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Abstract
In this paper, we establish sufficient criteria for ensuring the existence of solutions
and uniqueness for a class of nonlinear neutral Caputo fractional differential
equations supplemented with infinite delay and nonlocal boundary conditions
involving fractional derivatives. The theory of infinite delay and standard fixed point
theorems are employed to obtain the existence results for the given problem.
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1 Introduction
Delay functional differential equations have emerged as a great tool for describing and
modeling a wide range of real-world processes and changes involving long-term delays.
There are many applications for this type of equations in the literature, for instance, popu-
lation dynamics [1], immunology [2], disease models [3], ecological models [4], physiology
and epidemiology [5], and neural networks [6–8]. The differential equation system with
time delay is more complicated to treat and analyze than the classical one as its solution
not only depends on the current situation but also takes the past state into consideration.
The concept of the phase space F plays a significant role in the study of equations with
unbounded delay, which is specified by fundamental axioms that were presented by Hale
and Kato [9]; also to find more discussion on these axioms, see [10, 11]. For further details
on the theoretical developments of delayed differential equations, we refer to the works
[9, 12–16].

In recent years, there have been interesting results in the study of the neutral fractional
differential equation with infinite delay. Benchohra et al. [16] established some existence
results relying on the Leray–Schauder type nonlinear alternative theorem and the Ba-
nach fixed point theorem for a class of initial value problems affected by infinite delay.
Nouri et al. [17] investigated the existence of solutions by applying Krasnoselskii’s fixed
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point theorem and contraction mapping principle to integro-fractional delayed differen-
tial equations. Ahmad et al. [18] discussed some existence results for a class of impulsive
multi-order fractional differential equations with unbounded delay. Very recently, Chen
and Dong in [19] studied the existence and uniqueness of a class of two-term boundary
value problems with infinite delay by employing the standard fixed point theorems. Also,
by using the Hyers–Ulam stability theorem, they discussed the stability of solutions for
the given problem. However, the work on delayed fractional differential equations is still
interesting, and new contributions in this field are needed.

Motivated by the previous studies, in this paper we are devoted to studying the existence
and uniqueness of solutions for a new class of nonlinear nonlocal boundary value prob-
lems involving Caputo fractional derivatives with infinite delay and nonlocal fractional
derivative conditions. In precise terms, we investigate the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

CDδ
0+ [u(t) –

∫ t
0 h(s, us) ds] = f (t, ut), t ∈ � := [0, a],

u(t) = θ (t), t ∈ (–∞, 0],

u(a) =
∑m

i=1 λi
CDγ

0+ u(μi) + ζ , μi ∈ (0, a),

(1.1)

where CDδ
0+ , CDγ

0+ are the Caputo fractional derivatives of order 1 < δ ≤ 2, 0 < γ < 1, re-
spectively. f : � × F →R, h : � × F →R, and θ ∈ F such that θ (0) = 0, where F is a phase
space that will be explained in detail in Sect. 2. We define, for any u : (–∞, a] → R and
any t ∈ �, the function ut : (–∞, 0] → R to be an element of the phase space F such that
ut(s) = u(t + s), s ≤ 0.

We arrange our work as follows: We recall some spaces, definitions, and lemmas needed
in this work, and the equivalent integral equation to the linear variant of problem (1.1) is
deduced in Sect. 2. Next, in Sect. 3, we obtain our main results with the aid of Krasnosel-
skii’s fixed point theorem, the Leray–Schauder type nonlinear alternative theorem, and
the Banach fixed point theorem. Finally, illustrative examples are provided.

2 Preliminaries
For the present work, the space (F,‖.‖F) is defined as a seminormed linear space of func-
tions that map (–∞, 0] into R and satisfy the following axioms that were established by
Hale and Kato in [9]:

(B1) For every t ∈ [0, a], if u : (–∞, a] → R and u0 ∈ F, then the following conditions
hold:

(1) ut is in F,
(2) |u(t)| ≤ A‖ut‖F,
(3) ‖ut‖F ≤ ρ(t)‖u0‖F + η(t) sup{|u(τ )| : 0 ≤ τ ≤ t},

where A ≥ 0 is a constant, η : [0, a] → [0,∞) is continuous, ρ : [0,∞) → [0,∞) is
locally bounded, and A, η, ρ are independent of u(.) and

ηa = sup
t∈[0,a]

η(t), ρa = sup
t∈[0,a]

ρ(t); (2.1)

(B2) For the function u(.) in (B1), ut is a F-valued continuous function on [0, a];
(B3) The space F is complete.

Let the space Fa = {u : (–∞, a] → R : u|(–∞,0] ∈ F and u|[0,a] ∈ C(�,R)}, and let ‖.‖Fa be a
seminorm in Fa defined by ‖u‖Fa = ‖θ‖F + sups∈� |u(s)|, u ∈ Fa.
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Definition 2.1 [20] For δ > 0 and a function h : [0,∞) → R, the Riemann–Liouville frac-
tional integral of order δ is defined by

Iδ
0+h(x) =

∫ x

0

(x – τ )δ–1

�(δ)
h(τ ) dτ , x > 0.

Definition 2.2 [20] For n–1 < δ ≤ n, n ∈N, the Caputo derivative of order δ for a function
h : [0,∞] →R with h(x) ∈ ACn[0,∞) is defined by

CDδ
0+h(x) =

1
�(n – δ)

∫ x

0

h(n)(τ )
(x – τ )δ–n+1 dτ , x > 0.

Lemma 2.1 [20] Let δ > 0 and h(x) ∈ ACn[0,∞) or Cn[0,∞). Then

(
Iδ

0+
CDδ

0+h
)
(x) = h(x) –

n–1∑

j=0

h(j)(0)
j!

xj, x > 0, n – 1 < δ < n.

The following lemma is related to the solution of the linear variant of problem (1.1).

Lemma 2.2 Let K ∈ C(0, a), S ∈ AC(0, a) u ∈ AC2(�,R) ∩ Fa, and

�1 = a –
m∑

i=1

λi
μ

1–γ

i
�(2 – γ )

	= 0. (2.2)

Then the solution of the following problem

⎧
⎪⎪⎨

⎪⎪⎩

CDδ
0+ [u(t) –

∫ t
0 S(s) ds] = K(t), t ∈ � := [0, a],

u(t) = θ (t), t ∈ (–∞, 0],

u(a) =
∑m

i=1 λi
CDγ

0+ u(μi) + ζ , μi ∈ (0, a),

(2.3)

is given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ (t), t ∈ (–∞, 0],
∫ t

0 S(s) ds + 1
�(δ)

∫ t
0 (t – s)δ–1K(s) ds

+ t
�1

(
∑m

i=1 λi
∫ μi

0
(μi–s)δ–γ –1

�(δ–γ ) K(s) ds +
∑m

i=1 λi
∫ μi

0
(μi–s)–γ

�(1–γ ) S(s) ds

–
∫ a

0
(a–s)δ–1

�(δ) K(s) ds –
∫ a

0 S(s) ds + ζ ), t ∈ [0, a].

(2.4)

Proof At first, we apply the fractional integral Iδ
0+ to both sides of the fractional differential

equation in (2.3), and with the aid of Lemma 2.1, the general solution of (2.3) for t ∈ [0, a]
can be written as

u(t) =
∫ t

0
S(s) ds +

1
�(δ)

∫ t

0
(t – s)δ–1K(s) ds + c1 + c2t, (2.5)

where c1, c2 are arbitrary constants. Then, by using the condition u(0) = θ (0) = 0 in (2.5),
we get c1 = 0. In consequence, (2.5) takes the form

u(t) =
∫ t

0
S(s) ds +

1
�(δ)

∫ t

0
(t – s)δ–1K(s) ds + c2t. (2.6)
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For t ∈ (0, a), we find

CDγ

0+ u(t) =
1

�(1 – γ )

∫ t

0
(t – s)–γ S(s) ds

+
1

�(δ – γ )

∫ t

0
(t – s)δ–γ –1K(s) ds + c2

t1–γ

�(2 – γ )
.

The condition u(a) =
∑m

i=1 λi
CDγ

0+ u(μi) + ζ together with (2.6) implies that

c2 =
1

(a –
∑m

i=1 λi
μ

1–γ
i

�(2–γ ) )

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
K(s) ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
S(s) ds

–
1

�(δ)

∫ a

0
(a – s)δ–1K(s) ds –

∫ a

0
S(s) ds + ζ

)

,

which, on inserting in (2.6), gives the solution (2.4). By direct computation, we can easily
obtain the converse of the lemma. This finishes the proof. �

3 Main results
Using Lemma 2.2, we convert problem (1.1) into a fixed point problem by introducing an
operator F : Fa → Fa as follows:

(Fu)(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ (t), t ∈ (–∞, 0],
∫ t

0 h(s, us) ds +
∫ t

0
(t–s)δ–1

�(δ) f (s, us) ds

+ t
�1

(
∑m

i=1 λi
∫ μi

0
(μi–s)δ–γ –1

�(δ–γ ) f (s, us) ds +
∑m

i=1 λi
∫ μi

0
(μi–s)–γ

�(1–γ ) h(s, us) ds

–
∫ a

0
(a–s)δ–1

�(δ) f (s, us) ds –
∫ a

0 h(s, us) ds + ζ ), t ∈ [0, a].

Then we assume that the solution u(.) that satisfies (3.1) is a decomposition of two func-
tions v, w̄ : (–∞, a] →R such that u(t) = v(t) + w̄(t), which implies ut = vt + w̄t for t ∈ �.

These two functions, v and w̄, have the following definitions:

v(t) =

⎧
⎨

⎩

θ (t), t ∈ (–∞, 0],

0, t ∈ [0, a],
(3.1)

and

w̄(t) =

⎧
⎨

⎩

0, t ∈ (–∞, 0],

w(t), t ∈ [0, a],
(3.2)

where w ∈ C([0, a],R) with w(0) = 0 and satisfies

w(t) =
∫ t

0
h(s, vs + w̄s) ds +

∫ t

0

(t – s)δ–1

�(δ)
f (s, vs + w̄s) ds
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+
t

�1

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
f (s, vs + w̄s) ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
h(s, vs + w̄s) ds

–
∫ a

0

(a – s)δ–1

�(δ)
f (s, vs + w̄s) ds –

∫ a

0
h(s, vs + w̄s) ds + ζ

)

. (3.3)

Then we have u0 = θ .
Now, consider the space F′

a = {w ∈ Fa : w0 = 0} and define a seminorm ‖.‖F′a on F′
a by

‖w‖F′a = sup
t∈[0,a]

∣
∣w(t)

∣
∣ + ‖w0‖F = sup

t∈[0,a]

∣
∣w(t)

∣
∣, w ∈ F

′
a.

This implies that ‖.‖F′a defines a norm on F′
a, and as a consequence, (F′

a,‖.‖F′a ) is a Ba-
nach space. Then we define the operator P : F′

a → F′
a by

Pw(t) =
∫ t

0
h(s, vs + w̄s) ds +

∫ t

0

(t – s)δ–1

�(δ)
f (s, vs + w̄s) ds

+
t

�1

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
f (s, vs + w̄s) ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
h(s, vs + w̄s) ds

–
∫ a

0

(a – s)δ–1

�(δ)
f (s, vs + w̄s) ds –

∫ a

0
h(s, vs + w̄s) ds + ζ

)

, t ∈ [0, a]. (3.4)

Obviously, we note that the operator F has a fixed point if and only if P has a fixed point.
In the following, for convenience, we define the notations:

�2 =
aδ

�(δ + 1)
+

a
|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

)

, (3.5)

�3 = a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

)

. (3.6)

In the first result, we prove the existence of solutions to problem (1.1) by applying Kras-
noselskii’s fixed point theorem [21].

Lemma 3.1 (Krasnoselskii’s fixed point theorem). Let B be a nonempty convex and closed
subset of a Banach space E. Assume that 
1, 
2 are two operators from B to E such that
(1) 
1v + 
2u ∈ B whenever v, u ∈ B; (2) 
1 is continuous and compact; and (3) 
2 is a
contraction mapping. Then there exists a fixed point j ∈ B such that j = 
1j + 
2j.

Theorem 3.1 Assume that f , h : �×F→ R are continuous functions such that the follow-
ing conditions hold:
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(H1) There exists a constant L1 > 0 such that

∣
∣h(t, u) – h(t, v)

∣
∣ ≤ L1‖u – v‖F for all t ∈ � and every u, v ∈ F.

(H2) There are nonnegative continuous functions κ1,κ2 : � → (0,∞) such that |f (t, u)| ≤
κ1(t), |h(t, u)| ≤ κ2(t) for all t ∈ � and every u ∈ F.

Then problem (1.1) has at least one solution on (–∞, a] if

L1ηa�3 < 1, (3.7)

where ηa and �3 are respectively given by (2.1) and (3.6).

Proof Consider Br = {w ∈ F′
a : ‖w‖F′a ≤ r} with r > κ∗

1 �2 + κ∗
2 �3 + a

|�1| |ζ |, where κ∗
i =

supt∈[0,a] κi(t), i = 1, 2, and �2 is defined by (3.5). Then let us define the operators R : F′
a →

F′
a and Q : F′

a → F′
a on Br as follows:

(Rw)(t) =
1

�(δ)

∫ t

0
(t – s)δ–1f (s, vs + w̄s) ds

+
t

�1

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
f (s, vs + w̄s) ds

–
∫ a

0

(a – s)δ–1

�(δ)
f (s, vs + w̄s) ds

)

and

(Qw)(t) =
∫ t

0
h(s, vs + w̄s) ds +

t
�1

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
h(s, vs + w̄s) ds

–
∫ a

0
h(s, vs + w̄s) ds + ζ

)

.

It is clear that the operator P : F′
a → F′

a defined by (3.4) can be split as R + Q = P . For
w, w∗ ∈ Br and t ∈ �, we find

∣
∣Rw(t) + Qw∗(t)

∣
∣

≤ 1
�(δ)

∫ t

0
(t – s)δ–1∣∣f (s, vs + w̄s)

∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄s)

∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄s)

∣
∣ds

)

+
∫ t

0

∣
∣h

(
s, vs + w̄∗

s
)∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h

(
s, vs + w̄∗

s
)∣
∣ds +

∫ a

0

∣
∣h

(
s, vs + w̄∗

s
)∣
∣ds + |ζ |

)

≤ κ∗
1

(
1

�(δ)

∫ t

0
(t – s)δ–1 ds
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+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
ds +

∫ a

0

(a – s)δ–1

�(δ)
ds

))

+ κ∗
2

(

t +
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
ds + a

))

+
t

|�1| |ζ |

≤ κ∗
1

(
aδ

�(δ + 1)
+

a
|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

))

+ κ∗
2

(

a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

))

+
a

|�1| |ζ |

= κ∗
1 �2 + κ∗

2 �3 +
a

|�1| |ζ | < r.

Thus, for w, w∗ ∈ Br and t ∈ [0, a], we have

∥
∥Rw + Qw∗∥∥

F′a = sup
t∈[0,a]

∣
∣Rw(t) + Qw∗(t)

∣
∣ ≤ κ∗

1 �2 + κ∗
2 �3 +

a
|�1| |ζ | < r,

which implies that Rw + Qw∗ ∈ Br . Now, in view of condition (H1), we show that Q is a
contraction. Let w, w∗ ∈ Br and t ∈ [0, a]. Then

sup
t∈[0,a]

∣
∣Qw(t) – Qw∗(t)

∣
∣

≤ sup
t∈[0,a]

{∫ t

0

∣
∣h(s, vs + w̄s) – h

(
s, vs + w̄∗

s
)∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h(s, vs + w̄s) – h

(
s, vs + w̄∗

s
)∣
∣ds

+
∫ a

0

∣
∣h(s, vs + w̄s) – h

(
s, vs + w̄∗

s
)∣
∣ds

)}

≤ L1a
∥
∥wt – w∗

t
∥
∥
F

+
a

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
L1

∥
∥ws – w∗

s
∥
∥
F

ds + L1a
∥
∥wa – w∗

a
∥
∥
F

)

≤ L1aηa sup
t∈[0,a]

∣
∣w(t) – w∗(t)

∣
∣

+
a

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
L1ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds

+ L1aηa sup
t∈[0,a]

∣
∣w(t) – w∗(t)

∣
∣

)

≤ L1ηa

(

a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

))

sup
t∈[0,a]

∣
∣w(t) – w∗(t)

∣
∣.
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Consequently, for w, w∗ ∈ Br and t ∈ [0, a], we have

∥
∥Qw – Qw∗∥∥

F′a = sup
t∈[0,a]

∣
∣Qw(t) – Qw∗(t)

∣
∣ ≤ L1ηa�3

∥
∥w – w∗∥∥

F′a .

The continuity of the operator R can be directly deduced from the continuity of the func-
tions f and h. Furthermore, R is uniformly bounded on Br as

‖Rw‖F′a ≤ κ∗
1 �2.

Finally, for the compactness of the operator R, we let w ∈ Br and, in view of hypothesis
(H2), for t1, t2 ∈ [0, a], with t1 < t2, we have

∣
∣(Rw)(t2) – (Rw)(t1)

∣
∣

=
1

�(δ)

∫ t1

0

∣
∣(t2 – s)δ–1 – (t1 – s)δ–1∣∣

∣
∣f (s, vs + w̄s)

∣
∣ds

+
1

�(δ)

∫ t2

t1

∣
∣(t2 – s)δ–1∣∣

∣
∣f (s, vs + w̄s)

∣
∣ds

+
t2 – t1

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄s)

∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄s)

∣
∣ds

)

≤ κ∗
1

(∫ t1

0

∣
∣(t2 – s)δ–1 – (t1 – s)δ–1∣∣ds +

∫ t2

t1

∣
∣(t2 – s)δ–1∣∣ds

+
t2 – t1

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
ds +

∫ a

0

(a – s)δ–1

�(δ)
ds

))

≤ κ∗
1

(
2(t2 – t1)δ

�(δ + 1)
+

tδ
2 – tδ

1
�(δ + 1)

+
t2 – t1

|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

))

.

From the above inequalities, it follows that |(Rw)(t2) – (Rw)(t1)| → 0 as t2 – t1 → 0,∀t1,
t2 ∈ � independently of w ∈ Br . Therefore, R is equicontinuous, which implies that R
is relatively compact on Br . Thus, by the conclusion of the Arzelá–Ascoli theorem, R
is compact on Br . In consequence, as all the assumptions of Lemma 3.1 hold true, we
conclude that problem (1.1) has at least one solution on (–∞, a]. �

Next, we apply the following nonlinear Leray–Schauder alternative theorem [22] for our
second existence result.

Lemma 3.2 (Leray–Schauder nonlinear alternative). For a closed, convex, nonempty sub-
set G of a Banach space E and for an open subset B of G with 0 ∈ B, assume that N : B → G
is a continuous, compact (in other words, N (B) is a relatively compact subset of G) map.
Then either

(1) N has a fixed point in B, or
(2) there exist ν ∈ ∂B (the boundary of B in G) and μ ∈ (0, 1) with ν = μN (ν).
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Theorem 3.2 Let the following hypotheses hold:
(A1) There exist constants 0 ≤ ηaC1 < 1/�3 and C2 ≥ 0 such that |h(t, u)| ≤ C1‖u‖F + C2,

∀(t, u) ∈ [0, a] × F.
(A2) There exist a nonnegative function α ∈ C([0, a],R+) and a continuous nondecreasing

function ϑ : R+ →R
+ such that |f (t, u)| ≤ α(t)ϑ(‖u‖F), ∀(t, u) ∈ [0, a] × F.

(A3) A constant W > 0 exists such that

(1 – ηaC1�3)W
(C2 + C1ρa‖θ‖F)�3 + ϑ(ηaW + ρa‖θ‖F)α∗�2 + a

|�1| |ζ | > 1,

where α∗ = supt∈[0,a] α(t), ηa, ρa, �2, �3 are respectively given by (2.1), (3.5), and
(3.6).

Then problem (1.1) has at least one solution on (–∞, a].

Proof Firstly, we prove that the operator P : F′
a → F′

a defined by (3.1) is continuous and
completely continuous. This will be done in three steps.

(1) P is continuous.
Let us take the sequence {wn} such that wn → w in F′

a. Then we have

∣
∣P(wn)(t) – P(w)(t)

∣
∣ ≤

∫ t

0

∣
∣h(s, vs + w̄ns ) – h(s, vs + w̄s)

∣
∣ds

+
1

�(δ)

∫ t

0
(t – s)δ–1∣∣f (s, vs + w̄ns ) – f (s, vs + w̄s)

∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄ns ) – f (s, vs + w̄s)

∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h(s, vs + w̄ns ) – h(s, vs + w̄s)

∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄ns ) – f (s, vs + w̄s)

∣
∣ds

+
∫ a

0

∣
∣h(s, vs + w̄ns ) – h(s, vs + w̄s)

∣
∣ds)

≤ �2
∥
∥f (·, v(.) + w̄n(.) ) – f (·, v(.) + w̄(.))

∥
∥

+ �3
∥
∥h(·, v(.) + w̄n(.) ) – h(·, v(.) + w̄(.))

∥
∥,

which, in view of the continuity of h and f , leads to

∥
∥P(wn) – P(w)

∥
∥

≤ �2
∥
∥f (·, v(.) + w̄n(.) ) – f (·, v(.) + w̄(.))

∥
∥ + �3

∥
∥h(·, v(.) + w̄n(.) ) – h(·, v(.) + w̄(.))

∥
∥ → 0,

as n → ∞.
(2) P maps bounded sets into bounded sets in F′

a

For any � > 0, we show that there exists a positive constant ξ such that for w ∈ B� = {w ∈
F′

a : ‖w‖F′a ≤ �} we have ‖P(w)‖F′a ≤ ξ . Let w ∈ B�, for each t ∈ [0, a], we have

∣
∣P(w)(t)

∣
∣ ≤

∫ t

0

∣
∣h(s, vs + w̄s)

∣
∣ds +

1
�(δ)

∫ t

0
(t – s)δ–1∣∣f (s, vs + w̄s)

∣
∣ds
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+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄s)

∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h(s, vs + w̄s)

∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄s)

∣
∣ds

+
∫ a

0

∣
∣h(s, vs + w̄s)

∣
∣ds + |ζ |

)

≤
∫ t

0

[
C1‖vs + w̄s‖F + C2

]
ds +

1
�(δ)

∫ t

0
(t – s)δ–1[α(s)ϑ

(‖vs + w̄s‖F
)]

ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
[
α(s)ϑ

(‖vs + w̄s‖F
)]

ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
[
C1‖vs + w̄s‖F + C2

]
ds

+
∫ a

0

(a – s)δ–1

�(δ)
[
α(s)ϑ

(‖vs + w̄s‖F
)]

ds

+
∫ a

0

[
C1‖vs + w̄s‖F + C2

]
ds + |ζ |

)

≤ [
C1

(
ηa� + ρa‖θ‖F

)
+ C2

]
(

a +
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
ds + a

))

+ α∗ϑ
(
ηa� + ρa‖θ‖F

)
(

1
�(δ)

∫ t

0
(t – s)δ–1 ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
ds

+
∫ a

0

(a – s)δ–1

�(δ)
ds

))

+
a

|�1| |ζ |.

So, by taking the norm on the space F′
a, we have

∥
∥P(w)

∥
∥
F′a ≤ [C1L + C2]

(

a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

))

+ ϑ(L)α∗
(

aδ

�(δ + 1)
+

a
|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

))

+
a

|�1| |ζ |

= [C1L + C2]�3 + ϑ(L)α∗�2 +
a

|�1| |ζ | := ξ ,

where

‖vs + w̄s‖F ≤ ‖vs‖F + ‖w̄s‖F ≤ ηa� + ρa‖θ‖F := L.
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(3) P maps bounded sets into equicontinuous sets of F′
a.

For a bounded set B� of F′
a defined as in Step 2, let w ∈ B� and 0 < t1 < t2 < a. Then we

have

∣
∣P(w)(t2) – P(w)(t1)

∣
∣

≤
∣
∣
∣
∣
∣

∫ t2

0
h(s, vs + w̄s) ds –

∫ t1

0
h(s, vs, w̄s) ds

+
1

�(δ)

∫ t1

0

(
(t2 – s)δ–1 – (t1 – s)δ–1)f (s, vs + w̄s) ds

+
1

�(δ)

∫ t2

t1

(t2 – s)δ–1f (s, vs + w̄s) ds

+
t2 – t1

�1

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
f (s, vs + w̄s) ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
h(s, vs + w̄s) ds +

∫ a

0

(a – s)δ–1

�(δ)
f (s, vs + w̄s) ds

+
∫ a

0
h(s, vs + w̄s) ds + ζ

)∣
∣
∣
∣
∣

≤
∫ t2

t1

[C1L + C2] ds +
1

�(δ)

∫ t1

0

(
(t2 – s)δ–1 – (t1 – s)δ–1)α∗ϑ(L) ds

+
1

�(δ)

∫ t2

t1

(t2 – s)δ–1α∗ϑ(L) ds +
t2 – t1

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
α∗ϑ(L) ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
[C1L + C2] ds +

∫ a

0

(a – s)δ–1

�(δ)
α∗ϑ(L) ds

+
∫ a

0
[C1L + C2] ds + |ζ |

)

,

which implies that |P(w)(t2) – P(w)(t1)| −→ 0 as t1 −→ t2. In view of the Arzelá–Ascoli
theorem, we deduce from the foregoing three steps that P : F′

a → F′
a is completely con-

tinuous.
Finally, we show that for 0 < σ < 1 there exists an open set � ⊆ F′

a and w ∈ ∂� such that
w 	= σP(w).

Let w ∈ F′
a with w – σP(w) = 0 for σ ∈ (0, 1). Then, for t ∈ [0, a], we have

∣
∣w(t)

∣
∣ =

∣
∣σ (Pw)(t)

∣
∣

≤
∫ t

0

∣
∣h(s, vs + w̄s)

∣
∣ds +

1
�(δ)

∫ t

0
(t – s)δ–1∣∣f (s, vs + w̄s)

∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄s)

∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h(s, vs + w̄s)

∣
∣ds +

∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄s)

∣
∣ds
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+
∫ a

0

∣
∣h(s, vs + w̄s)

∣
∣ds + |ζ |

)

≤
∫ t

0

[
C1‖vs + w̄s‖F + C2

]
ds +

1
�(δ)

∫ t

0
(t – s)δ–1[α(s)ϑ

(‖vs + w̄s‖F
)]

ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
[
α(s)ϑ

(‖vs + w̄s‖F
)]

ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
[
C1‖vs + w̄s‖F + C2

]
ds

+
∫ a

0

(a – s)δ–1

�(δ)
[
α(s)ϑ

(‖vs + w̄s‖F
)]

ds

+
∫ a

0

[
C1‖vs + w̄s‖F + C2

]
ds + |ζ |

)

≤ [
C1

(
ηa‖w‖F′a + ρa‖θ‖F

)
+ C2

]
(

a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

))

+ ϑ
(
ηa‖w‖F′a + ρa‖θ‖F

)
α∗

×
(

aδ

�(δ + 1)
+

a
|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

))

+
a

|�1| |ζ |

≤ [
C1

(
ηa‖w‖F′a + ρa‖θ‖F

)
+ C2

]
�3 + ϑ

(
ηa‖w‖F′a + ρa‖θ‖F

)
α∗�2 +

a
|�1| |ζ |,

which, on taking the norm for t ∈ [0, a], implies that

(1 – ηaC1�3)‖w‖F′a
(C2 + C1ρa‖θ‖F)�3 + ϑ(ηa‖w‖F′a + ρa‖θ‖F)α∗�2 + a

|�1| |ζ | ≤ 1.

In view of hypothesis (A3), there exists a constant W > 0 such that ‖w‖F′a 	= W . Let us set

� =
{

w ∈ F
′
a : ‖w‖F′a < W

}
.

Note that the operator P : � → F′
a is continuous and completely continuous.

By this choice of �, there is no w ∈ � such that w = σP(w) for some σ ∈ (0, 1).
Consequently, by the conclusion nonlinear alternative of the Leray–Schauder theorem
(Lemma 3.2), we deduce that P has a fixed point w ∈ �, which is a solution to problem
(1.1). This finishes the proof. �

In our last result, we prove the uniqueness of solutions to (1.1) with the aid of the Banach
contraction mapping principle.

Theorem 3.3 Let f , h ∈ C(� × F,R), and condition (H1) and the following condition sat-
isfy:

(H3) There exists a positive constant L2 such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L2‖u – v‖F for all t ∈ � and every u, v ∈ F.
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Then problem (1.1) has a unique solution on (–∞, a] if

ηa(L1�3 + L2�2) < 1, (3.8)

where ηa, �2, and �3 are respectively defined by (2.1), (3.5), and (3.6).

Proof Putting supt∈[0,a] |f (t, 0)| = f̂ , also supt∈[0,a] |h(t, 0)| = ĥ, we consider the set

Br̄ =
{

w ∈ F
′
a : ‖w‖F′a ≤ r̄

}

with

r̄ >
(L1ρa‖θ‖F + ĥ)�3 + (L2ρa‖θ‖F + f̂ )�2 + a

|�1| |ζ |
1 – L1ηa�3 – L2ηa�2

and show that PBr̄ ⊂ Br̄ . For w ∈ Br̄ and t ∈ [0, a], we have

∣
∣(Pw)(t)

∣
∣ ≤

∣
∣
∣
∣
∣

∫ t

0
h(s, vs + w̄s) ds +

1
�(δ)

∫ t

0
(t – s)δ–1f (s, vs + w̄s) ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
f (s, vs + w̄s) ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
h(s, vs + w̄s) ds

–
∫ a

0

(a – s)δ–1

�(δ)
f (s, vs + w̄s) ds –

∫ a

0
h(s, vs + w̄s) ds + ζ

)∣
∣
∣
∣
∣

≤
∫ t

0

∣
∣h(s, vs + w̄s) – h(s, 0)

∣
∣ +

∣
∣h(s, 0)

∣
∣ds

+
1

�(δ)

∫ t

0
(t – s)δ–1∣∣f (s, vs + w̄s) – f (s, 0)

∣
∣ +

∣
∣f (s, 0)

∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄s) – f (s, 0)

∣
∣ +

∣
∣f (s, 0)

∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h(s, vs + w̄s) – h(s, 0)

∣
∣ +

∣
∣h(s, 0)

∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄s) – f (s, 0)

∣
∣ +

∣
∣f (s, 0)

∣
∣ds

+
∫ a

0

∣
∣h(s, vs + w̄s) – h(s, 0)

∣
∣ +

∣
∣h(s, 0)

∣
∣ds + |ζ |

)

≤
∫ t

0

(
L1‖vs + w̄s‖F + ĥ

)
ds +

1
�(δ)

∫ t

0
(t – s)δ–1(L2‖vs + w̄s‖F + f̂

)
ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
(
L2‖vs + w̄s‖F + f̂

)
ds
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+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
(
L1‖vs + w̄s‖F + ĥ

)
ds

+
∫ a

0

(a – s)δ–1

�(δ)
(
L2‖vs + w̄s‖F + f̂

)
ds +

∫ a

0

(
L1‖vs + w̄s‖F + ĥ

)
ds + |ζ |

)

≤ (
L1

(
ρa‖θ‖F + ηar̄

)
+ ĥ

)
(

a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

))

+
(
L2

(
ρa‖θ‖F + ηar̄

)
+ f̂

)

×
(

aδ

�(δ + 1)
+

a
|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

))

+
a

|�1| |ζ |

≤ (
L1

(
ρa‖θ‖F + ηar̄

)
+ ĥ

)
�3 +

(
L2

(
ρa‖θ‖F + ηar̄

)
+ f̂

)
�2 +

a
|�1| |ζ | < r̄,

which, on taking the norm for t ∈ [0, a], implies that ‖Pw‖F′a < r̄, where for t ∈ [0, a] we
have

‖vt + w̄t‖F ≤ ‖vt‖F + ‖w̄t‖F
≤ ρa‖θ‖F + ηa sup

{∣
∣w(s)

∣
∣ : s ∈ [0, t]

}

≤ ρa‖θ‖F + ηar̄.

Thus, PBr̄ ⊂ Br̄ .
Now, we shall show that the operator P : F′

a → F′
a is a contraction map. For that, let us

consider w, w∗ ∈ F′
a. Then we have for each t ∈ [0, a]

∣
∣Pw(t) – Pw∗(t)

∣
∣

≤
∫ t

0

∣
∣h(s, vs + w̄s) + h

(
s, vs + w̄∗

s
)∣
∣ds

+
1

�(δ)

∫ t

0
(t – s)δ–1∣∣f (s, vs + w̄s) – f

(
s, vs + w̄∗

s
)∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
∣
∣f (s, vs + w̄s) – f

(
s, vs + w̄∗

s
)∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
∣
∣h(s, vs + w̄s) – h

(
s, vs + w̄∗

s
)∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
∣
∣f (s, vs + w̄s) – f

(
s, vs + w̄∗

s
)∣
∣ds

+
∫ a

0

∣
∣h(s, vs + w̄s) – h

(
s, vs + w̄∗

s
)∣
∣ds

)

≤
∫ t

0
L1

∥
∥ws – w∗

s
∥
∥
F

ds +
1

�(δ)

∫ t

0
(t – s)δ–1L2

∥
∥ws – w∗

s
∥
∥
F

ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
L2

∥
∥ws – w∗

s
∥
∥
F

ds
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+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
L1

∥
∥ws – w∗

s
∥
∥
F

ds

+
∫ a

0

(a – s)δ–1

�(δ)
L2

∥
∥ws – w∗

s
∥
∥
F

ds +
∫ t

0
L1

∥
∥ws – w∗

s
∥
∥
F

ds

)

≤
∫ t

0
L1ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds +

1
�(δ)

∫ t

0
(t – s)δ–1L2ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds

+
t

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
L2ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
L1ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds

+
∫ a

0

(a – s)δ–1

�(δ)
L2ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds +

∫ a

0
L1ηa sup

s∈[0,a]

∣
∣w(s) – w∗(s)

∣
∣ds

)

≤
∫ t

0
L1ηa

∥
∥w – w∗∥∥

F′a ds +
ηa

�(δ)

∫ t

0
(t – s)δ–1L2

∥
∥w – w∗∥∥

F′a ds

+
aηa

|�1|

( m∑

i=1

λi

∫ μi

0

(μi – s)δ–γ –1

�(δ – γ )
L2

∥
∥w – w∗∥∥

F′a ds

+
m∑

i=1

λi

∫ μi

0

(μi – s)–γ

�(1 – γ )
L1

∥
∥w – w∗∥∥

F′a ds

+
∫ a

0

(a – s)δ–1

�(δ)
L2

∥
∥w – w∗∥∥

F′a ds +
∫ t

0
L1

∥
∥w – w∗∥∥

F′a ds

)

≤ ηa

[

L2

(
aδ

�(δ + 1)
+

a
|�1|

( m∑

i=1

λiμ
δ–γ

i
�(δ – γ + 1)

+
aδ

�(δ + 1)

))

+ L1

(

a +
a

|�1|

( m∑

i=1

λiμ
1–γ

i
�(2 – γ )

+ a

))]
∥
∥w – w∗∥∥

F′a .

Therefore,

∥
∥Pw – Pw∗∥∥

F′a = sup
t∈[0,a]

∣
∣Pw(t) – Pw∗(t)

∣
∣ ≤ ηa(L1�3 + L2�2)

∥
∥w – w∗∥∥

F′a ,

and hence P is a contraction. Consequently, by the contraction mapping principle, P has
a unique fixed point, which is indeed the unique solution to problem (1.1) on (–∞, a]. �

Remark 3.1 It should be noted that we have needed to assume stronger criteria for the
uniqueness result, Theorem 3.3, than the conditions for the existence result, Theorem 3.1.
So, in addition to imposing f to satisfy the Lipschitz condition, condition (3.8) has an extra
term on the left-hand side of the inequality compared with condition (3.7), and it still has
to be less than 1.



Alghanmi and Alqurayqiri Advances in Continuous and Discrete Models         (2023) 2023:36 Page 16 of 19

3.1 Examples
Let us consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

CD3/2
0+ [u(t) –

∫ t
0 h(s, us) ds] = f (t, ut), t ∈ � := [0, 2],

u(t) = θ (t), t ∈ (–∞, 0],

u(2) = 1
2

CD1/2
0+ u(5/4) + CD1/2

0+ u(5/3) + 2,

(3.9)

where δ = 3/2, γ = 1/2, m = 2, t ∈ [0, 2], μ1 = 5/4, μ2 = 5/3, λ1 = 1/2, λ2 = 1, ζ = 2, and
h(t, ut), f (t, ut), θ (t) will be fixed later.

Using the given data, we find that �1 = –0.087514371, �2 = 103.1250204, and �3 =
95.41355769, where �1, �2, and �3 are respectively given by (2.2), (3.5), and (3.6).

For a continuous function g : (–∞, 0] → [0,∞) satisfying l =
∫ 0

–∞ g(s) ds < ∞, define
the space Fg = {u ∈ C((–∞, 0],R) :

∫ 0
–∞ g(s)‖u‖[s,0] ds < ∞}, where ‖u‖[s,0] = supt∈[s,0] |u(t)|.

Choose g(s) = e3s such that
∫ 0

–∞ e3s ds = 1
3 , and supplement this space with the norm

‖u‖Fg =
∫ 0

–∞ g(s)‖u‖[s,0] ds. Then the space (Fg ,‖.‖Fg ) satisfies the phase space’s axioms
with η(t) = 1

3 , ρ(t) = 1, A = 3 as the following:
Let u : (–∞, a] →R be such that u0 ∈ Fg . Then

∫ 0

–∞
e3s‖ut‖[s,0] ds =

∫ 0

–∞
e3s sup

w∈[s,0]

∣
∣u(t + w)

∣
∣ds

=
∫ 0

–∞
e3s sup

v∈[s+t,t]

∣
∣u(v)

∣
∣ds

=
∫ –t

–∞
e3(s–t) sup

v∈[s,0]

∣
∣u(v)

∣
∣ds

≤
∫ 0

–∞
e3(s–t) sup

v∈[s,0]

∣
∣u(v)

∣
∣ds

= e–3t
∫ 0

–∞
e3s‖u0‖[s,0] ds < ∞, which implies ut ∈ Fg .

Next, to show that

‖ut‖Fg ≤ 1
3

sup
{∣
∣u(τ )

∣
∣ : 0 ≤ τ ≤ t

}
+ ‖u0‖Fg ,

we have, for –∞ < s ≤ 0, the following cases:
For s ≤ t + w ≤ 0, we find

∣
∣ut(w)

∣
∣ =

∣
∣u(t + w)

∣
∣ ≤ sup

τ∈[s,0]

∣
∣u(τ )

∣
∣.

If t + w ≥ 0, w ≤ 0, then we have

∣
∣ut(w)

∣
∣ =

∣
∣u(t + w)

∣
∣ ≤ sup

τ∈[0,t]

∣
∣u(τ )

∣
∣.

Thus, for t ∈ [0, a], we have |ut(w)| ≤ supτ∈[s,0] |u(τ )| + supτ∈[0,t] |u(τ )|.
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Consequently, for t ∈ [0, a], we have

‖ut‖Fg =
∫ 0

–∞
e3s sup

w∈[s,0]

∣
∣ut(w)

∣
∣ds

≤
∫ 0

–∞
e3s sup

τ∈[0,t]

∣
∣u(τ )

∣
∣ds +

∫ 0

–∞
e3s sup

τ∈[s,0]

∣
∣u(τ )

∣
∣ds

=
∫ 0

–∞
e3s ds sup

τ∈[0,t]

∣
∣u(τ )

∣
∣ +

∫ 0

–∞
e3s‖u0‖[s,0] ds

=
1
3

sup
{∣
∣u(τ )

∣
∣ : 0 ≤ τ ≤ t

}
+ ‖u0‖Fg .

Finally, we find

∣
∣u(t)

∣
∣ ≤ sup

w∈[s,0]

∣
∣u(t + w)

∣
∣ ≤ 3

∫ 0

–∞
e3s‖ut‖[s,0] ds = 3‖ut‖Fg .

Now, we choose θ (t) to be θ (t) = et – e2t , which is a continuous function and satisfies
θ (0) = 0. Also, it is easy to show that θ ∈ Fg , that is,

∫ 0
–∞ e3s‖θ‖[s,0] ds < ∞.

To illustrate Theorem 3.1, we choose

f (t, ut) =
(1 + t)

120

(∫ 0

–∞
e3s tan–1 ut ds +

et

8

)

(3.10)

and

h(t, ut) =
1

4
√

400 + t

(

t
∫ 0

–∞
e3s |ut|

|ut| + 1
ds + sin t

)

. (3.11)

Obviously, f and h are continuous functions, and conditions (H1) and (H2) are satisfied
with L1 = 1/40, κ1(t) = (1+t)

120 ( 1
3 + et

8 ) and κ2(t) = ( t
3 +sin t)

4
√

400+t . Moreover,

L1ηa�3 ≈ 0.7951129808 < 1.

Thus, all the hypotheses of Theorem 3.1 are satisfied, and consequently, problem (3.9)
has at least one solution on (–∞, 2], with f (t, ut) and h(t, ut) given by (3.10) and (3.11),
respectively.

Next, to demonstrate the application of Theorem 3.2, we take

f (t, ut) =
et

(255 + t)2

(∫ 0

–∞
e3s sin ut ds + cos t

)

(3.12)

and

h(t, ut) =
1

90(2 + t2)
sin t

∫ 0

–∞
e3sut ds +

t
255

. (3.13)
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Clearly, conditions (A1) and (A2) hold true with C1 = 1
180 , C2 = 2

255 , α(t) = et

(255+t)2 , and
ϑ(‖u‖Fg ) = ‖u‖Fg + 1. Also, by condition (A3), we have W > 56.758894 such that

(1 – ηaC1�3)W
(C2 + C1ρa‖θ‖F)�3 + ϑ(ηaW + ρa‖θ‖F)α∗�2 + a

|�1| |ζ | > 1.

As all the assumptions of Theorem 3.2 hold true, its conclusion applies to problem (3.9)
on (–∞, 2] with f (t, ut) and h(t, ut) given by (3.12) and (3.13), respectively.

Finally, Theorem 3.3 can be illustrated by taking

f (t, ut) =
et

(t + 25)2

(∫ 0

–∞
e3s tan–1 ut ds + 1/16

)

(3.14)

and

h(t, ut) =
t

6
√

900 + t

(∫ 0

–∞
e3s |ut|

|ut| + 1
ds + tan–1 t

)

. (3.15)

Notice that conditions (H1) and (H3) are satisfied with L1 = 1/90 and L2 = e2/625. In addi-
tion, ηa(L1�3 +L2�2) ≈ 0.7597817128 < 1. So, all the conditions of Theorem 3.3 hold true,
and as a result, problem (3.9) with f (t, ut) given by (3.14) and (3.15) has a unique solution
on (–∞, 2].

4 Conclusions
In this article, we have investigated the existence of solutions to a new class of neutral
boundary value problems with infinite delay. By imposing an arbitrary phase space that
satisfies the fundamental axioms given by Hale and Kato [9] and applying Krasnoselskii’s
fixed point theorem, the Leray–Schauder type nonlinear alternative theorem, and the Ba-
nach fixed point theorem, we have presented three results related to our problem. Also,
we have illustrated our results by giving three examples defined on a specific state space.
Our results are a new contribution that enriches the literature on delayed fractional or-
der boundary value problems, whereas most of the previous studies on this topic were
devoted to differential equations of fractional order between 0 and 1, and to the best of
our knowledge, no work has been done on boundary value problems with infinite de-
lay and boundary conditions that involve Caputo fractional derivative; see, for example,
[16–19, 23–28].
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