1 and γ2 of R+[G,γ ] and Q+[G,γ1,γ2] are positive respectively. A necessary
and sufficient condition for the existence of a positively invariant polyhedron Q+[G,γ1,γ2]
when γ1 = 0 is given in the following corollary. The proof is omitted since it is similar to
the proof of Theorem 2.
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Corollary 1 The set Q+[G, 0,γ2] is a positively invariant polyhedron of system S1 in (2) if
and only if there exists a matrix H ∈ Rr×r such that

GA – HG ≤ 0,

(H – I)γ ≤ 0.

The positively invariant polyhedron R+[G,γ ] of system S1 can also be constructed by an
invariant polyhedron of similar systems

S∗
1 : y(k + 1) = T–1ATy(k) (9)

with nonsingular matrix T ∈ Rn×n.

Theorem 3 Let A be nonnegative, G ∈ Rr×n
+ , γ ∈ Rr

+. R+[G,γ ] is a positively invariant
polyhedron of positive system S1 in (2) if and only if R[GT ,γ ] ∩ P[–T , 0] is a positively
invariant polyhedron of system S∗

1 in (9).

Proof Necessity. Since R+[G,γ ] is a positively invariant polyhedron of system S1, it follows
that

[
G

–G

]

Akx0≤
[
γ

γ

]

for any x0 ∈ Rn
+ satisfying

[
G

–G

]

x0 ≤
[
γ

γ

]

, k ∈ N0.

By the transformation of state y(k) = T–1x(k) ∈ Rn, it follows that

[
G

–G

]

Ty(k) =

[
G

–G

]

T
(
T–1AT

)ky0

=

[
G

–G

]

TT–1AkTy0

=

[
G

–G

]

AkTy0 =

[
G

–G

]

Akx0 ≤
[
γ

γ

]

for any y0 ∈ Rn satisfying

[
G

–G

]

Ty0 =

[
G

–G

]

x0 ≤
[
γ

γ

]

.

Since Ty(k) = x(k) ≥ 0 implies –Ty(k) ≤ 0. Therefore, R[GT ,γ ] ∩ P[–T , 0] is a positively
invariant polyhedron of system S∗

1 .
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Sufficiency. By a similarity transformation of state x(k) = Ty(k), x(k) satisfies the equation
x(k + 1) = Ax(k) with a nonnegative matrix A. Consequently, x(k) ∈ Rn

+. Since

[
G

–G

]

x0 =

[
G

–G

]

Ty0 ≤
[
γ

γ

]

and
[

G
–G

]

xk =

[
G

–G

]

Akx0 =

[
G

–G

]

T
(
T–1AT

)ky0 =

[
G

–G

]

Ty(k) ≤
[
γ

γ

]

,

R[GT ,γ ] ∩ P[–T , 0] is a positively invariant polyhedron of system S∗
1 implies R+[G,γ ] is a

positively invariant polyhedron of positive system S1. �

Remark 2 Since T–1AT is not necessarily a nonnegative matrix, system S∗
1 may no longer

be a positive system. Theorem 3 clarifies the connection between the invariant polyhedron
construction of a positive system and a general system.

Meanwhile, the above conclusion is also satisfied for Q+[G,γ1,γ2] as shown in the fol-
lowing corollary. The proof is omitted.

Corollary 2 Q+[G,γ1,γ2] is a positively invariant polyhedron of positive system S1 in (2) if
and only if Q[GT ,γ1,γ2] ∩ P[–T , 0] is a positively invariant polyhedron of system S∗

1 in (9).

Remark 3 In the case of γ1 = 0, the conclusion that Q+[G, 0,γ2] is a positively invariant
polyhedron of positive system S1 if and only if Q[GT , 0,γ2] ∩ P[–T , 0] is a positively in-
variant polyhedron of system S∗

1 is also valid.

3.2 Relation with stability
A well-known result in [4] is that if system S0 is asymptotically stable, then it possesses
positively invariant sets of the form

E(P, c) =
{

x ∈ Rn : xT Px ≤ c
}

,

where P ∈ Rn×n is a symmetric positive-definite matrix and c is a positive real number.
Furthermore, for a symmetric and positive-definite matrix P ∈ Rn×n, the corresponding
hyperellipsoid is a positively invariant set of system S0 if and only if there exists a positive
semidefinite matrix Q ∈ Rn×n such that AT PA – P = –Q.

For the positive system S1, the following theorem reveals the close connection between
the Lyapunov stability and the existence of a positively invariant polyhedron.

Theorem 4 Positive system S1 in (2) possesses at least a positively invariant polyhedron
R+[G,γ ] with nonzero vector γ ∈ Rn

+ if and only if system S1 is Lyapunov stable.

Proof Necessity. Since R+[G,γ ] is a closed convex set, it can be defined by the expression

R+[G,γ ] =
{

x(k) ∈ Rn
+ : V (x) ≤ 1

}
,
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where

V (x) = max
1≤i≤r

{ |(Gx)i|
γi

}

,

then |(Gx)i| ≤ γiV (x) for any i = 1, 2, . . . , r and V (x) > 0 for all x 
= 0.

�V (x) = V (Ax) – V (x) = max
1≤i≤r

{ |(GAx)i|
γi

}

– max
1≤i≤r

{ |(Gx)i|
γi

}

.

From Theorem 1, there must exist a matrix H ∈ Rr×r such that GA – HG ≤ 0 and (|H| –
I)γ ≤ 0. Accordingly,

∣
∣(GAx)i

∣
∣≤ ∣

∣(HGx)i
∣
∣ = |H|∣∣(Gx)i

∣
∣≤ |H|γiV (x) ≤ γiV (x),

which implies that V (Ax) ≤ V (x), that is, �V (x) ≤ 0. Hence system S1 is Lyapunov stable.
Sufficiency. Since system S1 is Lyapunov stable, there must exist a nonzero vector γ ∈ Rn

+

such that (A – I)γ ≤ 0, which is equivalent to [(A – I)γ ]i ≤ 0. Due to A is a Schur matrix
with all the eigenvalues in absolute value smaller than 1, that is, ρ(A) < 1 [20], then Akγ ≤
γ , k ∈ N0. Furthermore, taking into account the fact that A is nonnegative and Ak ≥ 0, if
x1 ≤ x2, then

x(k + 1) = Akx1 ≤ Akx2 = x(k + 2)

for all k ∈ N0. Therefore, if –γ ≤ Gx0 ≤ γ , then

–γ ≤ x(k) = GAkx0 ≤ Akγ ≤ γ ,

that is, R+[G,γ ] is a positively invariant polyhedron of system S1. �

Theorem 5 Positive system S1 in (2) possesses at least a positively invariant polyhedron
Q+[G,γ1,γ2] with nonzero vector γ1,γ2 ∈ Rn

+ if and only if system S1 is Lyapunov stable.

Proof Necessity. Since Q+[G,γ1,γ2] is a closed convex set, it can be defined by the expres-
sion

Q+[G,γ1,γ2] =
{

x(k) ∈ Rn
+ : V ∗(x) ≤ 1

}
,

where

V ∗(x) = max
1≤i≤r

{

max

(
(Gx)i

(γ2)i
, –

(Gx)i

(γ1)i

)}

,

then (Gx)i ≤ (γ2)iV (x) for any i = 1, 2, . . . , r and V ∗(x) > 0 for all x 
= 0.

�V ∗(x) = V ∗(Ax) – V ∗(x)

= max
1≤i≤r

{

max

(
(GAx)i

(γ2)i
, –

(GAx)i

(γ1)i

)}

– max
1≤i≤r

{

max

(
(Gx)i

(γ2)i
, –

(Gx)i

(γ1)i

)}

.
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From Theorem 2, there must exist a matrix H ∈ Rr×r such that

GA – HG ≤ 0,
([

H+ –H–

–(–H)– (–H)+

]

– I

)[
γ2

γ1

]

≤ 0.

Accordingly,

(GAx)i ≤ (HGx)i

= H(Gx)i

≤ H(γ2)iV ∗(x)

≤ (
H+ + H–)(γ2)iV ∗(x)

= H+(γ2)iV ∗(x) + H–(γ2)iV ∗(x)

≤ H+(γ2)iV ∗(x) – H–(γ1)iV ∗(x)

=
(
H+(γ2)i – H–(γ1)i

)
V ∗(x)

≤ (γ2)iV ∗(x),

which implies that V (Ax) ≤ V (x), that is, �V (x) ≤ 0. Hence system S1 is Lyapunov stable.
Sufficiency can be obviously evaluated from the sufficient proof of Theorem 4 by assign-

ing –γ1 = –γ and γ2 = γ . �

4 Invariant polyhedron with exogenous inputs
In this section, we consider a positively invariant polyhedron for discrete-time positive
linear systems with external inputs. Consider a discrete-time linear dynamical system de-
scribed by the difference equations

S2 : x(k + 1) = Ax(k) + Bωω(k),

ω(k) ∈ � ⊂ Rm
+ , (10)

where x(k) ∈ Rn
+ is system state, ω(k) ∈ Rm

+ is an exogenous input signal, nonnegative ma-
trix A ∈ Rn×n

+ , nonzero matrix Bω ∈ Rn×m
+ , � is a closed convex set, and k ∈ N0.

A nonempty polyhedron R+[G,γ ] is said to be a robustly positively invariant polyhe-
dron of system S2 with respect to � if for each initial state x0 ∈ R+[G,γ ] the motion em-
anating from x0 remains in R+[G,γ ] for all possible ω(k) ∈ �. When � = {0}, the positive
invariance is equivalent to the definition of positive invariance characterized in Sect. 3.
The necessary and sufficient condition for the existence of positively invariant polyhedra
R+[G,γ ] based on (∞, 1)-norm is given below.

When ω(k) ∈ �∞,1
�= {ω(k) ∈ Rm

+ |‖ω(k)‖∞,1 ≤ 1}, an interpretation of ‖ω(k)‖∞,1 ≤ 1 is
that the sum of the components of ω(k) is not to exceed 1.

Theorem 6 The polyhedron R+[G, 1] is a positively invariant polyhedron of system S2 in
(10) with respect to �∞,1 if and only if there exists a matrix H ∈ Rr×r such that

GA – HG ≤ 0,
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GBω +
(|H| – I

)
[1] ≤ 0,

in which [1] is an r × m-dimensional matrix with all elements being 1.

Proof Necessity. An augmented system can be constructed from system S2 in (10) as fol-
lows:

[
x(k + 1)
ω̇(k)

]

=

[
A Bω

0 0

][
x(k)
ω(k)

]

.

The constraints x(k) ∈ R+[G, 1] and ω(k) ∈ �∞,1 can be rewritten as
[ x(k)

ω(k)
] ∈ �∞,1, which

is defined as

�∞,1
�=

{[
x(k)
ω(k)

]

∈ Rn+m
+ : –1 ≤

[
G 0
0 1T

][
x(k)
ω(k)

]

≤ 1

}

.

Emanating from any
[ x0

ω0

] ∈ �∞,1, where x0 and ω0 are the initial state and the disturbance
vector of system S2, there must exist a matrix

[
H11 H12

H21 H22

]

∈ R(r+1)×(r+1)

with H11 ∈ Rr×r , H12 ∈ Rr×1, H21 ∈ R1×r , H22 ∈ R1 such that
[

G 0
0 1T

][
A Bω

0 0

]

–

[
H11 H12

H21 H22

][
G 0
0 1T

]

≤ 0,

(∣
∣
∣
∣
∣

[
H11 H12

H21 H22

]∣
∣
∣
∣
∣

– I

)

1 ≤ 0.

After a few algebraic manipulations that is identical to

GA – H11G ≤ 0, (11)

GBω – H121T ≤ 0, (12)
(|H11| – I

)
1 + |H12| ≤ 0. (13)

One can get the relationship as follows from the last two inequalities (12) and (13):

max
1≤j≤m

{
(GBω)ij

}≤ (H12)i ≤ –
[(|H11| – I

)
1
]

i,

which derives

GBω +
(|H11| – I

)
[1] ≤ 0.

Now set H = H11, one can get the conditions in the theorem as follows:

GA – HG ≤ 0,

GBω +
(|H| – I

)
[1] ≤ 0.
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Sufficiency. Denote a new variable

μ(k) �=

⎡

⎢
⎣

G 0
–G 0
0 1T

⎤

⎥
⎦

[
x(k)
ω(k)

]

,

which is followed by a dynamical equation as follows:

μ(k + 1) =

⎡

⎢
⎣

G 0
–G 0
0 1T

⎤

⎥
⎦

[
A Bω

0 0

][
x(k)
ω(k)

]

=

⎡

⎢
⎣

GA GBω

–GA –GBω

0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

≤
⎡

⎢
⎣

HG H ′1T

0 0
0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H 0 H ′

0 0 0
0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

G 0
–G 0
0 1T

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H 0 H ′

0 0 0
0 0 0

⎤

⎥
⎦μ(k),

with H ′ = –(|H| – I)1 ≥ 0, since –(|H| – I)[1] ≥ GBω ≥ 0. And it satisfies

⎛

⎜
⎝

⎡

⎢
⎣

H 0 H ′

0 0 0
0 0 0

⎤

⎥
⎦ – I

⎞

⎟
⎠1 ≤ 0.

It follows from Lemma 1 in [9], in which G is assigned to the identity matrix I , that μ(k) ≤ 1
for any

μ0 =

⎡

⎢
⎣

Gx0

–Gx0

1Tω0

⎤

⎥
⎦≤ 1.

Hence, R+[G, 1] is a positively invariant polyhedron of system S2 in (10) with respect to
�∞,1. �

Theorem 7 The polyhedron Q+[G, 0, 1] is a positively invariant polyhedron of system S2

in (10) with respect to �∞,1 if and only if there exists a matrix H ∈ Rr×r such that

GA – HG ≤ 0,

GBω +
(
H+ – I

)
[1] ≤ 0.



Wang and Yang Advances in Continuous and Discrete Models         (2023) 2023:34 Page 14 of 25

Proof Necessity. An augmented system can be established from system S2 in (10) as fol-
lows:

[
x(k + 1)
ω̇(k)

]

=

[
A Bω

0 0

][
x(k)
ω(k)

]

.

The constraints x(k) ∈ Q+[G, 0, 1] and ω(k) ∈ �∞,1 can be rewritten as
[ x(k)

ω(k)
] ∈ �∞,1 de-

fined as

�∞,1
�=

{[
x(k)
ω(k)

]

∈ Rn+m
+ :

[
0
0

]

≤
[

G 0
0 1T

][
x(k)
ω(k)

]

≤
[

1
1

]}

.

Emanating from any
[ x0

ω0

] ∈ �∞,1, where x0 and ω0 are the initial state and the disturbance
vector of system S2, there must exist a matrix

[
H11 H12

H21 H22

]

∈ R(r+1)×(r+1)

with H11 ∈ Rr×r , H12 ∈ Rr×1, H21 ∈ R1×r , H22 ∈ R1, such that

[
G 0
0 1T

][
A Bω

0 0

]

–

[
H11 H12

H21 H22

][
G 0
0 1T

]

≤ 0,

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

H+
11 H+

12 –H–
11 –H–

12

H+
21 H+

22 –H–
21 –H–

22

–(–H11)– –(–H12)– (–H11)+ (–H12)+

–(–H21)– –(–H22)– (–H21)+ (–H22)+

⎤

⎥
⎥
⎥
⎦

– I

⎞

⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

1
1
0
0

⎤

⎥
⎥
⎥
⎦

≤ 0.

After a few algebraic manipulations, it can be obtained

GA – H11G ≤ 0, (14)

GBω – H121T ≤ 0, (15)
(
H+

11 – I
)
1 + H+

12 ≤ 0. (16)

One can obtain the relationship as follows from the last two inequalities (15) and (16):

max
1≤j≤m

{
(GBω)ij

}≤ (H12)i ≤ –
[(

H+
11 – I

)
1
]

i,

which derives

GBω +
(
H+

11 – I
)
[1]≤0.

One can obtain the conditions in the form of theorem as follows:

GA – HG ≤ 0,

GBω +
(
H+ – I

)
[1] ≤ 0.
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Sufficiency. Denote a new variable

μ′(k) �=

⎡

⎢
⎣

G 0
–G 0
0 1T

⎤

⎥
⎦

[
x(k)
ω(k)

]

,

which is followed by a dynamic equation

μ′(k + 1) =

⎡

⎢
⎣

G 0
–G 0
0 1T

⎤

⎥
⎦

[
A Bω

0 0

][
x(k)
ω(k)

]

=

⎡

⎢
⎣

GA GBω

–GA –GBω

0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

≤
⎡

⎢
⎣

HG H ′′1T

0 0
0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H 0 H ′′

0 0 0
0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

G 0
0 0
0 1T

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H 0 H ′′

0 0 0
0 0 0

⎤

⎥
⎦μ′(k),

with H ′′ = –(H+ – I)1 ≥ 0 since –(H+ – I)[1] ≥ GBω ≥ 0. And it satisfies

⎛

⎜
⎝

⎡

⎢
⎣

H 0 H ′′

0 0 0
0 0 0

⎤

⎥
⎦ – I

⎞

⎟
⎠

⎡

⎢
⎣

1
0
1

⎤

⎥
⎦≤ 0.

It follows from Lemma 1 in [9], in which G is assigned to the identity matrix I , that μ′(k) ≤
[1, 0, 1]T for any

μ′
0 =

⎡

⎢
⎣

Gx0

–Gx0

1Tω0

⎤

⎥
⎦≤

⎡

⎢
⎣

1
0
1

⎤

⎥
⎦ .

Hence, the polyhedron Q+[G, 0, 1] is a positively invariant polyhedron of system S2 in (10)
with respect to �∞,1. �

When ω(k) ∈ �∞,∞
�= {ω(k) ∈ Rm

+ |‖ω(k)‖∞,∞ ≤ 1}, ‖ω(k)‖∞,∞ ≤ 1 means that each com-
ponent of ω(k) is not to exceed 1.

Theorem 8 The polyhedron R+[G, 1] is a positively invariant polyhedron of system S2 in
(10) with respect to �∞,∞ if and only if there exist two matrices H1 ∈ Rr×r and H2 ∈ Rr×m
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such that

GA – H1G ≤ 0,

GBω – H2 ≤ 0,
(|H1| – I

)
1 + |H2|1 ≤ 0.

Proof Necessity. Consider the following system derived from system S2:

[
x(k + 1)
ω̇(k)

]

=

[
A Bω

0 0

][
x(k)
ω(k)

]

.

The constraints x(k) ∈ R+[G, 1] and ω(k) ∈ �∞,∞ are identical to
[ x(k)

ω(k)
] ∈ �∞,∞ defined as

�∞,∞
�=

{[
x(k)
ω(k)

]

∈ Rn+m
+ : –1 ≤

[
G 0
0 I

][
x(k)
ω(k)

]

≤ 1

}

.

Similar to the proof of Theorem 6, by virtue of Theorem 1, there must exist a matrix

[
H11 H12

H21 H22

]

∈ R(r+m)×(r+m)

with H11 ∈ Rr×r , H12 ∈ Rr×m, H21 ∈ Rm×r , H22 ∈ Rm×m, such that
[

G 0
0 I

][
A Bω

0 0

]

–

[
H11 H12

H21 H22

][
G 0
0 I

]

≤ 0,

(∣
∣
∣
∣
∣

[
H11 H12

H21 H22

]∣
∣
∣
∣
∣

– I

)

1 ≤ 0.

After a few algebraic manipulations that is identical to

GA – H11G ≤ 0,

GBω – H12I ≤ 0,
(|H11| – I

)
1 + |H12|1 ≤ 0.

Then set H1 = H11, H2 = H12, one can get the conditions in the theorem as follows:

GA – H1G ≤ 0,

GBω – H2 ≤ 0,
(|H1| – I

)
1 + |H2|1 ≤ 0.

Sufficiency. Denote a new variable

ξ (k) �=

⎡

⎢
⎣

G 0
–G 0
0 I

⎤

⎥
⎦

[
x(k)
ω(k)

]

,
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which is followed by a dynamic equation

ξ (k + 1) =

⎡

⎢
⎣

G 0
–G 0
0 I

⎤

⎥
⎦

[
A Bω

0 0

][
x(k)
ω(k)

]

=

⎡

⎢
⎣

GA GBω

–GA –GBω

0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

≤
⎡

⎢
⎣

H1G H2

0 0
0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H1 0 H2

0 0 0
0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

G 0
–G 0
0 I

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H1 0 H2

0 0 0
0 0 0

⎤

⎥
⎦ ξ (k).

And it satisfies
⎛

⎜
⎝

⎡

⎢
⎣

H1 0 H2

0 0 0
0 0 0

⎤

⎥
⎦ – I

⎞

⎟
⎠1 ≤ 0

since (|H1| – I)1 + |H2|1 ≤ 0. It follows from Lemma 1 in [9], in which G is assigned to the
identity matrix I , that ξ (k) ≤ 1 for any

ξ0 =

⎡

⎢
⎣

Gx0

–Gx0

Iω0

⎤

⎥
⎦≤ 1.

Hence, the polyhedron R+[G, 1] is a positively invariant polyhedron of system S2 in (10)
with respect to �∞,∞. �

Q+[G, 0, 1] is also a positively invariant polyhedron of system S2 with respect to �∞,∞.
Likewise, constraints x(k) ∈ Q+[G, 0, 1] and ω(k) ∈ �∞,∞ are identical to

[ x(k)
ω(k)

] ∈ �∞,∞
defined as

�∞,∞
�=

{[
x(k)
ω(k)

]

∈ Rn+m
+ :

[
0
0

]

≤
[

G 0
0 I

][
x(k)
ω(k)

]

≤
[

1
1

]}

.

Theorem 9 The polyhedron Q+[G, 0, 1] is a positively invariant polyhedron of system S2 in
(10) with respect to �∞,∞ if and only if there exist two matrices H1 ∈ Rr×r and H2 ∈ Rr×m

such that

GA – H1G ≤ 0,
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GBω – H2 ≤ 0,
(
H+

1 – I
)
1 + H+

2 1 ≤ 0.

Proof Necessity. Similar to the proof of Theorem 7, by virtue of Theorem 2, there exists a
matrix

[
H11 H12

H21 H22

]

∈ R(r+1)×(r+1)

with H11 ∈ Rr×r , H12 ∈ Rr×1, H21 ∈ R1×r , H22 ∈ R1, such that

[
G 0
0 I

][
A Bω

0 0

]

–

[
H11 H12

H21 H22

][
G 0
0 I

]

≤ 0,

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

H+
11 H+

12 –H–
11 –H–

12

H+
21 H+

22 –H–
21 –H–

22

–(–H11)– –(–H12)– (–H11)+ (–H12)+

–(–H21)– –(–H22)– (–H21)+ (–H22)+

⎤

⎥
⎥
⎥
⎦

– I

⎞

⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

1
1
0
0

⎤

⎥
⎥
⎥
⎦

≤ 0.

Simplifying the proof above, we obtain

GA – H11G ≤ 0, (17)

GBω – H12I ≤ 0, (18)
(
H+

11 – I
)
1 + H+

121 ≤ 0. (19)

Then setting H1 = H11, H2 = H12, we have the conditions in the theorem as follows:

GA – H1G ≤ 0,

GBω – H2 ≤ 0,
(
H+

1 – I
)
1 + H+

2 1 ≤ 0.

Sufficiency. Denote a new variable

ξ ′(k) �=

⎡

⎢
⎣

G 0
–G 0
0 I

⎤

⎥
⎦

[
x(k)
ω(k)

]

,

which is followed by a dynamic equation

ξ ′(k + 1) =

⎡

⎢
⎣

G 0
–G 0
0 I

⎤

⎥
⎦

[
A Bω

0 0

][
x(k)
ω(k)

]

=

⎡

⎢
⎣

GA GBω

–GA –GBω

0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]
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≤
⎡

⎢
⎣

H1G H2

0 0
0 0

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H1 0 H2

0 0 0
0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

G 0
–G 0
0 I

⎤

⎥
⎦

[
x(k)
ω(k)

]

=

⎡

⎢
⎣

H1 0 H2

0 0 0
0 0 0

⎤

⎥
⎦ ξ (k).

And it satisfies

⎛

⎜
⎝

⎡

⎢
⎣

H1 0 H2

0 0 0
0 0 0

⎤

⎥
⎦ – I

⎞

⎟
⎠

⎡

⎢
⎣

1
0
1

⎤

⎥
⎦≤ 0

since (H+
1 – I)1 + H+

2 1 ≤ 0. It follows from Lemma 1 in [9], in which G is assigned to the
identity matrix I , that ξ ′(k) ≤ [1, 0, 1]T for any

ξ ′
0 =

⎡

⎢
⎣

Gx0

–Gx0

Iω0

⎤

⎥
⎦≤

⎡

⎢
⎣

1
0
1

⎤

⎥
⎦ .

Hence, the polyhedron Q+[G, 0, 1] is a positively invariant polyhedron of system S2 in (10)
with respect to �∞,∞. �

Remark 4 The conclusions and method in Theorem 1 to Theorem 9 can also be extended
to Markovian positive systems [21].

5 Numerical examples
Example 1 Consider a two-dimensional positive system S1 and a polyhedron R+[G,γ ]
with

A =

[
0.3 0.1
0.1 0.2

]

; G =

[
1 1
3 5

]

; γ =

[
3

12

]

.

From Theorem 1, it can be verified that R+[G,γ ] is a positively invariant polyhedron of
system S1 since there exists a matrix

H =

[
0.55 –0.04
1.55 –0.05

]

such that

[
1 1
3 5

][
0.3 0.1
0.1 0.2

]

–

[
0.55 –0.04
1.55 –0.05

][
1 1
3 5

]

≤ 0,
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Figure 1 System trajectories

(∣
∣
∣
∣
∣

[
0.55 –0.04
1.55 –0.05

]∣
∣
∣
∣
∣

–

[
1 0
0 1

])[
3

12

]

≤ 0.

Figure 1 indicates the trajectory of system state starting from [1.4 1.4]T . The trajectory
of system state starting from [1.4 1.4]T approaches the origin gradually. But it will never
coincide with the origin. The system state trajectories are completely kept in this invariant
polyhedron R+[G,γ ]. Set γ1 =

[ 1
5

]
and γ2 = γ , G and A remain unchanged, the result can

also illustrate Theorem 2.

A counter-example is given in Example 2 for illustrating the necessity of Theorem 1.

Example 2 Consider a positive system S1 and a polyhedron R+[G,γ ] with

A =

[
1 3
2 5

]

; G =

[
2 3
1 4

]

; γ =

[
15
16

]

.

According to Theorem 1, this polyhedron is not a positively invariant set of system S1 since
no feasible matrix H can be found. Figure 2 shows the trajectory of system state starting
from [0.1 0.1]T . The trajectory of system state is not in the given polyhedron after two
iterations.

Example 3 Consider a positive system S2 and a polyhedron R+[G, 1] with

A =

[
0.2 0.3
0.1 0.1

]

; Bω =

[
2 1
1 1

]

; G =

[
0.1 0.3

0.15 0.2

]

.

According to Theorem 6, the polyhedron R+[G, 1] is a positively invariant set of system S2

with respect to ω ∈ �∞,1 with a feasible matrix

H =

[
–0.04 0.40
–0.01 0.34

]
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Figure 2 System trajectories

such that

[
0.1 0.3

0.15 0.2

][
0.2 0.3
0.1 0.1

]

–

[
–0.04 0.40
–0.01 0.34

][
0.1 0.3

0.15 0.2

]

≤ 0,

[
0.1 0.3

0.15 0.2

][
2 1
1 1

]

+

(∣
∣
∣
∣
∣

[
–0.04 0.40
–0.01 0.34

]∣
∣
∣
∣
∣

–

[
1 0
0 1

])[
1
1

]

≤ 0.

Take

ω(k) =

[
0.25 + 0.25 sin(k)
0.25 + 0.25 cos(k)

]

and initial conditions [0.1 0.1]T to determine whether the given polyhedron is a positively
invariant set of system S2. The trajectory of system state starting from [0.1 0.1]T exhibits
circular motion similar to an ellipse. And the ellipse stays in the given polyhedron in Fig. 3.
Similarly, this example also satisfies

GA – HG ≤ 0,

GBω +
(
H+ – I

)
[1] ≤ 0.

So the polyhedron Q+[G, 0, 1] is a positively invariant polyhedron of system S2 with respect
to �∞,1.

To illustrate the necessity part of Theorem 6, a counter-example is given in Example 4.

Example 4 Consider a positive system S2 and a polyhedron R+[G, 1] with

A =

[
2 1
1 3

]

; Bω =

[
2 1
1 1

]

; G =

[
0.2 0.35
0.4 0.25

]

.
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Figure 3 System trajectories

Figure 4 System trajectories

From Theorem 5, this polyhedron R+[G, 1] is not a positively invariant set of system S2

with respect to ω ∈ �∞,1. For the external disturbance

ω(k) =

[
0.25 + 0.25 sin(k)
0.25 + 0.25 cos(k)

]

,

Figure 4 shows the system trajectory starting from point [0.1 0.1]T . Figure 4 is similar to
Fig. 2, the trajectory of system state starting from [0.1 0.1]T is not bounded inside the given
polyhedron.

Example 5 Consider a positive system S2 and a polyhedron R+[G, 1] with the following
parameters:

A =

[
0.2 0.3
0.1 0.1

]

; Bω =

[
2 1
1 1

]

; G =

[
0.1 0

0.05 0.1

]

.
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Figure 5 System trajectories

Based on Theorem 6, this polyhedron R+[G, 1] is a positively invariant set of positive sys-
tem S2 with respect to ω ∈ �∞,∞ since there exist two matrices

H1 =

[
–0.05 0.55

0.1 0.3

]

, H2 =

[
0.2 0.15
0.3 0.2

]

such that
[

0.1 0
0.05 0.1

][
0.2 0.3
0.1 0.1

]

–

[
–0.05 0.55

0.1 0.3

][
0.1 0

0.05 0.1

]

≤ 0,

[
0.1 0

0.05 0.1

][
2 1
1 1

]

–

[
0.2 0.15
0.3 0.2

]

≤ 0,

(∣
∣
∣
∣
∣

[
–0.05 0.55

0.1 0.3

]∣
∣
∣
∣
∣

–

[
1 0
0 1

])[
1
1

]

+

∣
∣
∣
∣
∣

[
0.2 0.15
0.3 0.2

]∣
∣
∣
∣
∣

[
1
1

]

≤ 0.

This conclusion can be showed in Fig. 5, which depicts the system trajectory with respect
to

ω(k) =

[
0.5 + 0.5 sin(k)
0.5 + 0.5 cos(k)

]T

and the initial state [0.1 0.1]T . Figure 5 is similar to Fig. 3, the system trajectory with respect
to

ω(k) =

[
0.5 + 0.5 sin(k)
0.5 + 0.5 cos(k)

]T

and the initial state [0.1 0.1]T exhibits circular motion similar to an ellipse and stays in the
given polyhedron.

For convenience, it is concluded that the polyhedron Q+[G, 0, 1] is a positively invariant
polyhedron of system S2 with respect to �∞,∞ by Example 5.
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6 Conclusion
Necessary and sufficient conditions for a polyhedral set to be a positively invariant set of a
discrete-time positive linear system are presented in this paper. The relationship between
Lyapunov stability and positively invariant polyhedra for discrete-time positive linear sys-
tems is also studied. Under two types of external perturbations whose (∞, 1)-norm or
(∞,∞)-norm are bounded by a constant, the necessary and sufficient algebraic condi-
tions for the positive invariant polyhedra are both investigated, which can be solved by a
linear programming. The results obtained in this paper enrich and complete the results of
positively invariant sets for positive linear systems with disturbances.
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