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Abstract
The dynamics of a discrete Holling–Tanner model with Beddington–DeAngelis
functional response is studied. The permanence and local stability of fixed points for
the model are derived. The center manifold theorem and bifurcation theory are used
to show that the model can undergo flip and Hopf bifurcations. Codimension-two
bifurcation associated with 1:2 resonance is analyzed by applying the bifurcation
theory. Numerical simulations are performed not only to verify the correctness of
theoretical analysis but to explore complex dynamical behaviors such as period-6, 7,
10, 12 orbits, a cascade of period-doubling, quasi-periodic orbits, and the chaotic sets.
The maximum Lyapunov exponents validate the chaotic dynamical behaviors of the
system. The feedback control method is considered to stabilize the chaotic orbits.
These complex dynamical behaviors imply that the coexistence of predator and prey
may produce very complex patterns.

Keywords: Discrete predator–prey system; Stability; Flip and Hopf bifurcation; 1:2
resonance; Chaos

1 Introduction
Predator–prey interactions can be universally observed in our ecological systems of the
real world. The relationship between predator and prey occupies an important place in
determining the evolution of ecological models. Due to their universal existence and real
significance, predator–prey dynamics has long been studied and will continue to be one
of the dominant fields in mathematical biology [1–4]. When the prey population is so
large as the predator population, the Holling–Tanner model describes the dynamics of the
predator species which feeds on its favorite food item as long as it is in abundant supply
and grows logistically with an intrinsic growth rate and a carrying capacity proportional
to the size of the prey [5]. The Holling–Tanner predator–prey model with Beddington–
DeAngelis functional response was introduced in [6–9] as follows:

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = ru(1 – u

k ) – αuv
a+bu+cv ,

dv
dt = s[v(1 – hv

u )],

u(0) > 0, v(0) > 0,

(1)
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where r, k, α, a, b, c, s, h are positive constants, and u(t) and v(t) represent the popu-
lation size of prey and predator at time t, respectively. The prey grows logistically with
carrying capacity k and intrinsic growth rate r in the absence of predator. The preda-
tor consumes the prey following the functional response of Beddington–DeAngelis type
αuv/(a + bu + cv) and cv measures the mutual interference between predators [6–10]. α, a,
b, and c indicate the consumption rate, the saturation constant, the saturation constant
for an alternative prey, and the predator interference constant, respectively. The predator
grows logistically with intrinsic growth rate s, and the carrying capacity u/h of the preda-
tor is proportional to the population size of the prey. h denotes the number of prey that is
required to sustain one predator at equilibrium when v equals u/h. v/u measures the loss
in the predator population because of the scarcity of its favorite food. hv/u is known as
the Leslie–Gower term.

However, if the size of population was rarely small, or the population had no overlap-
ping generation, or people studied population changes within certain intervals of time
in an ecological system, the discrete-time model would exhibit better results than the
continuous-time model [11–18]. Many results have shown that discrete-time models can
produce far richer dynamical behaviors than those observed in continuous-time models
[19–23]. In fact, Zhao and Yan [8] considered the discrete-time form of system (1) de-
rived from the forward Euler difference scheme (see [13, 14, 16, 17, 23]). The discrete-
time model displayed complex dynamics such as flip bifurcation, Hopf bifurcation, an in-
variant cycle, quasi-periodic orbits, and chaos. However, it is worth noting that the Euler
discrete form of (1) is not realistic enough since there exist negative values of prey and
predator population size for some parameter values or initial values, which imply that
the discrete form has no biological meanings. Avoiding the negative solutions emerging
from the discrete system by using the forward Euler scheme, the homogenous techniques
(see [11, 22, 24–26]) are applied to obtain the discrete model corresponding to system (1).
Assume that the average growth rates in both populations vary at the regular interval of
time. By applying the method of piecewise constant arguments, we obtain the following
modified system:

⎧
⎨

⎩

1
u(t)

du(t)
dt = r(1 – u([t])

k ) – αv([t])
a+bu([t])+cv([t]) ,

1
v(t)

dv(t)
dt = s(1 – hv([t])

u([t]) ),
(2)

where [t] denotes the integer part of t and t ∈ [0,∞). According to [18], we can integrate
(2) on the interval [n, n + 1), n = 0, 1, 2, . . . , which yields

⎧
⎨

⎩

u(t) = un exp((r(1 – un
k ) – αvn

a+bun+cvn
)(t – n)),

v(t) = vn exp((s(1 – hvn
un

))(t – n)).
(3)

Taking t → n + 1, we can obtain the following discrete-time model:

⎧
⎨

⎩

un+1 = un exp(r(1 – un
k ) – αvn

a+bun+cvn
),

vn+1 = vn exp(s(1 – hvn
un

)).
(4)

The outline of this paper is as follows. Section 2 discusses the performance and local
stability of fixed points for model (4). Section 3 gives sufficient conditions for the existence
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of flip bifurcation and Hopf bifurcation. Section 4 discusses the 1:2 resonance bifurcation.
Section 5 presents numerical simulations to check our results of theoretical analysis and
exhibit some complex and new dynamical behaviors. Section 6 presents chaos control by
using the state feedback control method. Section 7 gives a brief conclusion.

2 Permanence and stability of fixed points
Definition 2.1 System (4) is permanent if there exist two positive constants m and M
such that

m ≤ lim
n→∞ inf(un, vn) ≤ lim

n→∞ sup(un, vn) ≤ M

for each positive solution (un, vn) of system (4).

In the following, we use Lemmas 2.1 and 2.2 from [27] to discuss the permanence of (4).

Proposition 2.1 Every positive solution (un, vn) of system (4) is uniformly bounded.

Proof Assume that (un, vn) is a positive solution of system (4). From the first part of system
(4), we have

un+1 ≤ un exp

(

r
(

1 –
un

k

))

for n = 0, 1, 2, . . . . If u0 > 0, we thus have

lim
n→∞ sup un ≤ k

r
exp (r – 1) := M1.

As a result, for any ε > 0, there exists an integer N such that un ≤ M1 + ε when n > N and
n ∈N. According to the second part of system (4), for n > N and n ∈N, we obtain

vn+1 ≤ vn exp

(

s
(

1 –
hvn

M1 + ε

))

.

If v0 > 0, there is

lim
n→∞ sup vn ≤ M1 + ε

hs
exp (s – 1).

The arbitrariness of ε then implies that

lim
n→∞ sup vn ≤ M1

hs
exp (s – 1) := M2.

Then it follows that limn→∞ sup(un, vn) ≤ M for any (u0, v0) ≥ 0, where M = max (M1, M2).
This proof is complete. �

Proposition 2.2 Let η = r – α
c > 0. Then, for any positive solution (un, vn) of system (4),

there exists a positive constant satisfying

lim
n→∞ inf(un, vn) ≥ m,

where m = min ( η(η–ρM)
ρ

, sm1
h exp (s – hsM

m1
)).
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Proof Let (un, vn) be a positive solution of system (4). From the first part of (4), it follows
that

un+1 ≥ un exp

(

r
(

1 –
un

k

)

–
α

c

)

= un exp(η – ρun), n = 0, 1, 2, . . . ,

where η = r – α/c and ρ = r/k. If u0 > 0 and η > 0, we thus have

lim
n→∞ inf un ≥ min

{
η

ρ
exp(η – ρM),

η

ρ

}

:= m1.

Consequently, for any ε > 0, there exists an integer N such that un ≥ m1 + ε when n > N
and n ∈ N. According to the second part of system (4), for n > N and n ∈ N, we therefore
obtain

vn+1 ≥ vn exp

(

s
(

1 –
hvn

m1 + ε

))

.

If v0 > 0, there is

lim
n→∞ inf vn ≥ min

{
s(m1 + ε)

h
exp

(

s –
hsM

m1 + ε

)

,
s(m1 + ε)

h

}

.

The arbitrariness of ε then implies that

lim
n→∞ inf vn ≥ min

{
sm1

h
exp

(

s –
hsM
m1

)

,
sm1

h

}

:= m2.

Then it follows that limn→∞ inf(un, vn) ≥ m for any (u0, v0) > 0, where m = min (m1, m2).
This proof is complete. �

According to Propositions 2.1 and 2.2, system (4) is permanent if r > α
c .

For all parameter values, system (4) has two fixed points, the boundary fixed point
A(k, 0), and the unique positive fixed point B(u∗, v∗) defined by

u∗ =
θ +

√
θ2 + 4ahr2k(bh + c)

2r(bh + c)
, v∗ =

u∗

h
,

where θ = crk + bhrk – kα – ahr.
In the next, we now perform the linear stability analysis of system (4) at each fixed point.

The Jacobian matrix of system (4) evaluated at any equilibrium point (u, v) is given by

J(u, v) =

(
γ11 γ12

γ21 γ22

)

.

Then the characteristic equation of J(u, v) can be written as

λ2 – (γ11 + γ22)λ + γ11γ22 – γ21γ12 = 0. (5)
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Proposition 2.3 The eigenvalues of the boundary fixed point A(k, 0) are λ1 = 1–r and λ2 =
es. Then A(k, 0) is a saddle if 0 < r < 2. A(k, 0) is a source if r > 2. And A(k, 0) is nonhyperbolic
if r = 2.

Let

FA =
{

(r, k,α, a, b, c, s, h) ∈ R
8 : r = 2

}
.

Then it can be easily seen that one of the eigenvalues of A(k, 0) is –1 and the other es > 1
when all parameters locate in FA. The center manifold of system (4) at A(k, 0) is v = 0 when
parameters are in FA. Therefore, system (4) restricted to this center manifold becomes:
un+1 = un exp(r(1 – u/k)). The system can enter into chaos through a period-doubling bi-
furcation as the bifurcation parameter r increases.

The characteristic equation of the Jacobian matrix J(u, v) evaluated at the unique posi-
tive fixed point B(u∗, v∗) can be written as

λ2 – (2 – s + G)λ +
(

(1 + G)(1 – s) –
H
h

)

= 0, (6)

where

G = –
ru∗

k
+

αbu∗v∗

(a + bu∗ + cv∗)2 , H = –
αsu∗(a + bu∗)

(a + bu∗ + cv∗)2 < 0. (7)

Suppose that λ1 and λ2 are two roots of (6).

Proposition 2.4 The fixed point B(u∗, v∗) is one of the following types in Table 1, where G
and H are given by (7).

3 Flip bifurcation and Hopf bifurcation
First we discuss the flip bifurcation of system (4) at the unique positive fixed point B(u∗, v∗).
Let us define

FB =
{

(r, k,α, a, b, c, s, h) : h = h1 =
H

(2 + G)(2 – s)
, s �= G + 4

}

.

The two roots of (6) are λ1 = –1 and λ2 = 3 + (G – s) �= ±1 when the parameters lie in FB.
Then the unique fixed point B(u∗, v∗) of system (4) may undergo a flip bifurcation when
parameters vary in a small neighborhood of FB. Taking parameters (r, k,α, a, b, c, s, h) ∈ FB

and considering a small perturbation h∗ (|h∗| 	 1) of h1 as a new dependent variable,
system (4) can be described by the following map:

⎛

⎜
⎝

u
h∗

v

⎞

⎟
⎠ 
−→

⎛

⎜
⎝

u exp(r(1 – u
k ) – αv

a+bu+cv )
h∗

v exp(s(1 – (h1+h∗)v
u ))

⎞

⎟
⎠ . (8)

Assume that U = u – u∗ and V = v – v∗. Then the fixed point B(u∗, v∗) of map (8) is
transformed into the origin. We rewrite respectively U and V as u and v, then map (8)
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Table 1 Properties of the fixed point B(u∗ , v∗)

Conditions Eigenvalues Properties

G < s < G + 4 –1 < λ1,2 < 1 stable node

max{– Gs
H , (2+G)(2–s)H } < 1

h ≤ – (G+s)2
4H

G > s λ1,2 > 1 unstable node

– Gs
H < 1

h ≤ – (G+s)2
4H

G + 4 < s λ1,2 < –1 unstable node
(2+G)(2–s)

H < 1
h ≤ – (G+s)2

4H

G < s λ1 < –1, –1 < λ2 < 1 unstable saddle
– Gs

H < 1
h < (2+G)(2–s)

H
1
h ≤ – (G+s)2

4H

1
h > – (G+s)2

4H conjugate complex roots stable focus
(1+G)(1–s)

H < 1
h < G–s–Gs

H |λ1,2| < 1

1
h >max{– (G+s)2

4H , G–s–GsH } conjugate complex roots unstable focus
|λ1,2| > 1

1
h = (2+G)(2–s)

H λ1 = –1, λ2 �= –1 nonhyperbolic
s �= G + 4

1
h = (2+G)(2–s)

H λ1,2 = –1 nonhyperbolic
s = G + 4

1
h = G–s–Gs

H conjugate complex roots nonhyperbolic
G < s < G + 4 |λ1,2| = 1

becomes

⎛

⎜
⎝

u
h∗

v

⎞

⎟
⎠ 
−→

⎛

⎜
⎝

a11 0 a13

0 1 0
a31 a32 a33

⎞

⎟
⎠

⎛

⎜
⎝

u
h∗

v

⎞

⎟
⎠ +

⎛

⎜
⎝

f1(u, v, h∗)
0

f2(u, v, h∗)

⎞

⎟
⎠ , (9)

where

f1
(
u, v, h∗) = a14u2 + a15uv + a16v2 + O

((|u| + |v|)3),

f2
(
u, v, h∗) = a34u2 + a35uv + a36v2 + e1uh∗ + e2vh∗ + e3h

2∗ + O
((|u| + |v| +

∣
∣h∗∣∣)3),

a11 = 1 + G, a13 =
H
s

, a31 =
s

h1
, a32 = –

su∗

h2
1

, a33 = 1 – s,

a14 =
G2 + 2G

2u∗ –
αb2u∗v∗

(a + bu∗ + cv∗)3 , a15 =
H(1 + G)

su∗ +
αbu(a + bu∗ – cv∗)

(a + bu∗ + cv∗)3 ,

a16 =
H2

2s2u∗ –
cH

s(a + bu∗ + cv∗)
, a34 =

s2 – 2s
2h1u∗ , a35 =

2s – s2

u∗ , (10)

a36 =
h1s(s – 2)

2u∗ , e1 =
s – s2

h2
1

, e2 =
s2 – 2s

h1
, e3 =

s2

2h3
1

.

Let us define the following matrix:

T =

⎛

⎜
⎝

a13 a13a32 a13

0 2(1 – λ2) 0
–a11 – 1 (1 – a11)a32 λ2 – a11

⎞

⎟
⎠ .
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Then det(A) = 2a13(1 – λ2
2) �= 0. So, T is an invertible matrix. Moreover, T–1 = 1

det(T) adj(T).
Applying the transformation (u, h∗, v)T = T(ũ, h̃∗, ṽ)T , map (9) can be rewritten as

⎛

⎜
⎝

ũ
h̃∗

ṽ

⎞

⎟
⎠ 
−→

⎛

⎜
⎝

–1 0 0
0 1 0
0 0 λ2

⎞

⎟
⎠

⎛

⎜
⎝

ũ
h̃∗

ṽ

⎞

⎟
⎠ +

⎛

⎜
⎝

g1(ũ, ṽ, h̃∗)
0

g2(ũ, ṽ, h̃∗)

⎞

⎟
⎠ , (11)

where

g1
(
ũ, ṽ, h̃∗) =

a14(a11 – λ2) – a13a34

a13(1 + λ2)
u2 +

a15(a11 – λ2) – a13a35

a13(1 + λ2)
uv

+
a16(a11 – λ2) – a13a36

a13(1 + λ2)
v2 –

e1

(1 + λ2)
uh∗ –

e2

(1 + λ2)
vh∗ –

e3

1 + λ2
h

2∗

+ O
((|ũ| + |ṽ| +

∣
∣h̃∗∣∣)3),

g2
(
ũ, ṽ, h̃∗) =

a14(1 + a11) + a13a34

a13(1 + λ2)
u2 +

a15(1 + a11) + a13a35

a13(1 + λ2)
uv

+
a16(1 + a11) + a13a36

a13(1 + λ2)
v2 +

e1

1 + λ2
uh∗ +

e2

1 + λ2
vh∗ +

e3

1 + λ2
h

2∗

+ O
((|ũ| + |ṽ| +

∣
∣h̃∗∣∣)3),

with u = a13ũ + a13a32h̃∗ + a13ṽ, h∗ = 2(1 – λ2)h̃∗ and v = –(1 + a11)ũ + (1 – a11)a32h̃∗ + (λ2 –
a11)ṽ.

The center manifold theorem is applied to determine the dynamics of (ũ, ṽ) = (0, 0) at
h̃∗ = 0. Then there exists a center manifold of map (11), which can be represented as

W c(0, 0) =
{

(ũ, ṽ)|ṽ = β
(
ũ, h̃∗),β(0, 0) = 0, Dβ(0, 0) = 0

}
.

Assume that

β
(
ũ, h̃∗) = a1ũ2 + a2ũh̃∗ + a3h̃∗2

+ O
((|ũ| +

∣
∣h̃∗∣∣)3). (12)

Then the center manifold implies that

β
(
–ũ + g1

(
ũ,β

(
ũ, h̃∗), h̃∗), h̃∗) – λ2β

(
ũ, h̃∗) – g2

(
ũ,β

(
ũ, h̃∗), h̃∗) = 0. (13)

Substituting (11) and (12) into (13) and comparing the coefficients of (13), it follows that

a1 =
1

a13(1 – λ2
2)

{
a2

13
[
a14(1 + a11) + a13a34

]
– a13(1 + a11)

[
a15(1 + a11) + a13a35

]

+ (1 + a11)2[a16(1 + a11) + a13a36
]}

,

a2 = –
2

a13(1 + λ2)2

{
a2

13a32
[
a14(1 + a11) + a13a34

]
– a11a13a32

[
a15(1 + a11) + a13a35

]

– a32
(
1 – a2

11
)[

a16(1 + a11) + a13a36
]

+ e1a2
13(1 – λ2) – e2a13(1 + a11)(1 – λ2)

}
,
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a3 =
1

a13(1 – λ2
2)

{
a2

13a2
32

[
a14(1 + a11) + a13a34

]

+ a13a2
32(1 – a11)

[
a15(1 + a11) + a13a35

]

+ a2
32(1 – a11)2[a16(1 + a11) + a13a36

]
+ 2e1a2

13a32(1 – λ2)

+ 2e2a13a32(1 – a11)(1 – λ2) + 4e3a13(1 – λ2)2}.

Therefore, system (11) restricted to the center manifold W c(0, 0) is given by

F : ũ 
→ –ũ + k1ũ2 + k2ũh̃∗ + k3h̃∗2
+ k4ũ2h̃∗ + k5ũh̃∗2

+ k6ũ3 + k7h̃∗3
+ O

((|ũ| +
∣
∣h̃∗∣∣)4),

where

k1 =
1

a13(1 + λ2)
{

a2
13

[
a14(a11 – λ2) + a13a34

]
– a13(1 + a11)

[
a15(a11 – λ2) + a13a35

]

+ (1 + a11)2[a16(a11 – λ2) + a13a36
]}

,

k2 =
2

a13(1 + λ2)
{

a2
13a32

[
a14(a11 – λ2) + a13a34

]
– a11a13a32

[
a15(a11 – λ2) + a13a35

]

– a32
(
1 – a2

11
)[

a16(a11 – λ2) + a13a36
]

– e1a2
13(1 – λ2) + e2a13(1 + a11)(1 – λ2)

}
,

k3 =
1

a13(1 + λ2)
{

a2
13a2

32
[
a14(a11 – λ2) + a13a34

]

+ a13a2
32(1 – a11)

[
a15(a11 – λ2) + a13a35

]

+ a2
32(1 – a11)2[a16(a11 – λ2) + a13a36

]
– 2e1a2

13a32(1 – λ2)

– 2e2a13a32(1 – a11)(1 – λ2) – 4e3a13(1 – λ2)2},

k4 =
1

a13(1 + λ2)
{[

2a1a2
13a32 + 2a2a2

13
][

a14(a11 – λ2) + a13a34
]

+
[
a1a13a32(λ2 + 1 – 2a11) + a2a13(λ2 – 1 – 2a11)

][
a15(a11 – λ2) + a13a35

]

+
[
2a1a32(1 – a11)(λ2 – a11) – 2a2(1 + a11)(λ2 – a11)

][
a16(a11 – λ2) + a13a36

]

– 2a1e1a2
13(1 – λ2) – 2a1e2a13(λ2 – a11)(1 – λ2)

}
,

k5 =
1

a13(1 + λ2)
{

2a2
13a2a32

[
a14(a11 – λ2) + a13a34

]

+
[
a3a13(λ2 – 2a11 + 1) + a2a13a32(λ2 + 1 – 2a11)

][
a15(a11 – λ2) + a13a35

]

+
[
2a2a32(1 – a11)(λ2 – a11) – 2a3(1 + a11)(λ2 – a11)

][
a16(a11 – λ2) + a13a36

]

– 2a2e1a2
13(1 – λ2) – 2a2e2a13(λ2 – a11)(1 – λ2)

}
,

k6 =
a1

a13(1 + λ2)
{

2a2
13

[
a14(a11 – λ2)

+ a13a34
]

+ a13(λ2 – 2a11 – 1)
[
a15(a11 – λ2) + a13a35

]

– 2(1 + a11)(λ2 – a11)
[
a16(a11 – λ2) + a13a36

]}
,

k7 =
a3

a13(1 + λ2)
{

2a2
13a32

[
a14(a11 – λ2) + a13a34

]

+ a13a32(λ2 – 2a11 + 1)
[
a15(a11 – λ2) + a13a35

]
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+ 2a32(1 – a11)(λ2 – a11)
[
a16(a11 – λ2) + a13a36

]

– 2e1a2
13(1 – λ2) – 2e2a13(1 – λ2)(λ2 – a11)

}
.

Assume that

μ1 =
(

∂2F
∂ũ∂h̃∗ +

1
2

∂F
∂h̃∗

∂2F
∂2ũ

)∣
∣
∣
∣
(0,0)

= k2, μ2 =
(

1
6

∂3F
∂3ũ

+
(

1
2

∂2F
∂2ũ

)2)∣
∣
∣
∣
(0,0)

= k6 + k2
1 .

Theorem 3.1 If μ1 �= 0 and μ2 �= 0, then system (4) can undergo a flip bifurcation at
B(u∗, v∗) when the parameter h varies in a small neighborhood of FB. Moreover, if μ2 > 0
(resp., μ2 < 0), then the period-2 orbits that bifurcate from B(u∗, v∗) are stable (resp., un-
stable).

In the following, we focus on the Hopf bifurcation of system (4) at B(u∗, v∗). Assume that

HB =
{

(r, k,α, a, b, c, s, h) : h = h2 =
H

G – s – Gs
, G < s < G + 4

}

.

Then (6) has two complex conjugate roots on the unit circle, which implies that system (4)
at B(u∗, v∗) may undergo a Hopf bifurcation when all parameters vary in a small neighbor-
hood of HB. Taking parameters (r, k,α, a, b, c, s, h) ∈ HB and considering a small perturba-
tion h∗ (|h∗| 	 1) of h2 as a new dependent variable, system (4) can be described by the
following map:

(
u
v

)


−→
(

u exp(r(1 – u
k ) – αv

(a+bu+cv)2 )

v exp(s(1 – (h2+h∗)v
u ))

)

. (14)

Assume that U = u – u∗ and V = v – v∗. Then the fixed point B(u∗, v∗) of map (14) is
transformed into the origin. For convenience, U and V are still rewritten as u and v, re-
spectively. Then we have

(
u
v

)


−→
(

c11 c12

c21 c22

)(
u
v

)

+

(
M1(u, v)
M2(u, v)

)

, (15)

where

M1(u, v) = c13u2 + c14uv + c15v2 + c16u3 + c17u2v + c18uv2 + c19v3 + O
((|u| + |v|)4),

M2(u, v) = c23u2 + c24uv + c25v2 + c26u3 + c27u2v + c28uv2 +29 v3 + +O
((|u| + |v|)4),

c11 = 1 + G, c12 =
H
s

, c21 =
s
h

, c22 = 1 – s,

c13 =
G2 + 2G

2u∗ –
αb2u∗v∗

(a + bu∗ + cv∗)2 , c14 =
G(H + 1)

su∗ +
αb(a + bu∗ – cv∗)
(a + bu∗ + cv∗)3 ,

c23 =
s2 – 2s
2hu∗ , c24 =

2s – s2

u∗ , c25 =
hs2 – 2hs

2u∗ ,

c15 =
H2

2s2u∗ –
cH

s(a + bu∗ + cv∗)
,
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c16 =
G3 + 3G2

6u2∗
–

αb2Gv∗

(a + bu∗ + cv∗)3 –
αb2(a + cv∗)v∗

(a + bu∗ + cv∗)4 ,

c17 =
G2H + 2GH

2su2∗
–

αb2(u∗ + Hv∗/s)
(a + bu∗ + cv∗)3 +

αb(G + 1)(a + bu∗ – cv∗)
(a + bu∗ + cv∗)3 +

3αb2u∗v∗c
(a + bu∗ + cv∗)4 ,

c18 =
GH2 + H2

2s2u2∗
–

cGH + cH
s(a + bu∗ + cv∗)u∗ +

αbH(a + bu∗ – cv∗)
s(a + bu∗ + cv∗)3

–
αbcu∗(2a + 2bu∗ – cv∗)

(a + bu∗ + cv∗)4 ,

c19 =
H3

6s3u2∗
–

cH2

su∗(a + bu∗ + cv∗)
+

c2H
s(a + bu∗ + cv∗)2 , c26 =

6s – 6s2 + s3

6hu2∗
v,

c27 =
5s2 – 2s – s3

2u2∗
, c28 =

2hs – 4hs2 + hs3

2u2∗
, c29 =

3h2s2 – h2s3

6u2∗
,

with h = h2 + h∗.
Then the characteristic equation associated with the linearization of map (15) at (0, 0)

is given by

λ2 – p(h∗)λ + q(h∗) = 0, (16)

where

p(h∗) = c11 + c22, q(h∗) = c11c22 – c12c21.

When h∗ = 0, there exists a pair of complex conjugate eigenvalues λ, λ̄ of (16) with |λ| = 1.
Then it has

λ, λ̄ =
p(0) ± i

√
4q(0) – p2(0)
2

.

Furthermore, it implies that

|λ| =
√

q(0),
d|λ|
dh∗

∣
∣
∣
∣
h∗=0

=
H
h2

2
< 0.

It also requires λn, λ̄n �= 1, n = 1, 2, 3, 4 when h∗ = 0. Equivalently, p(0) �= –2, 0, 1, 2. Notice
that (r, k,α, a, b, c, s, h) ∈ HB implies –2 < p(0) < 2. It therefore needs to be p(0) �= 0, 1, which
leads to

G – s �= –1, –2. (17)

Accordingly, a pair of complex conjugate eigenvalues λ, λ̄ of (16) does not lay in intersec-
tion of the unit circle with the coordinate axes.

Assume that ρ = Re(λ), ω = Im(λ). Consider the following transformation:

(
u
v

)

=

(
c12 0

ρ – c11 –ω

)(
ũ
ṽ

)

.
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Then the normal form of (15) can be presented as

(
ũ
ṽ

)


−→
(

ρ –ω

ω ρ

)(
ũ
ṽ

)

+

(
F̃(ũ, ṽ)
G̃(ũ, ṽ)

)

, (18)

where

F̃(ũ, ṽ) =
1

c12

(
c13u2 + c14uv + c15v2 + c16u3 + c17u2v + c18uv2 + c19v3) + O

((|ũ| + |ṽ|)4),

G̃(ũ, ṽ) =
((ρ – c11)c13 – c12c23)

ωc12
u2 +

((ρ – c11)c14 – c12c24)
ωc12

uv

+
((ρ – c11)c15 – c12c25)

ωc12
v2 +

((ρ – c11)c16 – c12c26)
ωc12

u3

+
((ρ – c11)c17 – c12c27)

ωc12
u2v +

((ρ – c11)c18 – c12c28)
ωc12

uv2

+
((ρ – c11)c19 – c12c29)

ωc12
v3 + O

((|ũ| + |ṽ|)4),

and u = c12ũ, v = (ρ – c11)ũ – ωṽ.
Let us denote

F̃ũũ =
∂2F̃(ũ, ṽ)

∂2ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, F̃ũṽ =
∂2F̃(ũ, ṽ)

∂ũ∂ ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

,

F̃ṽṽ =
∂2F̃(ũ, ṽ)

∂2ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, F̃ũũũ =
∂3F̃(ũ, ṽ)

∂3ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

,

F̃ũũṽ =
∂3F̃(ũ, ṽ)
∂2ũ∂ ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, F̃ṽṽũ =
∂3F̃(ũ, ṽ)
∂2ṽ∂ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

,

F̃ṽṽṽ =
∂3F̃(ũ, ṽ)

∂3ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, G̃ũũ =
∂2G̃(ũ, ṽ)

∂2ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

,

G̃ũṽ =
∂2G̃(ũ, ṽ)

∂ũ∂ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, G̃ṽṽ =
∂2F̃(ũ, ṽ)

∂2ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

,

G̃ũũũ =
∂3G̃(ũ, ṽ)

∂3ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, G̃ũũṽ =
∂3G̃(ũ, ṽ)
∂2ũ∂ ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

,

G̃ṽṽũ =
∂3G̃(ũ, ṽ)
∂2ṽ∂ũ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

, G̃ṽṽṽ =
∂3G̃(ũ, ṽ)

∂3ṽ

∣
∣
∣
∣
(ũ,ṽ)=(0,0)

.

Then map (20) can undergo a Hopf bifurcation if the following discriminatory quantity
is not zero:

l =
[

– Re

(
(1 – 2λ)λ̄2

1 – λ
ξ11ξ20

)

–
1
2
|ξ11|2 – |ξ02|2 + Re(λ̄ξ21)

]∣
∣
∣
∣
h∗=0

, (19)

where

ξ20 =
1
8
[
(F̃ũũ – F̃ṽṽ + 2G̃ũṽ) + i(G̃ũũ – G̃ṽṽ – 2F̃ũṽ)

]
,
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ξ11 =
1
4
[
(F̃ũũ + F̃ṽṽ) + i(G̃ũũ + G̃ṽṽ)

]
,

ξ02 =
1
8
[
(F̃ũũ – F̃ṽṽ – 2G̃ũṽ) + i(G̃ũũ – G̃ṽṽ + 2F̃ũṽ)

]
,

ξ21 =
1

16
[
(F̃ũũũ + F̃ũṽṽ + G̃ũũṽ + G̃ṽṽṽ) + i(G̃ũũũ + G̃ũṽṽ – F̃ũũṽ – F̃ṽṽṽ)

]
.

Theorem 3.2 If condition (17) holds and l �= 0, then map (4) undergoes a Hopf bifurcation
at B(u∗, v∗) when the parameter h varies in a small neighborhood of HB. Moreover, if l < 0
(resp., l > 0), then an attracting (resp., repelling) invariant closed curve bifurcates from
B(u∗, v∗) for h > h2 (resp., h < h2).

4 Bifurcation with 1:2 resonance
In the following, we focus on the 1:2 strong resonance bifurcation of system (4) at B(u∗, v∗).
Assume that

R12 =
{

(r, k,α, a, b, c, s, h) : h = h1 =
H

(2 + G)(2 – s)
, s = s1 = G + 4

}

.

The two roots of (6) are λ1,2 = –1 when all the parameters are located in R12. Then B(u∗, v∗)
may be a 1:2 strong resonance bifurcation point if h and s respectively vary in a small
neighborhood of h = h1 and s = s1. We consider h and s as bifurcation parameters and
assume that (r, k,α, a, b, c, s, h) varies in a small neighborhood of R12. For convenience, we
denote

β = (h, s), β0 = (h1, s1).

Let xn = un – u∗ and yn = vn – v∗. Then we transform B(u∗, v∗) of system (4) into the origin
and get the following form:

⎧
⎨

⎩

xn+1 = (xn + u∗) exp(r(1 – xn+u∗
k ) – α(yn+v∗)

a+b(xn+u∗)+c(yn+v∗) ) – u∗,

yn+1 = (yn + v∗) exp(s(1 – h(yn+v∗)
xn+u∗ )) – v∗.

(20)

By expanding the right-hand side of (20) into the Taylor series at the origin, we get

⎧
⎨

⎩

xn+1 = θ1(β)xn + θ2(β)yn + N1(xn, yn) + O((|xn| + |yn|)4),

yn+1 = σ1(β)xn + σ2(β)yn + N2(xn, yn) + +O((|xn| + |yn|)4),
(21)

where

θ1(β) = c11, θ2(β) = c12, σ1(β) = c21, σ2(β) = c22,

N1(xn, yn) =
∑

2≤i+j≤3

θij(β)xi
nyj

n, N2(xn, yn) =
∑

2≤i+j≤3

σij(β)xi
nyj

n,

with

θ20(β) = c13, θ11(β) = c14, θ02(β) = c15,
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θ30(β) = c16, θ21(β) = c17, θ12(β) = c18, θ03(β) = c19,

σ20(β) = c23, σ11(β) = c24, σ02(β) = c25,

σ30(β) = c26, σ21(β) = c27, σ12(β) = c28, σ03(β) = c29.

Let us define

A(β) =

(
θ1(β) θ2(β)
σ1(β) σ2(β)

)

.

Note that we have

A(β0) =

(
s1 – 3 – (s1–2)2h1

s1
s1
h1

1 – s1

)

.

Moreover, there are two linearly independent eigenvectors q0,1 of A(β0) and adjoint eigen-
vectors p0,1 of AT (β0) such that

A(β0)q0 = –q0, A(β0)q1 = –q1 + q0,

AT (β0)p1 = –p1, AT (β0)p0 = –p0 + p1,

〈q0, p0〉 = 〈q1, p1〉 = 1, 〈q1, p0〉 = 〈q0, p1〉 = 0,

where

q0 =

(
h1(s1–2)

s1

1

)

, q1 =

(
h1
s1

0

)

, p0 =

(
0
1

)

, p1 =

(
s1
h1

2 – s1

)

,

and 〈·, ·〉 stands for the standard scalar product.
Therefore, any vector (xn, yn)T can be decomposed as

(xn, yn)T = x̂nq0 + ŷnq1, (22)

where the new coordinates (x̂n, ŷn) are as follows:
⎧
⎨

⎩

x̂n = 〈(xn, yn)T , p0〉,
ŷn = 〈(xn, yn)T , p1〉.

(23)

In the new coordinates (x̂n, ŷn), system (21) can be written as
⎧
⎨

⎩

x̂n+1 = (–1 + θ10(β))x̂n + (1 + θ01(β))ŷn + N̂1(x̂n, ŷn) + O((|x̂n| + |ŷn|)4),

ŷn+1 = σ10(β)x̂n + (–1 + σ01(β))ŷn + N̂2(x̂n, ŷn) + +O((|x̂n| + |ŷn|)4),
(24)

where

θ10(β) =
〈
p0,

[
A(β) – A(β0)

]
q0

〉
= 2 – s +

sh1(s1 – 2)
hs1

,

θ01(β) =
〈
p0,

[
A(β) – A(β0)

]
q1

〉
= –1 +

sh1

hs1
,
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σ10(β) =
〈
p1,

[
A(β) – A(β0)

]
q0

〉

=
[

s1

h1
θ1 + (2 – s1)σ1

]
h1(s1 – 2)

s1
+

[
s1

h1
θ2 + (2 – s1)σ2

]

,

σ01(β) =
〈
p1,

[
A(β) – A(β0)

]
q1

〉
= 1 +

[
s1

h1
θ1 + (2 – s1)σ1

]
h1

s1
,

N̂1(x̂n, ŷn) =
∑

2≤i+j≤3

θ̂ij(β)x̂i
nŷj

n = N2

(
h1(s1 – 2)

s1
x̂n +

h1

s1
ŷn, x̂n

)

,

N̂2(x̂n, ŷn) =
∑

2≤i+j≤3

σ̂ij(β)x̂i
nŷj

n

=
s1

h1
N1

(
h1(s1 – 2)

s1
x̂n +

h1

s1
ŷn, x̂n

)

+ (2 – s1)N2

(
h1(s1 – 2)

s1
x̂n +

h1

s1
ŷn, x̂n

)

.

Clearly,

θ10(β0) = θ01(β0) = σ10(β0) = σ01(β0) = 0.

By introducing the nonsingular linear coordinate transformation as follows:

(
x̂n

ŷn

)

= P(β)

(
x̃n

ỹn

)

=

(
1 + θ01(β) 0
–θ10(β) 1

)(
x̃n

ỹn

)

, (25)

(24) can be rewritten as
⎧
⎨

⎩

x̃n+1 = –x̃n + ỹn + Ñ1(x̃n, ỹn) + O((|x̃n| + |ỹn|)4),

ỹn+1 = τ1(β)x̃n + (–1 + τ2(β))ỹn + Ñ2(x̃n, ỹn) + O((|x̃n| + |ỹn|)4),
(26)

where

τ1(β) = σ01(β) + θ01(β)σ10(β) – θ10(β)σ01(β),

τ2(β) = θ10(β) + σ01(β),

Ñ1(x̃n, ỹn) =
∑

2≤i+j≤3

θ̃ij(β)x̃i
nỹj

n =
1

1 + θ01(β)
N̂1

((
1 + θ01(β)

)
x̃n, –θ10(β)x̃n + ỹn

)
,

Ñ2(x̃n, ỹn) =
∑

2≤i+j≤3

σ̃ij(β)x̃i
nỹj

n

= θ10(β)N̂1
((

1 + θ01(β)
)
x̃n, –θ10(β)x̃n + ỹn

)

+
(
1 + θ01(β)

)
N̂2

((
1 + θ01(β)

)
x̃n, –θ10(β)x̃n + ỹn

)
.

To reduce (26) to a 1:2 resonance bifurcation normal form, we introduce the following
transformation:

⎧
⎨

⎩

x̃n = ξn +
∑

2≤i+j≤3 ψij(β)ξ i
nη

j
n,

ỹn = ηn +
∑

2≤i+j≤3 φij(β)ξ i
nη

j
n,

(27)

where ψij and φij will be determined later.
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By using (27) and its inverse transformation, system (26) becomes of the following form:

⎧
⎨

⎩

ξn+1 = –ξn + ηn +
∑

2≤i+j≤3 γij(β)ξ i
nη

j
n + O((|ξn| + |ηn|)4),

ηn+1 = τ1(β)ξn + (–1 + τ2(β))ηn +
∑

2≤i+j≤3 ρij(β)ξ i
nη

j
n + O((|ξn| + |ηn|)4),

(28)

where

γ20(β) = θ̃20 + φ20 – 2ψ20 – τ 2
1 ψ02 + τ1ψ11,

γ11(β) = θ̃11 + φ11 – 2τ1(1 + τ2)ψ02 + (τ2 – τ1)ψ11 + 2ψ20,

γ02(β) = θ̃02 + φ02 –
(
1 + (1 + τ2)2)ψ02 + (1 + τ2)ψ11 – ψ20,

ρ20(β) = σ̃20 – τ 2
1 φ02 + τ1φ11 + (τ1 + τ2)φ20,

ρ11(β) = σ̃11 – 2τ1(1 + τ2)φ02 + (2 – τ1 + 2τ2)φ11 + 2φ20 + τ1ψ11,

ρ02(β) = σ̃20 – τ2(1 + τ2)φ02 – (1 + τ2)φ11 – φ20 + τ1ψ02.

To eliminate all quadratic terms in the map (28), we take

γ20 = γ11 = γ02 = ρ20 = ρ11 = ρ02 = 0,

then the coefficients ψij and φij for i + j = 2 can be computed (see the details in [28]).
Similarly, the coefficients ψij and φij for i + j = 3 can be determined by assuming

γ30 = γ12 = γ21 = γ03 = ρ12 = ρ21 = ρ03 = 0.

Therefore, map (20) can be transformed into the 1:2 strong resonance bifurcation nor-
mal form as follows:

⎧
⎨

⎩

ξn+1 = –ξn + ηn + O((|ξn| + |ηn|)4),

ηn+1 = τ1(β)ξn + (–1 + τ2(β))ηn + C1(β)ξ 3
n + D1(β)ξ 2

n ηn + O((|ξn| + |ηn|)4),
(29)

with C1(β) and D1(β) satisfying

C1(β0) = σ̃30(β0) + θ̃20(β0)σ̃20(β0) +
1
2
σ̃ 2

20(β0) +
1
2
σ̃20(β0)σ̃11(β0),

D1(β0) = σ̃21(β0) + 3θ̃30(β0) +
1
2
θ̃20(β0)σ̃11(β0) +

5
4
σ̃20(β0)σ̃11(β0)

+ σ̃20(β0)σ̃02(β0) + 3θ̃2
20(β0) +

5
2
θ̃20(β0)σ̃20(β0)

+
5
2
θ̃11(β0)σ̃20(β0) + σ̃ 2

20(β0) +
1
2
σ̃ 2

11(β0).

According to the results given in [28], the parameter conditions for the 1:2 strong reso-
nance bifurcation are presented as follows.

Theorem 4.1 If C1(β0) �= 0 and D1(β0)+3C1(β0) �= 0, then system (4) undergoes a 1:2 strong
resonance bifurcation at B(u∗, v∗) when parameters vary in a small neighborhood of R12.
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Moreover, if C1(β0) < 0 (resp., C1(β0) > 0), then B(u∗, v∗) is a saddle (resp., elliptic), and
D1(β0) + 3C1(β0) determines the bifurcation scenario under perturbations. Furthermore,
system (4) has the bifurcation behaviors as follows:

(i) There is a pitchfork bifurcation curve PF = {(τ1, τ2) : τ1 = 0}, and there exist
nontrivial equilibria for τ1 < 0;

(ii) There is a nondegenerate Hopf bifurcation curve

HP =
{

(τ1, τ2) : τ1 = –τ2 + O
((|τ1| + |τ2|

)2), τ1 < 0
}

;

(iii) There is a heteroclinic bifurcation curve

HL =
{

(τ1, τ2) : τ1 = –
5
3
τ2 + O

((|τ1| + |τ2|
)2), τ1 < 0

}

.

5 Numerical simulations
Bifurcation diagrams, maximum Lyapunov exponents, and phase portraits of system (4)
are presented to demonstrate the above analytic results and to explore the complex dy-
namical behaviors. Therefore, we consider the bifurcation parameters for the following
three cases:

(i) Changing h in the interval (12, 22) and specifying r = 3, k = 50, α = 0.86, a = 0.8,
b = 0.1, c = 0.05, s = 0.4;

(ii) Changing h in the interval (3, 11) and specifying r = 3, k = 50, α = 0.86, a = 0.8,
b = 0.1, c = 0.05, s = 1.2;

(iii) Changing h in the interval [1.22, 1.24] and s in the interval [0.5, 0.7], and specifying
r = 10, k = 50, α = 0.86, a = 0.8, b = 0.1, c = 0.05.

For case (i). When h = h1 = 14.44845, the unique positive fixed point is B(u∗, v∗) =
(41.905164, 2.900322) and the eigenvalues of (5) are λ1 = –1 and λ2 = 0.482006. In addi-
tion, s �= G + 4 = 1.882005 and μ1 = 0.04465407588 �= 0, μ2 = 0.057614 > 0. Then we know
from Theorem 3.1 that a stable period-2 orbit emerges from the unique positive fixed
point B(u∗, v∗). The bifurcation diagrams for (h, u) and (h, v) are displayed in Fig. 1(a) and
(b), respectively. The maximum Lyapunov exponents corresponding to Fig. 1(a) and (b)
are shown in Fig. 1(c). From Fig. 1(a) and (b), the unique positive point B(u∗, v∗) is stable
for 12 < h < h1 and loses its stability at the flip bifurcation parameter value h = h1. Mean-
while, we can observe complex dynamical behaviors such as a cascade of period-doubling,
period-10 orbits, quasi-periodic orbits, periodic windows, and chaos (see Figs. 1 and 2).
Figure 2 shows some phase portraits associated with Fig. 1(a) and (b). If h = 21, a chaotic
set is observed and its maximum Lyapunov exponent verifies the existence of the chaotic
set. According to Fig. 1, when the number of prey required to support a predator is less
than 18.7988, the dynamical behavior of system (4) is stable and chaos does not occur.
Moreover, the dynamical behavior of system (4) stabilizes when the number of prey re-
quired to support a predator becomes small.

For case (ii). When h = h2 = 8.9081, the unique positive fixed point is B(u∗, v∗) =
(37.33459221, 4.191083644) and the eigenvalues of system (5) are λ1 = –0.4209507970 +
i0.9070834805 and λ2 = λ̄1. Furthermore, we can get |λ1,2| = 1. Additionally, G =
–1.641901594 �= s – 1, s – 2 and l = –0.03712915975 < 0. Then we know from Theorem 3.2
that the Hopf bifurcation occurs and an attracting invariant cycle emerges from the unique
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Figure 1 (a) Flip bifurcation diagram of system (4) in the (h,u) plane with the initial value (u0, v0) = (8, 2). (b)
Flip bifurcation diagram of system (4) in the (h, v) plane. (c) Maximum Lyapunov exponents corresponding to
(a) and (b)

Figure 2 Phase portraits corresponding to Fig. 2(a) and (b). (a)Quasi-periodic orbits for h = 18.5. (b) Period-10
orbits for h = 19.7. (c) Quasi-periodic orbits h = 20. (d) A chaotic attractor for h = 21
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Figure 3 (a) Hopf bifurcation diagram of system (4) in the (h,u) plane with the initial value (u0, v0) = (8, 2). (b)
Hopf bifurcation diagram of system (4) in the (h, v) plane. (c) Maximum Lyapunov exponents corresponding to
(a) and (b)

fixed point B(u∗, v∗). The bifurcation diagrams for (h, u) and (h, v) are displayed in Fig. 3(a)
and (b), respectively. The maximum Lyapunov exponents corresponding to Fig. 3(a) and
(b) are shown in Fig. 3(c). Figure 4 displays the phase portraits of system (4) corresponding
to Fig. 3(a) and (b). It can be observed from Fig. 4 that there are period-6, period-12, an
invariant closed curve, and an attracting chaotic set. Meanwhile, when a chaotic attractor
happens for h = 4, the maximum Lyapunov exponent from Fig. 3(c) confirms its existence.
According to Fig. 3, when the number of prey required to support a predator becomes
large, the dynamical behavior of system (4) will tend to be stable.

For case (iii). When h = h1 = 1.237988529 and s = s1 = 0.6123350405, the unique pos-
itive fixed point is B(u∗, v∗) = (29.28847604, 23.65811586) and the eigenvalues of system
(5) at B(u∗, v∗) are λ1 = λ2 = –1. Furthermore, we can obtain C1(β0) = 0.2700889125 and
D1(β0) + 3C1(β0) = 1.412346912. According to Theorem 4.1, system (4) can undergo a 1:2
resonance at the unique positive fixed point B(u∗, v∗) when the parameters h and s vary
in the neighborhood of (h1, s1). The 2-dimensional bifurcation diagram for (s, u) is pre-
sented in Fig. 5(a) when h = h1 and s varies in a neighborhood of s1. Figure 5(b) shows
the 3-dimensional bifurcation diagram for (h, s, u) when (h, s) varies in a neighborhood of
(h1, s1). The phase portraits of system (4) near B(u∗, v∗) for different parameters h and s
are shown in Fig. 6(a)–(d). When h and s vary in the neighborhood of (h1, s1), system (4)
presents complex dynamical behaviors such as period-7 orbits, invariant curves, and an
attractor.
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Figure 4 Phase portraits corresponding to Fig. 3 (a) and (b). (a) Period-6 orbits for h = 10. (b) Period-12 orbits
for h = 9. (c) An attracting invariant cycle for h = 8. (d) A chaotic attractor for h = 4

Figure 5 Bifurcation diagram of system (4) near the fixed point B(29.2885, 23.6581). (a) On the (s,u)-plane,
where h = 1.23 and 0.5≤ s ≤ 0.7. (b) In the (h, s,u) space, where 1.22≤ h ≤ 1.24 and 0.5≤ s ≤ 0.7

6 Chaos control
In this section, the state feedback control method will be used to stabilize the chaotic set
of system (4). Then we consider the following controlled map:

⎧
⎨

⎩

un+1 = un exp(r(1 – un
k ) – αvn

a+bun+cvn
) + w(un, yn),

vn+1 = vn exp(s(1 – hvn
un

)),
(30)

where w(un, un) = –μ1(un – u∗) – μ2(vn – v∗) is the feedback controlling force and μ1, μ2

represent the feedback gains.
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Figure 6 Phase portraits of system (4) for various values of h and s. (a) h = 1.23, s = 0.664. (b) h = 1.23, s = 0.68.
(c) h = 1.22, s = 0.61. (d) h = 1.226, s = 0.62

The Jacobian matrix of map (30) at B(u∗, v∗) is

J
(
u∗, v∗) =

(
c11 – μ1 c12 – μ2

c21 c22

)

.

The characteristic equation of J(u∗, v∗) is

λ2 – (c11 + c22 – μ1)λ + c22(c11 – μ1) – c21(c12 – μ2). (31)

If λ1 and λ2 are the eigenvalues of (31), then we obtain

λ1 + λ2 = c11 + c22 – μ1,λ1λ2 = c22(c11 – μ1) – c21(c12 – μ2). (32)

By solving the equations λ1 = ±1, the lines of marginal stability can be gotten. Moreover,
these restricted conditions assure |λ1,2| < 1.

According to (32), λ1λ2 = 1 implies that

L1 : μ1c22 – μ2c21 = c11c22 – c12c21 – 1. (33)

According to (32), λ1 = 1 deduces that

L2 : μ1(1 – c22) + μ2c21 = c11 + c22 – 1 – c11c22 + c12c21. (34)
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Figure 7 The bounded region for the eigenvalues of controlled system (30) in the (μ1,μ2) plane. Clearly, the
point (–2, 0) is in the stability region of (30)

Figure 8 (a) The time responses for the prey of controlled system (30). (b) The time responses for the
predator of controlled system (30)

Furthermore, assume that λ1 = –1 deduces that

L3 : μ1(1 + c22) – μ2c21 = c11 + c22 – 1 + c11c22 – c12c21. (35)

Therefore, the stable eigenvalues of map (30) at B(u∗, v∗) will lie within the triangular
region bounded by L1, L2, and L3 (see Fig. 7).

From Fig. 1 and Fig. 2(d) it can be seen that system (4) exhibits chaotic behavior when
h = 21, r = 3, k = 50, α = 0.86, a = 0.8, b = 0.1, c = 0.05, s = 0.4. The stable eigenvalues lie
within a triangular region, as depicted in Fig. 7. Select the feedback gains for μ1 = –2 and
μ2 = 0. This point (μ1,μ2) = (–2, 0) lies well inside the triangular region, as depicted in
Fig. 7. From Fig. 8 it is shown that the chaotic trajectory stabilizes at the unique positive
fixed point B(u∗, v∗) = (44.3323, 2.1111).

7 Conclusion
In this paper, we have considered the complex dynamical behaviors of a discrete Holling–
Tanner model with Beddington–DeAngelis functional response. The permanence and lo-
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cal stability of fixed points for system (4) are derived. By using the center manifold theorem
and bifurcation theory, the flip and Hopf bifurcations can occur around the unique positive
fixed point if we choose suitable parameters. Furthermore, we explore the 1:2 resonance
bifurcation of system (4). Numerical simulations have shown that system (4) exhibits very
rich complex dynamical behaviors. The state feedback control method is used to stabilize
the chaotic set of system (4). According to Fig. 1 and Fig. 3, when the intrinsic growth
rate of a predator is small (s = 0.4), the number of prey required to support a predator
becoming small will stabilize the dynamical behavior of system (4). Conversely, when the
intrinsic growth rate of a predator is large (s = 1.2), the number of prey required to support
a predator becoming large will stabilize the dynamical behavior of system (4). Compared
with the continuous-time system (1) in [9], system (4) exhibits more complex dynami-
cal behaviors such as period-6, 7, 10, 12 orbits, an attracting invariant cycle, a cascade
of period-doubling, quasi-periodic orbits, and the chaotic sets. These complex dynami-
cal behaviors imply that the coexistence of predator and prey may produce very complex
stable patterns.
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