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Abstract
Recently, differential equation-based neural networks have been actively studied. This
paper discusses the universal approximation property of a neural network that is
based on a nonlinear partial differential equation (PDE) of the parabolic type.
Based on the assumption that the activation function is non-polynomial and

Lipschitz continuous, and applying the theory of the difference method, we show
that an arbitrary continuous function on any compact set can be approximated using
the output of the network with arbitrary precision. Additionally, we present an
estimate of the order of accuracy with respect to�t and�x.
Mathematics Subject Classification: 35Q93; 49J20; 68T07

Keywords: Universal approximation theorem; Neural ODE; Galerkin approximation;
Padé approximation; Difference scheme

1 Introduction
Recently, neural networks have been applied in numerous fields, both in social and natural
sciences. However, their performance remains a topic of active research. Since Rosenblatt’s
work [60], neural networks have been studied extensively. In fact, the set of functions re-
alized by neural network models has been under discussion for some time.

Surprisingly, the transform mapping theorem, which is similar to the universal approx-
imation property, was derived in an early research by Kolmogorov [41] and its simpli-
fied proof was provided by Sprecher [70]. However, the neural networks they considered
differed slightly from existing conventional implementations. Later, in the 1980s, several
studies were conducted on the universal approximation property of neural networks. On
the one hand, these results greatly encouraged and facilitated research in neural networks.
On the other hand, they found the universal approximation property of neural network
models to be closely related with (almost simultaneous) controllability in the theory of
optimal control. However, there are some differences between the two. When discussing
the universal approximation property of a neural network, these works typically include
the effect of the output layer, whose activation function may differ from that of the hid-
den layer. Arguments concerning these areas are introduced and discussed in detail in the
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next section. Moreover, some recent studies have considered neural networks from the
perspective of optimal transport [67, 68, 78]. These arguments have led to the application
of the dynamical system theory to neural networks.

For example, E [83] regarded a neural network as a method of estimating the parameters
of a dynamical system. In particular, he formulated ResNet [29] as an Euler scheme for an
ordinary differential equation (ODE) and discussed its stability in the forward direction.
They deduced certain conditions under which forward propagation operates stably in the
sense that gradient explosion and vanishing problems do not occur when the eigenval-
ues of the system are considered. Additionally, they highlighted a close relationship (or
even equivalence) between the adjoint equation and backpropagation and introduced a
regularity method.

This dynamical systems-based approach toward neural networks became more popular
after a study by Chen et al., which provided a framework for representing a neural network
with an ODE solver. This framework was referred to as the neural ODE [10].

Thereafter, neural ODEs began to be widely used and implemented [10].
Meanwhile, some methods have been proposed based on ODEs and partial differential

equations (PDEs) [28, 31]. Han and Li [28] formulated a neural network using an ODE,
considering a cost function optimized using the Hamilton–Jacobi–Bellman (HJB) equa-
tion. In our previous study [31], we proposed a framework for a neural network in which
we considered the initial-boundary value problem for PDEs.

A maximum principle-based approach was also provided in [44]. Notably, some recent
works have actively discussed the application of differential equations to graph neural net-
works (GNNs) (see, for instance, [9]), along with the “expressive power” and “stability” of
GNNs. Oono and Suzuki [56] discussed that the expressive power of a GNN decreases
when the it has an excessively large numbers of layers. They also proposed a concept
called “over-smoothing” in which the feature vectors of all nodes tend to reach an equiva-
lent state. This has driven ongoing research on the diffusion process of GNN models [9],
which is related to the topic of the present work. From this perspective, the authors of [9]
worked on the application of a range of differential equations that are popular in classi-
cal physics; see, for instance, [62]. Of note, they also considered PDEs with a diffusion
term, as used in works on image processing [40, 58]. The results of these studies motivate
us to consider a PDE with a diffusion term here. This study is also motivated by ongo-
ing research on optimal control theory, especially work on the ensemble controllability of
stochastic processes in terms of the Fokker–Planck equation [2]. Although the drift term
differs slightly from that used here, this highlights the necessity of the control of diffusion
PDEs. Insights obtained in studies on machine learning literature might be helpful in this
regard. Along these lines, we consider neural networks based on PDEs with a diffusion
term in our study. Our motivations are twofold.

(i) Although neural ODEs perform well, their essential difference from classical neural
networks is that the width of each layer does not change. This limitation can be
overcome by PDE-based neural networks, which also consider the infinite limit of
the width of the network. Because we aim to approximate a neural network with a
continuous dynamical system, this advantage of PDE-based neural networks
appears to be more natural.

(ii) Similar to that in the case of ODE-based control, some fruitful theories have also
been provided on PDE-based control (or distributed control). A sophisticated
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theoretical framework has been developed in considerable literature on diffusion
equations. We can also understand the increasing freedom of such models by
considering a range of forms and values of boundary conditions.

However, some uncertainties remain regarding the performance of these continuous
neural networks. For example, the universal approximation property is an important as-
pect that all neural networks must exhibit.

Although various types of neural networks based on dynamical systems have been de-
veloped, some scope for further exploration remains in terms of their universal approxi-
mation property based on a PDE, particularly with a diffusion term.

In this paper, we first introduce the formulation of a PDE-based neural network and
then show that it is well-defined under some natural setup conditions. Next, we prove the
existence of a temporally global solution to the model. We also posit the existence of a van-
ishing diffusion limit. Finally, we show that our model possesses a universal approximation
property with respect to the maximum norm.

The remainder of this paper is organized as follows. In Sect. 2, we define some notations
that we use throughout this paper. In Sect. 3, we formulate the research problem and in-
troduce some existence theorems. In Sect. 4, we present our main result, which is proven
in Sect. 7. In Sect. 5, we compare our results to those of related works, referring to the his-
tory of arguments on the universal approximation property of neural networks. We also
confirm the main contributions of the present work, and clarify our key theoretical and
practical insights. Section 6 provides some preliminary statements to support the main
results presented in Sect. 7. In Sect. 8, we discuss the learnability of our model as well as
its performance based on some numerical experiments. Finally, our conclusions and some
possible avenues for future research are presented in the final section.

2 Notations
In this section, we introduce some notations used for general analysis. First, let us define
I = (0, 1) and ∂I = {0} ∪ {1}. Let G denote an arbitrary region in R. We denote the closure
of G as G .

Hereafter, C(G) denotes a set of continuous functions on G . For r ∈N, a set of functions
that are r-times continuously differentiable on R is denoted as Cr(R). A set of infinitely
differentiable functions with a compact support in G is denoted as C∞0 (G). A set of Lips-
chitz continuous functions on R is denoted as CL(R). For d ∈N, we often denote a vector
�u = (u1, u2, . . . , ud) ∈ Rd as [uj]j. For two vectors �u and �v ∈ Rp in general, we denote their
inner product as �u · �v. For a vector space X and an element �v ∈ X, we denote a set spanned
by �v as Span〈�v〉.

Let ‖ · ‖Lp(G) denote the usual Lp norm with 1 ≤ p ≤ +∞ on G ; i.e., for a function f in
general, we define

‖f ‖Lp(G) ≡
⎧
⎨

⎩

(
∫

G |f (x)|p dx)
1
p (p ∈ [1, +∞)),

ess supx∈G |f (x)| (p =∞).

We use a notation (·, ·)G to denote the inner product in L2(G) space:

(f , g)G ≡
∫

G
f (x)g(x) dx.
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In particular, when the region is clear, we simply denote it as (·, ·). The norm in L2(G) is
often denoted as | · |. We also use this notation to denote the norm in the Euclidean space,
where a step function is regarded as a simple function in the L2 space.

For r ∈N, we define Sobolev spaces Hr(G), which are the spaces of functions f (x), x ∈ G ,
equipped with the norm ‖f ‖2

Hr (G) ≡
∑
|α|≤r ‖Dαf ‖2

L2(G). H–r(G) (r > 0) is defined as the dual
space of Hr

0(G), which is the closure of C∞0 (G) with respect to the norm of Hr(G) (see, [49],
§11.1 and §12.1).

For a Banach space B with the norm ‖ · ‖B , we denote the space of B-valued measurable
functions f on the interval (a, b) by Lp((a, b);B), the norm of which is defined by

|f |Lp((a,b);B) ≡
⎧
⎨

⎩

(
∫ b

a ‖f (t)‖p
B dt)

1
p (p ∈ [1, +∞)),

ess supa≤t≤b ‖f (t)‖B (p =∞).

Similarly, we often use notations like C([a, b];B) to denote sets of B-valued functions that
are continuous with respect to time on the interval specified as the brackets. We also de-
note an adjoint space of B by B′. For a Hilbert space H and its linear subspace M ⊂H in
general, we denote the orthogonal complement of M as M⊥. When the inner product of
two elements v1 and v2 in H vanishes, we use the notation v1 ⊥ v2. Hereafter, we shall use
the notations below:

Z ∗x f (t, x)≡
∫

I
Z(t, x, y)f (t, y) dy,

Z ∗ f (t, x)≡
∫ T

0
dτ

∫

I
Z(t – τ , x, y)f (τ , y) dy,

where Z(t, x, y) denotes the fundamental solution to the initial boundary value problem of
the heat equation with the vanishing Dirichlet condition. Given T > 0, we use the notation
HT ≡ (0, T)× I × I . The other notations used in this paper are summarized in Table 4 in
Appendix A.

3 Formulation: differential equation-based neural networks
Here, we formulate the continuous limit of a multi-layer neural network [32]. Because in
the supervised learning, the input vector takes the form of a vector in a Euclidean space
R

J , we represent it as a simple function on a unit interval by partitioning it into J intervals.
Given T > 0, we formulated the continuous version of a neural network as follows:

ut – νuxx = φ

(∫

I
w1(t, x, y)u(t, y) dy

)

in IT ≡ I × (0, T), (3.1)

where ν > 0, φ(·) denotes the activation function, T > 0 corresponds to the depth of a clas-
sical neural network, and w1 and w0 are the weight parameters at the middle and output
layers, respectively. Additionally, we impose the initial and boundary value conditions as
follows:

u(0, x) = u0(x) on I, u = 1 on ∂I ∀t ∈ (0, T). (3.2)

We employ a non-vanishing Dirichlet condition in (3.2), with which we can easily assure
the existence of a solution in (6.12) in the proof of Lemma 4. We shall comment on this
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issue later again. In (3.2), given the input data �ξ = (ξ1, ξ2, . . . , ξJ )� ∈ RJ , the initial data is
a simple function of the form: u0(x) =

∑J
j=1 ξjχIj , with χIj as the indicator functions of

Ij ≡ ((j – 1)/J , j/J] (j = 1, 2, . . . , J). Because we usually deal with a finite dimensional input,
we translate it into this finite dimensional vector, and the corresponding simple function
on a unit interval I . This is a different formulation from that of Liu and Markowich [52], in
which they employed a region of the same dimension as the input feature. In that model,
they computed the multiple integral of the input over the d-dimensional space in each
layer. In the case of a two-dimensional CNN, their formulation coincides with the func-
tionality of the convolution layer. In higher dimensions, however, it is different from how
the multi-layer neural network works in the usual supervised learning.

By taking v≡ u – 1, we can transform problem (3.1)–(3.2) as below.

⎧
⎪⎪⎨

⎪⎪⎩

vt – νvxx = φ(
∫

I w1(t, x, y)v(t, y) dy +
∫

I w1(t, x, y) dy) in IT ,

v(0, x) = u0(x) – 1≡ ũ0 on I,

v = 0 on ∂I ∀t ∈ (0, T).

(3.3)

The following result was obtained for problem (3.3).

Theorem 1 Let T > 0 be arbitrary, and the following be assumed:
(i) u0 ∈ L2(I),

(ii) φ ∈ CL(R),
(iii) w1 ∈ L2(HT ).

Then, there exists a constant Tu0 ∈ (0, T] that depends on ‖u0‖L2(I) such that problem (3.3)
has a unique solution v ∈ C([0, Tu0 ]; L2(I)) on the interval [0, Tu0 ). In addition, this solution
satisfies

‖v‖C([0,Tu0 ];L2(I)) ≤ c
(‖u0‖L2(I)

)
,

where c(‖u0‖L2(I)) is a positive constant that depends monotonically increasingly on
‖u0‖L2(I).

We prove this theorem in Appendix B, in which we use the notation A = –ν ∂2

∂x2 and
define a sesquilinear form σ (·, ·) : H1

0 (I)×H1
0 (I)→R [21] by

(Au, v) = σ (u, v)
(
u, v ∈H1

0 (I)
)
. (3.4)

Remark 1 The solution v mentioned in Theorem 1 also belongs to the space [64]

L2
(
(0, Tu0 ); H1(I)

)∩H1((0, Tu0 ); H–1(I)
)
,

and satisfies the same estimates as the one in the theorem with the norm of these spaces.
The proof of this fact is contained in the proof of Theorem 1 in Appendix B.

Remark 2 In our proof above, we do not require φ(·) to satisfy φ(0) = 0, nor the linear
growth, as required in [52].

Next, we show the existence of a temporally global solution.
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Theorem 2 Let T > 0 be an arbitrary positive number and assume that in addition to the
assumptions (i), (ii) of Theorem 1, w1 ∈ L2(H∞) is satisfied. Then, there exists a temporally
global solution v ∈ C([0, T]; L2(I)) to problem (3.3), which satisfies

sup
t∈[0,T]

∣
∣v(t)

∣
∣≤ χ

(‖u0‖L2(I)
)
,

where χ (·) is a monotonically increasing function.

Remark 3 As in Theorem 1, the solution v mentioned in Theorem 2 also belongs to the
space

L2(
(
0, T ; H1(I)

)∩H1((0, T); H–1(I)
)
,

and satisfies the same estimates as the one in the theorem with the norm of these spaces.

The proof of Theorem 2 is given in Appendix B as well. Note that the estimate above does
not depend on the diffusion coefficient ν > 0. Thus, under the assumptions of Theorem 2,
we can let ν tend to zero, to assert the corollary below [47].

Corollary 1 Under the assumptions of Theorem 2, if we denote the solution to (3.3) by v(ν),
then we can take a sequence {v(νm)}∞m=1 ⊂ L2(IT ) satisfying the following:

∥
∥v(νm) – v(0)∥∥

L2(IT )→ 0, m→ +∞,

where v(0) ∈ L2(IT ) is a solution to the hyperbolic equation

⎧
⎨

⎩

v(0)
t – φ(

∫

I w1(t, x, y)v(0)(t, y) dy +
∫

I w1(t, x, y) dy) = 0 in IT ,

v(0)(0, x) = ũ0 on I.

In our previous studies [31, 32], we set several cost functions that corresponded to spe-
cific tasks and demonstrated the presence of optimal controls, and we used the gradient
descent algorithm to find the sub-optimal control. For example, in [34] in which we dis-
cussed the multiclass classification problem, the cost function is given by

J[�w] = –
∫

dP(�X,�t(�X))

[K–1∑

k=1

t(�X),k ln

{

φ
(k)
0

(∫

I
w(k)

0 (y)u(T , y; w1, u0(�X)) dy
)}

+ t(�X),K ln

{

1 –
K–1∑

k′=1

φ
(k′)
0

(∫

I
w(k′)

0 (y)u(T , y; w1, u0(�X)) dy
)}]

+
γ1

2

K–1∑

k=1

∥
∥w(k)

0
∥
∥2

H1(I) +
γ2

2
‖w1‖2

L2(HT ),

where φ0(·) is an activation function of the output layer, P(�X,�t(�X)) is the probability distri-
bution of (�X,�t(�X)), and t(�X),k ∈ {0, 1} satisfies

∑K
k=1 t(�X),k = 1 ∀�X ∈RJ . However, because we
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consider the feed-forward network hereafter, we do not consider φ0(·) in the present pa-
per. Instead, we discuss the universal approximation property of this neural network with
the output layer of the linear unit.

Hereafter, we frequently represent the solution to (3.3) (or equivalently, (3.1)–(3.2))
as u(t, x; w1, �ξ ), to clarify its dependency on w1 and �ξ . Thus, we regard the solution
u(T , x; w1, �ξ ) as a function on K by identifying u0 with �ξ = (ξ1, . . . , ξJ )�.

4 Main result
In this section, we show the universal approximation property of the partial differential
equation-based neural network prescribed in Sect. 3. We discuss the universal approx-
imation property of our neural network model based on a nonlinear partial differential
equation [32]. As is the case with the previous works, we restrict ourselves to an arbitrary
compact set K ⊂R

J . Our main result is

Theorem 3 Let T > 0 be given and φ ∈ CL(R) be a non-polynomial function. Then, for
an arbitrary compact set K ⊂R

J , F ∈ C(K), and ε > 0, there exist w0 ∈ L2(I), w1 ∈ L2(HT )
such that

sup
�ξ∈K

∣
∣
∣
∣F(�ξ ) –

∫

I
w0(x)u(T , x; w1, �ξ ) dx

∣
∣
∣
∣ < ε,

where u(T , x; w1, �ξ ) is the value of a solution to (3.1)–(3.2) at time T that corresponds to the
initial input value �ξ .

We will prove Theorem 3 in Sect. 8.

Remark 4 In this paper, we only consider the scalar-valued function F : K → R as
Leshno [43] did. This does not lose generality, because if we can approximate this func-
tion, then we can approximate an arbitrary continuous map F : K→R

n by concatenating
the network in parallel, as is done in [14], as long as J ≥ n holds. We also point out that
our PDE-based neural network is defined only on one-dimensional Euclidean space. This
is because in many supervised learning, the input data is a vector with independent at-
tributes, which can be associated with a simple function on I as we did above. This is the
similar approach with [72]. When we consider GNN, however, this assumption does not
hold, which is one of our future works.

Remark 5 The controls w0 and w1 depend on T and ν . Therefore, we cannot assure at
this moment that the same conclusion holds with ν = 0. The discussion concerning this
vanishing diffusion limit is our future work.

5 Comparison with existing works
Before going on to the proofs of our results, we discuss here the difference and novelty of
our result in comparison to the existing related works. Actually, numerous contributions
to the literature have studied the universal approximation property of neural networks. As
an early work, Lippmann [51] postulated the formation of a range of surfaces for classifi-
cation tasks to classify the points in a topological space using a neural network with two
hidden layers.
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This conjecture was rigorously proven by Funahashi [22], who stated that an arbitrary
continuous function on a compact subset K in R

n could be approximated with a neural
network with a single hidden layer that contained a sigmoid activation function.

Funahashi [23] also hypothesized that any L2 function could be approximated by a three-
layer neural network with a finite number of units in the hidden layer. Four-layer networks
have also been conjectured to outperform three-layer networks. These considerations are
related to the study of the generalization performance of neural networks [6].

Irie and Miyake [36] derived the integral representation of three-layer neural networks
based on the Fourier integral theorem under the continuity of the hidden layer.

Around the same time, Cybenko [11] first discussed the universal approximation
property of sigmoidal functions. They showed that a set of the functions of the form
∑

j wjσ (�y��x + b) with some constants wj and b and vectors �x and �y in a compact space K is
dense in C(K). Their discussion did not assume the activation function to be monotonic.

Hornik, Stinchcombe, and White [35] proposed general measurable functions by mak-
ing use of the Stone-Weierstrass Theorem and the cosine squasher proposed by Gallant
and White. Their results can be regarded as similar to those of Funahashi [22].

Leshno [43] obtained more general results by using the fact that the set of functions
spanned by the so-called ridge functions, i.e., those of the form f (�w��x + θ ), is dense both
in C(Rn) and Lp(μ), where μ is an arbitrary finite measure onR

n. Recently, Yun [85] proved
the approximation property of a neural network constructed using a parametric sigmoidal
function.

Some Bayesian perspectives on neural networks, even with an infinite number of nodes,
have been discussed (see, for example, [54, 84]). Their key insight is that as the number of
nodes tends to infinity, the output can be regarded as a set of Gaussian processes.

However, all these studies considered only general neural networks. Many works have
also considered the universal approximation property of neural networks based on con-
tinuous dynamical systems.

Haber and Ruthotto [27] proposed a formulation of a neural network in a supervised
learning framework as a dynamical system. There, they clarified the necessary condition
for the stability of an equilibrium point as well as the stability of Euler method as a discrete
approximation of the continuous solution. They also pointed out the close relationship be-
tween backpropagation and the adjoint method in optimal control theory. Q. Li et al. [45]
discussed the approximation property of an ODE-based neural network, and gave the suf-
ficient condition under which the set of the realizations of an ODE-based neural network
can approximate an arbitrary continuous map f : Rn → R

m (n ≥ 2) on any compact set
with respect to Lp (p ∈ [1, +∞)) norms.

Along these lines, Aizawa and Kimura [1] recently presented the universal approxima-
tion property of neural ODEs [10] and ResNet using the result of Leshno [43]. However,
their method is restricted to linear models.

Esteve [18] presented the recent works concerning the approximation property of neu-
ral ODEs and, moreover, presented that the optimal value of the loss function is estimated
above to the order of T–1 under the Tikhonov regularization (which they called an em-
pirical risk minimization). Roughly contemporaneously, Teshima [76] also investigated
the universal approximation property of neural ODEs. In their proof, they made use of
their previous work [75] with a relatively slight modification. They also discussed the re-
lationship between their result and a preceding work by Zhang et al. [88], which showed
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a counterexample that cannot be approximated by a neural ODE. Zhang et al [88] also
presented the universal approximation property of an augmented neural ODE [17].

Recently, a survey by DeVore et al. [14] thoroughly presented the existing results on the
approximation property of neural networks. The power of Rectified Linear Unit (ReLU)
networks was among the most important results introduced here, as they can contain all
piecewise-continuous functions on an arbitrary compact set.

From the perspective of a practical application, Laakmann and Petersen [42] applied a
neural network to the numerical computation of a transport equation.

Studies in the field of optimal control have also considered the universal approximation
property of continuous neural networks.

Balet and Zuazua [61] proved the simultaneous controllability [48] of a flow map of an
ODE. This means that given an arbitrary finite input in a Euclidean space, the flow map
can lead to an arbitrary set of classification labels.

By making use of this property, they also showed that an arbitrary simple function, and
consequently an L2 map f : Rd→ R

d can be approximated with arbitrary precision with
respect to the L2 norm. They also discussed the relationship of the universal approxima-
tion property and simultaneous control [48, 53]. However, their method is not applicable
here for two reasons. First, their method of rotating the coordinate does not suffice be-
cause we consider equations with a diffusion term. Second, because we aim at an approx-
imation with respect to the maximum norm, their method is not applicable, as it divides
the region into two sections, in one of which the function is allowed to be discontinuous.
From the perspective of optimal control theory, the universal approximation property cor-
responds to approximate ensemble controllability [53]. Thus, our arguments here can also
be regarded as describing this property of a specific type of control via a nonlinear diffu-
sion equation. We prove this property of our model using some results from studies on
machine learning.

The relationship between the optimal control of neural network and optimal transport
models has been pointed out as well (see, for instance, [50]). For example, Sontag and
Sussmann [69] discussed the controllability of temporally continuous recurrent neural
networks. Balet et al. [61] above also argued this point and studied a nonlinear transport
equation, which they called a neural transport equation (NTE), as given below.

∂t +∇ · [(W (t)σ
(
A(t)x + b(t)

))

]

= 0,

(0) = 0.

They proved a method to approximate a target measure in the form of a finite combination
of Dirac measures by the solution of an NTE at t = T with arbitrary precision in the sense
of 1-Wasserstein distance.

In [45], the authors theoretically considered the formulation of an ODE-based neural
network and proved its universal approximation property. They first observed that the
earlier discussion concerning the universal approximation property of neural ODEs [88]
relied on a stronger assumption under which the right-hand side of an ODE already pos-
sesses the universal approximation property. They showed that any arbitrary continuous
function f : Rn→R

n on any compact set in a Euclidean space can be approximated in an
Lp norm with arbitrary precision. They also pointed out that the set of realizations of an
ODE is uniformly approximated by that of ResNet. They derived their main results based
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on another work by one of the authors [66]. However, in their formulation, they distin-
guished the one-dimensional and multi-dimensional input cases. In contrast, our proof
in the present work need not distinguish these cases, because we start from Leshno’s re-
sult [43].

Regarding ResNet, Tabuada [73] gave some conditions on activation functions under
which the universal approximation property of a map f ;Rn → R

n with L∞ norm is as-
sured. They used the technique of ensemble controllability and deduced the quadratic
differential equation that should be satisfied for each activation function. Research is also
being actively conducted on the controllability of systems driven by linear or nonlinear
partial differential equations [4].

For example, Fernández-Cara et al. [20] studied the null controllability of a heat equa-
tion with a spatially nonlocal term, which is roughly similar to the setup considered in the
present work. Because their model was linear, they considered its adjoint equation and ap-
plied the Fourier-series representation of the equation and the compactness-uniqueness
argument. They also stated that the approximate controllability, which is equivalent with
the universal approximation property in the terminology of our PDE-based neural net-
work, holds under the analyticity assumption of the kernel operator of the nonlocal term.
However, our setup employs a nonlinear activation function, which is essentially different
from this work; they listed the nonlinear case as an open problem.

As another example, [26] discussed the controllability of a nonlinear heat equation with
a distributed control in an unbounded domain in R

n. In this formulation, however, the
control term is not included in the nonlinear term, which differs from our framework.

In fact, the application of diffusion equations in image processing has been discussed in
prior works [82, 86]. Along these lines, Ruthotto and Haber [63] proposed parabolic and
hyperbolic CNNs models that respectively included spatial and temporal second-order
derivative terms. They also considered the application of neural networks in this field as
an extension of prior applications of PDEs.

Some other works have also addressed the control of parabolic PDEs [4], including linear
and nonlinear heat equations. In this regard, the present work provides a link between the
insights in the literature on neural networks and research on controllability in optimal
control theory.

Regarding the PDE-based neural network, Liu and Markowich [52] proposed a hyper-
bolic nonlinear integro-differential form without a diffusion term. However, they consid-
ered only the mathematical well-posedness of the form, and did not mention the universal
approximation property. An earlier work [46] also proposed PDE-based neural networks
for the transport and HJB equations, one of which used a diffusion term as in the present
work. Neither of these works, however, mentioned the universal approximation proper-
ties of the models. Li and Shi [46] also proposed adding an extra constraint in cases with
a diffusion term. In contrast, the present work shows that the universal approximation
property is satisfied even without a trick of this nature.

At the end of this section, we list some recent notable results. Ivan et al. [59] proposed
a framework to train neural ODEs using the Lyapunov function, which avoids the tra-
ditional backpropagation and achieves a faster computation. Moreover, a link between
turnpike theory and optimal control has been considered in relation to neural ODEs [24].
Geshkovski and Zuazua [24] computed some examples of the turnpike property of a neu-
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ral ODE using the MNIST dataset. They also mentioned that related results have been
reported in the form of specific setups as in [18] and [19].

Based on the aforementioned arguments, the main contributions of this study are sum-
marized as follows.

(i) Motivated by the application of diffusion equations in image processing and
considering GNNs with a diffusion term, we formulate PDE-based neural networks
with a diffusion term and rigorously clarify the conditions under which the
existence of the solution is assured.

(ii) We describe the universal approximation property of our model in the sense of the
maximum norm.

Our key findings are summarized as follows.
(i) We show that some insights from studies on machine learning can be applied to the

theory of the optimal control of PDEs.
(ii) Even though Leshno’s result (Lemma 1 below) is a useful tool to prove our result for

continuous neural networks, some additional formulations are required to discuss
the convergence of the temporal and spatial unit when they tend to 0.

(iii) Because our model contains a diffusion term, our method differs from those
presented in prior works, although it is based on that reported by Leshno [43].
More concretely, our proof uses estimates of the approximation of the discretized
diffusion equation that were not considered in previous studies.

In subsequent sections, we prove the results presented above.

6 Preliminary results
Before proving Theorem 3, we prepare some auxiliary results in this section. We first cite
the following lemma ([43], Theorem 1).

Lemma 1 Let f be a measurable function on R with a certain J ∈ N. Then, Span〈fw,θ (x)〉
(w ∈RJ , θ ∈R) is fundamental in C(RJ ) if and only if f is not a polynomial, where fw,θ (x) =
f (w · x + θ ).

Owing to this lemma, for an arbitrary �ξ ∈ K ⊂R
J and ε > 0, by taking a suitable M ∈N,

{σ0(m)}Mm=1 ⊂R, {�σ (m)
1 }Mm=1 ⊂R

J , and {θ (m)}Mm=1 ⊂R, we can obtain

sup
�ξ∈K

∣
∣
∣
∣
∣
F(�ξ ) –

M∑

m=1

σ0(m)φ
(�σ (m)�

1 �ξ + θ (m))
∣
∣
∣
∣
∣

< ε. (6.1)

Based on Lemma 1, we construct an approximating solution of (3.3) that agrees with
the approximation stated in (6.1). Next, by taking the temporal and spatial meshes finer
enough, we show that the solution of (3.3) itself can approximate the target continuous
function. In applying these steps, we make use of the estimate on the approximation ac-
curacy of Galerkin approximation.

Let us consider the approximate problem of (3.3). Regarding the spatial variable, we
employ the Galerkin approximation [77]. For this purpose, let Sh ≡ {Sh}h be a family of
finite-dimensional subspaces of H1

0 (I) with parameter h < 1 that tends to 0 [77]. In the
sequel, we set an integer L and take h = 1

L (i.e., we divide I into L equipartitions). It is also
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assumed that

inf
g∈Sh

(‖v – g‖L2(I) + h‖v – g‖H1(I)
)≤ Chs‖v‖Hs(I) (1≤ s≤ r)

holds (r is a positive value, for example, r = 2 [3]). We also define an approximation oper-
ator Ah : Sh→Sh by using the sesqui-linear form σ (·, ·) in (3.4) as follows:

(Ahφh,ψh) = σ (φh,ψh).

Thus, Ah is the operator associated with the restriction of σ (·, ·) on Sh ×Sh [21]. We
further define an operator Ph indicating a projection of u ∈ L2(I) onto Sh with respect to
the L2 inner product [21].

Then, we divide the time interval (0, T] into N intervals {[(n – 1)k, nk)}Nn=1, with Nk = T .
By using a notation U (n)

h = [U (n)
h(l)]l , we consider the discretized scheme of (3.3) on t ∈ (0, T].

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ũ (n)
h = Phu(nk, ·; 0, �ξ ) (n = 0, 1, 2, . . . , N – 2),

Ũ (N–1)
h = Phu((N – 1)k, ·; 0, �ξ ),

Ũ (N)
h = r(kAh)Ũ (N–1)

h

+ kr(kAh)Phφ(h
∑L–1

l=2 w(N–1)
·,l Ũ (N–1)

h(l) + h
∑L

l=1 w(N–1)
·,l ),

(6.2)

where r(kAh) denotes the Padé approximation [3] of the semigroup

e–tAh ≈ r(kAh)≡ (IL + kAh)–1.

Here, IL is an L-dimensional identity matrix. We also use a notation ‖ · ‖ hereafter to
denote a Euclidean norm; note that this is equivalent with L2 norm as long as we consider
the piecewise L2(I) functions.

Moreover, we introduce notations Phf = [(Phf )l]l , with

(Phf )l ≡ 1
h

∫

Il

f (x) dx (l = 1, 2, . . . , L),

for f ∈ L1(I) in general, where Il ≡ [ l–1
L , l

L ) (l = 0, 1, 2, . . . , L), and Ph : L2(I)→Sh, the pro-
jection onto the finite dimensional space Sh for each h = 1

L . Because these are projection
operators, note that the inequalities ‖Phf ‖ ≤ ‖f ‖ and ‖Phf ‖ ≤ ‖f ‖ always hold. The value
‖Phf ‖ is computed by regarding it as a simple function on I , and then taking the usual
norm of L2(I).

Remark 6 The operator Ph has often been used in the literature on the discrete approxi-
mation of operators ([79, 81]). It is known that this is equivalent with the operation

P̃hf ≡ [
f (lh)

]

l ∈RL,

in the sense that the following equality holds [81].

lim
h→0
‖Phf – P̃hf ‖ = 0.
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In (6.2), we utilized the vanishing Dirichlet condition of (3.3). From theory, u((N –1)k, x)
can be represented as follows [37].

u
(
(N – 1)k, x; 0, �ξ) = Z ∗x ũ0 + Z ∗ φ(0)

=
∞∑

j=1

λj

(

ηj,
J∑

q=1

ξqχIq

)

e–λj(N–1)kηj(x) + c
(
(N – 1)k, x

)
,

where λj and ηj are the eigenvalues and eigenvectors of an operator A, respectively, and

c(t, x) = –Z ∗x 1 + Z ∗ φ(0).

Hereafter, we often use a notation u((N – 1)k, ·) to denote u((N – 1)k, ·; 0, �ξ ). Thus, we have

Ũ (N–1)
h(l) = Phu

(
(N – 1)k, ·)

=
∞∑

j=1

λj

(

ηj,
J∑

q=1

ξqχIq

)

e–λj(N–1)k(Phηj)l +
(
Phc

(
(N – 1)k, ·))l

≡ �c(l)��ξ +
(
Phc

(
(N – 1)k, ·))l (l = 1, 2, . . . , L). (6.3)

Hereafter, we use the notation �σ0 = [σ0(m)]M
m=1 ∈RM . We prepare a lemma.

Lemma 2 With L = aM, where an integer a has a sufficiently large value, there exist
�w′0(h,k) ∈RL, {�θ (p)

0(h)}Lp=1 ⊂R
J , and {θ (p)

1(h)}Lp=1 ⊂R such that

�w′�0(h,k)
[
r(kAh)Ũ (N–1)

h + kr(kAh)
[
φ
(
h�θ (p)�

0(h)
�ξ + θ

(p)
1(h)

)]

p

]

= �σ�0
[
φ
(�σ (m)�

1 �ξ + θ (m))]

m.

Remark 7 The left-hand side of the equality in Lemma 2 is the inner product of the vectors
in R

L, whereas the right-hand side is that of the vectors in R
M .

Proof First, we introduce disjoint subsets of {1, 2, . . . , L}:

D(m) ≡
{

(m – 1)a + 1, (m – 1)a + 2, . . . , ma
}

(m = 1, 2, . . . , M).

It is obvious that {1, 2, . . . , L} =
⋃M

m=1 D(m). Then, we take �θ (p)
0(h) and θ

(p)
1(h) so that h�θ (p)

0(h) = �σ (m)
1

(p ∈D(m)) and θ
(p)
1(h) = θ (m) (p ∈D(m)), respectively. Let us take �w′0(h,k) so that the followings

are satisfied.

�w′�0(h,k)r(kAh)Ũ (N–1)
h = 0, (6.4)

k �w′�0(h,k)r(kAh)Bh = �σ�0 , (6.5)

where Bh = h[�e1,�e2, . . . ,�eM] is an L×M matrix with �ej = [H(l ∈ D(j))]l ∈ RL, H(·) being a
function that returns unity if the statement in the bracket is true, and returns 0 other-
wise. (6.4) means that �w′0(h,k) should belong to a subspace in R

L–2, which is denoted as Gh
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hereafter. Therefore, we rewrite (6.5) as follows:

B�h r(kAh)�|Gh �w′0(h,k) = �σ0/k, (6.6)

where B�h r(kAh)�|Gh denotes the restriction of B�h r(kAh)� onto the space Gh ⊂R
L–2.

Based on proposition 8.14, which was presented in [87], (6.6) can have a solution if and
only if �σ0 ⊥N(r(kAh)Bh|Gh ), where N(·) denotes the kernel of the operator in its argument.

Conversely, we can show that r(kAh) is of full rank. In fact, if we consider that Ah is
positive definite, all the eigenvalues of Ah are positive. Moreover, because Ah is self-adjoint,
we observe that it is diagonalizable [12], and so is r(kAh). Thus, r(kAh)�v = 0 means �v = �0.
However, it is apparent that Bh is suborthogonal in the sense that its column vectors are
orthogonal to each other. Thus, N(r(kAh)Bh|Gh ) = {0}, which yields the desired result. �

Remark 8 From construction, the solution �w′0(h,k) to (6.6) depends on h and k. As above,
(6.6) has at least one solution. If we denote this solution by w̆′0(h,k), then a set of solutions
for (6.6) can be denoted as w̆′0(h,k) + N(B�h r(kAh)�).

Now, we define:

w0(x) = w′0(h,k)(l) on Il (l = 1, 2, . . . , L),

where w′0(h,k)(l) is the l-th component of the vector �w′0(h,k). We assert that, for a certain R > 0,
we have at least one solution stated in Lemma 2, in a certain ball with radius R in L2(I). In
the sequel, we use the following notations:

G(k)
∞ ≡

{
f ∈ L2(I)|f ⊥ Span

〈
r(kA)u

(
(N – 1)k, ·)〉},

G(k)
h ≡

{
f ∈ L2(I)|f ⊥ Span

〈
r(kAh)Phu

(
(N – 1)k, ·)〉}.

Now, we state

Lemma 3 For a certain R > 0, k and h1 > 0, we have a solution �w′0(h,k) to (6.4) and (6.5) that
satisfies

∥
∥�w′0(h,k)

∥
∥≤ R

for ∀h ∈ (0, h1].

Proof First, we take a small k > 0, h1 = 1
L1

> 0, and �w′0(h1,k) ∈RL1 , which satisfy

⎧
⎨

⎩

kB�h1
r(kAh1 )� �w′0(h1,k) = �σ0,

�w′�0(h1,k)r(kAh1 )Ũ (N–1)
h1

= 0.
(6.7)

Note that the existence of such �w′0(h1,k) is guaranteed by Lemma 2. Moreover, the solution
�w′0(h1,k) to (6.7) belongs to the intersection of G(k)

h1
and a set represented as w̆0(h1,k) + N(B�h1

),
where w̆′0(h1,k) is the solution to the problem in Sh1 :

r(kAh1 )�w̆′0(h1,k) = Ph1 σ̃0/k, (6.8)
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with 1
h1

= L1 = a1M. Here, σ̃0 is a notation used when we regard �σ0 as an element in L2(I).
Hereafter, we often regard G(k)

h1
as a subset of L2(I). Note that we can easily obtain the

solution of (6.8) if we recall the definition of r(kAh1 ). We denote one such solution as
w̆′0(h1,k) ∈ G(k)

h1
again:

⎧
⎨

⎩

r(kAh1 )�w̆′0(h1,k) = Ph1 σ̃0/k,

w̆′�0(h1,k)r(kAh1 )Ũ (N–1)
h1

= 0.

For h > 0, we define a map G(k)
h : L2(I)→Sh as follows:

G(k)
h
[
w̆′0(h,k)

]
= r(kAh)P̆Gh w̆′�0(h,k) – Phσ̃0/k,

where P̆G(k)
h

: L2(I)→ G(k)
h is a projection onto G(k)

h with respect to the L2 inner product.
We will below that if the norm of w̆′0(h,k) is large enough, even if we take the projection

above, the norm of w̆′0(h,k) after the projection is large enough as well.
Next, we define

S(k)
R ≡

{
f ∈ L2(I)|‖f ‖ = R, f ∈ G(k)

∞
} (

R > ‖Phσ̃0/k‖).

Because the dimension of (G(k)∞ )⊥ is of unity, it holds that S(k)
R �= ∅. We also take a small

ε1 > 0 and sufficiently small h̃ so that

∣
∣
(
f , r(kAh̃)Ph̃u

(
(N – 1)k, ·))∣∣ < ε1 ∀f ∈ S(k)

R .

This is possible if we note

∣
∣
∣
∣
(
f , r(kAh)Phu

(
(N – 1)k, ·))∣∣ –

∣
∣
(
f , r(kA)u

(
(N – 1)k, ·))∣∣∣∣

≤ ‖f ‖∥∥r(kAh)Phu
(
(N – 1)k, ·) – r(kA)u

(
(N – 1)k, ·)∥∥,

and the relationship that holds with v ∈ L2(I) [3]:

∥
∥r(kAh)v – r(kA)v

∥
∥≤ c

(
γ (h) + hr + k

)‖v‖, (6.9)

with r being the one stated right after (6.1), where γ (h) tends to zero as h does. Moreover,
let R > 0 have a sufficiently large value so that the following holds (R should be redefined,
if necessary):

∥
∥r(kA)v0 – Phσ̃0/k

∥
∥ > δ0 ∀v0 ∈ S(k)

R . (6.10)

In order to show that this is possible, we can demonstrate the continuity of the resolvent
r(kA) = (Id + kA)–1 with respect to k, where Id is an identity operator. We can prove this
by using the resolvent equation [39] and the boundedness of r(kA), as presented by Fujita
and Mizutani [21]. Thus, for ε1 > 0 above, if we take a sufficiently small k, we have

∥
∥r(kA)v0 – v0

∥
∥≤ ε1

2
,



Honda Advances in Continuous and Discrete Models         (2023) 2023:43 Page 16 of 45

for v0 ∈ S(k)
R . This yields

∥
∥r(kA)v0

∥
∥≥ R – ε1,

with an arbitrary ε1 > 0. Therefore, if we take R sufficiently large, we arrive at (6.10) and
consequently,

G(k)
h [v0] �= 0 ∀h ∈ (0, min{h1, h̃}),

for this v0. Now, for an arbitrary h2 = 1
a2M with a2 > a1, we define a homotopy mapping

H : L2(I)× [0, 1]→Sh2 :

H(f , s)≡ sDa2,a1 G(k)
h1

f + (1 – s)G(k)
h2

f ,

where s ∈ [0, 1] and Da2,a1 is a a2M × a1M matrix whose components are either 0 or 1.
That is, this matrix is used to translate the image of G(k)

h1
as an element of Ra2M . In virtue

of the arguments presented above, we have

H(f , s) �= �σ0 ∀f ∈ S(k)
R , s ∈ [0, 1].

Then, we have

H(f , 0) = G(k)
h2

f , H(f , 1) = Da2,a1 G(k)
h1

f ,

and H(f , s) is a compact operator for each s because its range has a finite dimension. Owing
to the result of degree theory [87], we can conclude that the equation

G(k)
h2

f = 0

has a solution. Consequently,

B�h2 r(kAh2 )�P̆G(k)
h2

f = B�h2 Ph2 σ̃0/k

has a solution ∀h2 ∈ (0, h1] that satisfies ‖f ‖ ≤ R. If we take �w′0(h2,k) = P̆G(k)
h2

f , this is the

desired solution. �

By using this, we assert the following lemma.

Lemma 4 Let h and k be sufficiently small positive numbers. Then, for an arbitrary �ξ ∈
K ⊂ R

J and ε > 0, there exists an array W = [w(N–1)
p,l ]p,l=1,2,...,L, with which Ũ (N)

h defined in
(6.2) satisfies

∣
∣F(�ξ ) – �w′�0(h,k)Ũ

(N)
h

∣
∣ <

ε

2
. (6.11)
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Proof In fact, based on (6.4) and (6.5), we consider the following equations for W =
[w(N–1)

p,l ]p,l=1,2,...,L.

⎧
⎪⎪⎨

⎪⎪⎩

h
∑L–1

l=2 w(N–1)
p,l �c(l) · �ξ = h�θ (p)

0(h) · �ξ ,

h
∑L–1

l=2 w(N–1)
p,l Phc((N – 1)k, l) + h

∑L
l=1 w(N–1)

p,l = θ
(p)
1(h)

(p = 1, 2, . . . , L).

(6.12)

For each fixed p (1≤ p≤ L), this can be written as an equation for �wp ≡ [w(N–1)
p,l ]l as shown

below:

hTp �wp = θ̆p(h) ≡
(
h�θ (p)

0(h) · �ξ , θ (p)
1(h)

)� ∈R2, (6.13)

where

Tp ≡
[

0 �c(2) · �ξ · · · �c(L–1) · �ξ 0
1 1 + (Phc((N – 1)k, ·))2 · · · 1 + (Phc((N – 1)k, ·))L–1 1

]

∈R2×L.

Thanks to the same argument as in the proof of Lemma 2, we shall show that N(T�p ) =
{0}. In fact, if we recall that Tp is a linear map from R

2 to R
L, if T�p �q = �0 holds with

�q = (q1, q2)�, then, it can be easily observed that q2 = 0 (actually, adding a non-vanishing
Dirichlet boundary condition in (3.2) works here). Regarding q1, if q1 �= 0, all the following
equalities should hold:

�c(l) · �ξ = 0 (l = 2, 3, . . . , L – 1).

However, from (6.3), this means that

[
PhZ ∗ u0(T , ·)]l = 0 (l = 2, 3, . . . , L – 1), (6.14)

which does not hold if we take L sufficiently large. In fact, for an arbitrary ε′ > 0, if we take
h > 0 small enough, we obtain

∥
∥Z ∗ u0(T , ·) – Ph

(
Z ∗ u0(T , ·))∥∥ <

ε′

2
,

and thus, we have

∥
∥Z ∗ u0(T , ·)∥∥≤ ∥

∥Z ∗ u0(T , ·) – Ph
(
Z ∗ u0(T , ·))∥∥ +

∥
∥Ph

(
Z ∗ u0(T , ·))∥∥

≤ ε′

2
+
∥
∥Ph

(
Z ∗ u0(T , ·))∥∥.

But (6.14) implies that if we take h sufficiently small, then we can attain

∥
∥Ph

(
Z ∗ u0(T , ·))∥∥ <

ε′

2
.
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Thus, we have ‖Z ∗ u0(T , ·)‖ < ε′. Because ε′ is arbitrary, we have Z ∗ u0(T , ·) = 0. If we
recall (6.3), this implies

∞∑

j=1

λj

(

ηj,
J∑

q=1

ξqχIq

)

e–λj(N–1)kηj(x) = 0,

from which we obtain λj(ηj,
∑J

q=1 ξqχIq )e–λj(N–1)k = 0, and consequently, (ηj,
∑J

q=1 ξqχIq ) =
0 ∀j = 1, 2, . . . . This means u0 ≡ 0, a contradiction. Thus, we can conclude that �q = �0, which
means that N(T�p ) = {�0}. Thus, (6.13) and consequently (6.12) has a solution. This means
that

�w′�0(h,k)

[

r(kAh)Ũ (N–1)
h + kr(kAh)

[

φ

(

h
L–1∑

l=2

w(N–1)
p,l �c(l) · �ξ

+ h
L–1∑

l=2

w(N–1)
p,l Phc

(
(N – 1)k, l

)
+ h

L∑

l=1

w(N–1)
p,l

)]

p

]

= �σ�0
[
φ
(�σ (m)�

1 �ξ + θ (m))]

m,

holds with W = [w(N–1)
p,l ]p,l=1,2,...,L prescribed. Moreover, recalling (6.3), this is rewritten as

�w′�0(h,k)

[

r(kAh)Ũ (N–1)
h(l) + kr(kAh)

[

φ

(

h
L–1∑

l=2

w(N–1)
p,l Ũ (N–1)

h + h
L∑

l=1

w(N–1)
p,l

)]

p

]

= �σ�0
[
φ
(�σ (m)�

1 �ξ + θ (m))]

m.

If we further recall (6.2), this implies that

�w′�0(h,k)
[
Ũ (N)

h + kr(kAh)[Phφ1 – φ1]p
]

= �σ�0
[
φ
(�σ (m)�

1 �ξ + θ (m))]

m,

where φ1 = φ(h
∑L–1

l=2 w(N–1)
p,l Ũ (N–1)

h(l) + h
∑L

l=1 w(N–1)
p,l ).

Note that ‖�w′0(h,k)‖ is bounded with respect to (h, k) thanks to the proof of Lemma 3.
Thus, if we take k small enough, we can bound the second term of the left-hand side above
small enough. This, together with Lemma 1, yields the desired statement. �

By using the solution of (6.13), we construct a function w̄1(t, x, y)

w̄1(t, x, y) =

⎧
⎨

⎩

w(N–1)
p,l on ((N – 1)k, Nk]× Ip × Il (p, l = 1, 2, . . . , L),

0 on (0, (N – 1)k].
(6.15)

By noting that w̄1 ∈ L2(HT ), we set ū(t, x)≡ u(t, x; w̄1, �ξ ), which solves (3.3) with w1 = w̄1.
This neural network with w̄1 and ū can be regarded as a forward neural network with
(6.2), which is a kind of RBF network with a Gaussian kernel [7, 84]; in our case, however,
we use the fundamental solution with the Dirichlet condition. We have a similar result to
Lemma 3 for w̄1 as well.
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Corollary 2 For a certain R′ > 0, k and h2 > 0, we have a solution �wp to (6.13) that satisfies

‖�wp‖ ≤ R′ (p = 1, 2, . . . , L),

for ∀h ∈ (0, h2]. Thus, for w̄1 defined in (6.15), we have

∥
∥w̄1(t, ·, ·)∥∥L2(I×I) ≤ R′, t ∈ ((N – 1)k, T

]
.

Remark 9 Regarding the mapping degree of a map between two spaces with different di-
mensions, one can refer to, for instance, the work of [55].

7 Proof of Theorem 3
Now, we present Lemma 5 below, which is crucial for the proof of the main theorem.
It assures that we can make Ũ (N)

h and ū(T) be sufficiently close if we take h and k small
enough while maintaining some relationship. In its proof, we insert another variable V (N)

h ,
with which we can prove the lemma by using the estimate of the fundamental solution of
heat equation.

After proving Lemma 5, we can easily prove Theorem 3, by using Lemmas 3 and 4 as
well. First, we note that we have the estimate of φ(·) just we did in the proof of Theorem 2
right above (B.18) in Appendix B. Combining it with the a-priori estimate there, we can
estimate the left-hand side from above in the form

∥
∥
∥
∥φ

(∫

I
w1(·, ·, y)v̆(·, y) dy +

∫

I
w1(·, ·, y) dy

)∥
∥
∥
∥

L2(IT )
≤ c

(|u0|
)
, (7.1)

where c(|u0|) is a positive constant that depends on |u0|.

Lemma 5 {Ũ (n)
h }n defined in (6.2) satisfies:

∥
∥Ũ (N)

h – ū(T)
∥
∥≤ d(k, h),

where d(k, h) is a constant that is independent of w1, and tends to 0 when k and h tend to
0 satisfying h2 = o(log( T

k )–1).

Proof The overview of the proof of this lemma goes as follows. Because ū is a continuous
variable, while Ũ (N)

h is a discretized one, we shall insert another variable V (N)
h , and estimate

both ‖V (N)
h – ū(T)‖ and ‖V (N)

h – Ũ (N)
h ‖, to obtain the desired result. For the first one, we

shall estimate the accuracy of the discrete approximation of a continuous solution by its
discretization. For the latter one, we shall make use of the property of Padé approximation.

On the one hand, based on Duhamel’s principle, ū satisfies the following:

ū(Nk, x) = Z ∗ ū
(
(N – 1)k, ·) +

∫ Nk

(N–1)k
ds
∫

I
Z(Nk – s, x, z)

× φ

(∫

I
w̄1(s, z, y)ū(s, y) dy +

∫

I
w̄1(s, x, y) dy

)

dz.
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On the other hand, {Ũ (n)
h }n defined in (6.2) satisfies the following:

Ũ (N)
h = r(kAh)Phū

(
(N – 1)k, ·)

+ kr(kAh)

[

Phφ

( L–2∑

l=1

w(N–1)
·,l Ũ (N–1)

h(l) + h
L∑

l=1

w(N–1)
·,l

)]

.

We also consider

V (n)
h ≡ r(kAh)nPhu0

+ k
n∑

j=1

r(kAh)(n–j)

× Ph

[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]

.

Note that w̄1 is a piecewise constant function from its construction, thus the right-hand
side above makes sense. Recalling T = Nk, we first consider ‖ū(T) – V (N)

h ‖. We have

∥
∥ū(T) – V (N)

h
∥
∥ =

∥
∥Z(Nk) ∗ u0 – r(kAh)N Phu0

∥
∥

+

∥
∥
∥
∥
∥

∫ Nk

0
ds
∫

I
Z(Nk – s, ·, z)

× φ

(∫

I
w̄1(s, z, y)ū(s, y) dy +

∫

I
w̄1(s, z, y) dy

)

dz

– k
N∑

j=1

r(kAh)N–j

× Ph

[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]∥∥
∥
∥
∥

. (7.2)

Based on the estimate presented by Fujita and Mizutani [21], we have

∥
∥Z(Nk) ∗ u0 – r(kAh)N Phu0

∥
∥≤ c81(h2 + k)

T
|u0|, (7.3)

where c81 is a positive constant. On the other hand, regarding the second term of the right-
hand side of (7.2), we have

∥
∥
∥
∥
∥

∫ Nk

0
ds
∫

I
Z(Nk – s, ·, z)

× φ

(∫

I
w̄1(s, z, y)ū(s, y) dy +

∫

I
w̄1(s, z, y) dy

)

dz

– k
N∑

j=1

r(kAh)N–j

× Ph

[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]∥∥
∥
∥
∥
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≤
∥
∥
∥
∥
∥

∫ (N–1)k

0
ds
∫

I
Z(Nk – s, ·, z)

× φ

(∫

I
w̄1(s, z, y)ū(s, y) dy +

∫

I
w̄1(s, z, y) dy

)

dz

– k
N–1∑

j=1

∫

I
Z
(
(N – j)k, ·, z

)

× φ

(∫

I
w̄1(jk, z, y)ū(jk, y) dy +

∫

I
w̄1(jk, z, y) dy

)

dz

∥
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ Nk

(N–1)k
ds
∫

I
Z(Nk – s, ·, z)

× φ

(∫

I
w̄1(s, z, y)ū(s, y) dy +

∫

I
w̄1(s, z, y) dy

)

dz

– kPh

[

φ

(∫

I
w̄1(Nk, ·, y)ū(Nk, y) dy +

∫

I
w̄1(Nk, ·, y) dy

)]∥
∥
∥
∥

+ k

∥
∥
∥
∥
∥

N–1∑

j=1

∫

I
Z
(
(N – j)k, ·, z

)

× φ

(∫

I
w̄1(jk, z, y)ū(jk, y) dy +

∫

I
w̄1(jk, z, y) dy

)

dz

–
N–1∑

j=1

r(kAh)N–j

× Ph

[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]∥∥
∥
∥
∥

≡
3∑

j=1

Jj.

Regarding the estimate of J1, let us recall (6.15). Then, following the direction of Hoff and
Smoller [30], we have

J1 ≤ kφ(0)
∫ (N–1)k

0
ds
∫

I

∂Z
∂t

(Nk – s, x, z) dz

≤ kφ(0)
∫ (N–1)k

0
(Nk – s)– 3

2 ds
∫

I
e– (x–z)2

Nk–s dz

≤ 2kφ(0)
(

1√
T

–
1√
k

)

.

On the other hand,

J2 ≤
∥
∥
∥
∥

∫ Nk

(N–1)k
ds
∫

I
Z(Nk – s, ·, z)

× φ

(∫

I
w̄1(s, z, y)ū(s, y) dy +

∫

I
w̄1(s, z, y) dy

)

dz
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– kφ

(∫

I
w̄1(T , ·, y)ū(T , y) dy +

∫

I
w̄1(T , ·, y) dy

)∥
∥
∥
∥

+
∥
∥
∥
∥kφ

(∫

I
w̄1(T , ·, y)ū(T , y) dy +

∫

I
w̄1(T , ·, y) dy

)

– kPh

[

φ

(∫

I
w̄1(T , ·, y)ū(T , y) dy +

∫

I
w̄1(T , ·, y) dy

)]∥
∥
∥
∥

= k

∥
∥
∥
∥
∥

1
k

∫ Nk

(N–1)k
ds
∫

I
Z(Nk – s, x, z)

× φ

(
∑

l

w(N)
k,l

∫

Il

ū(s, y) dy +
L∑

l=1

w(N)
k,l

)

dz

– φ

(
∑

l

w(N)
·,l

∫

Il

ū(T , y) dy +
L∑

l=1

w(N)
k,l

)∥
∥
∥
∥
∥

+ c
(|u0|

)
k.

Note that for an integrable function f (s) of s, we have

1
k

∫ Nk

(N–1)k
f (s) ds = f (Nk) + o(k).

Thus, we have

1
k

∫ Nk

(N–1)k
ds
∫

I
Z(Nk – s, x, z)φ

(
∑

l

w(N–1)
·,l

∫

Il

ū(T , y) dy +
L∑

l=1

w(N–1)
k,l

)

dz

= φ

(
∑

l

w(N–1)
·,l

∫

Il

ū(T , y) dy +
L∑

l=1

w(N–1)
k,l

)

+ o(k),

which yields |J2| ≤ c82(k + ko(k)) with some c82 > 0. As for the estimate of J3, applying (7.3)
again together with (7.1) and Corollary 2, we have

‖J3‖ = k

∥
∥
∥
∥
∥

N–1∑

j=1

{∫

I
Z
(
(N – j)k, ·, z

)

× φ

(∫

I
w̄1(jk, z, y)ū(jk, y) dy +

∫

I
w̄1(jk, z, y) dy

)

dz

– r(kAh)N–j

× Ph

(

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

))}∥∥
∥
∥
∥

≤ c81
(
h2 + k

)
N–1∑

j=1

1
(N – j)

∣
∣
∣
∣φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)∣
∣
∣
∣.
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Recalling (6.15), the right-most hand side is estimated by

c81
∣
∣φ(0)

∣
∣
(
h2 + k

)
N–1∑

j=1

1
(N – j)

= c81
∣
∣φ(0)

∣
∣
(
h2 + k

)
{

log(N – 1) +
1

2(N – 1)
+

1
2

+
∫ N–1

1

P1(t)
t2 dt

}

,

where P1(t) = {t} – 1
2 with {x} being the fractional part of its argument, and we have used

the Euler–Maclaurin formula [38]. Combining these, under the assumption of the lemma,
we arrive at the following:

∥
∥ū(T) – V (N)

h
∥
∥≤ c(h, k), (7.4)

where c(h, k)→ 0 as h, k → 0 satisfying h2 = o(log(T/k)–1). Next, we estimate ‖V (N)
h –

Ũ (N)
h ‖. Recall the following equalities.

Ũ (N–1)
h = Phe–(N–2)kAu0

+ kPh

N–1∑

j=1

e–(N–j–1)kA

×
[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]

,

V (N–1)
h ≡ r(kAh)N–1Phu0

+ k
N–1∑

j=1

r(kAh)N–j–1

× Ph

[

φ

(∫

I
w̄1(jk, x, y)ū(jk, y) dy +

∫

I
w̄1(jk, x, y) dy

)]

.

(7.5)

Thus, we have

∥
∥Ũ (N–1)

h – V (N–1)
h

∥
∥≤ ∥

∥Phe–(N–2)kAu0 – r(kAh)N–2Phu0
∥
∥

+ k
N–2∑

j=1

∥
∥
∥
∥Phe–(N–j–1)kA

×
[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]

– r(kAh)N–j–1

× Ph

[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]∥
∥
∥
∥. (7.6)
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Regarding the first term of the right-hand side of (7.6), we have the following inequality.

∥
∥Phe–(N–2)kAu0 – r(kAh)N–2Phu0

∥
∥

≤ ∥
∥Phe–(N–2)kAu0 – e–(N–2)kAu0

∥
∥

+
∥
∥e–(N–2)kAu0 – r(kAh)N–2Phu0

∥
∥. (7.7)

Because N is sufficiently large, we have e–(N–2)kAu0 ∈ H2(I). For an arbitrary ε2 > 0, if we
take h sufficiently small, we can obtain

‖Phf – f ‖ < ε2, (7.8)

for a uniformly continuous function f in general. Moreover, we have

∥
∥e–(N–2)kAu0 – r(kAh)N–2Phu0

∥
∥≤ c81

(
h2 + k

)|u0|.

By combining this and (7.8), and applying to (7.7), we obtain the estimate

∥
∥Phe–(N–2)kAu0 – r(kAh)N–2Phu0

∥
∥≤ c

(|u0|
)(

h2 + k
)

+ ε2.

Regarding the second term of the right-hand side of (7.6), we have

k
N–2∑

j=1

∥
∥
∥
∥Phe–(N–j–1)kA

×
[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]

– r(kAh)N–j–1

× Ph

[

φ

(∫

I
w̄1(jk, ·, y)ū(jk, y) dy +

∫

I
w̄1(jk, ·, y) dy

)]∥
∥
∥
∥

≤ kφ(0)

{N–2∑

j=1

∥
∥Phe–(N–j–1)kA1 – e–(N–j–1)kA1

∥
∥

+ k
N–2∑

j=1

∥
∥e–(N–j–1)kA1 – r(kAh)N–j–1Ph1

∥
∥

}

≤ ε2φ(0)(T – 2k) + c81φ(0)
N–2∑

j=1

h2 + k
N – j – 1

≤ ε2Tφ(0) + c81φ(0)
(
h2 + k

)
{

1 + log

(
T
k

– 2
)}

. (7.9)

Thus, (7.6), (7.7), and (7.9) yield

∥
∥Ũ (N–1)

h – V (N–1)
h

∥
∥≤ c

(|u0|
)(

h2 + k
)
{

1 + log

(
T
k

– 2
)}

+ c84ε2 + ε2Tφ(0). (7.10)
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Next, we proceed to the estimation of ‖Ũ (N)
h – V (N)

h ‖. Note that V (N)
h satisfies the following

recurrence relation:

V (N)
h = r(kAh)V (N–1)

h

+ kr(kAh)Ph

[

φ

(∫

I
w̄1(Nk, ·, y)ū(Nk, y) dy

+
∫

I
w̄1(Nk, ·, y) dy

)]

.

Then, by using (6.2), we observe that

∥
∥Ũ (N)

h – V (N)
h

∥
∥ = r(kAh)

(
Ũ (N–1)

h – V (N–1)
h

)

+ kr(kAh)Ph

[

φ

(

h
L–1∑

l=2

w(N–1)
·,l Ũ (N–1)

h(l) + h
L∑

l=1

w(N–1)
·,l

)

– φ

(∫

I
w̄1(Nk, ·, y)ū(Nk, y) dy

+
∫

I
w̄1(Nk, ·, y) dy

)]

. (7.11)

Recalling (6.15), we have that h
∑L

l=1 w(N–1)
·,l =

∫

I w̄1(Nk, ·, y) dy, and

∫

I
w̄1
(
(N – 1)k, x, y

)
dy =

L∑

l=1

h
∫

Il

w̄1
(
(N – 1)k, x, y

)
dy

= h
L∑

l=1

w(N–1)
p,l (x ∈ Ip).

Similarly, if we recall the definitions of Ph, we have

Ũ (N–1)
h(l) =

[
Phū

(
(N – 1)k, ·)]l =

1
h

∫

Il

ū
(
(N – 1)k, y

)
dy.

Thus, we have

φ

(

h
L–1∑

l=2

w(N–1)
·,l Ũ (N–1)

h(l) + h
L∑

l=1

w(N–1)
·,l

)

= φ(
∫

I
w̄1((Nk, ·, y)ū

(

(Nk, y) dy +
∫

I
w̄1(Nk, ·, y) dy

)

,

which implies that the second term of (7.11) vanishes. Thus, owing to this and (7.10), we
can estimate (7.11) as shown below.

∥
∥r(kAh)

(
Ũ (N–1)

h – V (N–1)
h

)∥
∥≤ c

(|u0|
)(

h2 + k
)
{

1 + log

(
T
k

– 2
)}

+ c84ε2 + ε2Tφ(0).
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Regarding the second term on the right-hand side of (7.11), let us recall (6.15) and the
definition of Ph to obtain:

∫

I
w̄1
(
(N – 1)k, x, y

)
dy =

L∑

l=1

h
∫

Il

w̄1
(
(N – 1)k, x, y

)
dy

= h
L∑

l=1

w(N–1)
p,l (x ∈ Ip).

Similarly, if we recall the definitions of Ph, Ũ (N–1)
h(l) and

Ũ (N–1)
h(l) =

[
Phū

(
(N – 1)k, ·)]l =

1
h

∫

Il

ū
(
(N – 1)k, y

)
dy,

we observe

h
L–1∑

l=2

w(N–1)
p,l Ũ (N–1)

h(l) =
∫

Il

ū
(
(N – 1)k, y

)
dy.

Thus, we arrive at the estimate:

∥
∥Ũ (N)

h – V (N)
h

∥
∥≤ c

(|u0|
)(

h2 + k
)
{

1 + log

(
T
k

– 2
)}

+ ε2 + ε2Tφ(0).

Finally, by combining (7.2) and above, we arrive at the desired inequality of Lemma 5 be-
cause ε2 > 0 is arbitrary. �

Owing to Lemmas 3, 4, and 5, if the spatio-temporal mesh is sufficiently fine and the
relationship h2 = o(log( T

k )–1) is satisfied, we can approximate the solution u of (3.3) with
the fully discretized one, for example, ((�x)i, (�t)i), regardless of w1. This leads us to the
proof of Theorem 3 in Sect. 4. Actually, owing to Lemma 4, we can assume that ‖�w′0(h,k)‖ ≤
R with some R > 0. Then, we have

∣
∣
∣
∣F(ξ ) –

∫

I
w̄0(x)ū(T , x; ξ ) dx

∣
∣
∣
∣≤

∣
∣F(ξ ) – �w′�0(h,k)Ũ

(N)
h

∣
∣

+
∣
∣
∣
∣�w′�0(h,k)Ũ

(N)
h –

∫

I
w̄0(x)ū(T , x; ξ ) dx

∣
∣
∣
∣

≤ ε

2
+ Rc(h, k). (7.12)

Thus, if h and k are set to have sufficiently small values maintaining the relationship h2 =
o(log( T

k )–1), the right-hand side of (7.12) can be less than ε. This proves Theorem 3.

Remark 10 The estimate (7.12) above is observed for a fixed value of ν . Actually, the esti-
mate (7.3) in Fujita and Mizutani [21] is obtained by assuming ν = 1. In the general case,
let us introduce a transform x̄ = x/

√
ν . Then, a problem

ut – νuxx = 0 in IT ,
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with an initial value u0(x) for a function u(t, x) is transformed into the form:

ūt – ūx̄x̄ = 0 in (0, 1/
√

ν)× (0, T),

for a function ū(t, x̄) with an initial value ū0(x̄) = u0(x). We can easily find that

‖ū0‖2
L2(0,1/

√
ν) =

1√
ν
‖u0‖2

L2(I),

which means that the right-hand side of (7.12) diverges in case ν→ 0. Therefore, we leave
the discussion concerning the convergence of the universal approximation property we
have proved here when ν→ 0 as an open problem.

8 Capacity and learnability of the model
In the proof of universal approximation property, we fixed the values of w1 up to the time
right before the terminal moment. However, this does not mean that the temporal di-
rection is not necessary in our model. Universal approximation property is not the only
property that a learner should possess; indeed, the learnability and generalization perfor-
mance are also important. In this section, we will observe that our model possesses the
learnability in some sense. In doing so, we will also observe that the estimations to deduce
the learnability depend on time.

In this regard, we will discuss other aspects of the proposed model in the sequel. First, we
will address its learnability, specifically focusing on classification performance metrics or
classes of functions, such as the VC-dimension and Glivenko-Cantelli class. Our discus-
sion is limited to binary classifications. Although we discuss VC-dimension, we delegate
its definition to some monographs [8, 65]. Finally, we present the results of our numerical
experiments.

8.1 Learnability
In this section, we discuss the learnability of the proposed model. Hereafter, we will often
denote the solution to (3.3) (or equivalently, (3.1)–(3.2)) as u(t, x; w1, �ξ ,ν) for clearly indi-
cating its dependence on w1, �ξ , and ν . Then, given the terminal moment T and diffusion
coefficient ν , we define a hypothesis set. This set comprises functions on R

J realized by
our model:

F (ν)
T ≡

{

�ξ �−→
∫

I
w0(x)u(T , x; w1�ξ ,ν) dx

∣
∣
∣w0 ∈ L2(I), w1 ∈ L2(HT )

}

. (8.1)

Let us discuss the learnability of F (ν)
T . In the following, the VC-dimension of a hypoth-

esis set F is denoted as VC(F ). Our first result is

Theorem 4 Suppose that the assumptions of Theorem 3 are satisfied. Let T and ν be ar-
bitrary positive numbers. Subsequently, for our proposed PDE-based neural network,

VC
(
F (ν)

T
)

= +∞.

Proof Suppose that we are given an arbitrary N ∈ N and a dataset {�ξi, yi}Ni=1 ∈ RJ × {±1}.
Then, let us take ε > 0 so that B(�ξi; ε)∩B(�ξi; ε) = φ(i �= j). In virtue of Theorem 3, by suitably
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taking w0 and w1, we can make a continuous function f ∈ F (ν)
T which associates each

element in B(�ξi; ε) with yi for all i = 1, 2, . . . , N . This means that the set F (ν)
T shatters the

given dataset with an arbitrary N ∈N. �

Theorem 4 also implies that we require an infinite amount of training data, which is
practically impossible, and that our model is not PAC-learnable in the classical sense [65].
However, using the concept of a structural risk minimization (SRM) scheme, we can still
make it nonuniformly learnable [65]. A relaxation of the concept of learnability of this kind
has also been applied to support vector machines [8].

To discuss this in more detail, we introduce certain notations. In general, the “risk” over
a loss function l(·) and a general hypothesis set F is defined by the following:

LD(h) = Ez∼D
[
l(h; z)

]
, (8.2)

where D is an unknown data-generating distribution defined as follows: Z ≡ X × {±1},
with X being a set of inputs. The notation z∼D means that a random variable z is drawn
from D. Similarly, we use the notation S ∼ Dm to denote that a dataset S of sample size
m is i.i.d. drawn from D. If some h ∈ F attains (8.2), we call it a Bayesian hypothesis.
However, we usually do not know the actual distribution D. For this reason, we usually try
to minimize the surrogate quantity, which is called the empirical risk:

LS(h)≡ 1
m

m∑

i=1

l(h; �ξi, yi),

where S = {(�ξi, yi)}mi=1 ⊂ Z represents the training data drawn from the original unknown
distribution D. This framework is called empirical risk minimization (ERM). Utilizing the
law of large numbers, LS(h) converges to the true risk as m→ +∞ for each h. We also
define

ĥS = ERMF (S) ∈ argmin
h∈F

LS(h),

where ERMF (S) denotes a hypothesis returned as (one of ) the minimizer(s) of the empir-
ical risk under training dataset S.

To evaluate the “goodness” of the training data, we define the following concept.

Definition 1 A training set S is called ε-representative with respect to the domain Z ≡
X × {±1}, hypothesis set F , loss function l(·), and distribution D if the following holds.

∣
∣LS(h) – LD(h)

∣
∣≤ ε ∀h ∈F .

To determine the conditions under which the ERM scheme works well, we need the
following definition (please refer to [65], Definition 4.3).

Definition 2 We say that a hypothesis set F possesses the uniform convergence prop-
erty with respect to the domain Z and loss function l(·) if there exists a function mUC

F :
(0, 1)2→ N, which is called the sample complexity, such that for each ε, δ ∈ (0, 1) and for
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every probability distribution D over Z , if S is a sample of m≥mUC
F (ε, δ) elements that are

drawn i.i.d. according to D, then, with a probability of at least 1 – δ, S is ε-representative.

A well-known theorem states that (see [65], Theorem 6.7) the uniform convergence
property is equivalent to the fact that the VC-dimension of the hypothesis set is finite.
Thus, together with Theorem 4 above, our hypothesis set F (ν)

T does not satisfy the uni-
form convergence property itself (consequently, neither PAC nor agnostic PAC is learn-
able, although we omit the definitions of these terms here). However, we can also consider
a relaxed concept of learnability [65].

Definition 3 A hypothesis set F is said to be non-uniformly learnable if there exists
a learning algorithm A that associates a dataset S with a hypothesis A(S) ∈ F and a
function mF : (0, 1)2 ×F → N, such that for every ε, δ ∈ (0, 1), and for every h ∈F , if
m≥mF (ε, δ, h) then for every distribution D over X ×{±1}, with a probability of at least
1 – δ over the choice of S∼Dm, it is ensured that

LD
(
A(S)

)≤ LD(h) + ε.

The following theorem [65] describes an important characterization of nonuniform
learnability.

Theorem 5 Let F be a hypothesis set that can be written as a countable union of the
individual hypothesis sets.

F =
⋃

n∈N
Fn,

where each Fn exhibits a uniform convergence property. Then, F is nonuniformly learn-
able.

Returning to our specific case, we can show that our hypothesis set F (ν)
T defined in (8.1)

is nonuniformly learnable. To demonstrate this, we will introduce a sequence of hypothesis
sets.

F (ν)
T (n)≡

{

�ξ �−→
∫

I
w0(x)u(T , x; w1, ·,ν) dx

∣
∣
∣‖w0‖L2(I),‖w1‖L2(HT ) ≤ n

}

(n = 1, 2, . . .). (8.3)

Evidently, these sets form the following relationships.

F (ν)
T (1)⊂F (ν)

T (2)⊂ . . . ,

F (ν)
T =

∞⋃

n=1

F (ν)
T (n) ∀T ,ν > 0. (8.4)
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Next, we demonstrate that each set F (ν)
T (n) in (8.4) satisfies uniform convergence property.

We also use the notations

L (n)≡ l̃ ◦F (ν)
T (n)

=
{

(�ξ , y) �−→ l̃
(∫

w0(x)u(T , x; w1, �ξ ,ν) dx, y
)∣
∣
∣‖w0‖L2(I),‖w1‖L2(HT ) ≤ n

}

(n = 1, 2, . . .).

To assess the uniform convergence property of F (ν)
T (n) with respect to the loss func-

tion l̃(·), it is necessary and sufficient to check that the set L (n) is a Glivenko–Cantelli
class [65].

Hereafter, we denote a probability space as (�,A , P), where � is the sample space, A ,
the σ -algebra with respect to probability measure P. We also denote a corresponding em-
pirical measure as Pm(A) = 1

m
∑m

j=1 δ�ξj
(A) for a Borel set A with δ(·) being Dirac measure,

and define

Pf =
∫

�

f dP, ‖Pm – P‖F ≡ sup
f∈F

√
m|Pmf – Pf |.

Definition 4 Given a probability space (�,A , P) and a set of integrable real-valued func-
tions F , we say that F is a Glivenko–Cantelli class for P if and only if

‖Pm – P‖F → 0 (m→ +∞)

holds almost uniformly.

In case of binary classification, being a Glivenko–Cantelli class is equivalent to satisfying
the uniform convergence property [65]. Moreover, the following theorem is known [16].
Here, Id = [0, 1]d with d ∈N.

Theorem 6 Let K > 0 and F1,K (Id) be a set of the Lipschitz continuous functions on Id :

F1,K
(
Id) =

{

f ∈ C
(
Id)

∣
∣
∣ sup

x

∣
∣f (x)

∣
∣ + sup

x �=y

|f (x) – f (y)|
‖x – y‖

Rd
≤ K

}

.

Then, F1,K (Id) is a Glivenko–Cantelli class for any probability measure P on Id .

Thus, if we impose Lipschitz continuity on the loss function, we can guarantee that the
set L (n) becomes a Glivenko–Cantelli class for each n.

Theorem 7 Suppose that the assumptions of Theorem 3 hold. Let T > 0 be arbitrary, Z =
X ×±1 with X ⊂R

J being compact, and a loss function l(·) : Z × L2(I)× L2(HT )→R of
the form

l
(
(�ξ , y), w0, w1

)
= l̃

(∫

I
w0(x)u(T , x; w1, �ξ ,ν) dx, y

)

with a function l̃(a, y) : R× R→ R being Lipschitz continuous with respect to (a, y) with
Lipschitz coefficient L. Then, the set L (n) is a Glivenko–Cantelli class.
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Proof The following is a simple denotation: ‖w0‖L2(I), ‖w1‖L2(HT ) by |w0|, |w1|, respec-
tively. Without losing generality, we can assume that X = IJ . Under the assumptions of the
theorem, we have

∣
∣l
(
(�ξ1, y1), w0, w1

)
– l

(
(�ξ2, y2), w0, w1

)∣
∣

≤ L
{

|y1 – y2| +
∣
∣
∣
∣

∫

I
w0(x)u(t, x; w1, �ξ1,ν) –

∫

I
w0(x)u(t, x; w1, �ξ2,ν)

∣
∣
∣
∣

}

. (8.5)

In order to verify the continuity of u(T , x; w1, �ξ ,ν) with respect to �ξ , we appeal to a standard
energy estimate. Let us denote u(t, x; w1, �ξi,ν) (i = 1, 2) by ui(t, x) and ũ(t, x) ≡ u1(t, x) –
u2(t, x). Then, we have

1
2

d
dt
∣
∣ũ(t, ·)∣∣2 +

ν

2
∣
∣∇ũ(t, ·)∣∣2 ≤ L

∥
∥w1(t, ·, ·)∥∥L2(I×I)

∣
∣ũ(t, ·)∣∣2, t ∈ (0, T].

By the Gronwall’s inequality, we obtain [74]

∣
∣ũ(T , ·)∣∣2 ≤ ∣

∣ũ(0, ·)∣∣2en
√

T . (8.6)

By noting |u(0; �ξi)|2 = 1
J ‖�ξi‖2

RJ , and consequently, |ũ(0)|2 = 1
J ‖�ξ1 – �ξ2‖2

RJ , and combining
(8.5) and (8.6), we obtain

∣
∣l(�ξ1, y1) – l(�ξ2, y2)

∣
∣≤ L

(

1 +
nLe

n
√

T
2√

J

)
(|y1 – y2| + ‖�ξ1 – �ξ2‖RJ

)
.

By Theorem 6, this implies that L(n) forms a Glivenko–Cantelli class. �

Theorem 7 implies that our model achieves uniform convergence property of the hy-
pothesis set under the boundedness of ‖w0‖L2(I) and ‖w1‖L2(HT ) and the compactness of
the input space X with which D is defined. Thus, for each n ∈N, we establish that F (ν)

T (n)
has a uniform convergence property with respect to this l(·) and D.

Before introducing another theorem, let us present a known lemma [80] concerning the
covering number N(·) and bracketing number N[](·). We delegate the definitions of these
quantities to other references (see, for instance, [16, 25, 80]).

Lemma 6 Let F = {ft|t ∈ T } be a class of functions defined on a set X satisfying Lipschitz
continuity in the index parameter:

∣
∣fs(x) – ft(x)

∣
∣≤ d(s, t)F(x) ∀x ∈X ,∀s, t ∈ T , (8.7)

for some fixed function F(·), where d(·, ·) is a metric in the index space T . Then, for any
norm ‖ · ‖, N[](2ε‖F‖,F ,‖ · ‖)≤N(ε,T , d).

We also introduce the following lemma concerning the metric entropy of a set of func-
tions.
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Lemma 7 Let BM ≡ {u ∈H1(I)|‖u‖H1(I) ≤M}. Then, BM is relatively compact in L2(I) and
satisfies

log N
(
ε, BM, L2(I)

)≤ KM
ε

∀ε > 0,

where K is a constant.

Proof This lemma can be proved if we take p = q = 2 in Theorem 4.3.36 of [25] and note
that the inclusion of function spaces H1(I) ⊂ B1,W

2∞ (I), where B1,W
2∞ (I) is the Besov space

defined in [25]. �

In the optimization procedure, it is often the case that w0 is determined depending on
w1, and consequently u(T , x; w1). Based on Lemmas 6 and 7, we can assert the following
theorem.

Theorem 8 Under the assumptions of Theorem 7, suppose that l̃(a, y) is Lipschitz con-
tinuous with respect to its first argument a and w0 can be determined as a functional of
u(T , x; w1): w0 = w0(u(T , x; w1)) and satisfies

∥
∥w0

(
u(T , ·; w1)

)
– w0

(
u
(
T , ·; w′1

))∥
∥

L2(I) ≤ Lw
∥
∥u(T , ·; w1) – u

(
T , ·; w′1

)∥
∥

L2(I),

with some Lw > 0. Then, the the set L (n) is a Glivenko–Cantelli class.

Proof Let us simply denote w0 = w0(u(T , x; w1)) and w0(x)′(x) = w0(u(T , x; w′1)). We first
show that

∣
∣
∣
∣l̃
(∫

I
w0(x)u(T , x; w1, �ξ ,ν) dx, y

)

– l̃
(∫

I
w′0(x)u

(
T , x; w′1, �ξ ,ν

)
dx, y

)∣
∣
∣
∣

≤ c(ν)
T
∥
∥u(T , ·; w1, �ξ ,ν) – u

(
T , ·; w′1, �ξ ,ν

)∥
∥

L2(I), (8.8)

where c(ν)
T > 0 is some constant depending on T and ν . Here, we have used the assumption

on w0 as well as the assumption ‖w0‖L2(I) ≤ n, and the boundedness of u(T , ·), which can
be derived as follows.

Applying the standard energy estimate to (3.3) yields the following equation:

1
2

d
dt
∣
∣u(t, ·; w1, �ξ ,ν)

∣
∣2 +

ν

2
∣
∣∇u(t, ·; w1, �ξ ,ν)

∣
∣2

≤ 2L
∥
∥w1(t, ·, ·)∥∥L2(I×I)

∣
∣u(t)

∣
∣2 +

1
ν

(
2L
∥
∥w1(t, ·, ·)∥∥L2(I×I) +

√
2c1

)2.

By introducing the notation c1 = |φ(0)|2, together with Gronwall’s inequality, we obtain
[74]

∣
∣u(T , ·; w1, �ξ ,ν)

∣
∣2 ≤

{
∣
∣u(0)

∣
∣2 +

2
ν

∫ T

0

(
2L
∥
∥w1(τ , ·, ·)∥∥L2(I×I) +

√
2c1

)2 dτ

}

× exp

(

4L
∫ T

0

∥
∥w1(τ , ·, ·)∥∥L2(I×I) dτ

)

. (8.9)
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By noting |u(0; �ξ )|2 = 1
J ‖�ξ‖2

RJ , and together with (8.9), we obtain the following:

∣
∣u(T , ·; w1, �ξ ,ν)

∣
∣2 ≤

{
1
J
‖�ξ‖2

RJ +
2
ν

(2nL + c1
√

2T)2
}

exp
(
4nLT

1
2
)
.

Moreover, we can estimate the right-hand side of (8.8) (we omit the procedure of this
estimate, for it is quite similar to the deduction of (8.6)). This, combined with (8.8), implies
that the assumption of Lemma 6 is satisfied if we regard L(n) as a set of functions indexed
by a set of functions of the form u(T , ·; w1) ∈H1(I). Indeed, in this case, (8.7) holds, where
d(·, ·) is L2(I)-norm and F(x) is a constant. Thus, Lemma 6 implies N[](2εc(ν)

T ,L(n), | · |)≤
N(ε,BM

H1(I),‖ · ‖L2(I))≤ KM
ε

, where BM
H1(I) denotes a ball in H1(I) with radius M. Because a

finite bracketing number implies that the function space is a Glivenko-Cntelli class, this
completes the proof. �

Remark 11 Note that in the proof of Theorem 8, the estimate above depends on T and
ν , which implies that the generalization performance may depend on them. As a special
case, when φ(·) is bounded, we obtain the following:

∣
∣u(T , ·; w1, �ξ ,ν)

∣
∣2 ≤ e–νT‖�ξ‖2

RJ + ν–1(1 – e–νT),

which implies that the increase of T may lead to a smaller covering number.

We have seen that under some conditions, L (n) is a Glivenko–Cntelli class, and
consequently, F (ν)

T (n) has a finite VC-dimension and sample complexity, say dn and
mUC

F (ν)
T (n)

(ε, δ), respectively. To examine nonuniform learnability of F (ν)
T , let us consider

εn(m, δ) = min
ε∈(0,1)

{
mUC

F (ν)
T (n)

(ε, δ)≤m
}

.

Then, it clearly holds that for each n ∈N.

∣
∣LD(h) – LS(h)

∣
∣≤ εn(m, δ) ∀h ∈F (ν)

T (n).

In addition, if we consider a family of functions w(n) : N → [0, 1] that satisfies
∑∞

n=1 w(n)≤ 1, we have the following approach called structural risk minimization (SRM)
(Algorithm 1) [65]:

Algorithm 1 SRM scheme
Require: Training dataset {(�ξj, yj)}mj=1 ∼ Dm, confidence δ, and a sequence {w(n)}n that

satisfies
∑

n w(n)≤ 1
Ensure: h ∈ argminh∈F [LS(h) + εn(h)(m, δw(n(h)))]

n = 1
while n < N ′ do

n⇐ n + 1
The value of the loss function can be determined using the current parameter values.
εn(m, δ)←minε∈(0,1){mUC

F
(ν)
T (n)

(ε, δ)≤m}
end while
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Theorem 9 Let F be a hypothesis class, such that F =
⋃

n Fn, where each Fn has uni-
form convergence property with sample complexity mUC

Fn
. Let w : N→ [0, 1] be defined as

w(n) = 6/n2π2. Then, F becomes nonuniformly learnable using the SRM scheme at a rate

mNUC
F (ε, δ, h)≤mUC

Fn

(
ε

2
,

6δ

(πn(h))2

)

.

Theorem 9 with Fn replaced by l̃ ◦F (ν)
T (n) guarantees that our PDE-based neural net-

work has nonuniform learnability.

8.2 Numerical computation
Finally, we conducted some numerical experiments to evaluate the performance of our
model using practical datasets. Because the main focus of the present paper is the theo-
retical argument, this is the first example to check the effectiveness of our model. In the
following section, we first clarify the setting of our numerical experiment and then state
the results.

8.2.1 Settings
In this experiment, we focused exclusively on binary classification. The proposed model
was implemented using Python 3.7 on a Windows Server 2019 (64 bits), 12th Gen In-
tel (R) Core (TM) i7-12700, 2.11 GHz, RAM 96.0 GB. In this experiment, we used the
time difference�t = 5×10–4 and a range of values for the number of temporal and spatial
grids, denoted as N and L, respectively. At the output layer, we employed a logistic regres-
sion scheme with L1 regularization using statsmodels [71]. The optimization of w1 in our
model involved optimizing the values w1(i1, i2, i3) (i1 = 1, 2, . . . , N , i2, i3 = 1, 2, . . . , L), each of
which is a temporally discretized version of w1(t, x, y). Optimization was conducted using
a genetic algorithm with the deap library [13] in Python.

8.2.2 Datasets
Numerical simulations are conducted with “adult income” [5] and “diabetes” [15] datasets,
which are well-known benchmarks of binary classification.

The former dataset contains 121 adult attributes and their annual income. The task is
to predict whether their income is larger than 50 thousands dollars (which corresponds
to the label “1”) or not (“0”). The latter dataset contained eight attributes with the human
subjects and a binary label indicating whether each subject had the symptoms of diabetes.

Table 1 presents an overview of the datasets. For both datasets, we employed 70% of the
training dataset, and the remaining part of the training dataset was used to check the test
accuracy.

We applied min–max scaler, which transforms the values of each attribute onto the in-
terval [0, 1].

Table 1 Overview of datasets

Adult income Diabetes

Sample size (train) 34,189 375
Sample size (test) 14,653 162
Input dimension (J) 121 8
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Table 2 Results of “adult income” dataset

(ν ,N, L) Training accuracy / Test accuracy / AUC

Proposed method (0.01, 2, 121) 0.858 / 0.860 / 0.915
(0.01, 5, 121) 0.858 / 0.860 / 0.915
(0.01, 3, 363) 0.758 / 0.788 / 0.854
(0.01, 30, 121) 0.858 / 0.859 / 0.915

Existing methods SVC 0.764 / 0.764 / 0.770
RFC 0.833 / 0.837 / 0.702
LightGBM 0.865 / 0.856 / 0.780
XGBoost 0.864 / 0.857 / 0.774

Table 3 Results of “diabetes” dataset

(ν ,N, L) Training accuracy / Test accuracy / AUC

Proposed method (0.01, 2, 8) 0.758 / 0.788 / 0.854
(0.01, 5, 8) 0.758 / 0.788 / 0.854
(0.01, 3, 24) 0.823 / 0.801 / 0.899
(0.01, 3, 80) 0.838 / 0.913 / 0.968
(0.01, 30, 8) 0.758 / 0.788 / 0.854

Existing methods SVC 0.778 / 0.789 / 0.746
RFC 0.762 / 0.792 / 0.757
LightGBM 0.957 / 0.775 / 0.746
XGBoost 0.857 / 0.784 / 0.753

8.2.3 Results of experiments
Tables 2 and 3 show the results of the training and test accuracies, the area under the curve
(AUC) (boldface indicates the largest value for each indicator) under a range of values T ,
and the number of points in the discretization of both spatial and temporal directions.
The performance of the proposed method was comparable to that of the existing meth-
ods (Random Forest Classifier (RFC), Support Vector Classifier (SVC) with RFB kernel,
XGBoost, and LightGBM) in terms of test accuracy and AUC. Note that in the existing
methods, we tuned the hyperparameters by using cross-validation and grid-search.

The values of generations and population size in the genetic algorithm are 5 and 10,
respectively, for “adult income” dataset, and 10 and 200 for ‘diabetes’ dataset. This is due to
fact that the “adult income” dataset is larger and requires much longer computation time.
From Tables 2 and 3, we observe that the performance of our model varies depending on
the values of T .

In summary, the considerations in this section imply the following issues:
(i) Although our model achieves an infinite VC-dimension, it is still non-uniformly

learnable under some assumptions about the underlying distribution behind the
dataset. This property is also observed in some well-known machine learning
algorithms, such as Support Vector Machine (SVM) with kernels.

(ii) By adjusting the parameters, we can adjust the generalization performance of our
model. On the one hand, optimal values of the parameters yield a model with lower
generalization error. On the other hand, this enlarges the search space during
optimization, leading to the concern that we might not attain a (sub-)optimal
solution within a realistic computation time. Therefore, in our future work, we will
continue to search for an effective approach to optimize our model.
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9 Conclusion
This study demonstrates the universal approximation property of our PDE-based neural
network. It has been demonstrated that any continuous function on a compact set in R

J

can be approximated by the output of a neural network with arbitrary precision.
We have also discussed the learnability of our model. Moreover, we implemented our

model on a computer and performed certain numerical experiments. It showed a com-
parable performance to that of the existing models, such as RFC, SVC, LightGBM, and
XGBoost. It was shown that the generalization performance could be adjusted by some
parameters of the model. The exploration of more effective optimization procedures can
be performed in the future.

Future work will consider the limit when ν tends to zero, in which case the proposed
model could be considered the continuous limit of the usual neural network or one with
an artificial diffusion term. Although we observed weak convergence of our solution, we
should appeal to the theory of singular perturbation to factor in the boundary condition
of a thin layer.

There is room for improvement in optimization procedure. We are planning to explore
Bayesian optimization approaches that we have already attempted using ODE-based neu-
ral networks [33]. Therefore, it is important to discuss the PAC-Bayes perspective of the
proposed model as well.

Additionally, we intend to extend our PDE-based neural network to multidimensional
Euclidean spaces. As stated in Remark 5 at the end of Sect. 4, this is necessary when con-
sidering a GNN in which the elements are treated in the matrix form.

Appendix A: Summary of notations
We summarize the notations used in this paper, which are not presented in Sect. 2 in
Table 4 below.

Appendix B: Proofs of existence
B.1 Proof of Theorem 1
Before introducing our first result, we shall define the Galerkin approximation [12].

Definition 5 Let V be a separable Hilbert space and {Vm}∞m=1 be a family of finite dimen-
sional vector spaces satisfying the assumptions (i) and (ii) below.

(i) Vm ⊂ V , dim Vm < +∞.
(ii) Vm→ V (m→∞) in the sense below: there exists a dense subspace of V , every

element v of which has a corresponding sequence {vm}∞m=1 ⊂ Vm satisfying
‖vm – v‖V → 0 (m→ +∞).

Then, each space Vm (m = 1, 2, . . .) is called the Galerkin approximation of order m of V .

Table 4 Notations of function spaces and operators

W(T ) {u|u ∈ L2(0, T ;H1(I)), du
dt ∈ L2(0, T ;H–1(I))}

Sh ≡ {Sh}h A family of finite-dimensional subspaces of H1
0(I) with parameter h < 1 that tends to 0

r(kAh) Padé approximation (Id + kAh)–1

G(k)∞ {f ∈ L2(I)|f ⊥ Span〈r(kA)u((N – 1)k, ·)〉}
G(k)
h {f ∈ L2(I)|f ⊥ Span〈r(kAh)Phu((N – 1)k, ·)〉}

S(k)R {f ∈ L2(I)|‖f‖ = R, f ∈ G(k)∞} with R satisfying R > ‖Phσ̃0‖
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Now, we prove Theorem 1. First, let us introduce a space

W(T)≡
{

u
∣
∣
∣u ∈ L2

(
0, T ; H1(I)

)
,

du
dt
∈ L2

(
0, T ; H–1(I)

)
}

.

We note the fact that (see, [12], Chapter XVIII, Theorem 1):

W(T)⊂ C
(
0, T ; L2(I)

)
, (B.1)

holds. We shall seek a Tu0 and v ∈W(Tu0 ) that solves (3.3) in the following sense:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt (v(·), w) + σ (v(·, w))

= (φ(
∫

I w1(t, x, y)v(t, y) dy +
∫

I w1(t, x, y) dy), w)

on (0, Tu0 ),

v(0) = ũ0 on I,

(B.2)

in the sense of (C∞0 (0, T))′ for all w ∈ H1(I). Note that due to (B.1), the initial condi-
tion in the second equation of (B.2) has a meaning. We shall prove this in the following
steps [12, 64]. First, assuming the temporally local solvability of the problem, we prove the
uniqueness of the local solution. Second, we prove the existence of a local solution up to a
certain time Tu0 . Let us assume that we have temporally local two solutions to (B.2) on a
time interval [0, T∗], say, v(1) and v(2), which belong to the space mentioned in Theorem 1
and subsequent Remark 1.

We introduce a notation ṽ≡ v(1) – v(2). This should satisfy:

⎧
⎨

⎩

d
dt (ṽ(·), w) + σ (ṽ(·), w) = (�(·), w),

ṽ(0) = 0,
(B.3)

where

�(t, x)≡ φ

(∫

I
w1(t, x, y)v(1)(t, y) dy +

∫

I
w1(t, x, y) dy

)

– φ

(∫

I
w1(t, x, y)v(2)(t, y) dy +

∫

I
w1(t, x, y) dy

)

.

Replacing w with ṽ(t, x) on both sides of (B.3), and applying the Schwartz’s inequality, we
observe:

d
dt
∣
∣ṽ(t)

∣
∣2 + ν

∣
∣ṽx(t)

∣
∣2 ≤ L

∫

I

∥
∥w1(t, ·, ·)∥∥L2(I×I)

∣
∣ṽ(t)

∣
∣2 dt,

where L > 0 is the Lipschitz constant of φ(·). This, together with the Gronwall’s inequal-
ity [57] and the fact that ṽ|t=0 = 0, yields

ṽ(t)≡ 0 ∀t ∈ (0, T∗
)
,

which implies the uniqueness of the solution.
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Next, we prove the existence of a local solution. Let {Vm}∞m=1 be an increasing family
of dm dimensional subspaces of H1(I), in which each v ∈ H1(I) has its approximating se-
quence {v(m)}∞m=1 such that v(m) ∈ Vm for each m, and ‖v(m) – v‖H1(I)→ 0 as m→∞. Be-
cause Vm is a Galerkin approximation of L2(I) as well, we have a sequence {ũ0m}∞m=1 such
that

ũ0m ∈ Vm,

ũ0m→ ũ0 in L2(I).

Let {Wjm}dm
j=1 be a basis in Vm. We seek v(m) and ũ0m of the form of linear combinations of

{Wjm}dm
j=1 that solve

⎧
⎪⎪⎨

⎪⎪⎩

( dv(m)

dt , Wjm) + σ (v(m), Wjm)

= (φ(
∫

I w1(t, x, y)v(m)(t, y) dy +
∫

I w1(t, x, y) dy), Wjm),

v(m)|t=0 = ũ0m (j = 1, 2, . . . , dm).

(B.4)

Because Wjm are linearly independent with each other, (B.4) is assured to have a local
solution v(m) ∈ C(0, Tu0 ; Vm) with some Tu0 . It also satisfies dv(m)

dt ∈ L2(0, Tu0 ; Vm) under
the assumptions of the theorem.

Next, we observe the a-priori estimate. Let us multiply the coefficient of v(m) on both
sides of (B.4) for each j, and sum up with respect to j = 1, 2, . . . , dm. Then, we have

d
dt
∣
∣v(m)(t)

∣
∣2 + ν

∣
∣v(m)

x (t)
∣
∣2

≤ ∣
∣v(m)(t)

∣
∣

∣
∣
∣
∣φ

(∫

I
w1(t, ·, y)v(m)(t, y) dy +

∫

I
w1(t, ·, y) dy

)∣
∣
∣
∣.

Regarding the right-hand side, with a notation c1 = |φ(0)|2, we estimate from above as
follows.

∫

I

∣
∣
∣
∣φ

(∫

I
w1(t, x, y)v(m)(t, y) dy +

∫

I
w1(t, x, y) dy

)∣
∣
∣
∣

2

dx

≤ 2
∫

I

∣
∣
∣
∣φ

(∫

I
w1(t, x, y)v(m)(t, y) dy +

∫

I
w1(t, x, y) dy

)

– φ(0)
∣
∣
∣
∣

2

dx

+ 2
∣
∣φ(0)

∣
∣2

≤ 4L2
∫

I

∣
∣
∣
∣

∫

I
w1(t, x, y)v(m)(t, y) dy

∣
∣
∣
∣

2

dx

+ 4L2
∫

I

∣
∣
∣
∣

∫

I
w1(t, x, y) dy

∣
∣
∣
∣

2

dx + 2c1

≤ 4L2∥∥w1(t, ·, ·)∥∥2
L2(I×I)

∣
∣v(m)(t)

∣
∣2 + 4L2∥∥w1(t, ·, ·)∥∥2

L2(I×I) + 2c1.
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This yields

d
dt
∣
∣v(m)(t)

∣
∣2 + ν

∣
∣v(m)

x (t)
∣
∣2

≤ 2L
∣
∣v(m)(t)

∣
∣2
∥
∥w1(t, ·, ·)∥∥L2(I×I) +

{
2L
∥
∥w1(t, ·, ·)∥∥L2(I×I) +

√
2c1

}
,

from which, together with the Gronwall’s inequality again, we obtain

∣
∣v(m)(t)

∣
∣2 ≤

{

|ũ0m|2 +
1
2

∫ t

0

(
2L
∥
∥w1(τ , ·, ·)∥∥L2(I×I) +

√
2c1

)
dτ

}

× exp

(

2L
∫ t

0

∥
∥w1(τ , ·, ·)∥∥L2(I×I) dτ

)

.

This enables us to extract a subsequence {v(m′)} ⊂ {v(m)} satisfying the following issues
with some v∞ ∈ L2(I):

v(m′)→ v∞ weakly in L2
(
0, Tu0 ; H1(I)

)
,

v(m′)→ v∞ weakly* in L∞
(
0, Tu0 ; L2(I)

)
,

Av(m′)→ Av∞ weakly in L2
(
0, Tu0 ; H–1(I)

)
. (B.5)

In virtue of the Relich’s theorem, we have

v(m)→ v∞ strongly in L2
(
0, Tu0 ; L2(I)

)
.

Now, we are in a position to check that this v∞ certainly solves (B.2). In order for this,
we take an arbitrary smooth function ζ (t) ∈ C∞0 (0, T) and w̆ ∈H1(I), a sequence {wm}m ⊂
H1(I) satisfying

lim
m→∞wm = w̆ in H1(I),

and define ψm ≡ ζ (t)wm and ψ ≡ ζ (t)w̆ (note that because we consider in one-dimensional
space where H1(I) can be embedded into C(I), we can regard V = H1(I) in Defini-
tion 1 [12]). It is clear that as m→ +∞,

ψm→ψ strongly in L2
(
0, Tu0 ; H1(I)

)
,

dψm

dt
→ dψ

dt
strongly in L2

(
0, Tu0 ; L2(I)

)
.

(B.6)

For now, we can replace m above with m′ prescribed. Thus, from (B.4), after integration
by parts (note that ζ (t) ∈ C∞0 (0, T)), we have

–
∫ Tu0

0

(

v(m′)(t),
dψm′ (t)

dt

)

dt +
∫ Tu0

0
σ
(
v(m′)(t),ψm′ (t)

)
dt

=
∫ Tu0

0

(

φ

(∫

I
w1(t, x, y)v(m′)(t, y) dy +

∫

I
w1(t, x, y) dy

)

,ψm′ (t)
)

dt. (B.7)
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In virtue of (B.5) and (B.6), as m→ +∞, we have

–
∫ Tu0

0

(
v∞(t), w̆

)
ζ ′(t) dt +

∫ Tu0

0
σ
(
v∞(t), w̆

)
ζ (t) dt

=
∫ Tu0

0

(

φ

(∫

I
w1(t, x, y)v∞(t, y) dy +

∫

I
w1(t, x, y) dy

)

, w̆
)

ζ (t) dt. (B.8)

The equality above holds for any w̆ ∈H1(I), and thus, this v∞ solves (B.2).
Now, (B.8) can be rewritten as follows.

–
∫ Tu0

0

(
v∞(t), w̆

)
ζ ′(t) dt

=
∫ Tu0

0

(

φ

(∫

I
w1(t, x, y)v∞(t, y) dy +

∫

I
w1(t, x, y) dy

)

– Av∞, w̆
)

ζ (t) dt.

We can easily see

dv∞
dt
∈ L2

(
0, T ; H–1(I)

)
,

which, together with (B.1), yields the fact that v∞ belongs to the same space mentioned in
Theorem 1 and subsequent Remark 1.

Finally, we verify that v∞ above satisfies the initial condition. Let η(t) ∈ C∞(0, Tu0 ) be
a function that satisfies η(t) = 0 near Tu0 and η(0) �= 0. We again take w̆ ∈ H1(I) and a
sequence {wm}m ⊂H1(I) satisfying

lim
m→∞wm = w̆ in H1(I).

Then, ψ = η(t)w̆ ∈W(Tu0 ) and by integration by parts, we have

∫ Tu0

0

(
dv∞
dt

(t),η(t)w̆
)

dt = –
∫ Tu0

0

(
v∞(t), w̆

)
η′(t) dt –

(
v∞(0), w̆

)
η(0). (B.9)

From Equation (B.2), we can derive

∫ Tu0

0

(
dv∞(t)

dt
,η(t)w̆

)

dt

=
∫ Tu0

0

(

φ

(∫

I
w1(t, x, y)v∞(t, y) dy +

∫

I
w1(t, x, y) dy

)

, w̆
)

η(t) dt

–
∫ Tu0

0
σ
(
v∞(t), w̆

)
η(t) dt. (B.10)
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Moreover, from (B.4) we have

∫ Tu0

0

(
dv(m′)(t)

dt
, wm′

)

η(t) dt

=
∫ Tu0

0

(

φ

(∫

I
w1(t, x, y)v(m′)(t, y) dy +

∫

I
w1(t, x, y) dy

)

, wm′
)

η(t) dt

–
∫ Tu0

0
σ
(
v(m′)(t), wm′

)
η(t) dt. (B.11)

The left-hand side of (B.11) has another representation:

∫ Tu0

0

(
dv(m′)(t)

dt
, wm′

)

η(t) dt

= –
∫ Tu0

0

(
v(m′)(t), wm′

)
η′(t) dt – (ũ0m′ , wm′ )η(0). (B.12)

Making m′ tend to +∞, on the one hand, (B.11) yields

lim
m′→+∞

∫ Tu0

0

(
dv(m′)

dt
(t), wm′

)

η(t) dt

=
∫ Tu0

0

(

φ

(∫

I
w1(t, x, y)v∞(t, y) dy +

∫

I
w1(t, x, y) dy

)

, w̆
)

η(t) dt

–
∫ Tu0

0
σ
(
v∞(t), w̆

)
η(t) dt

=
∫ Tu0

0

(
dv∞
dt

(t),η(t)w̆
)

dt, (B.13)

where we used (B.12) to deduce the right-most hand side. On the other hand, (B.12) yields

lim
m′→+∞

∫ Tu0

0

(
dv(m′)

dt
(t), wm′

)

η(t) dt

= –
∫ Tu0

0

(
v∞(t), w̆

)
η′(t) dt – (ũ0, w̆)η(0). (B.14)

By comparing (B.12), (B.13), and (B.14), we arrive at

(
v∞(0), w̆

)
= (ũ0, w̆) ∀w̆ ∈H1(I). (B.15)

Because H1(I) is dense in L2(I), (B.15) holds for all w̆ ∈ L2(I), which implies

v∞(0) = ũ0.

This is the desired result.

B.2 Proof of Theorem 2
Here, we prove Theorem 2. Because the local solvability is assured in Theorem 1, we as-
sume that for some T∗ > 0, we have a solution v of (3.3) on the interval [0, T∗]. Now, let us
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first construct a variable:

v̆(t, x)≡ e–λtv(t, x), t ∈ [0, T∗
]
,

with λ ∈R specified later, which solves

⎧
⎪⎪⎨

⎪⎪⎩

v̆t – νv̆xx = –λv̆ + e–λtφ(
∫

I w1(t, x, y)eλt v̆(t, y) dy +
∫

I w1(t, x, y) dy) in IT∗ ,

v̆(0, x) = ũ0 on I,

v̆ = 0 on ∂I ∀t ∈ (0, T∗).

(B.16)

By multiplying v̆ on both sides in (B.16), we can deduce an estimation as below:

1
2

d
dt
∣
∣v̆(t)

∣
∣2 + ν

∣
∣v̆x(t)

∣
∣2 + λ

∣
∣v̆(t)

∣
∣2

≤ e–λt∣∣v̆(t)
∣
∣

∥
∥
∥
∥φ

(∫

I
w1(t, ·, y)eλt v̆(t, y) dy +

∫

I
w1(t, ·, y) dy

)∥
∥
∥
∥

L2(I)
. (B.17)

By introducing a notation c1 = |φ(0)|2 again, by applying the Schwartz inequality and the
Lipschiz continuity of φ, we have

∫

I

∣
∣
∣
∣φ

(∫

I
w1(t, x, y)eλt v̆(t, y) dy +

∫

I
w1(t, x, y) dy

)∣
∣
∣
∣

2

dx

≤ 4L2e2λt∥∥w1(t, ·, ·)∥∥2
L2(I×I)

∣
∣v̆(t)

∣
∣2 + 4L2∥∥w1(t, ·, ·)∥∥2

L2(I×I) + 2c1,

if we substitute this to (B.17), we obtain

1
2

d
dt
∣
∣v̆(t)

∣
∣2 + ν

∣
∣v̆x(t)

∣
∣2 + λ

∣
∣v̆(t)

∣
∣2

≤ 2L
∥
∥w1(t, ·, ·)∥∥L2(I×I)

∣
∣v̆(t)

∣
∣2

+
e–2λt

2λ

(
2L
∥
∥w1(t, ·, ·)∥∥L2(I×I) + c1

)2 +
λ

2
∣
∣v̆(t)

∣
∣2. (B.18)

If we denote

G(t)≡ e–2λt

2λ

(
2L
∥
∥w1(t, ·, ·)∥∥L2(I×I) + c1

)2,

by the Gronwall’s inequality, we have

∣
∣v̆(t)

∣
∣2 ≤

(

|ũ0|2 + 2
∫ t

0
G(τ ) dτ

)

exp

(

4L
∫ t

0

∥
∥w1(τ , ·, ·)∥∥L2(I×I) dτ – λt

)

. (B.19)

Applying the Schwartz’s inequality to the right-hand side of (B.19) and taking λ so that

λ≥ 4L‖w1‖L2(H∞)√
T∗
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holds, then (B.19) yields

∣
∣v̆
(
T∗

)∣
∣2 ≤ |ũ0|2 + 2

∫ ∞

0
G(τ ) dτ .

This implies that the norm |v̆(T∗)| does not depend on T∗. Tracing the same argument as
in [64], we have the statement of the theorem.
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