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Abstract
We propose a geometric method to determine the stability region of the zero
solution of a linear periodic difference equation via the delayed feedback control
(briefly, DFC) with the commuting feedback gain. For the equation, our method is
more effective than the Jury criterion. First, we give a relationship, named the C-map
theorem, between the characteristic multipliers of an original equation and those of
the equation via DFC. Next, we show the existence andm-starlike property, defined in
this paper, of anm-closed curve induced from the C-map. Using this result, we prove
that the region enclosed by them-closed curve is the stability region of the zero
solution of the equation via DFC.
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1 Introduction and preliminaries
1.1 Introduction
The delayed feedback control (DFC) is an important method for stabilizing the unstable
periodic orbit φ(t) with period ω > 0 to a differential equation

x′(t) = f (x), x ∈ � ⊂R
d, (E)

embedded within a chaotic attractor. As DFCs, Pyragas [11] has firstly used a perturbation
u(t) = K(x(t – ω) – x(t)) to Equation (E), that is,

x′(t) = f
(
x(t)

)
+ K

(
x(t – ω) – x(t)

)
, (DF)

where a d × d real constant matrix K is the so-called feedback gain, and he numerically
determined the feedback gain K so that the periodic solution of Equation (DF) is sta-
ble.

To stabilize theoretically the unstable periodic orbit, Miyazaki, Naito, and Shin [8] have
used the method of linearization under the commuting condition for the gain K . Then,
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the linear variational equations around the orbit φ(t) for Equation (DF) becomes

y′(t) = A(t)y(t) + K
(
y(t – ω) – y(t)

)
, (LDF)

where A(t) = Df (φ(t)) is the Jacobian of f (x).
A discrete version of Equation (DF) is given by the form

x(n + 1) = f
(
x(n)

)
+ u(n), u(n) = K

(
x(n – ω) – x(n)

)
, n ∈ Z := {0,±1,±2, . . .},

where ω ∈ Z
∞
1 := {1, 2, . . .}.

This type of feedback scheme has certain inherent limitations [12]. On the other hand,
Buchner and Żebrowski [1] considered a perturbation of the echo-type formulated as
u(n) = K(x(n – ω + 1) – A(n)x(n)) to study the stability and the bifurcation for the logistic
map. This method is considered as a prediction-based feedback control [13] or nonlinear
feedback control [14]. For other types of u(n) see [15–17]. Furthermore, Ohta, Takahashi,
and Miyazaki [9] made a remark that DFC of the echo type is more effective than Pyragas
type for one-dimensional case.

As the first step of the study, we are interested in the problem of stabilizing the unstable
zero solution to linear periodic difference equations of the form

x(n + 1) = A(n)x(n), n ∈ Z, (L)

apart from nonlinear difference equations x(n + 1) = f (x(n)).
Here we assume that A(n) is a d × d complex matrix with period ω and x(n) belongs to

the d dimensional complex Euclidean space C
d .

In this paper, we adopt the perturbation of the echo type and consider the following
equation with DFC

y(n + 1) = A(n)y(n) + K
(
y(n – ω + 1) – A(n)y(n)

)
. (LF)

The goal of the paper is to describe the stability region, containing all the characteristic
multipliers of Equation (L), of the zero solution to Equation (LF) for general period ω ≥ 3
(refer to [7] for ω = 2). We develop a geometric method to characterize the stability region.
As a next step, for periodic solutions with period ω, we will investigate the stability region
in the forthcoming paper [5], whose main results rely strongly on this paper.

In general, the stability of the zero (or periodic) solution of Equation (LF) is determined
by the absolute values of these characteristic multipliers, i.e., the roots of its characteristic
polynomial. However, for the characteristic polynomial of Equation (LF), it is very difficult
to apply the classical criteria of Schur–Cohn or Jury in [4] as well as to determine the
stability region, since they are based on algebraic methods. Indeed, the order of the inner
matrix becomes very large as the dimension d and the period ω increase. For example,
according to our experimental calculation, the criteria of Schur–Cohn or Jury are very
complicated even for the case when ω = 4 and d = 1. This is a motivation for this paper.

To solve such a difficulty, we introduce a new geometric method. As a main result, we
can theoretically determine the stability region in general when K = kE. In particular, when
ω = 4 and all the characteristic multipliers of Equation (L) are real, our method can give a
more concrete and precise stability region (Fig. 2).
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Our geometric method is developed as follows.
First, we establish a relationship, named the C-map theorem (Theorem 2.5 and Corol-

lary 2.6), between characteristic multipliers of Equation (L) and Equation (LF). To carry
out this, we introduce a C-map under the commuting condition: KA(n) = A(n)K for all
n ∈ {0, 1, 2, . . . ,ω – 1}, which is motivated by the paper [8] for a continuous system. For ex-
ample, for a characteristic multiplier μ of Equation (L) and for a characteristic multiplier
ν of Equation (LF) with K = kE, k a real number and E the identity matrix, the C-map is
given by μ = Cω,k(ν) = ν( ν–k

(1–k)ν )ω .
Next, we give geometric properties of the image Bω,k(θ ) := Cω,k(eiθ ), θ ∈ (–π ,π ] by the C-

map of the unit circle in the complex plane. In general, the above image is not geometrically
simple. We show the existence and the m-starlike property (Theorem 6.4) of an m-closed
curve (Definition 6.3) as a part of the image Bω,k(θ ).

Finally, using this result, we prove that if all the characteristic multipliers of Equation
(L) are in the interior of the (stability) region enclosed by an m-closed curve, then the zero
solution to Equation (LF) is asymptotically stable (Theorem 7.2). Furthermore, we give
necessary and sufficient conditions for all the characteristic multipliers of Equation (L) to
be in the interior of the region. Our method is illustrated for the cases when ω = 3, 4 and
all the characteristic multipliers of Equation (L) are real.

The paper is organized as follows.
Section 1. Introduction and preliminaries
Section 2. Characteristic multipliers for Equation (LF)
Section 3. Properties of the function Bω,k(θ )
Section 4. Existence of solutions of Equation �Bω,k(θ ) = 0
Section 5. Equation �Bω,k(θ ) = 0
Section 6. Geometric properties of the function Bω,k(θ )
Section 7. Stability regions

1.2 Preliminaries
In this subsection, we give some basic properties of the characteristic multipliers for Equa-
tion (L) and Equation (LF). Let X be a Banach space with dim X < ∞ and L : X → X a
bounded linear operator. We denote by N (L) the null space of L, and by Wη(L) and Gη(L)
the eigenspace and the generalized eigenspace for η ∈ σ (L), respectively, where σ (L) stands
for the set of all eigenvalues of L. Let Z∞

p = {p, p + 1, . . .} for p ∈ Z. For any m, n ∈ Z with
m < n we set Zn

m = {m, m + 1, . . . , n – 1, n}.
First, we consider Equation (L), which has the matrix coefficient A(n) with period ω.

Throughout this paper we assume that
(A): A(n) is nonsingular for all n ∈ Z

ω–1
0 .

Then the unique solution x(n; m, x0) of Equation (L) through the initial point (m, x0) ∈
Z×C

d is given by x(n; m, x0) = T(n, m)x0, where T(n, m), n, m ∈ Z stands for the solution
operator of Equation (L). Set T(n) = T(n + ω, n), n ∈ Z. Then T(0) is called the periodic
operator of Equation (L). Then T(n, m) (m, n ∈ Z) and T(0) are given by

T(n, m) =
n–1∏

i=m

A(i)(n ≥ m) and T(0) =
ω–1∏

i=0

A(i),
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respectively, where

n–1∏

i=m

A(i) =

⎧
⎨

⎩
A(n – 1)A(n – 2) · · ·A(m) (n > m),

E (n = m).

Thus T(n, m), n, m ∈ Z has following properties (refer to [2, 10]):
(T1) T(n, n) = E, n ∈ Z.
(T2) T(n, m)T(m, r) = T(n, r), m ∈ Z

n
r .

(T3) T(n + ω, m + ω) = T(n, m), m ≤ n.
Note that using ω–periodicity of A(n),

T(1) = A(0)T(0)A(0)–1. (1)

A complete study of (L) is carried out by the so-called Floquet theory (see, for example,
C. Pötzsche [10]) Note that σ (T(n)) = σ (T(0)) and T(0) is nonsingular by Condition (A).
Thus 0 /∈ σ (T(0)). From now on, μ ∈ σ (T(0)) is called the Floquet’s multiplier or character-
istic multiplier of Equation (L) (refer to [2, 10]). We recall that the location of eigenvalues
of T(0) determines the stability properties of Equation (L).

Next, we consider Equation (LF). Let Cω–1 be the set of all maps from Z
0
–ω+1 into C

d ,
which is the Banach space equipped with the norm |ϕ|Cω–1 = sups∈Z0

–ω+1
|ϕ(s)|. It is obvious

that dimCω–1 = ωd. Let m ∈ Z be fixed. For any function y : Z∞
m–ω+1 → C

d and any n ∈
Z

∞
m , we define a function yn : Z0

–ω+1 → C
d by yn(s) = y(n + s), s ∈ Z

0
–ω+1. For any n ∈ Z

∞
m

the unique solution yn(m,ϕ) ∈ Cω–1 of Equation (LF) through the initial point (m,ϕ) ∈
Z × Cω–1 is given by yn(m,ϕ) = UK (n, m)ϕ, where UK (n, m) : Cω–1 → Cω–1 stands for the
solution operator of Equation (LF). Set UK (n) = UK (n + ω, n), n ∈ Z. Then UK (0) is called
the periodic operator of Equation (LF). Hereafter, if K = kE, then we denote by Uk(n, m)
and Uk(0) the operators UK (n, m) and UK (0), respectively.

The following result can be proved by a similar argument as in the proof of [3, p. 237,
Lemma 1.1].

Proposition 1.1 ν is a characteristic multiplier of Equation (LF) if and only if there is a
nontrivial solution yn, n ∈ Z

∞
0 of Equation (LF) of the form

y(n + ω) = νy(n), n ∈ Z
∞
–ω+1. (2)

Hereafter, we assume the following condition (K) for the feedback gain K :
(K-1) σ (K) ⊂ R,
(K-2) 0 < |κ| < 1 for all κ ∈ σ (K),
(K-3) σ (UK (0)) ∩ σ (K) = ∅.
If k ∈ R with 0 < |k| < 1, then K = kE satisfies the condition (K) (see Lemma 1.3 for a

proof ). However, the condition (K-3) does not hold for a general matrix K , while it can be
replaced by other conditions (see [6]).

Now, we introduce the commuting condition (C).
(C) KA(n) = A(n)K , (n ∈ Z).
The proof of the following lemma is easy.
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Lemma 1.2 For Equation (L) the following statements are equivalent:
(1) A(n)K = KA(n), n ∈ Z.
(2) T(n, m)K = KT(n, m), n, m ∈ Z.
(3) T(n, 0)K = KT(n, 0), n ∈ Z.

For the case K = kE, the following result holds.

Lemma 1.3 Let K = kE, 0 < |k| < 1, and k ∈R. If Condition (A) is satisfied, then Conditions
(C) and (K) are satisfied.

Proof Since K = kE, we obtain that the condition (C) is clearly satisfied. Moreover, σ (K) =
{k} and Wk(K) = C

d . Now, we show by contradiction that the condition (K-3) is satisfied.
Suppose k ∈ σ (Uk(0)). Then there exists a nontrivial solution y(n) of Equation (LF) such
that y(n + ω) = ky(n), n ∈ Z–ω+1 by Proposition 1.1. Hence y(n + 1 – ω) = k–1y(n + 1), n ∈ Z.
Substituting this relation into Equation (LF), we have y(n + 1) = A(n)y(n) + k[k–1y(n + 1) –
A(n)y(n)], which implies that (1 – k)A(n)y(n) = 0. Since k �= 1 and A(n) is nonsingular, we
have y(n) = 0. This leads to a contradiction, since y(n) is a nontrivial solution. Hence, the
condition (K-3) is satisfied. �

Hereafter, we always assume Conditions (A), (K), and (C) in this paper.
We note that under the condition (2), Equation (LF) becomes

y(n + 1) = K(ν)–1A(n)y(n),

where

K(ν) = ν–1(νE – K)(E – K)–1. (3)

Finally, we will transform Equation (LF) to the extended linear periodic difference equa-
tion. By transforming

y
(
n – (ω – 1)

)
= z(1; n), y

(
n – (ω – 2)

)
= z(2; n), . . . , y(n) = z(ω; n)

in Equation (LF) and setting z(n) = t(tz(1; n), tz(2; n), . . . , tz(ω; n)), Equation (LF) becomes

z(n + 1) = BK (n)z(n), (BE)

where

BK (n) =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

0 E 0 · · · 0 0
0 0 E · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
... 0

...
...

...
...

. . . 0
0 · · · · · · · · · 0 E
K 0 0 · · · 0 (E – K)A(n)

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, (4)

which is called the extended feedback equation of Equation (LF).
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Then the following result is easy to prove.

Lemma 1.4 det BK (n) = (–1)(ω–1)d det K for all n ∈ Z
∞
0 .

Proof An easy calculation yields

det BK (n) = (–1)(ω–1)d det

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

E 0 · · · 0 0 0
0 E · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · E 0 0
0 0 · · · 0 E 0
0 0 · · · 0 (E – K)A(n) K

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

= (–1)(ω–1)d det

(
E 0

(E – K)A(n) K

)

= (–1)(ω–1)d det K .

This completes the proof. �

It follows from Lemma 1.4 that if 0 /∈ σ (K), then the existence and uniqueness of solu-
tions to Equation (BE) is guaranteed. We denote by TB(n, m) and TB(0) the solution oper-
ator and the periodic operator of Equation (BE), respectively. Let C := C

1 and R stand for
the set of all the real numbers.

Now, we give a relationship between the operators UK (0) and TB(0).

Define a mapping Sω–1 from Cω–1 into C
ωd :=

ω
︷ ︸︸ ︷
C

d ×C
d × · · · ×C

d by

ϕ ∈ Cω–1 → t(tϕ(–ω + 1), tϕ(–ω + 2), . . . , tϕ(–1), tϕ(0)
) ∈C

ωd.

Then Sω–1 is bijective. Hence, we have Sω–1UK (n, m)ϕ = TB(n, m)Sω–1ϕ.
Indeed, we have

Sω–1UK (n, m)ϕ = Sω–1yn(m,ϕ)

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

y(n – (ω – 1); m,ϕ)
y(n – (ω – 2); m,ϕ)

...
y(n – 1; m,ϕ)

y(n; m,ϕ)

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

z(1; n)
z(2; n)

...
z(ω – 1; n)

z(ω; n)

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠
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= TB(n, m)

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

ϕ(–ω + 1)
ϕ(–ω + 2)

...
ϕ(–1)
ϕ(0)

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

= TB(n, m)Sω–1ϕ.

So UK (n, m) is uniquely extended to n < m as follows:

UK (n, m) = S–1
ω–1TB(n, m)Sω–1, n < m.

From this we have

Sω–1UK (n, m) = TB(n, m)Sω–1 (m, n ∈ Z), Sω–1UK (0) = TB(0)Sω–1.

Since UK (0) and TB(0) are similar, the following relations hold:

UK (0)ϕ = νϕ ⇐⇒ Sω–1UK (0)ϕ = νSω–1ϕ ⇐⇒ TB(0)Sω–1ϕ = νSω–1ϕ.

Therefore, we obtain the following result.

Lemma 1.5 σ (UK (0)) = σ (TB(0)) and 0 /∈ σ (UK (0)).

Proof Combining Lemma 1.4 and the condition (K-2), we have det BK (n) �= 0. Since UK (0)
and TB(0) are similar, σ (UK (0)) = σ (TB(0)) and hence 0 /∈ σ (UK (0)). �

2 Characteristic multipliers for Equation (LF)
In this section, we determine the spectrum σ (UK (0)) of the periodic operator of Equation
(LF) and establish the C-map theorem.

2.1 Spectrum of the periodic operator UK (0)
Set

Hn
m = (E – K)n–mT(n, m), n ≥ m.

Then Hn
m has the following properties:

Hk
k = E, Hn

k Hk
m = Hn

m, (E – K)A(n)Hn
m = Hn+1

m . (5)

Indeed, using the commuting condition (C) and Lemma 1.2, we have

(E – K)A(n)Hn
m = (E – K)n+1–mA(n)T(n, m)

= (E – K)n+1–mT(n + 1, m) = Hn+1
m .
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Inductively, we can obtain a representation of TB(0) as follows:

TB(0) =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

K 0 0 · · · 0 H1
0

KH2
1 K 0 · · · 0 H2

0
...

...
...

...
...

...
KHω–1

1 KHω–1
2 KHω–1

3 · · · K Hω–1
0

KHω
1 KHω

2 KHω
3 · · · KHω

ω–1 Hω
0 + K

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.

Now, we will calculate det(TB(0) – νE).

Proposition 2.1 The characteristic polynomial of TB(0) is given as follows:

det
(
TB(0) – νE

)
= det

[
(–1)ωνω–1(E – K)ω

]
det

[
νK(ν)ω – T(0)

]
.

In particular, det(TB(0) – νE) = 0 if and only if det(νK(ν)ω – T(0)) = 0.

Proof Set

M =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

E
–H2

1 E 0
–H3

2 E
. . . . . .

. . . . . .

0 –Hω–1
ω–2 E

–Hω
ω–1 E

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Then det M = 1. Under the condition (C), by Schur’s formula, we have

det
(
TB(0) – νE

)
= det

[
M
(
TB(0) – νE

)]

= det

(
M11 M12

M21 M22

)

= det M22 det
(
M11 – M12M–1

22 M21
)
,

where

M11 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

K – νE
νH2

1 K – νE
νH3

2 K – νE 0
.. . . . .

0 . . . . . .

νHω–1
ω–2 K – νE

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

, M12 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

H1
0

0
...
...
...
0
0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

,



Shin et al. Advances in Continuous and Discrete Models         (2023) 2023:35 Page 9 of 28

M21 =
(

0 0 · · · · · · 0 νHω
ω–1

)
, M22 = K – νE.

Here, we have used the condition (K-3) and the formula for the determinant of a block
matrix with four submatrices. Thus we have

det
(
TB(0) – νE

)

= det(K – νE)

× det

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

K – νE –ν(K – νE)–1H1
0 Hω

ω–1

νH2
1 K – νE 0

νH3
2 K – νE 0 0

. . . . . .
...

0 . . . . . .
K – νE 0
νHω–1

ω–2 K – νE

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

...

= det(K – νE)ω–2 det

(
K – νE (–ν)ω–2{(K – νE)–1}ω–2H1

0 Hω
2

νH2
1 K – νE

)

. (6)

It follows from (6) that

det
(
TB(0) – νE

)

= det(K – νE)ω–1 det
[
K – νE + (–ν)ω–1{(K – νE)–1}ω–1H1

0 Hω
1
]

= det
[
(K – νE)ω + (–ν)ω–1H1

0 Hω
1
]

= det
[
(K – νE)ω + (–ν)ω–1(E – K)ωT(1, 0)T(ω, 1)

]

= det
[
(K – νE)ω + (–ν)ω–1(E – K)ωT(1)

] (
by the property (T3)

)

Since T(1) = A(0)T(0)A–1(0) and A(0)K = KA(0) hold, we have

det
(
TB(0) – νE

)

= det
[
(K – νE)ω + (–ν)ω–1(E – K)ωT(1)

]

= det
[
(K – νE)ωA(0)A(0)–1 + (–ν)ω–1(E – K)ωA(0)T(0)A(0)–1](by(1))

= det
{

A(0)
[
(K – νE)ω + (–ν)ω–1(E – K)ωT(0)

]
A(0)–1}

= det
[
(–1)ωνω–1(E – K)ω

{
ν
(
ν–1(E – K)–1)ω(νE – K)ω – T(0)

}]

= det
[
(–1)ωνω–1(E – K)ω

]
det

[
νK(ν)ω – T(0)

]
.

Since ν �= 0 by Lemma 1.5 and 1 /∈ σ (K), we obtain that if det(TB(0) – νE) = 0, then
det(νK(ν)ω – T(0)) = 0, and vice versa. �

Combining Proposition 2.1 and Lemma 1.5, we obtain the following equivalence.
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Proposition 2.2 The following statements are equivalent:
(1) ν ∈ σ (UK (0)).
(2) det(TB(0) – νE) = 0.
(3) det(νK(ν)ω – T(0)) = 0.

Theorem 2.3 The following statements hold.
(1) Let ν ∈ σ (UK (0)). Then ψ ∈ Wν(UK (0)) ⇐⇒ Sω–1ψ ∈ Wν(TB(0)).
(2) The characteristic equation det(TB(0) – νE) = 0 has ωd roots.

Proof We prove only the assertion (1). Assume ψ ∈ Wν(UK (0)). Since UK (0)ψ = νψ , we
have Sω–1UK (0)ψ = Sω–1νψ . Since Sω–1UK (0)ψ = TB(0)Sω–1ψ , we obtain TB(0)Sω–1ψ =
Sω–1νψ , that is, Sω–1ψ ∈ Wν(TB(0)), and vice versa. �

Combining Theorem 2.3 with Lemma 1.4, we obtain the following result.

Proposition 2.4 Let ν1, . . . ,νωd , counted with multiplicity, be all the characteristic multi-
pliers of Equation (LF). Then ν1 · · ·νωd = (det K)ω .

Proof Combining Theorem 2.3 with Lemma 1.4, we obtain

ν1 · · ·νωd = det TB(0) =
ω–1∏

n=0

det BK (n)

=
(
(–1)(ω–1)d det K

)ω

= (–1)ω(ω–1)d(det K)ω.

Since ω(ω – 1)d is an even number, the proof is complete. �

It follows from Proposition 2.4 that
(1) if K = kE, then

ν1ν2 · · ·νωd = (k)ωd;

(2) if k1, k2, . . . , kd , counted with multiplicity, are eigenvalues of the matrix K , then det K =
k1k2 · · ·kd and

ν1 · · ·νωd = (det K)ω = (k1k2 · · ·kd)ω.

This implies that if det K > 1, then there exists a νi ∈ σ (UK (0)) such that |νi| > 1. In other
words, the zero solution of Equation (LF) is unstable if det K > 1. Note that det K > 1 if
K = kE and |k| > 1.

2.2 C-map theorems
In this subsection, we introduce the C-map Theorems, which give the relationship be-
tween the characteristic multipliers of Equations (L) and (LF) and play the crucial role
throughout this paper. For commuting matrices A and B we set

σ [AB] =
{

(α,β) ∈ σ (A) × σ (B)|αβ ∈ σ (AB)
}

,

where σ (AB) = {αβ|α ∈ σ (A),β ∈ σ (B), Wα(A) ∩ Wβ (B) �= ∅}.
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For a function f (x, y), we denote by fx(y) and fy(x) the function f (x, y) of y for each fixed
x, and the function f (x, y) of x for each fixed y, respectively.

In view of K(ν)ω in Proposition 2.1, we introduce

g(k, z) =
(

z – k
(1 – k)z

)ω

: I × D →C \ {0} and Cω,k(z) = zg(k, z),

where I = R\ {1} and D = C\R. The function Cω,k(z) is called the characteristic multiplier
map (briefly, C-map) for Equation (LF). Note that g(K , z) is well defined and zg(K , z) is
nonsingular for all z ∈ D, since g(k, z) is analytic in k for all z ∈ D.

We are now in a position to state and prove the C-map theorem for Equation (LF).

Theorem 2.5 (C-map Theorem) ν ∈ σ (UK (0)) if and only if there exists a (k,μ) ∈
σ [KT(0)] such that μ = Cω,k(ν).

Proof It follows from Proposition 2.2 that ν ∈ σ (UK (0)) if and only if det(νK(ν)ω –
T(0)) = 0, that is, 0 ∈ σ (νg(K ,ν) – T(0)). According to the spectral mapping theorem, we
have σ (νg(K ,ν)) = {νg(k,ν)|k ∈ σ (K)}. Moreover, it follows from Condition (C) and [8,
Lemma 4.1] that νg(K ,ν) and T(0) commute. Therefore, by [8, Lemma A.1], the condi-
tion 0 ∈ σ (νg(K ,ν) – T(0)) implies that ν ∈ σ (UK (0)) if and only if there exist k0 ∈ σ (K)
and μ ∈ σ (T(0)) such that

μ = νg(k0,ν), Gνg(K ,ν)
(
νg(k0,ν)

)∩ GT(0)(μ) �= {0}. (7)

For such a k0 ∈ σ (K), we denote by {k0, k1, . . . , kp}, p ≤ d – 1 the set of k ∈ σ (K) such that
νg(k,ν) = νg(k0,ν). Using the spectral mapping theorem again, we have Gνg(K ,ν)(νg(k0,ν)) =
⊕p

i=0 GK (ki). Therefore, we see that Gνg(K ,ν)(νg(k0,ν)) ∩ GT(0)(μ) �= {0} if and only if
GT(0)(μ) ∩ ⊕p

i=0 GK (ki) �= {0}. Then x ∈ GT(0)(μ) ∩ ⊕p
i=1 GK (ki), x �= 0 can be expressed

as x =
∑p

i=0 Pix, Pix ∈ GK (ki), where Pi : Cd → GK (ki) is the projection. Since T(0) and K
commute, we have T(0)Pix = PiT(0)x = Piμx = μPix, i = 0, . . . , p. Since there is at least one
i such that Pix �= 0, we have

GK (ki) ∩ GT(0)(μ) �= {0}. (8)

It follows from [8, Lemma A.2] that the condition (8) is reduced to the condition WK (ki) ∩
WT(0)(μ) �= {0}. Hence the condition (7) is replaced by the condition

μ = Cω,ki (ν), WK (ki) ∩ WT(0)(μ) �= {0}.

Thus we have (ki,μ) ∈ σ [KT(0)]. This proves the theorem. �

Corollary 2.6 Let K = kE. Then ν ∈ σ (Uk(0)) if and only if Cω,k(ν) ∈ σ (T(0)).

The C-map μ = Cω,k(z) can be reformulated as

Pω,k(z;μ) = (z – k)ω – μ(1 – k)ωzω–1 = 0. (9)

Using (9) and Corollary 2.6, we obtain the following result.
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Corollary 2.7 Let K = kE. Then for every μ ∈ σ (T(0)) the equation μ = Cω,k(ν) has ω

solutions, counted with multiplicity, which belong to σ (Uk(0)).

3 Properties of the function Bω,k(θ )
In this section we consider several properties of the image

Bω,k(θ ) := Cω,k
(
eiθ ) =

(
1 – ke–iθ

1 – k

)ω

eiθ , –π < θ ≤ π (10)

by the C-map Cω,k(z) of the unit circle. Clearly, we have:
(1) Bω,k(0) = 1 ∈R.
(2) Bω,k(π ) = –( 1+k

1–k )ω ∈R.
(3) Bω,k(θ ) is differentiable on [0,π ].
Note that limk→1 |Bω,k(π )| = ∞.
Hereafter, we assume that ω ∈ Z

∞
3

We denote by C the closed unit disc, i.e., C = {z||z| ≤ 1}, and denote by n(∂C, Cω,k) the
winding number of Cω,k(ν) when ν rotates along the unit circle ∂C centered at the origin
in the positive direction.

Lemma 3.1 The following statements hold.
(1) Bω,k(θ ) �= 0 for all θ ∈ (–π ,π ].
(2) Bω,k(θ + 2nπ ) = Bω,k(θ )andBω,k(θ ) = Bω,k(–θ ), (n ∈ Z, –π < θ ≤ π ).
(3) Bω,k(–π ) := limθ→–π Bω,k(θ ) = –( 1+k

1–k )ω ∈R.
(4) Cω,k(1) = 1 and Cω,k(ν) = Cω,k(ν).
(5) n(∂C, Cω,k) = 1.

Proof (1), (2), (3), and (4) are obvious. (5) By the argument principle, we have

n(∂C, Cω,k) =
1

2π i

∫

∂C

C′
ω,k(ν)

Cω,k(ν)
dν =

1
2π i

[∫

∂C

ω

ν – k
dν +

∫

∂C

1 – ω

ν
dν

]
= 1

as required. �

To obtain a representation of Bω,k(θ ), for any k, 0 < |k| < 1 and any θ ∈ (–π ,π ], we define
β(k, θ ) as

tanβ(k, θ ) =
k sin θ

1 – k cos θ
,

∣∣β(k, θ )
∣∣ <

π

2
. (11)

Now, we give elementary properties of β(k, θ ).

Lemma 3.2 For θ ∈ (0,π ) the following statements hold:
(1) 0 < k < 1 if and only if 0 < β(k, θ ) < π

2 for all θ ∈ (0,π ).
(2) –1 < k < 0 if and only if – π

2 < β(k, θ ) < 0 for all θ ∈ (0,π ).
(3) For any θ ∈ (0,π ) β(k, θ ) is increasing in k, 0 < |k| < 1.

The assertions (1) and (2) in Lemma 3.2 imply that β(k, θ ) �= 0 for all θ ∈ (0,π ). Since
sinβ(k,θ )
cosβ(k,θ ) = k sin θ

1–k cos θ
, (11) can be replaced by

k sin
(
β(k, θ ) + θ

)
= sinβ(k, θ ). (12)
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Next, we give two representations of Bω,k(θ ). We need the following identity often

1 – ke–iθ =
√

1 – 2k cos θ + k2eiβ(k,θ ). (13)

Now, the following representation of Bω,k(θ ) is given by (13).

Proposition 3.3 Bω,k(θ ) can be reformulated as

Bω,k(θ ) =
(1 – 2k cos θ + k2) ω

2

(1 – k)ω
eiϕk (θ ), θ ∈ (–π ,π ],

where

ϕk(θ ) = ωβ(k, θ ) + θ , –π < θ ≤ π . (14)

Corollary 3.4 The following results hold.
(1) β(k, 0) = 0 and ϕk(0) = 0 for all k (0 < |k| < 1).
(2) β(k,π ) = 0 and ϕk(π ) = π for all k (0 < |k| < 1).
(3) β(k, θ ) �= 0 for all k (0 < |k| < 1) and θ (0 < |θ | < π ).

Using Proposition 3.3, we have

∣
∣Bω,k(θ )

∣
∣ =

(1 – 2k cos θ + k2) ω
2

(1 – k)ω
(15)

and |ϕk(θ )| < ( ω
2 + 1)π . Thus the following result holds.

Lemma 3.5 Let θ ∈ [0,π ]. Then the following statements hold.
(1) If 0 < k < 1, then |Bω,k(θ )| ≥ 1 and |Bω,k(θ )| is strictly increasing in θ .
(2) If –1 < k < 0, then |Bω,k(θ )| ≤ 1 and |Bω,k(θ )| is strictly decreasing in θ .

Corollary 3.6 The following statements hold.
(1) If 0 < k < 1, then min0≤θ≤π |Bω,k(θ )| = Bω,k(0) = 1 and max0≤θ≤π |Bω,k(θ )| = |Bω,k(π )| =

( 1+k
1–k )ω .
(2) If –1 < k < 0, then min0≤θ≤π |Bω,k(θ )| = |Bω,k(π )| = ( 1+k

1–k )ω and max0≤θ≤π |Bω,k(θ )| =
Bω,k(0) = 1.

Since

∣
∣Bω,k(θ )

∣
∣

2
ω = 1 +

2k
(1 – k)2 (1 – cos θ ), (16)

we have the following lemma.

Lemma 3.7 Let 0 < |k| < 1 and θ ∈ (0,π ]. Then |Bω,θ (k)| is strictly increasing in k.

Proof Set b(k) := |Bω,θ (k)| 2
ω . In view of (16), we have b′(k) = 2(1+k)

(1–k)3 (1 – cos θ ) > 0, and hence
b(k) is strictly increasing in k. �
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4 Existence of solutions of equation �Bω,k(θ ) = 0
In this section, we give the criteria for the existence of solutions of Equation �Bω,k(θ ) = 0,
i.e., Bω,k(θ ) ∈ R on [0,π ]. In other words, sinϕk(θ ) = 0. Since β(k, 0) = β(k,π ) = 0 for any
k, 0 < |k| < 1 by Corollary 3.4, θ = 0, π are the solutions of Equation �Bω,k(θ ) = 0. Thus we
consider the case θ ∈ (0,π ). To discuss this problem, we investigate separately two cases
0 < |k| ≤ 1

ω–1 and 1
ω–1 < |k| < 1.

First, we need the following properties of ϕk(θ ). Since ϕk(θ ) = ωβ(k, θ ) + θ , we have
d

dθ
ϕk(θ ) = ζ (k,θ )

1–2k cos θ+k2 , where ζ (k, θ ) = k(ω – 2) cos θ – (ω – 1)k2 + 1.

Proposition 4.1 The following statements hold for θ ∈ [0,π ].
(1) ϕ′

k(θ ) = 0 ⇐⇒ ζk(θ ) = 0, i.e., cos θ = (ω–1)k2–1
k(ω–2) .

(2) ϕ′
k(θ ) > 0 ⇐⇒ ζk(θ ) > 0 ; ϕ′

k(θ ) < 0 ⇐⇒ ζk(θ ) < 0.
(3) ϕ′

k(θ ) is continuous on [0,π ].
(4) 1

ω–1 < |k| < 1 ⇐⇒ | (ω–1)k2–1
k(ω–2) | < 1.

Corollary 4.2 The following statements hold.
(1) k = – 1

ω–1 if and only if ϕ′
k(0) = 0.

(2) k = 1
ω–1 if and only if ϕ′

k(π ) = 0.

The following result is easily derived from the above argument and Proposition 4.1.

Corollary 4.3 For θ = 0, π the following statements hold.
(1) The case θ = 0.
(1-1) If – 1

ω–1 < k < 1, then ϕ′
k(0) > 0.

(1-2) If –1 < k < – 1
ω–1 , then ϕ′

k(0) < 0.
(2) The case θ = π .
(2-1) If –1 < k < 1

ω–1 , then ϕ′
k(π ) > 0.

(2-2) If 1
ω–1 < k < 1, then ϕ′

k(π ) < 0.

Next, we show that solutions of Equation �Bω,k(θ ) = 0 on [0,π ] for the case 0 < |k| ≤ 1
ω–1

are θ = 0 and π only.
We are now in a position to state and prove the first main theorem in this section.

Theorem 4.4 Let θ ∈ [0,π ]. Suppose 0 < |k| ≤ 1
ω–1 . Then �Bω,k(θ ) = 0 if and only if

θ = 0, π .

Proof The proof is based on Proposition 4.1 and Corollary 4.3.
(1) If 0 < k ≤ 1

ω–1 , then ϕ′
k(π ) ≥ 0 by Corollary 4.2 and Corollary 4.3. Moreover, Propo-

sition 4.1 implies the inequality cosπ = –1 ≥ (ω–1)k2–1
k(ω–2) . On the other hand, we have the

inequality cos θ > cosπ ≥ (ω–1)k2–1
k(ω–2) on [0,π ). Thus ϕ′

k(θ ) > 0 on [0,π ) and ϕ′
k(π ) ≥ 0.

(2) If – 1
ω–1 ≤ k < 0, then it follows that ϕ′

k(0) ≥ 0 by Corollary 4.3. Thus Proposition 4.1
implies the inequality cos 0 = 1 ≤ (ω–1)k2–1

k(ω–2) . On the other hand, we have the inequality

cos θ < cos 0 ≤ (ω–1)k2–1
k(ω–2) on (0,π ]. Thus ϕ′

k(θ ) > 0 on (0,π ] and ϕ′
k(0) ≥ 0.

Summing up these cases, we obtain that if 0 < |k| ≤ 1
ω–1 , then ϕ′

k(θ ) > 0 on (0,π ). Thus,
in view of Corollary 3.4, we see that ϕk : [0,π ] → [0,π ] is bijective. Therefore, sinϕk(θ ) = 0
if and only if θ = 0, π . �
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Remark 4.5 If 0 < |k| ≤ 1
ω–1 in Theorem 4.4, then ϕ′

k(θ ) ≥ 0 on [0,π ] and ϕk(θ ) > 0 (0 < θ <
π ), ϕk(0) = 0, ϕk(π ) = π .

Finally, we discuss the existence of solutions of Equation �Bω,k(θ ) = 0 on (0,π ) for the
case 1

ω–1 < |k| < 1.
(1) Properties of the sets Z+(θ ) and Z–(θ ).
We turn to the existence of solutions in (0,π ) of Equation �Bω,k(θ ) = 0. Clearly,

sinϕk(θ ) = 0 is reduced to

mπ = ωβ(k, θ ) + θ , m ∈ Z. (17)

Thus m = m(θ , k,ω) on [0,π ]. To obtain such an m, we introduce the function

βm(θ ) =
mπ – θ

ω
, 0 ≤ θ ≤ π .

Then (17) is equivalent to β(k, θ ) = βm(θ ). Clearly, since |βm(θ )| < π
2 , we define the set of

all m = m(θ ,ω) ∈ Z satisfying |βm(θ )| < π
2 .

The following statements are obvious.

Lemma 4.6 Let 1
ω–1 < |k| < 1. Then the following statements are equivalent.

(1) For any k, equation �Bω,k(θ ) = 0 has a solution in (0,π ).
(2) For any k, equation sinϕk(θ ) = 0 has a solution in (0,π ).
(3) For any k, there exists an m ∈ Z and a θ ∈ (0,π ) satisfying ϕk(θ ) = mπ .
(4) For any k there exists an m ∈ Z and a θ ∈ (0,π ) satisfying β(k, θ ) = βm(θ ).

For a ∈ R, the symbol [a] stands for the maximum integer not greater than a. We set
ω0 = [ ω

2 ], O = {2n + 1|n ∈ Z} and E = {2n|n ∈ Z}. Then we note that if ω ∈ O, then ω0 =
ω
2 – 1

2 ; if ω ∈ E, then ω0 = ω
2 . Since |βm(θ )| < π

2 , it follows that – ω
2 + θ

π
< m < ω

2 + θ
π

. For
θ ∈ (0,π ) and ω ∈ Z

∞
3 , we define

Z+(θ ) =
{

m ∈ Z|1 ≤ m <
ω

2
+

θ

π

}
, Z–(θ ) =

{
m ∈ Z| –

ω

2
+

θ

π
< m ≤ 0

}
,

and Z(θ ) = Z+(θ ) ∪Z–(θ ). For θ = 0, π , we define

Z(0) = Z–(0) = {0} and Z(π ) = Z+(π ) = {1}. (18)

Next, by easy calculation, we can determine the sets Z+(θ ) and Z–(θ ) as follows.

Lemma 4.7 Let θ ∈ (0,π ).
(1) If ω ∈O, then

Z+(θ ) =

⎧
⎨

⎩
m ∈ Z

∣∣
∣1 ≤ m ≤

⎧
⎨

⎩
ω0 (0 < θ ≤ π

2 )

ω0 + 1 ( π
2 < θ < π )

⎫
⎬

⎭
,

Z–(θ ) =

⎧
⎨

⎩
m ∈ Z

∣∣
∣

–ω0(0 < θ < π
2 )

1 – ω0( π
2 ≤ θ < π )

}
≤ m ≤ 0

⎫
⎬

⎭
.
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(2) If ω ∈ E, then

Z+(θ ) = {m ∈ Z|1 ≤ m ≤ ω0}, Z–(θ ) = {m ∈ Z|1 – ω0 ≤ m ≤ 0}.

Now, we give a relationship between the set Z+(θ ) (or Z–(θ )) and βm(θ ).

Corollary 4.8 The following statements hold:
(1) m ∈ Z+(θ ) if and only if 0 < βm(θ ) < π

2 .
(2) m ∈ Z–(θ ) if and only if – π

2 < βm(θ ) < 0.

The following lemma easily follows from Lemma 3.2 and Lemma 4.7.

Lemma 4.9 The following statements hold.
(1) If 0 < k < 1, then there exists an m ∈ Z+(θ ) such that 0 < βm(θ ) < π

2 for all θ ∈ (0,π ).
(2) If –1 < k < 0, then there exists an m ∈ Z–(θ ) such that – π

2 < βm(θ ) < 0 for all θ ∈ (0,π ).

(2) The function gm(θ ).
In general, if there exist a k∗, 0 < |k∗| < 1, a θ∗ ∈ [0,π ] and an m∗ ∈ Z such that β(k∗, θ∗) =

βm∗ (θ∗), then sinϕk∗ (θ∗) = sin m∗π = 0. It follows from Corollary 4.8 that m∗ ∈ Z can be
replaced by m∗ ∈ Z(θ∗). So, we have m = 0 and m = 1 in (17) for the solutions θ = 0 and
θ = π of the equation sinϕk(θ ) = 0.

First, we discuss the existence of solutions of Equation �Bω,k(θ ) = 0, i.e., sinϕk(θ ) = 0.
We define

gm(θ ) := gm,k(θ ) = sinβm(θ ) – k sin
(
βm(θ ) + θ

)
, θ ∈ (0,π ), (19)

where m ∈ Z(θ ). It follows from Corollary 4.8 and Lemma 4.9 that if 0 < k < 1, then m ∈
Z+(θ ); if –1 < k < 0, then m ∈ Z–(θ ). We define

gm,k(0) := lim
θ→0+

gm,k(θ ) = (1 – k) sin
mπ

ω
,

gm,k(π ) := lim
θ→π–

gm,k(θ ) = (1 + k) sin
(m – 1)π

ω
.

Then gm,k(θ ) is well defined on [0,π ].

Lemma 4.10 If for any k, 1
ω–1 < |k| < 1, there exist a θ∗ ∈ (0,π ) and an m∗ ∈ Z(θ∗) such

that gm∗ ,k(θ∗) = 0, then sinϕk(θ∗) = 0, and vice versa.

Proof Since gm∗ ,k(θ∗) = 0, i.e., sinβm∗ (θ∗) = k sin(βm∗ (θ∗) + θ∗), (12) yields tanβm∗ (θ∗) =
k sin θ∗

1–k cos θ∗ . This means β(k, θ∗) = βm∗ (θ∗). Thus sinϕk(θ∗) = 0 by Lemma 4.6.
Conversely, let for any k, 1

ω–1 < |k| < 1, there exist a θ∗ ∈ (0,π ) such that sinϕk(θ∗) = 0.
Then there exists an m∗ ∈ Z(θ ) such that ϕk(θ∗) = m∗π . Therefore, β(k, θ∗) = βm∗ (θ∗) by
Lemma 4.6. Thus βm∗ (θ∗) satisfies the equation gm∗ ,k(θ∗) = 0. �

The derivative of gm(θ ) becomes

g ′
m(θ ) = –

1
ω

[
cosβm(θ ) + k(ω – 1) cos

(
βm(θ ) + θ

)]
, 0 ≤ θ ≤ π .
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We define

hm(θ ) = –
cos(βm(θ ) + θ )

cosβm(θ )
, 0 ≤ θ ≤ π , m ∈ Z(θ ).

Note that |βm(θ )| < π
2 for all m ∈ Z(θ ) by Corollary 4.8 and (18). Thus we obtain

(1) hm(0) = h0(0) = –1, hm(π ) = h1(π ) = 1 and
(2) cosβm(θ ) > 0, m ∈ Z(θ ) on [0,π ].
Therefore, the function hm(θ ) is well defined on [0,π ] and g ′

m(θ ) on [0,π ] is expressed
as

g ′
m(θ ) = –

1
ω

[
1 – k(ω – 1)hm(θ )

]
cosβm(θ ). (20)

The proof of the following result easily follows from (20).

Proposition 4.11 If θ ∈ [0,π ] and m ∈ Z(θ ), then

(1) g ′
m(θ ) < 0 ⇐⇒ k(ω – 1)hm(θ ) < 1,

(2) g ′
m(θ ) = 0 ⇐⇒ k(ω – 1)hm(θ ) = 1,

(3) g ′
m(θ ) > 0 ⇐⇒ k(ω – 1)hm(θ ) > 1.

(3) The existence of solutions of Equation �Bω,k(θ ) = 0 on (0,π ) for the case 1
ω–1 < |k| < 1.

We are now in a position to state and prove the second main theorem in this section.

Theorem 4.12 Let θ ∈ (0,π ). Then the following statements hold.
(1) If 1

ω–1 < k < 1, then the equation g1,k(θ ) = 0 has a solution in (0,π ).
(2) If –1 < k < – 1

ω–1 , then the equation g0,k(θ ) = 0 has a solution in (0,π ).

Proof We consider the equations g1,k(θ ) = 0 and g0,k(θ ) = 0 using Lemma 4.10.
Now, we note that βm(θ ) �= 0 on (0,π ) by Corollary 4.8 for m = 0 or m = 1. Clearly, it is

easy to see that gm,k(θ ) is well defined on [0,π ] and

gm,k(0) = (1 – k) sin
mπ

ω
, gm,k(π ) = (1 + k) sin

(m – 1)π
ω

.

(1) First, we claim that for any k satisfying 1
ω–1 < k < 1 the equation g1,k(θ ) = 0 has a

solution θ∗ ∈ (0,π ). Clearly, we have

g1,k(0) = (1 – k) sin
π

ω
> 0, g1,k(π ) = 0.

By Proposition 4.11 we obtain that if 1
ω–1 < k < 1, then g ′

1,k(π ) > 0. Thus there exists a δ > 0
such that g ′

1,k(θ ) > 0 for all θ ∈ [δ,π ]. Hence there exists an η ∈ (δ,π ) such that

g1,k(π ) – g1,k(δ) = –g1,k(δ) = g ′
1,k(η)(π – δ) > 0,

which implies that g1,k(δ) < 0. Therefore, by the intermediate value theorem, the equation
g1,k(θ ) = 0 has a solution in (0, δ).
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(2) Secondly, we claim that for any k satisfying –1 < k < – 1
ω–1 , the equation g0,k(θ ) = 0

has a solution θ∗ ∈ (0,π ). Clearly, we obtain

g0,k(0) = 0, g0,k(π ) = –(1 + k) sin
π

ω
< 0.

It follows from Proposition 4.11 that if –1 < k < – 1
ω–1 , then g ′

0,k(0) > 0. Thus there exists
a δ > 0 such that g ′

0,k(θ ) > 0 for all θ ∈ [0, δ]. Hence there exists an η ∈ (0, δ) such that
g0,k(δ) – g0,k(0) = g0,k(δ) = g ′

0,k(η)δ > 0, which implies that g0,k(δ) > 0. Also, the equation
g0,k(θ ) = 0 has a solution on (δ,π ). �

The following theorem is an immediate result of Theorem 4.12 and Lemma 4.10

Theorem 4.13 Suppose 1
ω–1 < |k| < 1. Then equation �Bω,k(θ ) = 0 has at least one solution

in (0,π ).

5 Equation �Bω,k(θ ) = 0
In this section, we solve equation �Bω,k(θ ) = 0 for the case 1

ω–1 < |k| < 1 and consider the
number of solutions in (0,π ). Now, we transform this equation to an algebraic equation
of order ω – 2. Since, in general,

sin nθ = sin θ

[(n–1)/2]∑

p=0

(–1)p
(

n – 1 – p
p

)
(2 cos θ )n–1–2p, (21)

we have the following result.

Proposition 5.1 Let θ ∈ (0,π ) and 1
ω–1 < |k| < 1. Then equation �Bω,k(θ ) = 0 is equivalent

to the equation

1 + k
ω–1∑

j=1

(
ω

j + 1

)
(–k)j

[(j–1)/2]∑

p=0

(–1)p
(

j – 1 – p
p

)
Xj–1–2p = 0 (22)

of order ω – 2, where X = 2 cos θ .

Proof Since 1
ω–1 < |k| < 1, equation �Bω,k(θ ) = 0 has a solution in (0,π ) by Theorem 4.13.

Using the definition of Bω,k(θ ) and the binomial theorem, we have

(1 – k)ωBω,k(θ ) =
(
eiθ – k

)ωe–i(ω–1)θ

=
ω∑

j=0

(
ω

j

)
(–k)jei(1–j)θ

= –ωk + eiθ – k
ω–1∑

j=1

(
ω

j + 1

)
(–k)je–ijθ .

Therefore, Euler’s formula yields that

�Bω,k(θ ) = 0 ⇐⇒ sin θ + k
ω–1∑

j=1

(
ω

j + 1

)
(–k)j sin jθ = 0.

Therefore, the proof follows from (21). �
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The following result is an immediate consequence of Proposition 5.1.

Corollary 5.2 The number of solutions in (0,π ) of equation �Bω,k(θ ) = 0 is at most ω – 2.

We can solve equation �Bω,k(θ ) = 0 by the equation gm,k(θ ) = 0 in (19). This equation is
transformed as follows.

Lemma 5.3 For θ ∈ (0,π ) the following statements hold.
(1) If m ∈ O∩Z(θ ), then the equation gm,k(θ ) = 0 is equivalent to the equation

sinβm(θ ) = k sin
(
(ω – 1)βm(θ )

)
.

(2) If m ∈ E∩Z(θ ), then the equation gm,k(θ ) = 0 is equivalent to the equation

sinβm(θ ) = –k sin
(
(ω – 1)βm(θ )

)
.

Proof The assertions are easily obtained from

(ω – 1)βm(θ ) = mπ –
mπ + (ω – 1)θ

ω
,

which means βm(θ ) + θ = mπ – (ω – 1)βm(θ ). Therefore, the proof easily follows. �

Based on this fact, we obtain the following result.

Proposition 5.4 Suppose that 1
ω–1 < |k| < 1, θ ∈ (0,π ) and set X = 2 cosβm(θ ).

(1) Let m ∈O∩Z(θ ). Then gm,k(θ ) = 0 if and only if

1 – k
ω0–1∑

p=0

(–1)p
(

ω – 2 – p
p

)
Xω–2–2p = 0. (23)

(2) Let m ∈ E∩Z(θ ). Then gm,k(θ ) = 0 if and only if

1 + k
ω0–1∑

p=0

(–1)p
(

ω – 2 – p
p

)
Xω–2–2p = 0. (24)

Proof (1) Let m ∈ O. Then it follows from Lemma 5.3 that gm,k(θ ) = 0 is equivalent to
sinβm(θ ) = k sin[(ω – 1)βm(θ )]. By (21) we have

sin
(
(ω – 1)βm(θ )

)
= sinβm(θ )

ω0–1∑

p=0

(–1)p
(

ω – 2 – p
p

)
(
2 cosβm(θ )

)ω–2–2p.

Therefore, we obtain (23), since sinβm(θ ) �= 0.
(2) Let m ∈ E. Then, by the same argument as above, we obtain (24). �

Applying the above two methods in Proposition 5.1 and Proposition 5.4, we can obtain
the solutions of Equation �Bω,k(θ ) = 0 for the period ω = 4.
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Example 5.5 Let ω = 4. Then the solutions γ± ∈ (0,π ) of equation �B4,k(θ ) = 0 are given
as follows:

(1) If 1
3 < k < 1, then

γ+ = arccos

(
k2 + 2k – 1

2k2

)
. (25)

(2) If –1 < k < – 1
3 , then

γ– = arccos

(
–k2 + 2k + 1

2k2

)
. (26)

First, we verify this result by Proposition 5.1. Indeed, it follows from (22) that 1 – 6k2 +
k4 + 4k3X – k4X2 = 0. Thus the solutions of Equation (22) are given by X = 2 cosγ =
2k∓(1–k2)

k2 . If 1
3 < |k| < 1, then 2| cosγ | < 2, i.e., | cosγ | = | 2k∓(1–k2)

2k2 | < 1. Then the solutions
γ ∈ (0,π ) of Equation �B4,k(θ ) = 0 are given by (25) and (26).

Next, we verify the above result applying Theorem 5.4. Since ω = 4, ω0 = 2, we have
∪0<θ<πZ

4
+(θ ) = {1, 2} and ∪0<θ<πZ

4
–(θ ) = {–1, 0}.

(1) Let 1
3 < k < 1 and m = 1. Then (23) becomes 1 – k(X2 – 1) = 0, i.e., cosβ1(θ ) =

√
k+1
4k .

Since cos π–θ
4 =

√
k+1
4k , we have cos θ = k2+2k–1

2k2 .
If m = 2 ∈ E, then (23) becomes 1 + k(X2 – 1) = 0 and 2 cosβ2(θ ) = X. Thus X2 = k–1

k < 0,
which means that no solution exists.

(2) Let –1 < k < – 1
3 and m = 0. Then (24) becomes 1 + k(X2 – 1) = 0, i.e., cosβ0(θ ) =

√
k–1
4k .

Since cos –θ
4 =

√
k–1
4k , we have cos θ = –k2+2k+1

2k2 .
If m = –1 ∈O, then (23) becomes 1 – k(X2 – 1) = 0 and 2 cosβ–1(θ ) = X. Thus X2 = k+1

k <
0, which means that no solution exists.

Therefore, we obtain Example 5.5.
Using the same argument as above, we can obtain the following result for the case ω = 3.

Example 5.6 Let ω = 3 and 1
ω–1 = 1

2 < |k| < 1. Then the unique solution γ ∈ (0,π ) of equa-
tion �B3,k(θ ) = 0 is given by γ = arccos( 3k2–1

2k3 ). In particular, we have:
(1) If 1√

3 < k < 1, then 0 < γ < π
2 .

(2) If 1
2 < k ≤ 1√

3 , then π
2 ≤ γ < π .

(3) If – 1√
3 ≤ k < – 1

2 , then 0 < γ ≤ π
2 .

(4) If –1 < k < – 1√
3 , then π

2 < γ < π .

6 Geometric properties of the function Bω,k(θ )
In this section, we deal with geometric properties of the function Bω,k(θ ), θ ∈ (–π ,π ]. We
denote by ∂� the boundary of a bounded domain �. Moreover, if ∂� is a simply closed
curve, then � means the domain enclosed by ∂�. We denote by int� and ext� the interior
and the exterior of �, respectively. Define a positive number γ ∈ (0,π ] as

γ =

⎧
⎪⎪⎨

⎪⎪⎩

π , 0 < |k| ≤ 1
ω–1 ,

min{θ ∈ (0,π )|�Bω,k(θ ) = 0}, 1
ω–1 < k < 1,

max{θ ∈ (0,π )|�Bω,k(θ ) = 0}, –1 < k < – 1
ω–1 .
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and

I(γ ) =

⎧
⎪⎪⎨

⎪⎪⎩

[0,π ],γ = π , 0 < |k| ≤ 1
ω–1 ,

[0,γ ],γ �= π , 1
ω–1 < k < 1,

[γ ,π ],γ �= π , –1 < k < – 1
ω–1 .

(27)

Clearly, Bω,k(γ ) ∈ R. We denote by Bγ

ω,k(0) the domain enclosed by the line R and the re-
striction of the curve Bω,k(θ ) to I(γ ). Moreover, We denote by Dγ

ω,k(0) the union of the
domain Bγ

ω,k(0) and its symmetric domain on the line R. The curve ∂Dγ

ω,k(0) is called the
minimal and closed curve around the origin (briefly, m-closed curve). Then it has the fol-
lowing properties:

(1) 0 ∈ int Dγ

ω,k(0).
(2) ∂Dγ

ω,k(0) �⊂R on int I(γ ).
(3) Dγ

ω,k(0) is a simply connected domain.
Note that if 0 < |k| ≤ 1

ω–1 , then ∂Dγ

ω,k(0) = ∂Dπ
ω,k(0). We denote by C+ and C– the up-

per half plane {z ∈ C|�z ≥ 0} and the lower half plane {z ∈ C|�z ≤ 0}, respectively. Then
∂Bγ

ω,k(0) lies inside either C+ or C–. Each shaded region in Fig. 1 below for ω = 3 shows
Dγ

3,k(0).

Lemma 6.1 |Bω,k(θ )| is bijective, continuous, and strictly monotone on I(γ ).

Proof Set μθ = |Bω,k(θ )|. Since |Bω,k(θ )| is strictly monotone on I(γ ) by Lemma 3.5, we
see that if 0 < k < 1, then the function |Bω,k(θ )| : [0,γ ] → [μ0,μγ ] is bijective. Similarly, if
–1 < k < 0, then |Bω,k(θ )| : [γ ,π ] → [μπ ,μγ ] is also bijective. Thus the function |Bω,k(θ )| is
also bijective on I(γ ). �

Lemma 6.2 ∂Bγ

ω,k(0) ⊂ C+ and ϕ′
k(γ ) ≥ 0. Moreover, ϕk(γ ) = π if – 1

ω–1 ≤ k < 1 (k �= 0);
ϕk(γ ) = 0 if –1 < k < – 1

ω–1 .

Proof (i) Let 1
ω–1 < k < 1. Then I(γ ) = [0,γ ]. Corollaries 3.4 and 4.3 imply ϕk(0) = 0

and ϕ′
k(0) > 0. Now we claim ϕk(γ ) = π . Indeed, ϕk(γ ) = 0 or π . If ϕk(γ ) = 0, then

β(k,γ ) = – γ

ω
< 0, which contradicts the assertion of Lemma 3.2. Therefore, ∂Bγ

ω,k(0) lies
on C+.

Next, we claim ϕ′
k(γ ) ≥ 0. Indeed, for a contradiction, we assume ϕ′

k(γ ) < 0. Since ϕ′
k(θ ) is

continuous on [0,γ ], there exists a δ > 0 such that ϕ′
k(θ ) < 0 on [γ –δ,γ ] and ϕk(γ –δ) < 2π .

Figure 1 The graphs of B3,k(θ ) and Dγ
3,k(0) on the complex plane
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Thus there exists an η ∈ (γ – δ,γ ) such that ϕk(γ ) – ϕk(γ – δ) = ϕ′
k(η)δ < 0, and hence,

ϕk(γ ) = π < ϕk(γ – δ) < 2π . This means Bω,k(γ – δ) /∈C+, which yields a contradiction.
(ii) Let –1 < k < – 1

ω–1 . Then I(γ ) = [γ ,π ]. Corollaries 3.4 and 4.3 implies ϕ′
k(π ) > 0. Now

we claim ϕk(γ ) = 0. Indeed, if ϕk(γ ) = π , then β(k,γ ) = π–γ

ω
> 0, which contradicts the

assertion of Lemma 3.2. Therefore, ∂Bγ

ω,k(0) lies on C+. Then ϕ′
k(γ ) ≥ 0 is obtained by the

same argument as above.
(iii) Let 0 < |k| ≤ 1

ω–1 . Then I(γ ) = [0,π ]. Corollary 3.4 implies ϕk(0) = 0 and ϕk(π ) = π .
Moreover, it follows from Theorem 4.4 and Remark 4.5 that ϕk(θ ) > 0 on (0,π ) and ϕ′

k(γ ) ≥
0 (γ = 0, π ).

Therefore, the proof is complete. �

Note that Lemma 6.1 and Lemma 6.2 imply that |Bω,k(θ )| and ϕk(θ ) are monotone on
I(γ ). We denote by Lμ or �ϕ the half line connecting a point μ = |μ|eiϕ ∈C, μ �= 0 from the
origin.

Definition 6.3 Let ∂� be a closed curve around the origin. If ∂� ∩ Lμ has a unique el-
ement for every μ ∈ C \ {0}, then ∂� is called the monotone starlike curve (briefly, m-
starlike curve).

For example, circles and ellipses whose center is the origin are m-starlike curves. Also
the boundary of a convex domain containing the origin is an m-starlike curve.

Theorem 6.4 The m-closed curve ∂Dγ

ω,k(0) is an m-starlike curve.

Proof It suffices to prove the uniqueness of elements in ∂Bγ

ω,k(0) ∩ Lμ for any μ ∈ C such
that 0 ≤ Argμ ≤ π . It follows from Lemma 6.2 that ∂Bγ

ω,k(0) ∩ Lμ is contained in C+. For
a contradiction, we assume that there exist μ := |μ|eiϕ and δ1, δ2 (|δ1| < |δ2|) satisfying
∂Bγ

ω,k(0) ∩ Lμ = {δ1, δ2}. Then there are θ1, θ2 ∈ I(γ ) such that δi = Bω,k(θi) and ϕ = ϕk(θi),
i = 1, 2 by using Lemma 6.1 and Proposition 3.3. Since |δ1| < |δ2|, it follows from Lemma 3.5
that θ1 < θ2 if 0 < k < 1; θ2 < θ1 if –1 < k < 0. Define

ψ = sup
{
φ > ϕ|∂Dγ

ω,k(0) ∩ �φ is not unique
}

.

Since ψ ≤ π , there is a unique θ0 ∈ I(γ ) such that ψ = ϕk(θ0) holds.
Note that the tangent line of Bω,k(θ ) at θ0 coincides with that of Lδ0 , δ0 = Bω,k(θ0). Since

d
dθ

Bω,k(θ ) = i(1–ke–iθ )ω–1

(1–k)ω [kω – k + eiθ ], and since the slope of the half line Lδ0 is expressed as
Bω,k(θ0), we have

Bω,k(θ0)i
[
eiθ0 + k(ω – 1)

]
= Bω,k(θ0)

(
eiθ0 – k

)
,

that is, i[eiθ0 + k(ω – 1)] = (eiθ0 – k). This means

⎧
⎨

⎩
lkω – k + cos θ0 – sin θ0 = 0,

k – cos θ0 + sin θ0 = 0,

sin θ0 =
kω

2
, and cos θ0 = –

k(ω – 2)
2

,
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and hence

tan θ0 = –
ω

ω – 2
< 0.

Thus – π
2 < θ0 < 0. This is a contradiction.

Therefore, ∂Bγ

ω,k(0) ∩ Lμ is unique. �

7 Stability regions: general case
In this section, we consider the criteria on the stabilization via DFC for the case K = kE,
which are main results in this paper. For K = kE and μ ∈ σ (T(0)) we denote by σμ(Uk(0))
the set of all ν ∈ σ (Uk(0)) such that μ = Cω,k(ν).

Now, we are in a position to state and prove two main theorems of this paper.

Theorem 7.1 Suppose K = kE and μ ∈ σ (T(0)).
(1) If μ ∈ int Dγ

ω,k(0), then |ν| < 1 for all ν ∈ σμ(Uk(0)).
(2) If μ ∈ ext Dγ

ω,k(0), then |ν| > 1 for all ν ∈ σμ(Uk(0)).

Proof Let μ = |μ|eiϕ ∈ σ (T(0)). Then Corollary 2.7 implies that all the solutions of the
equation μ = Cω,k(ν) belong to σμ(Uk(0)).

(1) Let μ ∈ int Dγ

ω,k(0). Then we prove that the inequality |ν| < 1 holds for all ν ∈
σμ(Uk(0)). For a contradiction, we assume that |ν| ≥ 1 holds for some ν ∈ σμ(Uk(0)). If
|ν| = 1, then μ ∈ ∂Dγ

ω,k(0) or μ ∈ ext Dγ

ω,k(0). This is a contradiction.
Now we consider the case |ν| > 1. We denote by C the closed unit disc centered at the

origin. Then we can take a ν0 ∈ R such that ν0 ∈ int C and μ0 := Cω,k(ν0) ∈ int Dγ

ω,k(0).
Moreover, let L be the line segment connecting with ν0 and ν . Then there exists a unique
η ∈ L such that η ∈ ∂C. In other words, η is the intersection of the line segment L and
the unit circle ∂C. Hence |η| = 1. Since the mapping Cω,k(·) is an analytic function on a
neighborhood of the point η, we have

d
dν

Cω,k(ν)|ν=η =
(

ν – k
(1 – k)ν

)ω–1
ν + (ω – 1)k

(1 – k)ν

∣
∣∣
∣
ν=η

.

Note that d
dν

Cω,k(η) = 0 if and only if η = –(ω – 1)k. Thus |η| = 1 = (ω – 1)|k|.
(1-1) The case |k| �= 1

ω–1 . Since d
dν

Cω,k(η) �= 0, it is a conformal mapping at η, that is,
the angle between two curves L and ∂C coincides with the angle between two curves
Cω,k(L) and ∂Dγ

ω,k(0). Thus, there exists a point in ext Dγ

ω,k(0), which belongs to Cω,k(L).
On the other hand, since μ and μ0 are connected via Cω,k(L) and since μ and μ0 belong
to int Dγ

ω,k(0), there exists another point ξ ∈ L such that Cω,k(ξ ) ∈ ∂Dγ

ω,k(0) ∩ Cω,k(L). Since
ξ ∈ ∂C, a contradiction follows from the uniqueness of η.

(1-2) The case |k| = 1
ω–1 . It follows that Dγ

ω,k(0) = Dπ
ω,k(0) by Theorem 4.4 and d

dν
Cω,k(η) =

0. Thus η = ±1. Since μ ∈ R if ν ∈ R, we have L ⊂ R and Cω,k(L) ⊂ R. In particular,
Cω,k(1) = 1 and Cω,k(–1) = –( 1+k

1–k )ω .
Let k = – 1

ω–1 . Then η = 1. Since Cω,– 1
ω–1

(x) = x( x(ω–1)+1
ωx )ω , we have d

dx Cω,– 1
ω–1

(1) = 0 and
d2

dx2 Cω,– 1
ω–1

(1) > 0, so that Cω,– 1
ω–1

(1) = 1 is the minimal value on L. This means that μ =
Cω,– 1

ω–1
(ν) ∈ (1,∞), i.e., μ ∈ ext Dπ

ω,– 1
ω–1

(0), which leads to a contradiction.

Let k = 1
ω–1 . Then we can apply the similar method to get the result.
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(2) Let μ ∈ ext Dγ

ω,k(0). For a contradiction, we assume that there exists a ν ∈ σμ(Uk(0))
such that |ν| < 1 and μ = Cω,k(ν). Let L be the line segment connecting ν and k (k �= ν).
Then L ⊂ int C. Since Cω,k(k) = 0, there exists an η ∈ Cω,k(L) ∩ ∂Dγ

ω,k(0) �= ∅. Thus there
exists a ξ ∈ L such that η = Cω,k(ξ ), which is a contradiction. �

The following result is an immediate consequence of Theorem 7.1.

Theorem 7.2 Let K = kE.
(1) If μ ∈ int Dγ

ω,k(0) for all μ ∈ σ (T(0)), then |ν| < 1 for all ν ∈ σ (Uk(0)).
(2) If there exists a μ ∈ σ (T(0)) such that μ ∈ ext Dγ

ω,k(0), then |ν| > 1 for all ν ∈ σμ(Uk(0)),
and hence there exists a ν ∈ σ (Uk(0)) such that |ν| > 1.

Remark 7.3 (1) Theorem 7.2 can be extended to more general commuting matrix K (see
[6]).

(2) Combining Theorem 7.2 with nondegenerate properties, we can obtain a stability
region for a periodic solution (see [5]).

Next, we give necessary and sufficient conditions for μ ∈ intDγ

ω,k(0). In relation to (15),
we define a function of k ∈ (–1, 1) as follows:

fω
(
k; θ , |μ|) = |μ| 2

ω (1 – k)2 – 1 + 2k cos θ – k2

=
(|μ| 2

ω – 1
)
k2 – 2

(|μ| 2
ω – cos θ

)
k +

(|μ| 2
ω – 1

)
, (28)

where –π < θ ≤ π . Then fω(k; θ , |μ|) < 0 if and only if |μ| < |Bω,k(θ )|. Since ∂Dγ

ω,k(0) ∩
Lμ = {δμ} for every μ ∈ C is unique by Theorem 6.4, there exists a unique θμ such that
δμ = Bω,k(θμ). Hereafter, such an argument θμ is called the argument associated with
(μ, ∂Dγ

ω,k(0)).
Now, we give necessary and sufficient conditions for μ ∈ int Dγ

ω,k(0). The proof is easy.

Theorem 7.4 Suppose K = kE and μ ∈ C. If θμ is the argument associated with (μ,
∂Dγ

ω,k(0)), then the following statements are equivalent:
(1) μ ∈ int Dγ

ω,k(0).
(2) |μ| < |Bω,k(θμ)|.
(3) fω(k; θμ, |μ|) < 0

Using Theorem 7.4, we can easily obtain the following result.

Corollary 7.5 Suppose K = kE and μ ∈ C. If θμ is the argument associated with (μ,
∂Dγ

ω,k(0)), then the following statements are equivalent:
(1) μ ∈ ext Dγ

ω,k(0).
(2) |μ| > |Bω,k(θμ)|.
(3) fω(k; θμ, |μ|) > 0.

Finally, we illustrate our method (Theorem 7.2) for the case ω = 4 to compare with the
Jury criterion, provided that all μ ∈ σ (T(0)) are real. Set σR(T(0)) = σ (T(0)) ∩R. Then the
following lemmas are obtained by using Example 5.5.
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Lemma 7.6 If γ± ∈ (0,π ) are given by (25) and (26) in Example 5.5, then B4,k(γ–) and
B4,k(γ+) are given as follows:

(1) If –1 < k ≤ – 1
3 , then B4,k(γ–) = (1+k)4

k2(1–k)2 .

(2) If 1
3 ≤ k < 1, then B4,k(γ+) = – (1+k)2

k2 .

Proof Since (1 – k)4B4,k(θ ) = eiθ – 4k + 6k2e–iθ – 4k3e–2iθ + k4e–3iθ , we obtain

(1 – k)4B4,k(γ )

=
(
4 cos3 γ – 3 cosγ

)
k4 – 4

(
2 cos2 γ – 1

)
k3 + (6 cosγ )k2 – 4k + cosγ . (29)

Now, we substitute γ+ and γ– in Example 5.5 into (29).
(1) Let –1 < k ≤ – 1

3 . Then we obtain (1 – k)4B4,k(γ ) = (k–1)2(k+1)4

k2 .
(2) Let 1

3 ≤ k < 1. Then we obtain (1 – k)4B4,k(γ ) = – (k+1)2(k–1)4

k2 . �

The following lemma gives properties of B4,k(γ–) and B4,k(γ+).

Lemma 7.7 The following statements hold:
(1) B4,k(γ–) = (1+k)4

k2(1–k)2 , –1 < k < – 1
3 has the following properties:

(1-1) B4,– 1
3

(γ–) = 1.
(1-2) limk→–1 B4,k(γ–) = 0.
(1-3) B4,k(γ–) is increasing in k ∈ (–1, – 1

3 ).
(2) B4,k(γ+) = – (1+k)2

k2 , ( 1
3 < k < 1) has the following properties:

(2-1) B4, 1
3

(γ+) = –42.
(2-2) limk→1 B4,k(γ+) = –22.
(2-3) B4,k(γ+) is decreasing in k ∈ ( 1

3 , 1).

The following result (see Fig. 2) illustrates Theorem 7.2.

Proposition 7.8 Suppose ω = 4 and μ ∈ σR(T(0)).
(1) If μ is in the following regions, then |ν| < 1 for all ν ∈ σμ(Uk(0)).
(1-1) 0 < μ < (1+k)4

k2(1–k)2 and –1 < k < – 1
3 .

(1-2) 0 < μ < 1 and – 1
3 ≤ k < 1, k �= 0

Figure 2 The region of (k,μ) where |ν| < 1 for all ν
∈ σ (Uk (0))
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(1-3) –( k+1
k–1 )4 < μ < 0 and –1 < k ≤ 1

3 , k �= 0.
(1-4) – (1+k)2

k2 < μ < 0 and 1
3 < k < 1.

(1-5) μ = –1 and 0 < k < 1.
(2) If μ is in the following regions, then |ν| > 1 for all ν ∈ σμ(Uk(0)).
(2-1) μ > 1 and – 1

3 < k < 1, k �= 0.
(2-2) (1+k)4

k2(1–k)2 < μ and –1 < k < – 1
3 .

(2-3) μ < –( k+1
k–1 )4 and –1 < k < 1

3 , k �= 0.
(2-4) μ < – (1+k)2

k2 and 1
3 < k < 1.

(2-5) μ = –1 and –1 < k < 0.

Proof We will verify the conditions in Proposition 7.4 and Corollary 7.5 to apply Theo-
rem 7.1. Let θμ be the argument associated with (μ, ∂Dγ

4,k(0)).
(A) The case μ > 0.
(A-1) Let 1 < μ and –1 < k < – 1

3 . Then I(γ ) = I(γ–) = [γ–,π ] by using the definition of
I(γ ) and Example 5.5. Thus θμ = γ–. By Lemma 7.6 and Lemma 3.5 we have 0 < |B4,k(θμ)| =
|B4,k(γ–)| = (1+k)4

k2(1–k)2 ≤ 1 < μ. By Corollary 7.5, we obtain μ ∈ ext Dγ

4,k(0).
(A-2) Let 1 < μ and – 1

3 ≤ k < 1, k �= 0. Then I(γ ) = [0,γ ] and θμ = 0. Hence we see that
f4(k; 0, |μ|) = (|μ| 1

2 – 1)(k – 1)2 > 0 if and only if 0 < |k| < 1. Thus f4(k; 0, |μ|) > 0 for all
k ∈ [– 1

3 , 1) \ {0}, and hence μ ∈ ext Dγ–
4,k(0).

(A-3) Let 0 < μ < 1 and –1 < k < – 1
3 . Then I(γ ) = [γ–,π ] and θμ = γ–. Thus it follows

from (A-1) that if μ < B4,k(γ–) for all k ∈ (–1, – 1
3 ), then μ ∈ int Dγ–

4,k(0); if 1 > μ > B4,k(γ–)
for all k ∈ (–1, – 1

3 ), then μ ∈ ext Dγ–
4,k(0).

(A-4) Let 0 < μ < 1 and – 1
3 ≤ k < 1, k �= 0. Then θμ = 0. Hence we see that f4(k; 0, |μ|) < 0

for all k ∈ [– 1
3 , 1) \ {0}. Thus μ ∈ int Dγ–

4,k(0).
(A-5) Let μ = 1. If –1 < k < – 1

3 , then θμ = γ–. Since B4,k(γ–) is increasing in k ∈ (–1, – 1
3 )

by Lemma 7.7 and B4,k(γ–) < B4,– 1
3

(γ–) = 1, we have |B4,k(γ–)| < 1 = |μ|, and hence μ ∈
ext Dγ–

4,k(0). If – 1
3 ≤ k < 1, k �= 0, then θμ = 0, so that f4(k; 0, |μ|) = 0.

(B) The case μ < 0. Set b = |μ| 1
4 . Then (28) with θμ = π becomes

f4
(
k;π , |μ|) =

(
b2 – 1

)
k2 – 2

(
b2 + 1

)
k +

(
b2 – 1

)
.

Thus we have k±(π ) := b2+1±√
4b2

b2–1 .
If b �= 1, then two solutions k–(π ) and k+(π ) of the equation f4(k;π , |μ|) = 0 are given by

k–(π ) = b–1
b+1 , k+(π ) = b+1

b–1 . If 0 < b < 1, then k+(π ) < –1 < k–(π ) < 0; if b > 1, then 0 < k–(π ) <
1 < k+(π ). Moreover, we have k = b–1

b+1 ⇐⇒ b = – k+1
k–1 or|μ| = ( k+1

k–1 )4 and k = b+1
b–1 ⇐⇒ b =

k+1
k–1 or|μ| = ( k+1

k–1 )4. Then the following statements hold:
(B-1) Let –1 < k ≤ 1

3 . Then θμ = π . Let –1 < μ < 0. Since 0 < b < 1, we obtain that
f4(k;π , |μ|) < 0 if and only if k–(π ) < k ≤ 1

3 , i.e., b–1
b+1 < k ≤ 1

3 . So, it follows that if –( k+1
k–1 )4 <

μ < 0, then f4(k;π , |μ|) < 0.
Let μ < –1. Since b > 1, we obtain that f4(k;π , |μ|) < 0 if and only if k–(π ) < k < 1, i.e.,

b–1
b+1 < k < 1. So it follows that if –( k+1

k–1 )4 < μ < 0, then f4(k;π , |μ|) < 0. Thus μ ∈ int Dγ–
4,k(0).

(B-2) Let 1
3 < k < 1. Then θμ = γ+. Since B4,k(γ+) = – (1+k)2

k2 = –(1 + 1
k )2 < 0, we have 0 <

|B4,k(γ+)| = (1 + 1
k )2 ≤ 16. If – (1+k)2

k2 < μ < 0, then |μ| < B4,k(γ+). Thus μ ∈ int Dγ–
4,k(0).

(B-3) The case μ = –1. If –1 < k ≤ 1
3 , then θμ = π . Since f4(k;π , |μ|) = –4k, we see that if

–1 < k < 0, then f4(k;π , |μ|) > 0; if 0 < k ≤ 1
3 , then f4(k;π , |μ|) < 0. If 1

3 < k < 1, then θμ = γ+.
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Thus we have |B4,k(θμ)| = |B4,k(γ+)| = (k+1)2

k2 > 1 = |μ|. Thus μ ∈ int Dγ–
4,k(0). Summing up

these cases, we obtain the proposition. �

Our new method works fine to determine the stability region for this case, but it is very
complicated to check the Jury criterion.

The following result illustrates Theorem 7.2 for ω = 3 and σR(T(0)), which is proved by
the same argument as above.

Proposition 7.9 Suppose ω = 3 and μ ∈ σR(T(0)).
(1) If μ is in the following regions, then |ν| < 1 for all ν ∈ σμ(Uk(0)).
(1-1) 0 < μ < –( 1+k

k )3 and –1 < k < – 1
2 .

(1-2) 0 < μ < 1 and – 1
2 ≤ k < 1, k �= 0.

(1-3) –( k+1
k–1 )3 < μ < 0 and –1 < k ≤ 1

2 , k �= 0.
(1-4) –( 1+k

k )3 < μ < 0 and 1
2 < k < 1.

(1-5) μ = –1 and 0 < k < 1.
(2) If μ is in the following regions, then |ν| > 1 for all ν ∈ σμ(Uk(0)).
(2-1) μ > 1 and – 1

2 < k < 1, k �= 0.
(2-2) –( 1+k

k )3 < μ and –1 < k < – 1
2 .

(2-3) μ < –( k+1
k–1 )3 and –1 < k < 1

2 , k �= 0.
(2-4) μ < –( 1+k

k )3 and 1
2 < k < 1.

(2-5) μ = 1 and –1 < k < – 1
2 ; μ = –1 and –1 < k < 0.

The result of Proposition 7.9 just coincides with the one obtained from the Jury criterion.
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